| Total No.   | of | Questions | : | 101 | ı |
|-------------|----|-----------|---|-----|---|
| I Utai 110. | UI | Questions | • | IV  | ı |

| SEAT No. : |  |
|------------|--|
|            |  |

[Total No. of Pages: 3

P2469 [5253]-192

T.E. (I.T.)

## THEORY OF COMPUTATION

(2012 Pattern) (End Semester)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagram must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.
- **Q1)** a) Define the following with suitable examples

[4]

- i) FA
- ii) Regular Expression
- b) Convert Mealy machine to Moore machine.





OR

**Q2)** a) Find the regular expression for the following:







b) Prove that the following language is non regular, using pumping lemma.[6]  $L = \{a^n b^n | n > 0\}$ 

[6] **Q3**) a) Write a CFG which generates the language L denoted by (a+b)\*bbb(a+b)\*i)  $\{0^m \ 1^n \ 0^{m+n} | m, n \ge 0\}$ ii) Write short note on chomsky hierarchy. b) [4] OR Convert the following grammar into GNF *Q4*) a) [4]  $S \rightarrow ABA |AB|BA |AA|A|B$  $A \rightarrow aA \mid a$  $B \rightarrow bB \mid b$ Define the following with suitable example. [6] b) i) Chomsky normal form Leftmost derivation ii) Regular grammar iii) Design a post machine that accepts the following language. **Q5**) a) [8]  $L=\{a^nb^na^n|n\geq 0\}$ Explain the following using suitable examples. b) [8] Acceptance of a CFL by empty stack by a PDA. i) Acceptance of a CFL by final state by a PDA. ii) OR Construct a PDA for the language described as "The set of all strings **Q6**) a) over  $\Sigma = \{a,b\}$  with equal no. of a's and b's. [8] Give formal definitions of PDA and PM. Compare them. b) [8]

| Q7) | a)          | Design a TM that adds two unary numbers. Show stepwise functioning of TM for the input: 11 + 111 [10]            | _               |
|-----|-------------|------------------------------------------------------------------------------------------------------------------|-----------------|
|     | b)          | Write a short note on:                                                                                           | 8]              |
|     |             | i) Power of TM over finite state machine.                                                                        |                 |
|     |             | ii) Universal turing machine                                                                                     |                 |
|     |             | OR                                                                                                               |                 |
| Q8) | a)          | Construct TM for the following: [10]                                                                             | 0]              |
|     |             | i) Language consisting of string having any number of 0's & even n of 1's over $\Sigma = \{0,1\}$ .              | o.              |
|     |             | ii) Increment the value of any binary number by one.                                                             |                 |
|     | b)          | Define TM. Explain its working. Give the types of TM & applications of the same.                                 | of<br><b>8]</b> |
| Q9) | a)          | What is reducibility? What are undecidable problems? Describe at least four undecidable problems in case of TMs. | st<br><b>8]</b> |
|     | b)          | Write a short note on encoding of TM.                                                                            | 8]              |
|     |             | OR                                                                                                               |                 |
| Q10 | <b>)</b> a) | Write a short note on church Turing hypothesis.                                                                  | <b>4</b> ]      |
|     | b)          | Describe at least four undecidable problems in case of CFGs. [4]                                                 | 4]              |
|     | c)          | Define recursively enumerable languages and recursive languages wire suitable example.                           | th<br><b>8]</b> |

\* \* \*