Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[4857]-1088

S.E. (Information Technology) (Second Semester)

EXAMINATION, 2015

DATA STRUCTURES AND FILES

(2012 **PATTERN**)

Time: Two Hours

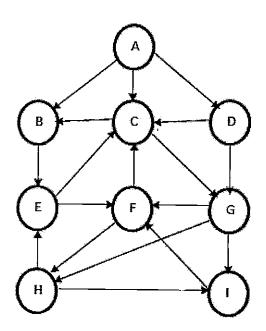
Maximum Marks: 50

- N.B. := (i) Answer four questions.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- **1.** (a) Transform the following expression to prefix and postfix: [6]

$$A \ + \ (((B \ - \ C) \ * \ (D \ - \ E) \ + \ F)\!/\!G) \ \$ \ (H \ - \ J)$$

Here consider \$ as a raised to operator.

(b) What is the priority queue? What is its use? Write a pseudo code for the function to add an element in the priority queue. [6]


Or

- **2.** (a) What is Stack? Write a program for implementation of stack using linked organization and perform the following operation:
 - (i) PUSH

(ii) POP. [6]

P.T.O.

- (b) Explain the concept of multi-queue and double ended queue with example. [6]
- (a) Write a c function for inorder and preorder traversal of an inorder threaded binary tree.
 - (b) Consider the graph G given in figure below. Draw the adjacency list of G is also given. Assume that G represents the daily flights between different cities and we want to fly from city A to H with minimum stops. Find the minimum path P from A to H given that every edge has length of 1. [6]

Or

4. (a) A binary tree is stored in the memory of a computer as shown below. Trace the structure of the binary tree and write

the INORDER, PREORDER, POSTORDER traversal of the same: [6]

Node	Lchild	Data	Rchild	Assume
Number				Root: 7
1	2	844	6	
2	0	796	0	
3	0	110	0	
4	0	565	9	
5	12	444	0	
6	10	116	0	
7	4	123	1	
8	0	444	0	
9	8	767	3	
10	0	344	0	

- (b) Write a pseudo code for Prims algorithm. [6]
- **5.** (a) Draw a Huffman's Tree for the given data set and find the corresponding Huffman Codes: [8]

Character	Weight
A	3
В	15
\mathbf{C}	2
D	4
${f E}$	5
${f F}$	12
G	5

H 10
I 3
J 4
K 6
L 8
M 7
N 2

(b) What are the characteristics of good hash function? List out different techniques to resolve collision in a hash table. Explain any *one*. [6]

Or

- **6.** (a) Obtain an AVL tree by inserting all months in a calendar year. Label the rotations at appropriate place. [10]
 - (b) Create a max heap with the following elements: [4] 17 25 8 0 1 250 1008 65 48 101
- **7.** (a) Write a pseudo C code for all primitive operations of index sequential file. [8]
 - (b) Distinguish between logical and physical deletion of records and illustrate it with an example. [4]

Or

- 8. (a) What is File? Explain different types of file organization [6]
 - (b) Write a pseudo code to perform the following operations on Direct Access File: [6]
 - (i) Insert
 - (ii) Delete.