Total No. of Questions—8]

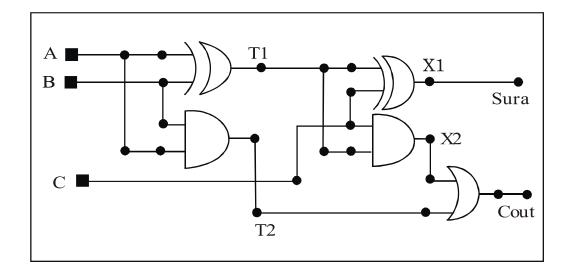
[Total No. of Printed Pages—3

Seat	
No.	

[4857]-1083

S.E. (I.T.) (First Semester) EXAMINATION, 2015

DIGITAL ELECTRONICS AND LOGIC DESIGN


(2012 PATTERN)					
Time: Two Hours Maximum Marks: 50					
N.B. :	- (<i>i</i>)	Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q or Q. No. 6, Q. No. 7 or Q. No. 8.	. No. 5		
	(iii)	Neat diagrams must be drawn wherever necessary. Figures to the right side indicate full marks. Assume suitable data, if necessary.			
1. (a)	(i) (ii	onvert the following numbers, show all steps: $ (2598.675)_{10} = ()_{16} $ $ (110101.101010)_2 = ()_8 $ $ i) (A72E)_{16} = ()_8 $	[6]		
(<i>b</i>)) Di	raw and explain CMOS Non-inverting buffer. Or	[6]		
9 ()	, D		[0]		

2. (a) Design full Subtractor using Decoder IC 74138. [6]

(b) Explain the following TTL characteristics. [6]

- (i) Noise Immunity
- (ii) High level input voltage (V_{IH})
- (iii) Figure of Merit

3.	(<i>a</i>)	What is race around condition? Explain with the help of timing
		diagram. How is it removed using Flip-flop. [7]
	(<i>b</i>)	Draw and explain 3-bit ring counter. [6]
		Or
4.	(a)	Design a sequence generator to generate the sequence10110
		using IC 74194. [7]
	(<i>b</i>)	Design MOD-11 Up counter using IC 74191. [6]
5 .	(a)	Design the following functions using PLA. [6]
		$F1 = \Sigma m (1, 3, 5)$
		$F2 = \Sigma m (5, 6, 7)$
	(<i>b</i>)	Draw and explain block diagram of CPLD. [6]
		Or
6.	(a)	Explain the difference between CPLD and FPGA. [6]
	(<i>b</i>)	Design 4: 1 Multiplexer using PAL. [6]
7.	(a)	Explain the difference between data flow and behavioural
		modeling. [7]
	(<i>b</i>)	Write entity and architecture of D Flip-flop with clear input
		using behavioural modeling. [6]
		Or
8.	(a)	Write entity and architecture of following circuit using structural
		modeling. [7]

(b) What is VHDL? Draw the structure of VHDL module and explain various components of it. [6]

www.sppuonline.com