Total No. of Questions : 10]		SEAT No.:	
P2622	[84.83] 800	ا Total]	No. of Pages :3

[5153]-598

T.E. (Information Technology) OPERATING SYSTEM

(2012 Pattern) (Semester - II) (314451)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answers Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Discuss batch and real time operating system with respect to process scheduling, memory management. [4]
 - b) Explain the concept of virtual machine with its implementation and benefits. Also explain examples of virtual machine. [6]

OR

Q2) Consider the following set of processes, with length of CPU burst time given in milliseconds.

Process	Arrival time	Burst time	Priority
P1	0	8	3
P2	1	1	1
Р3	2	3	2
P4	3	2	3
P5	4	6	4

Draw the Gantt charts illustrating the execution of these processes using FCFS, SJF (Preemptive And non-pre-emptive) and Priority (Preemptive), Smaller number indicates higher priority. Calculate average waiting time and average turn around time for all the above mentioned scheduling algorithms. [10]

Q3) Consider the following snapshot of the system,

		•	
	Allocation	Max	Available
	R1R2R3	R1R2R3	R1R2R3
P1	0 1 0	753	3 3 2
P2	200	3 2 2	
P3	3 0 2	902	
P4	2 1 1	2 2 2	
P5	0 0 2	4 3 3	

[10]

Answer the following questions using Banker's Algorithm

- a) What are the values of Need Matrix?
- b) Is the system in the safe mode? If yes, what is the safe sequence?
- c) If a request from process PI arrives for (1,0,2), can the request be granted immediately?

OR

- **Q4)** a) Explain with definition, concept of general and binary semaphore. [5]
 - b) Explain classical problem of synchronization in terms of Dining Philosopher problem. [5]
- Q5) a) Given memory partitions of 100k, 500k, 200k, 300k and 600k (in-order), how would each of First-Fit, Best-Fit and Worst-Fit algorithms place processes of 212k, 417k, 112k,426k? Which algorithm makes the most efficient use of memory?
 - b) What are the steps in-handling page fault? Explain with suitable diagram. [10]

OR

- **Q6)** a) Explain the concept of Demand Paging with neat diagram. [8]
 - b) A process references pages in the following order. [10] 5 4 2 4 6 5 3 6 2 3 2 4 5 2 6

 Determine the number of page faults for FIFO, optimal and LRU page replacement algorithms for 3 page frames
- **Q7)** a) For the given sequence of disk request, determine the total distance travelled by disk head in satisfying the entire request for FCFS, C-SCAN and SSTF algorithms. Initial head position is 120 and total number of cylinders in the disk is 200.

b) Write a short note on I/O functions. [4]

OR

Q8)	a) Explain the concept of File Sharing.		[8]
	b)	Explain disk free space management techniques.	[8]
Q9)	Writ	te short notes on the following:	[16]
	a)	Ubuntu EDGE OS	
	b)	Embedded Linux	
	c)	NACH OS	
	d)	Android OS	
		OR	
Q10) a)	Write steps for kernel compilation with necessary commands.	[8]

Write a Pseudo code for simple kernel module and explain procedure

for inserting a new module in existing kernel with all necessary steps.[8]

b)