Total No. of Qu	uestions	: 71
-----------------	----------	------

SEAT No.:			
[Total	No. of Pages	:	1

P3955

[5462] - 679

M.E. (Computer Engineering) Bio-Inspired Optimization Algorithms (2017 Course) (Sem - I) (510102)

Tim	e:3	Hours] [Max. Marks	s : 50
Inst	ructi	ions to the candidates:	
	1)	Q.No.7 is compulsory, solve any 5 from Q.No 1 to Q.No.6	
	2)	Neat diagrams must be drawn wherever necessary.	
	3) 4)	Figures to the right indicate full marks. Assume suitable data, if necessary.	
	7)	Assume suitable utility in necessary.	
Q1)	a)	What is natural computing?	[1]
	b)	Write simulated annealing algorithm.	[4]
	c)	What is positive feedback? List examples of positive feedback.	[3]
Q2)	a)	Discuss selection and mutation of Evolutionary Programming	[4]
	b)	Discuss selection and crossover of Evolutionary Strategies.	[4]
Q3)	a)	Interpret the biological terminology into Ant colony Optimization	and
		Ant Clustering Algorithm.	[4]
	b)	Write Ant clustering algorithm.	[4]
			0
Q4)	a)	Write pseudocode of flower pollination algorithm and discuss ideal	lizec
		rules of flower pollination algorithm.	[4]
	b)	Discuss self tuning framework and self tuning of firefly algorithm	[4]
Q5)	a)	Interpret the immunological terminology into the computational do	mair
		of AIS.	[4]
	b)	Illustrate procedure to generate antibodies from gene libraries.	[4]
Q6)	a)	Discuss architecture of Framstick.	[4]
	b)	Illustrate boid flocking.	[4]
Q7)	a)	What is artificial life? What are the goals of artificial life.	[4]
	b)	Discuss ant system for Travelling salesman problem.	[6]

