SEAT No.:		
[Total	No. of Pages	:3

P2616

[5153] - 592 T.E. (I.T.)

THEORY OF COMPUTATION

(2012 Pattern) (Semester - I) (End-Semester) (314442)

Time	e: 2	2½Hours] [Max. Marks	s:70
Instr	ucti	ions to the candidates:	
	<i>1)</i>	Neat diagrams must be drawn wherever necessary.	
	2)	Figures to the right side indicate full marks.	
•	3)	Assume suitable data if necessary.	
Q1)	a)	Construct FA that accepts even number of zeros & odd number ones.	r of [6]
	b)	Write formal definition of regular expression with suitable example. S Arden's theorem and its use.	tate [4]
		OR	
Q2)	a)	Construct a Moore machine to find out the residue-modulo-3 for bir number.	nary [6]
	b)	Define regular sets. List out closure properties of regular sets.	[4]
Q3)	a)	Define the following and give appropriate examples	[4]
		i) Derivation tree	
		ii) Context free grammar	
	b)	Convert right linear grammar to its equivalent left linear grammar.	[6]
		S→bB	
		B→bC	
		B→aB	
		B→b	
		C→a	

Q4)	a)	Construct a DFA equivalent to the following grammar [6]
		S→S10 0
	b)	Write a short note on the applications of CFG. [4
Q5) a)		Design a PDA that checks wellformedness of parentheses. Simulate PDA for (() (())). [8]
	b)	Define and compare DPDA and NPDA. Justify that NPDA is more powerful than DPDA. [8]
		OR
Q6)	a)	Construct a PDA for the language generated by the following grammar [8]
		S →aB bA
		A →bAA a aS
		B →b bS aBB
	b)	Define post machine. Compare FA, PDA and post machines. [8
Q7) a)		Write a short note on: [8
		i) Church Turing Hypothesis
		ii) Post correpondence problem
	b)	Design a Turing Machine to recognize the language $L = \{1^n 2^n 3^n \mid n \ge 1\}$ Simulate TM for "112233". [10
		OR
Q8)	a)	Design a Turing machine that accepts $L = \{0^n1^n \mid n \le 1\}$. Simulate TM for "000111". [10
	b)	Explain the following for a TM [8
		i) Power of TM over finite state machine
		ii) Universal TM

- **Q9)** a) Write a short note on decidable problems concerning
- [8]

- i) Context free languages
- ii) Turing machines
- b) What is reducibility? What are undecidable problems? Describe at least four undecidable problems in case of CFGs. [8]

OR

- Q10)a) Describe post correspondence problem. PCP is an unsolvable problem.Justify.
 - b) What are recursive and recursively enumerable languages? What is the relation between them? [8]

888