Total No. of Questions: 12]		SEAT No. :
P4216	[5450]_4	[Total No. of Pages : 3

S.E. (Electronics / E & TC) ELECTROMAGNETICS

(2008 Course) (Semester - II) (204189)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicates full marks.
- 5) Use of Calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION - 1

- **Q1)** a) Develop an expression for Electric field intensity at any point P due to infinite line charge of uniform charge density ρ_1 along z axis. [9]
 - b) A point charge of 30nC is located at origin, while plane y=3 carries charge $10nC/m^2$. Find \bar{D} at (0,4,3) [9]

OR

- Q2) a) State and prove Gauss law. State significance of Gaussian surface. [9]
 - b) Point charges 5nC and -2nC are located at (2,0,4) and (-3,0,5) respectively. [9]
 - i) Determine the force on a 1 nC point charge located at (1,-3,7)
 - ii) Find electric field \overline{E} at (1,-3,7)
- **Q3)** a) An electric dipole of $100\hat{a_z}$ pCm is located at the origin. Find V and \overline{E} at point (0,0,10).
 - b) Prove that the electric field intensity is the gradient of V. [8]

OR

O(1)	٥)	Derive the expression for capacitance of parallel plate capacitor. [8]
Q4)		Derive the expression for capacitance of parallel plate capacitor. [8] The point charges - $1nC$, $4nC$ and $3nC$ are located at $(0,0,0)$, $(0,0,1)$ and
	b)	(1,0,0) respectively. Find energy in the system. [8]
Q5)	a)	A current distribution gives rise to the vector magnetic potential
~ /		$\overline{A} = x^2 y \overline{a}_x + y^2 x \overline{a}_y - 4xyz \overline{a}_z \text{ wb/m}^2.$ [8]
		Calculate:
		i) \overline{B} at $(-1,2,5)$
		ii) The flux through the surface defined by $z=1$, $0 \le x \le 1, -1 \le y \le 4$.
	b)	State and explain Biot Savart's Law. Derive an expression for magnetic
	0)	field intensity \bar{H} at any point P due to straight filamentary conductor
		along z axis of infinite length. [8]
		OR
Q6)	a)	State Maxwell's equations for static electric and magnetic fields in both
	• `	point and integral forms. [8]
	b)	A circular loop located on $x^2+y^2=9$, $z=0$ carries a direct current of 10A
		along \widehat{a}_{φ} . Determine \overline{H} at $(0,0,4)$ and $(0,0,-4)$
		SECTION - II
Q 7)	a)	Derive the boundary condition for magnetic field at an interface between
	1 \	two magnetic medium having permeability μ_1 and μ_2 . [9]
	b)	Two extensive homogeneous isotropic dielectrics meet on the plane $z = 0$, for $z > 0$, $\varepsilon r_1 = 4$ and for $z < 0$, $\varepsilon r_2 = 3$. A uniform electric field
		$\overline{E}_1 = 5\overline{0}a_x - 20\overline{a}_y + 3\overline{0}a_z \text{ V/m exist for z>0 find } \overline{E}_2 \text{ for z} < 0. $ [9]
		OR
(10)	٥)	Derive the boundary condition for electric field at an interface between
Q8)	a)	conductor and dielectric. [9]
	b)	$H_1 = -2a_{x+} + 6a_y + 4a_z$ A/m in region $x \le 0$ Where $\mu_1 = 5\mu_0$,
		Calculate:
		i) \bar{B}_1
		ii) \overline{H}_2 and \overline{B}_2 in region $x \ge 0$ where $\mu_2 = 2\mu_0$. [9]

- **Q9**) a) Explain concept of uniform plane waves. Explain transverse nature of uniform plane waves.
 - In free space $\overline{H} = 0.2\cos(\omega t \beta x)\hat{a}$. A/m. Find the total power passing b) through a circular disc of radius 5 cm on plane x=1. [8]

- State and prove pointing theorem. State significance of Poynting vector. [8] *Q10*)a)
 - In the charge free region, the magnetic field intensity is given by b) $\overline{H} = H_m \cos \beta z \cos \omega t \overline{a}_v A/m.$ [8]

Calculate $\bar{E}, \bar{D}, \bar{B}$

- Explain the Finite Difference Method to solve electromagnetic problem *Q11*)a) in the form of a partial differential equation. [8]
 - Use finite difference method to calculate potentials at free nodes 1 and 2 b) after 4 iterations. [8]

- What is finite element method? Explain four steps of realization. *Q12*)a)
 - Explain Method of Images in detail. b)

 \mathbf{X}