Total No. of Questions: 12]

SEAT No.:

P4364

[Total No. of Pages : 4

[5460]-15 T.E. (E & TC)

NETWORK SYNTHESIS AND FILTER DESIGN (2008 Pattern)

Time: 3 Hours

[Max. Marks : 100]

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- 3) Use of electronic pocket calculator is allowed.
- 4) Figures to the right side indicate full marks.
- 5) Assume Suitable data if necessary.

SECTION - 1

Q1) a) List the properties of positive real function.

- [6]
- b) Determine whether the polynomials F(s) are Hurwitz

[8]

- i) $F(s)=s^4+s^3+5s^2+3s+4$
- ii) $F(s)=s^4+s^3+2s^2+3s+2$
- c) For a two port network, define all the transfer functions.

[4]

OR

- **Q2)** a) Explain the significance of poles and zeros in network synthesis. Also discuss effect of poles and zeros on response. [6]
 - b) Determine whether the following function is positive real function [4]

$$Z(S) = \frac{s^2 + 1}{s^3 + 4s}$$

c) For the network shown in Fig. 1, find current transfer ratio $\alpha_{12}(s)$ and transfer impedance $Z_{21}(s)$. [8]

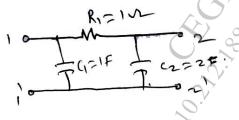


Fig. 1

Q3) a) Synthesize the following one port network function in both foster forms

$$Z(S) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$$

Synthesize the following one port network function in both Cauer forms[8] b)

$$Z(S) = \frac{3(s+2)(s+4)}{s(s+3)}$$

OR

- List properties of one port RC driving point impedance function. **Q4**) a) [6]
 - Indicate with reasons which of the following driving point functions are b) RC, LC or RL. Out of that realize only RL function in first foster and first Cauer forms. [10]

i)
$$Z(S) = \frac{s^3 + 2.6s}{s^4 + 4s^2 + 3}$$

ii) $Y(S) = \frac{s^2 + 2.5s}{s^2 + 5s + 6}$

ii)
$$Y(S) = \frac{s^2 + 2.5s}{s^2 + 5s + 6}$$

iii)
$$Y(S) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$$

- $s^{2} + 5s + 6$ $Y(S) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$ ine constant resistance ge T network Define constant resistance network. For a constant resistance Lattice or **Q5**) a) Bridge T network prove that ZaZb=R² [8]
 - Synthesize $Z_{21}(S) = \frac{s^3}{s^3 + 3s^2 + 4s + 2}$ as a LC ladder with 1 Ω termination.

[8]

[6]

Synthesize the all pass function. **Q6**) a)

 $\frac{V_o}{V_{in}} = \frac{s^2 - 2s + 2}{s^2 + 2s + 2}$ as a lattice network terminated into 1Ω

Synthesize voltage ratio b)

$$\frac{V_2}{V_1} = \frac{s+2}{s+3}$$

as a constant resistance bridge T network terminated by 1Ω . [6] c) Identify the zeroes of transmission for the network in Fig.2.

[4]

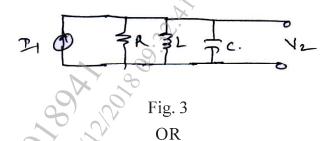
Fig. 2

SECTION - II

- Q7) a) Explain the need and concept of magnitude and frequency normalization in context with filter designing.[6]
 - b) Realize a third order Butterworth low pass filter transfer impedance terminated in load of 500 Ω with a cut off frequency of 10^4 rad/sec. Also convert it into high pass of same specifications. [12]

OR

- **Q8)** a) Compare Butterworth and Chebyshev approximation. [6]
 - b) Design a Chebyshev approximated low pass filter with not more than 1 dB ripple in pass band and 20 dB attenuation at 2 rad/sec. [12]
- **Q9)** a) What are different biquad feedback topologies used in active filter design. [8]
 - b) Synthesize a 2nd order high pass filter having cut off frequency 1kHz using the Sallen and Key circuit based on positive feedback. [8]


OR

- Q10)a) What is cascade approach in active filter synthesis? Explain in detail and list its advantages.[8]
 - b) Design a second order Butterworth low pass active filter having upper cut off frequency 1kHz. [8]
- Q11)a) Define sensitivity and its significance. Derive the property of sensitivity,

$$S_x^{y_1+y_2} = \frac{y_1 S_x^{y_1} + y_2 S_x^{y_2}}{y_1 + y_2}.$$
 [8]

[5460]-15

b) Find the transfer function (V_2/I_1) of a passive network shown in Fig.3. Also compute the sensitivities of K, ω_p and Q_p with respect to elements. [8]

Q12)a) Describe the properties of op-amp such as dynamic range, slew rate, offset voltage, input bias and input offset currents and common mode signal in contest of filter design.[8]

[8]

- b) Derive the sensitivity properties:
 - $S_x^{y^n} = nS_x^y$
 - $ii) \quad S_{x^n}^y = \frac{1}{n} S_x^y$
 - iii) $S_x^y = S_p^y S_x^p$
 - iv) $S_x^{pq} = S_x^p + S_x^q$