Total	No.	of (Ones	tions	s :61
IUIAI	110.	VI 1	O u co		9 .VI

P	42	1	7

SEAT No.:			
[Total	Nο	of Pages .	3

[5459]-5 S.E. (E & TC) ELECTRO MAGNETIC (2008 Course) (Semester-II)

Time: 2 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer all questions in same answer book.
- 2) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 3) Figures on the right-side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.
- 6) Assume suitable data, if necessary.
- Q1) a) A line charge density $P_1=15$ n C/m is located in free space on the line y=3, x=4 and a point charge Q=2×10⁻⁹C located at the origin. [8] Find:
 - i) Electric field Intensity due to the line charge, at P (8, 9, 10).
 - ii) Electric field intensity due to the point charge, at P (8, 9, 10).
 - b) Derive the expression for Electric field Intensity (\vec{E}) due to an Electric Dipole. [8]

OR

- Q2) a) State and prove Gauss Law. Explain its applications. [8]
 - b) The Electric field between two concentric cylinders at ρ =0.01m and ρ =0.05m, is given by $\vec{E} = \left(\frac{10^6}{\rho}\right) \vec{a_\rho}$ V/m. Find the Energy stored in 1 m length. Assume free space & neglect fringing. [8]

Q3) a) For the finite-length current element placed on Z-axis, as shown in figure 1 below, find the expression for H, using Biot-Savart's Law. [8]

b) Derive the Boundary conditions for an interface between a conductor and dielectric medium. [8]

OR

- **Q4)** a) Let $\vec{E} = 18\vec{a}_x 11\vec{a}_y + 8.5\vec{a}_z$ V/m at a conductor-free-space boundary. Find:
 - i) Magnitude of \vec{E}
 - ii) Magnitude of E
 - iii) Magnitude of E_T
 - iv) ρ_s
 - b) Define the terms scalar magnetic potential, vector magnetic potential and compare scalar magnetic potential with scalar electric potential. [8]
- **Q5)** a) State Maxwell's equations for time-varying fields in point form and integral form. Also state the significance of each. [10]
 - b) Write a short note on finite difference Method.

[8]

OR

Q6) a) A plane electromagnetic wave, travelling in the positive Z-direction, in an unbounded lossless dielectric medium, with $\mu_r = 1$ and $\epsilon_r = 3$, has a peak Electric field Intensity \vec{E} of 16 V/m

Find:-

- i) V (Velocity of the wave)
- ii) η (characteristic impedance)
- iii) H

iv) $|\vec{\mathbf{P}}|$ [10]

b) Write a short note on finite Element Method. [8]

Strange Andrews Andrew