Total No. of Questions: 7] SEAT No.		
•		SEAT NO.
P3896		[Total No. of Pages : 2 [5462] > 609
		M.E. (Electrical) (Control Systems)
SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL		
(2017 Course) (Semester - III) (603102)		
		(2017 Course) (Semester - 111) (003102)
Time	: 3	Hours] [Max. Marks:50
Instructions to the candidates:		
	<i>1)</i>	Answer Qu I or 2, Qu 3 or 4, Qu 6 or Qu 7, Qu 5 is compulsory.
	2) 3)	Figures to the right side indicate full marks. Neat diagrams must be drawn wherever necessary.
	1) 4)	Use of algorithmic tables slide rule, Mollier charts, and electronic pocket calculator
		and steam table is allowed.
3	5)	Assume suitable data, if necessary.
Q1)	a)	Explain the parametric and non parametric methods of system identification. [4]
	b)	Compute the QR factorization of matrix: $\begin{bmatrix} 12 & 27 \\ 4 & 2 \\ 6 & 10 \end{bmatrix}$ [5]
<i>Q2)</i>	a)	Derive least square estimate of θ for model given by $y=\Phi$ θ [5]
	b)	What is the importance of persistently exciting input signal in system identification? What order of p.e. is white noise? [4] The short notes on any three: Instrumental variable method Recursive estimation Pattern recognition Bayesian learning Maximum likelihood method Model structure OR
<i>Q3</i>)	Wı	rite short notes on any three: [9]
	a)	Instrumental variable method
	b)	Recursive estimation
	c)	Pattern recognition
	d)	Bayesian learning
	e)	Maximum likelihood method
	f)	Model structure
		OR
		PTO

- Instrumental variable method a)
- b) Recursive estimation
- Pattern recognition c)
- Bayesian learning d)
- Maximum likelihood method e)
- f) Model structure

- Prove the matrix inversion lemma: $[A + BCD]^{-1} = A^{-1}A^{-1}B[C^{-1} + DA^{-1}B]^{-1}DA^{-1}$. **Q4)** a) [4]
 - With the help of block diagram explain 'self tuning regulator'. **b**) [5]
- Write short note on. **Q5)** a)

[8]

- MIT rule i)
- Kalman filter as a state estimator
- What are various adaptive schemes and how they are implemented? [8] b)
- Q6) With the help of both MIT rule and Lyapunov theory, design an MRAS for system described by $G(s) = \frac{b}{s+a}$ where a and b are unknown. The controller is given by $u(t) = \theta_1 u_c(t) + \theta_2 y(t)$ and the desired closed loop model is $\frac{dy_m}{dx} = -a_m y_m + b_m u_c$. Draw simulation diagram and compare two methods.

Assume
$$V(\theta) = \frac{1}{2} \left[e^2 + \frac{1}{b\gamma} (b\theta_2 + a - a_m)^2 + \frac{1}{b\gamma} (b\theta_1 - b_m)^2 \right]$$
 [16]

Q7) Consider a position servo described by $\frac{dv}{dt} = -av + bu$ and $\frac{dy}{dt} = v$; where a and b are unknown. Assume the control law $u = \theta_1(uc - y) - \theta_2 v$ is used and that it is desired to control the system in such a way that the transfer function from command signal to process output is given by $G_m(S) = \frac{w^2}{s^2 + 2\xi ws + w^2}$ determine an adaptive control law that adjusts the parameters so that the desired objective * * * is obtained. [16]

