Total No. of Questions : 10]		SEAT No. :
P3127	[5154]-693	[Total No. of Pages : 2
	BE (IT)	
	MACHINE LEAR	NING
(2012 Patte	rn) (414455) (Seme	ster-I) (End Sem.)
	5' 2'	$\langle \rangle$
Time: 2½ Hours]		[Max. Marks : 70
Instructions to the candidate		
1) Draw neat diagran 2) Assume suitable de	ns wherever necessary.	
	nt indicate full marks.	
Q1) a) Write Mathema	atical form of the followi	ng: [5]
i) Classification		
	pability estimation	
iii) Regressio		
, ,		re precise? Which one leads to
overfitting?	2 2	ro processor was an arms of
b) Prove with an e	example FP=Neg-TN.	[5]
$\langle 0 \rangle$	OR	
	ode matrix for one-vers	sus-one symmetric case. Assume
three classes.	2.	[5]
	Aachine Learning to sol car based on the locality	ve following task: "Prediction of y of the property". [5]
Sale value of a	car gased on the rotality	y of the property.
Q3) a) Explain VC din	nension.	[5]
	methods for non-linearit	A Y . ()
	OR	
Q4) a) What is Machin	ne Learning? Explain an	y one application where Machine
Learning can b		[5]
b) Explain Suppor	rt Vector Machine.	[5]
	. **	٠٠٠,
V -)		4
		P.T.O.

Q5) a)	Find all 3 -item itemsets from this set with minimum support=2.	[9]	
2 37 a)	Trans id Itemlist	[2]	
	T1 $\{K, A, D, B\}$		
	T2 $\{D, A, C, E, B\}$		
	T3 $\{C, A, B, E\}$		
	$T4 \qquad \{B, A, D\}$		
b)	Write K-means algorithm.	[9]	
,	OR		
Q6) a)	Explain silhouettes.	[9]	
b)	Discuss various distance measures.	[9]	
	2.		
Q7) a)	Write a note on compression based models.	[8]	
b)_	Explain Naive Bayes Classification Algorithm.	[8]	
	OR		
Q8) a)	Define the terms:	[8]	
	i) Bernoulli distribution		
	ii) Binomial distribution	(
	iii) Multinomial distribution	2	
	iv) Gaussian distribution	70,	
b)	Explain discriminative learning.	[8]	
	N. Co.		
Q9) a)	Explain on-line learning.	[8]	
b)	Explain multi task learning	[8]	
010)	OR	101	
Q10) a)	Explain the concept of penalty and award in reinforcement learning.		
b)	Explain ensemble learning.	[8]	
151541 (02			
[5154]-6	093		