Total No.	of Questions	: 10]
-----------	--------------	-------

SEAT No.:	
-----------	--

[Total No. of Pages: 4

P2621

[5153]-597 T.E. (I.T.)

SYSTEMS PROGRAMMING

(2012 Course) (Semester - II) (314450)

Time: 2½ Hours]
Instructions to the candidates:

[Max. Marks: 70

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Give the various data structures in the design of pass-1 of a Two-pass direct linking loader.[4]
 - b) What are the assembler directives? Explain how assembler directives LTORG, ORIGIN and EQU are processed in first pass. [6]

OR

Q2) a) For the 'C' code given below, give the different tables that would be generated as output of lexical analysis.[8]

b) Define macroprocessor and assembler.

[2]

Q3)	a)		the following piece of assembly language code, show the contemporary MNT, IC and EC,	ents [5]
			MACRO	
			INCR & ARG	
			LOAD 1,&ARG	
			ADD 1, = F'1'	
			STORE 1,&ARG	
			MEND	
			MACRO	
			DECR & NUM	
			LOAD 2, &NUM	
			SUB 2, = F'1'	
			STORE 2, & NUM	
			MEND	
			START	
			DECR D1	
			STORE AREG, D1	
			INCR D2	
		D1	DC '50'	
		D2	DC '100'	
			END	
	b)	Def	ine loader and enlist the basic functions of loader.	[5]
			OR	
Q4)	a)	u) Using the algorithm convert the following regular expressions to (a.b)*.a.#		FA: [6]
	b)	Exp	lain different parameter passing mechanisms in macro-processor.	.[4]

Q 5)	a)	Consider the grammar	[6]
		$E \rightarrow E-E$ $E \rightarrow E/E$ $E \rightarrow id$	
		Perform shift Reduce parsing of i/p string "id – id/id"	
	b)	Explain recursive descent parser for the given grammar to derive string cad	the
		$S \rightarrow cAd$ $A \rightarrow ab/a$	[6]
	c)	Compare bottom UP and top down parser.	[6]
		OR	
Q6)	a)	Consider the following grammar	[10]
		$S \to S(S)S/\varepsilon$	
		Construct SLR parser and parse for the string (a,(a,a))	
	b)	Explain YACC file structure.	[4]
	c)	Compare SLR, CLR and LALR parsers.	[4]
Q7)	a)	Write down Syntax Directed Translation for assignment statement.	[6]
	b)	For the grammar	[6]
		$D \rightarrow TL$ $T \rightarrow int/real$ $L \rightarrow L,id/id$	
		Draw an annotated parse tree for the statement real x_1, x_2 ;	
c	c)	Write the method of generating intermediate code for the expression	1
		If (condition) then $p = q$ Else $x = y + z$	[4]
		OR	

- **Q8)** a) Define Syntax directed definition and syntax directed translation. [4]
 - b) Design dependency graph for the following grammar [6]

$$E \rightarrow E+T/T$$

$$T \rightarrow T*F/F$$

$$F \rightarrow id$$

The expression given is: 5*8-10

c) For the following expression write its postfix expression, draw DAG and write three address code: [6]

$$((x+y)-((x+y)*(x-y)))+((x+y)*(x-y))$$

- **Q9)** a) Compare between static, stack & heap allocation. [4]
 - b) With examples explain code generation issues. [6]
 - c) What are the different techniques of storage allocation. [6]

OR

- Q10)a) With examples explain at least four machine independent code optimization techniques. [8]
 - b) Which are the machine dependent code optimization issues. [8]

