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A B S T R A C T

Although abrasive water jet machining has proved its capabilities for cutting marble material in a most eco-
nomic and environment friendly manner, is facing serious issues related to dimensional inaccuracy and stria-
tion marks. This has put limit on its applications. Also, due to complex nature of abrasive water jet machining
process, it is very difficult to control all three quality factors i.e. kerf taper, kerf width, striation marks simul-
taneously to achieve desired quality. This work therefore deals with multi-objective optimization considering
three objectives as: minimization of kerf width, minimization of kerf taper, and maximization of depth of stri-
ation free surface in abrasive water jet machining process. The response surface modeling is used to establish
the relation between various input parameters such as stand of distance, traverse speed, water pressure, and
abrasive flow rate, with objectives mentioned above. Application of well-known meta-heuristics named artifi-
cial bee colony algorithm is extended to multi-objective optimization with posteriori approach by incorporat-
ing the concept of non-dominated sorting. Set of Pareto optimal solutions obtained by this proposed approach
provides a ready reference for selecting most appropriate parameter setting on the machine with respect to
objectives considered in this work.

© 2017.

1. Introduction

Abrasive water jet machining (AWJM) technology is one of the
fastest growing nontraditional machining processes. It can machine
almost any engineering material, irrespective of material properties.
In comparison to traditional and most non-traditional machining tech-
nologies, AWJM exhibits better performance in the machining of dif-
ficult to machine materials such as ceramics, glass, marble and rocks.
As the material thickness increases AWJM becomes the preferred cut-
ting technique, especially where accuracy must be maintained.

The AWJM is used for making intricate decorative shapes or dec-
orative profiles in marble material. Marble is a natural stone or rock
resulting from metamorphism. Marble has number of applications in
constructions, ceramics, paper, paint industries and decorative pur-
poses. The diamond wire or saw cutters are conventionally used for
cutting the marble material. During cutting the marble using diamond
wire or saw cutter, the material grinds, rather than cut. Also various
other drawbacks of conventional cutting of marble includes higher
set up times, producing dust and noise, higher material wastage, un-
suitability for profile cutting and cracking of material. Due to above
mentioned issues encountered while conventional cutting of marble,
attempts have been made for cutting of marble using nontraditional
machining process such as ultrasonic machining, abrasive water jet
machining (AWJM), laser beam machining (LBM) etc. However, al-
though ultrasonic machining can be applied to non-conductive as
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well as brittle materials, it is a slow and time consuming process with
very high tool wear rate (Hasan, Said, & Mustafa, 2008). Similarly,
laser beam machining of marbles put constraint on the height of the
work piece. Hence, AWJM has been claimed to be one of the most
appropriate methods for cutting marbles due to its distinct advantages
over the other cutting technologies, such as no thermal distortion of
the work piece, high machining versatility to cut virtually any mate-
rial, high flexibility to cut in any direction with small cutting forces,
no risk of fire hazards no radiation emission, no tolerable noise levels,
etc.

In spite of several advantages AWJM offers while machining the
marble material, achieving desired quality of cutting is a challenge.
The performance measures of the quality of cutting includes kerf
width, kerf taper angle, and striations marks at bottom of machined
surface. Several attempts have been made by the earlier researchers
for modeling and optimization of abrasive water jet machining of dif-
ferent materials using various approaches such as genetic algorithm
(Jain, Jain, & Deb, 2007; Srinivasu & Babu, 2008), simulated an-
nealing (Zain, Haron, & Sharif, 2011a, 2011b), artificial bee colony
algorithm (Yusup, Sarkheyli, Zain, Hashim, & Ithnin, 2013), teach-
ing learning based optimization (Pawar & Rao, 2012), Multi-objec-
tive Jaya algorithm (Rao, Rai, & Balic, 2017), Taguchi method (Azmir
& Ahsan, 2008, 2009; Babu & Muthukrishnan, 2015; Kechagias,
Petropoulos, & Vaxevanidis, 2012; Selvan, Raju, Mohana, &
Sachidananda, 2012), artificial neural network (Caydas & Hascalik,
2008), response surface methodology (Babu & Muthukrishnan, 2017;
Irina Wong, Azmi, Lee1, & Mansor, 2016; Jagadish & Ray, 2016;
Liu et al., 2014), fuzzy logic (Jegaraj & Babu, 2007; Vundavilli,
Parappagoudar, Kodali, & Benguluri, 2012), bio-geography algo
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rithm (Rajkamal & Singh, 2017) and sequential approximation opti-
mization (Yue et al., 2014).

It is revealed from literature review that most of the attempts
made by earlier researchers are based on single objective optimiza-
tion of AWJM process. Although few attempts have been made for
multi-objective optimization of AWJM process, are mostly based on
priori approach. In priori approach of multi-objective optimization, the
weights of the objectives are to be decided by process engineers be-
fore optimization, which is very difficult task as it requires compre-
hensive knowledge of the process. Also with priori approach single
optimum solution is obtained which is prone to change with change in
weights of the objectives. Artificial bee colony algorithm developed
by Karaboga and Basturk (2008) has been proved to be one of the
most powerful and robust algorithms for single objective optimization
of several real life applications. Few recent applications of artificial
bee colony algorithm in the field of advanced machining processes
includes parametric Optimization of Nd: YAG Laser Beam Machin-
ing Process (Mukherjee, Goswami, & Shankar, 2013), optimization
of wire electric discharge machining (Rao & Pawar, 2009), optimiza-
tion of electrochemical machining (Sumanta & Chakraborty, 2011),
etc. Few attempts also have been made recently for multi-objective
optimization using artificial bee colony algorithm (Luo et al., 2017;
Wang et al., 2015). In this work an attempt is made to extend the appli-
cation of artificial bee colony algorithm to multi-objective optimiza-
tion through incorporating the concept of non-dominated sorting (Deb,
2005). The multi-objective artificial bee colony algorithm is discussed
in the next section.

2. Multi-objective artificial bee colony algorithm

Artificial bee colony algorithm is developed to model the intel-
ligent behaviors of honeybee swarms (Karaboga & Basturk, 2008).
The honeybee swarms consists of three essential components: food
sources, employed foragers and unemployed foragers, and defines two
leading modes of the behavior: recruitment to a nectar source and
abandonment of a source.

(i) Food sources: the value of a food source depends on many fac-
tors, such as its proximity to the nest, richness or concentration
of energy and the ease of extracting this energy. For the simplic-
ity, the ‘‘profitability’’ of a food source can be represented with
a single quantity

(ii) Employed foragers: they are associated with a particular food
source, which they are currently exploiting or are ‘‘employed’’
at. They carry with them information about this particular source,
its distance and direction from the nest and the profitability of the
source and share this information with a certain probability.

(iii) Unemployed foragers: they are looking for a food source to ex-
ploit. There are two types of unemployed foragers scouts search-
ing the environment surrounding the nest for new food sources
and onlookers waiting in the nest and finding a food source
through the information shared by employed foragers.

The exchange of information among bees is the most important
occurrence in the formation of collective knowledge. While examin-
ing the entire hive, it is possible to distinguish some parts that com-
monly exist in all hives. The most important part of the hive with
respect to exchanging information is the dancing area. Communica-
tion among bees occurs through waggle dance. Employed foragers
share their information with a probability, which is proportional to the
profitability of the food source, and the sharing of this information

through waggle dancing is longer in duration. Hence, the recruitment
is proportional to profitability of a food source.

The performance of artificial bee colony (ABC) algorithm in terms
of convergence rate and accuracy of the solution is found superior
over other non-traditional algorithms in many recent applications.
ABC algorithm combines both, the stochastic selection scheme carried
out by onlooker bees, and greedy selection scheme used by onlook-
ers and employed bees to update the source position. Also the neigh-
bor source production mechanism in ABC is similar to the mutation
process, which is self-adapting. The random selection process carried
out by the scout bees maintains diversity in the solution. The ABC
algorithm is thus flexible, simple to use and robust optimization al-
gorithm, which can be used effectively in the optimization of multi-
modal and multi-variable problems. To extend the application of ABC
algorithm for multi-objective optimization with posteriori approach,
concept of non-dominated sorting is incorporated in this work as dis-
cussed through following steps.

Step 1: Parameter selection
Algorithm specific parameters such as population size i.e. number

of food sources (equal to number of employed bees), number of on-
looker bees, number of scout bees (5–30% of the colony size) are to
be determined.

Step 2: Calculate the nectar amount for each food source
The nectar amount represents the actual fitness value of the solu-

tion.

Step 3: Non-dominate sorting of solutions
In first sorting, each solution is selected and checked whether it sat-

isfies the rules given by Eq. (1) with respect to any other solution in
the population

If the rules are satisfied for any one of the remaining solutions, then
the selected solution is marked as dominated. Otherwise, the selected
solution is marked as non-dominated. All the non-dominated solutions
in the first sorting are ranked 1. Eq. (1) is then again applied to remain-
ing (dominated) solutions from the first sorting and non-dominated so-
lutions identified in this second sorting are ranked 2. The procedure
is repeated until all the solutions are ranked. The subpopulation with
rank 1, referred to as first front set, is assigned a dummy fitness value.

Step 4: Determine normalized Euclidean distance of each solution
Then, the normalized Euclidean distance of each solution is calcu-

lated with respect to all other solutions within this first front set using
the formula

where xs the value of sth decision variable and i, j are solution num-
bers. and are upper and lower limits of the sth decision vari-
able respectively.

Step 5: Determine niche count of the solution

(1)

(2)
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A niche count (nci) provides an estimate of the extent of crowding
near a solution and is calculated using the equation

where Sh(dij) is the sharing function values of all the first front solu-
tions as given by equation:

where σshare is the maximum distance allowed between any two solu-
tions to become members of a niche. The σshare value in this equation
is to be chosen appropriately.

Step 6: Determine the shared fitness values of the solutions
The shared fitness values (F) are then calculated by dividing the

dummy fitness values by the niche count, which is given by Eq. (5).

After calculating the shared fitness values for the first front, a
smaller value is subtracted from the minimum shared fitness value in
this front and resultant value is given as the dummy fitness value (F2)
for all the next front (rank 2) solutions and the steps are repeated. This
procedure is continued till the shared fitness values are calculated for
all fronts.

Step 7: Determine the probabilities by using the shared fitness values
evaluated in step 6

If the shared fitness of a food source “i” is Fi, then the probability
(Pi) of choosing this food source by an onlooker bee is expressed as:

where R is number of food sources.

Step 8: Calculate the number of onlooker bees, which will be sent to
food sources

The number of onlookers bees (N) sent to food source “θi” is cal-
culated as:

where ‘m’ is the total number of onlooker bees.

Step 9: Determine new position of each onlooker bee
After watching the dances of employed bees, an onlooker bee goes

to the region of food source “θi” with the probability Pi. The position
of the selected neighbor food source is obtained as below:

where “c” is number of generation. ϕi(c) is a randomly produced

step to find a food source with a more nectar around ‘θi’. Each food
source is then updated if better position is obtained by onlooker as-
signed to that food source.

Step 10: Evaluate the best solution
Position of the best onlooker bee is identified for each food source.

The global best of the honeybee swarm in each generation is obtained
and it may replace the global best at previous generation if it has better
fitness value.

Step 11: Update the scout bee
The worst employed bees, as many as the number of scout bees in

the population, are respectively compared with the scout solutions. If
the scout solution is better than employed solution, employed solution
is replaced with scout solution. Else employed solution is transferred
to the next generation without any change.

A flowchart of multi-objective artificial bee colony algorithm
based on non-dominated sorting concept is shown in Fig. 1.

3. Application example

An application example considered in this work is a profile cutting
in rectangular slab of marble material using abrasive water jet machin-
ing process. The details of experimental set up used for data collection
are given below:

• Machine type:5 axis SL-V E50V2 abrasive water jet machine
• Make: TECHNI water jet systems
• Workpiece specification: Rectangular slab of

100mm × 7mm × 18mm
• Types of abrasives: Garnet
• Abrasive size: 80 mesh
• Jet impact angle: 90°
• Orifice diameter: 0.25mm
• Nozzle diameter: 0.762mm
• Nozzle length: 76.2mm
• Water flow rate: 2.3L/min
• Number of passes: 1.

As mentioned earlier, the main issues related to profile cutting in
marble material are higher kerf width, higher kerf taper angle and
large striations marks at bottom of cutting surface as demonstrated by
Fig. 2. Fig. 2(a) shows the work piece and (b) shows the slug images
after machining.

To overcome all these issues, the objectives set for multi objective
optimization are (1) minimizing the kerf width (W), (2) minimizing
the kerf taper angle (θ°) and (3) maximizing the depth of striation free
surface (D). Workpiece details with kerf geometry of an abrasive wa-
ter jet cut are shown in Fig. 3.

Although several variables plays an important role in AWJM per-
formance, keeping in view the specific objectives considered in this
work the process variables namely standoff distance (S), traverse
speed (V), water jet pressure (P), and abrasive flow rate (Af) are se-
lected for this study.

Using response surface modeling approach, an experiment is de-
signed with 2k (where k is number of process parameters in this case
k = 4) factorial with central composite-second order rotatable design
is used. This consist of number of corner points = 16, number of ax-
ial points = 8, and a center point at zero level = 4. The axial points are
located in a coded test condition space through parameter ‘α’. For
the design to remain rotatable, ‘α’ is determined as (2k)1/4 = 2. Thus
the coded level for the axial points is at 2. The operating ranges for
process parameters and their coded values shown in Table 1.

(3)

(4)

(5)

(6)

(7)

(8)
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Fig. 1. Flowchart of multi-objective artificial bee colony algorithm based on non-dominated sorting concept.

In this work the performance measures i.e. kerf width (W), kerf ta-
per angle (θ°) and depth of striation free surface (D) are considered.
The experimental data have been collected for above parameters and
measured using calibrated measuring devices. The kerf width is ob-
tained by evaluating the difference of internal diameter of the plate
and the diameter of the cut out part as shown in Fig. 4.

Kerf taper angle have been measured using coordinate measur-
ing machine. The depth of striation is measured using digital
Vernier-Caliper. Data collected experimentally are presented in Table
2.

To study the effect of process parameters i.e. V, P, Af, S on perfor-
mance measures i.e. kerf width (W), kerf taper angle (θ°) and depth
of striation free surface (D) a second order polynomial response is fit
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Fig. 2. (a) Workpiece. (b) Slug after machining.

ted into following Eq. (9).

where ‘y’ is the response and the xi (1, 2, …, k) are coded levels of k
quantitative variables. The coefficient b0 is the free term, the coeffi-
cient bi are the linear terms, the coefficient bii are the quadratic terms
and the coefficient bij are the interaction terms.

The mathematical models are derived for kerf width (W), kerf taper
angle (θ°) and depth of striation free surface (D) based on the obser-
vation collected by determining the coefficients b0, bii, bij using least
square technique. Multiple regression analysis tool of Microsoft Excel
2010 is implemented to get following equations.

4. Multi objective optimization using non dominated sorting
based artificial bee colony algorithm

Now, to demonstrate and validate the non-dominated sorting based
artificial bee colony algorithm for parameter optimization of wire
electric discharge machining for the application example discussed in
section 3, following multi-objective optimization model is formulated:

Objective 1: Minimize kerf width (W) as given by Eq. (10)

Fig. 3. Workpiece details and kerf geometry of an abrasive water jet cut.

(9)

(10)

(11)

(12)
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Table 1
Coded values of process parameters.

Parameters Unit Coded levels

−2 −1 0 1 2

Stand Off Distance (S), (x1) mm 0.5 1 1.5 2 2.5
Traverse Speed (V), (x2) mm/min 50 72.5 95 117.5 140
Water Jet Pressure (P), (x3) MPa 138 190 242 294 346
Abrasive Flow Rate (Af), (x4) g/s 200 375 550 725 900

Fig. 4. Internal diameter measurement to find kerf width.

Table 2
Experimental data collection matrix.

Sr.
No.

(S)
mm

(V)
mm/min

(P)
MPa

(Af)
g/s

Kerf
Width
(W)
mm

Kerf Taper
Angle (θ)
°

Depth of striation
free surface (D)
mm

1 −1 −1 −1 −1 1.29 0.40 15.00
2 1 −1 −1 −1 1.20 0.73 12.50
3 −1 1 −1 −1 1.10 1.21 9.42
4 1 1 −1 −1 1.25 0.00 9.90
5 −1 −1 1 −1 1.10 3.10 8.10
6 1 −1 1 −1 1.11 1.18 6.30
7 −1 1 1 −1 0.91 1.68 3.20
8 1 1 1 −1 1.22 5.31 0.00
9 −1 −1 −1 1 1.24 0.00 5.20
10 1 −1 −1 1 1.18 0.87 11.10
11 −1 1 −1 1 1.00 0.90 4.00
12 1 1 −1 1 1.12 1.02 6.70
13 −1 −1 1 1 1.03 0.99 3.00
14 1 −1 1 1 1.06 1.17 0.00
15 −1 1 1 1 1.36 0.40 0.00
16 1 1 1 1 0.98 1.00 0.00
17 −2 0 0 0 1.14 1.17 8.60
18 2 0 0 0 1.19 0.19 5.80
19 0 −2 0 0 1.05 0.81 8.70
20 0 2 0 0 0.97 0.15 0.00
21 0 0 −2 0 1.30 0.39 15.10
22 0 0 2 0 1.02 1.15 3.34
23 0 0 0 −2 1.03 0.86 7.10
24 0 0 0 2 1.09 1.40 7.15
25 0 0 0 0 1.10 1.59 10.10
26 0 0 0 0 1.10 0.53 6.00
27 0 0 0 0 1.18 0.86 4.60
28 0 0 0 0 1.19 0.85 7.00

Objective 2: Minimization of kerf taper angle (θ) as given by Eq. (11).
Objective 3: Maximization of depth of striation free surface (D) as
given by Eq. (12).

For demonstration purpose first 5 solutions are considered for all
steps. The steps of the multi-objective optimization using non-domi

nated sorting based artificial bee colony algorithm are as discussed be-
low:

Step 1: Parameter selection:
Following algorithm specific parameters are considered in this

work.

• Number of food sources: 20
• Number of onlooker bees: 50
• Number of scout bees: 1
Step 2: Evaluate quality of each food source

Quality of each food source is obtained by evaluating objective
functions values as shown in Table 3.

Step 3: Non-dominated sorting of solutions
Non-dominated sorting of all solution is done by applying crite-

ria mentioned in Eq. (1). All solutions are ranked based on the level
at which they attain non-dominated status. The ranking of solution is
shown in Table 4.

Step 4: Determine normalized Euclidean distance of each solution
The normalized Euclidean distance of each solution from every

other solution is computed by using Eq. (2) and is presented in Table
5.

Step 5: Determine niche count of the solution
Sharing function values shown in Table 6 are obtained by using

Eq. (4). Niche count for solutions 1 to 5 is obtained as 5.302, 7.822,
5.648, 9.898, and 7.570 respectively.

Step 6: Determine the shared fitness values of the solutions
Considering dummy fitness value for rank 1 solution as 50, the

shared fitness value for solutions is computed by applying Eq. (5).

Table 3
Nectar amount for each food source.

Food source No.
S
(mm)

V
(mm/min.)

P
(MPa)

Af
(g/s)

W
(mm) θ°

D
(mm)

1 1.87 71.22 325.82 254.11 0.97 3.44 2.95
2 0.84 89.85 164.61 385.93 1.23 0.36 13.32
3 0.79 100.12 142.11 315.17 1.19 0.10 14.42
4 2.16 120.38 259.75 623.01 1.12 1.44 1.97
5 2.41 87.55 271.91 897.67 0.94 1.00 3.50

Table 4
Non-dominated sorting of solutions.

Solution No. (W) mm (θ) ° (D) mm Rank

1 0.97 3.44 2.95 2
2 1.23 0.36 13.32 2
3 1.19 0.10 14.42 1
4 1.12 1.44 1.97 3
5 0.94 1.00 3.50 1

Table 5
Normalized Euclidean distances.

Sol. No. 1 2 3 4 5

1 0.000 0.971 1.088 0.835 1.009
2 0.971 0.000 0.189 0.934 1.189
3 1.088 0.189 0.000 1.017 1.326
4 0.835 0.934 1.017 0.000 0.553
5 1.009 1.189 1.326 0.553 0.000
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Table 6
Sharing function values.

Solutions Sharing function values

1 2 3 4 5

1 1.000 0.056 0.000 0.302 0.000
2 0.056 1.000 0.964 0.128 0.000
3 0.000 0.964 1.000 0.000 0.000
4 0.302 0.128 0.000 1.000 0.694
5 0.000 0.000 0.000 0.694 1.000

The dummy fitness value for second rank solutions is obtained to en-
sure that it should be less than rank 1 solution with minimum shared
fitness value. In similar way the dummy fitness values of subsequent
ranks 2, 3, and 4 are obtained as 3.586, 0.281, and 0.019 respectively.
The shared fitness values for solutions 1 to 5 are 0.676, 0.458, 8.853,
0.028, and 6.605 respectively.

Step 7: Determine the probabilities based on the shared fitness values
evaluated in step 6

The probability (Pi) with which the onlooker bee is assigned to em-
ployed bee is obtained based on the shared fitness is obtained using
Eq. (6). Values of Pi for solutions 1 to 5 are 0.012, 0.008, 0.157, 0.001,
and 0.117 respectively.

Step 8: Calculate the number of onlooker bees, which will be sent to
food sources

The number of onlooker bees sent to an employed bee (N) obtained
using Eq. (7) for solutions 1 to 5 are 1, 0, 8, 0, and 6 respectively.

Step 9: Determine new position of each onlooker bee
Each employed bee is updated (for N times) using Eq. (8) to obtain

positions of onlooker bees assigned to employed bees/food sources 1,
3, and 5. As mentioned in step 8, one onlooker bee is assigned to food
source1, eight onlooker bees are assigned to food source3 and six on-
looker bees are assigned to food source5. The positions of these on-
looker bees are obtained as mentioned in Table 7.

The positions of onlooker bees for each food source are then com-
pared with the position of the employed bee assigned to that food
source. The comparison is made based on the combined objective
function obtained considering equal weights to all objective functions.
The combined objective function (to be minimized) is then evaluated
as:

Table 7
Positions of onlooker bees.

Food
source

Positions of onlooker bee assigned to
food source

(W)
mm (θ) °

(D)
mm Z

1 1. (1.89, 74.70, 322.14, 312.24) 1.00 3.02 2.66 101.14*

3 1. (0.77, 94.85, 158.32, 281.74) 1.18 0.18 14.79 6.22
2. (0.65, 98.07, 141.67, 622.35) 1.25 0.87 8.77 29.34
3. (0.81, 111.67, 144.14, 263.27) 1.09 0.21 13.47 7.25*

4. (0.53, 99.59, 176.05, 325.33) 1.11 0.57 12.58 19.31
5. (0.74, 102.37, 161.56, 294.56) 1.13 0.22 13.48 7.56
6. (0.70, 101.41, 175.44, 352.96) 1.13 0.46 12.05 15.75
7. (1.04, 94.87, 142.11, 287.93) 1.25 0.30 15.84 10.15
8. (0.80, 101.75, 181.46, 559.45) 1.18 0.60 8.71 20.44

5 1. (1.93, 80.77, 271.91, 895.20) 0.98 0.82 2.89 27.62
2. (2.35, 75.68, 274.64, 897.87) 0.90 0.84 3.05 28.39
3. (2.47, 106.42, 213.00, 469.85) 1.27 0.88 8.06 29.82
4. (2.43, 98.71, 215.44, 897.67) 0.98 1.40 8.38 47.09
5. (2.21, 83.34, 309.98, 897.67) 0.94 0.68 0.27 23.02*

6. (2.43, 91.73, 242.88, 900.00) 0.96 1.20 6.05 40.37

* Best onlooker bee position among onlooker bees assigned to particular food source.

where W∗, θ∗, D∗ and are threshold values of kerf width, kerf taper
angle, and depth of striation free surface respectively. The values of
combined objective functions for employed and onlooker bees using
Eq. (13) are shown in Table 7.

It is observed that combined objective function value (=101.14) of
best onlooker bee for food source 1 is better than that of employed bee
1 (=114.87), and also combined objective function value of best on-
looker bee for food source 5 (=23.02) is better than that of employed
bee 5 (=33.71). Hence the positions of food source1 and 5 are updated.
For food source3, combined objective function value of employed bee
(=3.58) is better than that of (=6.22) best onlooker bee position hence
the position of the employed bee is retained. Table 8 shows the new
set of first five solutions.

This process maintains elitism as best among new solutions is com-
pared with old solution and the one which is superior gets selected.

Step 10: Evaluate the best solution
The global best of the honeybee swarm is (0.79, 100.12, 142.11,

315.17) with W = 1.19mm, θ = 0.10° and D = 14.42mm respectively.

Step 11: Update the scout bee
Since number of scout bee is one, a random solution is generated as

(2.30, 66.90, 236.28, 64.16) with Z = 30.17. The worst of the updated
solution is (1.89, 74.70, 322.14. 312.24) with Z = 101.14. As the ran-
domly generated (scout) solution is better than the worst solution, the
worst solution will be replaced by scout solution.

Step 12: Obtain the set of Pareto-optimal solution
The set of Pareto optimal solutions as shown in Table 9 and The

Pareto front is as shown in Fig. 5.
This process maintains elitism as best among new solutions is com-

pared with old solution and the one which is superior gets selected.
As shown in Table 9, the solution number 10 provides the best pos-
sible values for both kerf taper angle (0.001°) and depth of stria-
tion free surface (17.028mm) and hence is chosen to emphasize the
points of agreement and disagreement with results reported by earlier
researchers (Karakurt, Aydin, & Aydiner, 2011; Orbabic & Junkar,
2008) as summarized in Table 10.

It is thus observed from Table 10, that the results of solution
number 10 from the set of Pareto optimal solutions obtained in this
work are in good agreement with those reported by earlier researchers.
However, it is to be noted that the other solutions in Table 9 may
not be in exact agreement with those reported by earlier researchers.
This is due to the fact the results of optimization obtained by earlier
researchers (Jain et al., 2007; Karakurt et al., 2011; Mali & Pawar,
2017; Orbabic & Junkar, 2008; [33]) are mainly based on single ob

Table 8
Set of updated food sources.

Food source No.
S
(mm)

V
(mm/min.)

P
(MPa)

Af
(g/s)

W
(mm) θ°

D
(mm)

1 1.89 74.70 322.14 312.24 1.00 3.02 2.66
2 0.84 89.85 164.61 385.93 1.23 0.36 13.32
3 0.79 100.12 142.11 315.17 1.19 0.10 14.42
4 2.16 120.38 259.75 623.01 1.12 1.44 1.97
5 2.21 83.34 309.98 897.67 0.94 0.68 0.27

(13)
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Table 9
Set of Pareto optimal solutions.

Solution
Number

(S)
mm

(V)
mm/
min.

(P)
MPa

(Af)
g/s.

Kerf
Width
(W)
mm

Kerf
Taper
Angle
(θ)
°

Depth of
striation free
surface (D)
mm

1 2.50 62.02 189.57 670.38 1.145 0.005 11.794
2 2.12 84.00 181.58 490.62 1.293 0.001 13.024
3 1.71 50.00 344.76 900.00 0.799 0.062 0.000
4 2.15 75.79 198.31 448.73 1.276 0.001 12.121
5 0.61 140.00 240.21 578.05 0.958 0.007 0.329
6 2.34 77.38 163.82 614.45 1.274 0.003 14.542
7 0.99 84.07 157.17 285.70 1.255 0.015 15.991
8 2.02 50.00 223.98 208.49 1.186 0.045 12.370
9 0.96 91.99 153.43 303.37 1.229 0.005 15.171
10 0.68 77.79 138.00 281.43 1.299 0.001 17.028
11 0.77 140.00 200.06 900.00 0.985 0.004 0.000
12 2.50 50.00 343.75 900.00 0.623 0.079 0.000
13 2.48 50.00 186.29 722.95 1.059 0.014 10.785
14 2.50 50.00 344.76 900.00 0.622 0.075 0.000

Fig. 5. Pareto front for three objective functions.

jective optimization, whereas those obtained in this work are for
multi-objective optimization and hence provides the compromised
best values of the process parameters.

Although the parameters ranges available on machine are very
wide, this study reveals that parameter values in some specific ranges
are only effective to achieve better process performance of wire elec-
tric discharge machining process with respect to the objectives con-
sidered. The most effective ranges of process variables to ensure best
performance with respect to both objectives considered in this work
are provided by value path plot as shown in Fig. 6.

Table 10
Process parameter effect matrix.

For minimum kerf width

For
minimum
kerf taper
angle

For maximum
depth of
striation free
surface

Results of
solution 10 in
set of Pareto
optimal
solution

Stand Off
Distance

Should be Less (Karakurt
et al., 2011; Mali &
Pawar, 2017)

Should be
Less
(Mali &
Pawar,
2017)

Should be Less
(Mali &
Pawar, 2017)

0.68 mm;
very close
to lower
bound

Traverse
speed

Should be High (Karakurt
et al., 2011),
Should be moderate
(Mali & Pawar, 2017)

Should be
Low
(Mali &
Pawar,
2017)

Should be Low
(Mali &
Pawar, 2017;
Orbabic &
Junkar, 2008)

77.79 mm;
moderately
close to
lower bound

Water
pressure

Should be low up to
threshold value and
should be high above
threshold value
(Karakurt et al., 2011),
Should be low (Mali &
Pawar, 2017)

Lower or
upper
bound
(Mali &
Pawar,
2017)

Should be Low
(Mali &
Pawar, 2017;
Orbabic &
Junkar, 2008)

138 MPa;
Lower
bound value

Abrasive
flow rate

Should be Low (Karakurt
et al., 2011; Mali &
Pawar, 2017)

Should be
Low
(Mali &
Pawar,
2017)

Should be
moderate
(Mali &
Pawar, 2017)

281.43 g/s;
moderately
close to
lower bound

Fig. 6. Value path plot.

Few solutions from set of Pareto optimal solutions (solution no. 2,
solution no. 8, and solution no. 13 from Table 9) are validated experi-
mentally and the results are as shown in Table 11.

It is observed from Table 11 that average deviations of the pre-
dicted values from experimentally obtained values of kerf width, kerf
taper angle and depth of striation free surface are 0.191mm, 0.436°,
and 2.263mm respectively. Slug after machining for optimum solu-
tion 2 (from set of Pareto optimal solutions provided in Table 9) is
shown in Fig. 7.

Table 11
Experimental validations of optimum solutions obtained using proposed multi-objective artificial bee colony algorithm.

Solution No. Kerf Width (W) mm Kerf Taper Angle (θ)° Depth of striation free surface (D) mm

Predicted Experi-mental δ (mm) Predicted Experi-mental δ (°) Predicted Experi-mental δ (mm)

2 1.293 1.350 0.057 0.001 0.429 0.428 13.024 14.100 1.076
8 1.186 1.354 0.168 0.045 0.624 0.579 12.370 15.900 3.530
13 1.059 1.409 0.350 0.014 0.315 0.301 10.785 8.600 2.185

δ: Absolute deviation.
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Fig. 7. Slug after machining for solution No. 2 from set of Pareto optimal solutions pro-
vided in Table 9.

5. Conclusions

• A set of 14 non-dominated solutions is obtained using proposed
multi-objective optimization approach. This provides ready refer-
ence to process engineers to set best operating parameters on ma-
chines as per his/her requirements.

• It is observed that with optimized set of parameters, the best possible
depth of striation free surface is 17.028mm, which means almost en-
tire surface is striation free. Also best possible values of kerf width
and kerf taper angle are very low, 0.622mm and 0.001° respectively.
Thus with optimized set of parameters near net shape machining of
marble material is possible, eliminating the need for further finish-
ing operations.

• It is also revealed from value path plot that from kerf taper, kerf
width, and depth of striation free surface point of view most effec-
tive ranges of process parameters are: stand-off distance: 0.75–1mm
and 1.75–2.5mm, traverse speed: 50–95mm/min, water jet pressure:
140–230MPa, Abrasive flow rate: 200–900g/s.

• Average combined objective function value (Z) of set of non-domi-
nated solutions obtained by using proposed multi-objective ABC al-
gorithm is 1.23 while that of initial data set obtained experimentally
is 36.50. It can be thus inferred that the results obtained by using
proposed multi-objective ABC algorithm shows an overall improve-
ment of about 96.31% over those obtained by initial experimental
data set.

• The results of optimization are validated experimentally and are in
good agreement as indicated by low values of average absolute de-
viation of 0.191mm, 0.436°, and 2.263mm for kerf width, kerf taper
angle and depth of striation free surface respectively. The proposed
approach of multi-objective optimization has thus proved its effec-
tiveness to the application presented in this work.
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