Total	No	Ω	uestions	.8
iviai	110.	$\mathbf{v}_{\mathbf{I}} \mathbf{v}_{\mathbf{I}}$	ucsuons	•0

P3842

[5462]-540

[Total No. of Pages: 3

SEAT No.:

M.E. (Civil-Structures)

NUMERICAL METHODS IN STRUCTURAL ENGINEERING (2017 Credit Course) (Semester - I) (501004)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) If necessary, assume suitable data and indicate clearly
- 4) Use of electronic pocket calculator is allowed.
- Q1) a) A propped cantilever beam AB is loaded as shown in fig. 1. Using matrix method of analysis, determine the reactions at supports.[5]

Fig. 1

b) Solve the linear system step by step by Gauss Jordan Method.

$$x + y + z = 5.$$

$$2x + 3y + 5z = 8$$

$$4x + 5z = 2$$

OR

Q2) a) Find the displacements at 1, 2 and 3 for the following assembly shown in Fig. 2 using stiffness method. [5]

b) Explain the difference in Gauss Seidel and Gauss Jordan method for the solution of linear equations. Explain the convergence criteria and diagonal dominance with reference to above methods. [4]

P.T.O.

- Q3) a) Complete six iterations of power method to approximate a dominant [4] Eigen vector of $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$ beginning with an initial non zero approximation of $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - b) Derive the 1-point and 2-point Gauss Quadrature formula and hence evaluate the integral $\int_0^{0.8} \frac{\sin hx}{x} dx$ and compare with exact value. [5]
- **Q4)** a) Find the approximate solution of the initial value problem $\frac{dx}{dt} = 1 + \frac{x}{t} \cdot 0 \le t \le 3$ with the initial condition x(1) = 1 using the Runge Kutta fourth order with step size h=1. [4]
 - b) Write note on closed and open Newton's Cote method. [5]
- **Q5)** a) A square plate with side length L fixed on one side and supporting a transverse load P at the center of the outboard side as shown in the Fig.3. Develop the equations of deflection using finite difference method. [8]

Fig. 3

b) Estimate the lowest buckling load of a uniform pin ended column of length L and flexural rigidity EI using three sub-intervals. Compare the approximate value obtained with the exact value given by Euler's critical load theory. [8]

OR

- A propped cantilever beam of 6m span is subjected to an uniformly **Q6)** a) distributed load of 10kN/m. Applying central difference formula dividing the beam in four equal parts, find the deflection at the nodal points, rotation at the simply supported end and moment at its fixed end. [8]
 - b) A simply supported uniform square plate is subjected to a uniformly distributed load q. Dividing the plate into 4×4 mesh, find the deflection at the interior nodal points using finite difference methods.

If the plate is subjected to concentrated load P at the center instead of uniformly distributed load q, comment on the changes to be made in the formulation. [8]

- What is spline interpolation function? How are they different from **Q7)** a) Lagrange's interpolation function? [8]
 - b) Find the quadratic polynomial that fits the given data: [8]

				00	
X	- 3	-1	0	4	3
y = f(x)	2	1.5	1.4	21.5	2

Find the cubic splines for the given data: **Q8)** a)

[8]

			<u> </u>		
X	1	2	3	4	
У	1	4	12	6	
xnlain re	eoression	analysis wi	th suitable	e example	e. 🤼 [8
xpiamiiv	egression	allalysis Wi	ui suitaon	CAdinpi	S. I.
					N 8
					0,0
		\mathbf{X}	X X	A	6
		'A '	A ' 'A '	C	
					N.
					OK.
			,		\(\)
				7 9	
				0.	
				,	
			V		
			3		

Explain regression analysis with suitable example. b)

