Total No. of Questions: 6]	SEAT No.:
P1430	[Total No. of Pages : 2

TE/Insem/APR-35 T.E. (Chemical) (Insem) TRANSPORT PHENOMENA (2012 Pattern)

Time: 1½ Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) A viscous fluid is flowing through the horizontal capillary tube. Find radius of capillary from following data:[10]

Length of capillary = 50.02 cm

Kinematic viscosity of fluid = 4.03×10^{-5} m²/s

Density of fluid = 955.2 kg/m^3

Pressure drop across capillary tube = $4.829 \times 10^5 \text{ N/m}^2$

Mass flow rate through tube = $2.997 \times 10^{-3} \text{ kg/s}$

OR

- Q2) Derive momentum flux and velocity expression for flow of fluid along an inclined pipeline.[10]
- Q3) Derive the expression temperature distribution for viscous heat source. [10]

OR

Q4) A copper wire has a radius 2 mm and length 5 m. For what voltage drop would the temperature rise at the wire axis be 10°C if the surface temperature of the wire is 20°C? For copper, Lorenz number is 2.23 × 10⁻⁸ volt²K⁻².[10]

- **Q5)** a) Explain boundary conditions to solve mass transfer problems. [4]
 - b) Explain Ficks law and mass balance equation at steady state. [6]

OR

Q6) Derive the expression of molar flux for instantaneous heterogeneous polymerization reaction [10]

TE/Insem/APR - 35