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Abstract— The multivariable coal-fired power plants (CFPPs)
are characterized by several interconnected nonlinear subsystems
of varying time lags making the whole system stiff, and thereby
attaining multitime-scale property. In this case, controls based on
singular perturbation and time-scale theories provide superior
results than conventional one. This brief aims to develop an
integral state feedback controller with an observer using three-
time-scale approach for CFPP. The integral action assures zero
steady-state error, an observer determines states, and a three-
time-scale technique provides flexibility to design independent
subsystem controls. First, a state space model is obtained with
state feedback integral action in three-time-scale form. Second,
three-stage feedback control is proposed by an innovative two-
time-scale separation so as to reduce design complexity and
computations. Finally, an observer is constructed again by
time-scale decoupling. It is then examined on the practical model
of 300-MW CFPP for investigating plant behavior under various
transients. In comparison, the performance of the suggested
controller is found to be superior to a recently published
controller.

Index Terms— Integral control, power plant control, singular
perturbation, three-stage design, three-time-scale system.

I. INTRODUCTION

THE worldwide consumption of energy is expected to
increase by 28% until 2040. Even if the gradual growth

in renewable energy sources is estimated to be 2.3% per year
from 2015 to 2040, fossil fuels remain a leader in providing
77% of the world’s energy consumption in 2040 [1]. It is also
predicted that the coal-fired power generation in China, which
is currently about 70.31% of the total generation in China [2],
is to remain somewhat constant until 2040 and the rise in
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the energy consumption will be compensated by renewable
energy sources. However, the challenges in the operation and
the control of conventional coal-fired power plants (CFPPs)
are going to intensify due to the uncertainty and fluctuation
of renewable energy sources when integrated into the grid.
Hence, an efficient and reliable control strategy is required
for CFPP.

A variety of models and controls have been studied and
recommended [3], [4] over the period of time, like ARX
model-based generalized predictive control [5], coordinated
control [6], [7]. More recently, a nonlinear control utilizing
feedback linearization along with dead-time compensation is
reported in [8] for the CFPP to achieve steady closed-loop
and effectual tracking performance. The same methodology
is further applied to an extended model involving dynamics
of superheated steam temperature [9]. Although the results
obtained in [8] and [9] are superb, the studied models and
controller designs are not easily configurable in conven-
tional CFPP. In another study, a simple model based on
the direct energy balance (DEB) is developed in [10], and
gain scheduling PI control is employed to accomplish the
tracking requirements. However, this controller is found to be
poor in handling frequent variations in coal quality. There-
fore, the active disturbance rejection control is devised [11].
Conversely, it counteracts the disturbance and uncertainty
relatively slowly. Earlier to this, in [12], an optimal con-
trol algorithm is described for a boiler-turbine model to
handle uncertainty successfully. Nevertheless, it is a state
feedback-based technique which requires an observer. For
that reason, an observer-based optimal linear quadratic regu-
lator (LQR) is formulated in [13] and examined on the model
presented in [12]. Similarly, H∞-LQR [14] is also powerfully
tested on a large boiler-turbine unit for enhancing demand
power variation in a wide-range operation.

Coal-fired power plants (CFPPs) often exhibit a
multitime-scale property due to high dimensionality and model
stiffness. The direct design of feedback controls [12]–[14] for
such an ill-conditioned system of the power plant, however,
results in larger values of gain, making it problematic for
real-time realization. This problem can be tackled by singular
perturbation and time-scale methods [15]. Application of
time-scale theory to power plant can be found in [16]–[18].
In [16], the time-scale structure of plant is explored and no
controller is designed, whereas, in [17], the two-time-scale
approach is used to design a periodic output feedback
controller. In [18], a two-time-scale quasi-steady-state method
is investigated for the nineth order power plant. Although the
quasi-steady-state method relies on approximation, the purpose
of placing subsystem eigenvalues at the exact locations is not

1063-6536 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4290-684X
https://orcid.org/0000-0002-7774-5444
https://orcid.org/0000-0002-4700-1276


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

fully satisfied. Thereof, two-stage designs [19]–[21] can be
incorporated. In fact, compared to the two-time-scale method,
the three-time-scale approach provides more flexibility in
control design. The block-diagonalization of the three-time-
scale system into “slow,” “fast,” and “very fast” modes is
presented in [22] and [23]. Nonetheless, in both [22] and [23],
control design aspects are not discussed. Recently, three-stage
feedback control design for a three-time-scale system is
suggested in [24] with reduced computation.

In this brief, an integral control for a three-time-scale
system is proposed and investigated for the CFPP with
an observer. As the control goals in traditional CFPP are
excelling set-point tracking and disturbance rejection, a state
feedback using integral action is recommended for a three-
time-scale system. This feedback control is elicited by a
more simplified three-stage design, compared to [24], averting
system ill-conditioning. Furthermore, an inequality relating
the proposed method and method of [24] is derived which,
when satisfied, results in considerable time-saving in online
computation. This controller is then applied to the practical
300-MW CFPP in which states are estimated by an observer,
which is also formulated using three-stage design. The overall
structure of this brief is as follows. In Section II, the model
and control problem of CFPP are discussed briefly. Controller
design methodology is proposed in Section III. Application
of the controller to the CFPP is demonstrated in Section IV
followed by the conclusion in Section V.

II. CFPP MODELING AND CONTROL PROBLEM

A. Mathematical Modeling
A nonlinear dynamic model of 300-MW CFPP in

Guangdong Province, China, is presented in [10] for DEB
control. The complete model is described by

dq f

dt
= 1

c0

[
u B(t − τ ) − q f

]
(1)

d Db

dt
= 1

c5

[
2.46kcq1.230

f − Db
]

(2)

dpb

dt
= 1

c6

[
Db − 42.51 p0.956

b
√

pb − pT
]

(3)

dpT

dt
= 1

c7

[
42.51 p0.956

b
√

pb − pT − DT
]

(4)

dp1

dt
= 1

c1
[0.0083μT pT − p1] (5)

d DT

dt
= 1

c2
[74.74 p1 − DT ] (6)

with output equations

Ne = 0.86D0.852
T (7)

Qm = p1 + Cb

c6

[
Db − 42.51 p0.956

b
√

pb − pT
]

(8)

where c0, c1, c2, c5, c6, and c7 are inertia constants, τ is
the time delay, kc is a normalized coefficient denoting the
influence of coal quality, and Cb is the thermal storage
coefficient. State variables q f , Db , pb, pT , p1, and DT

represent, respectively, mass flow rate of the coal entering
into the furnace (t/h), steam production rate (t/h), drum
pressure (MPa), live steam pressure (MPa), pressure in gov-
erning stage (MPa), and inlet steam mass flow rate (t/h).

The outputs are electrical power (MW) and heat provided
by the boiler (MPa), designated, respectively, by Ne and Qm ,
while the control input u B is the boiler demand (t/h) and μT

is the throttle opening position (%) with the following actuator
limit constraints:

0 ≤ u B ≤ 150 and 0 ≤ du B

dt
≤ 0.1

0 ≤ μT ≤ 100 and 0 ≤ dμT

dt
≤ 0.1.

The system (1)–(8) is linearized around steady state with Ne =
285.9 MW, Qm = 12.19 MPa, u B = 122.6 t/h, and μT =
93.5%. The inertia constants, τ and Cb are given in [10] and kc

is taken as 100% under steady state [11]. The linear equations,
so obtained, are expressed into standard state space form as

ż = Az + Bu (9)

y = Cz (10)

where vectors z, u, and y are, respectively,

z = [
q f Db pb pT p1 DT

]T (11)

u = [
u B(t − τ ) μT

]T
, y = [

Ne Qm
]T

. (12)

Note that the time delay τ in the input u B is simulated as trans-
port delay e−τ s , as done in [10]. It is seen that the system (9) is
open-loop stable, i.e., λ(A) < 0, where λ(.) implies the eigen-
values of matrix. These eigenvalues are grouped into three
clusters, two “slow” eigenvalues (−0.0026,−0.0071), one
“fast” eigenvalue (−0.0454), and three “very fast” eigenvalues
(−0.1306 ± j0.0361,−0.2497). The ratios of the “slow”
versus “fast” versus “very fast” modes are ε = 0.1564 and
μ = 0.0524, respectively. Also, it is verified that the system
is controllable, observable, and is not having zero at the origin.

B. Control Problem Description and Solution
The control of multi-input multi-output CFPP is challenging

owing to the nonlinear system dynamics and the simulta-
neous presence of states with varying response speeds. The
nonlinearity is due to the interconnections of coal-steam,
steam pressure, and pressure power modules in the power
plant. On the other hand, the existence of strong couplings
of states with inertia lags and time constants makes the
system numerically ill-conditioned. This is the reason that the
control complexities are increased in narrow and wide-range
operations. Thus, a well-designed controller is necessary to
guarantee precise control of the entire plant, so that high
efficiency and safety can be reached.

The main control objectives are: 1) the power tracking rate
should be 1.5–2% of the full load per minute and reverse
change of throttle pressure should be within ± 0.4 MPa [10];
2) regardless of the transients in the power plant input vari-
ables; output and state variables should be quickly regulated;
and 3) the plant output variables should be insensitive to the
coal quality and large parameter variations.

The aforementioned control requirements are met by
proposing a control configuration as: 1) the system state space
representation is obtained for integral state feedback control
to achieve the output tracking performance and insensitivity
to disturbances and parameter variations; 2) the stabilizing
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feedback gain, for the above-mentioned three-time-scale sys-
tem, is determined by three-stage design to get rid of the
ill-conditioning of the system matrix; and 3) the limitation
of the state feedback is overcome by employing an observer,
obtained by the similar three-stage design.

III. PROPOSED CONTROL DESIGN

In this section, state feedback with integral control is
designed and realized via an observer for a three-time-scale
system. At first, integral state feedback control using an
observer is discussed in short. Subsequently, its application
to a three-time-scale system is proposed.

A. Observer-Based Output Feedback Integral Control
Consider a linear time-invariant continuous-time system as

ż = Az + Bu (13)

y = Cz (14)

where z ∈ �n , u ∈ �m , and y ∈ �p . The matrices A, B, and
C are of suitable dimensions.

Assumption 1: (A, B, C) is controllable and observable.
Assumption 2: The system G(s) = C[sIn −A]−1B does not

have transmission zeros at the origin [25].
Assumption 1 is necessary for the design of feedback and

observer gains, whereas Assumption 2 is the requirement of
tracking control promoting integral action. If the parameters
of the system (13)-(14) are not known exactly, an asymptotic
tracking may not be attained. In this case, an integral control
could be used to achieve it. Also, the closed-loop system with
integral action becomes more robust as long as the designed
system is stable. For the same, let us augment the system (13)-
(14) with

ży = y − yref (15)

where yref ∈ �p is the reference output vector. Thus,
from (13)–(15), the overall system is assembled as

ẋ = Âx + B̂u + Êyref (16)

y = Ĉx (17)

where x = [zT
y zT ]T and

Â =
[

0 C
0 A

]
, B̂ =

[
0
B

]
, Ê =

[−Ip

0

]
, Ĉ =

[
0

CT

]T

in which Ip is an identity matrix of order p and 0 is null matrix
of proper order. The controllability of (16) is guaranteed,
if the Assumptions 1 and 2 are satisfied [25]. Thus, all the
eigenvalues of (16) can be placed arbitrarily by selecting
feedback gain K̂. As a result, the control input

u = −K̂x = − [
Ky K

] [
zT

y zT ]T
(18)

is applied to the system (16). Then

ẋ = Aclx + Êyref (19)

y = Ĉx (20)

where Acl = Â − B̂K̂. An asymptotic set-point tracking can
also be interpreted by the transfer function of (19)-(20) as

Gcl(s) = Ĉ[sIn+p − Acl ]−1Ê. (21)

Here, the dc-gain of (21) is 1, implying reference track-
ing. However, most of the times system states are unavail-
able for feedback. In that case, using Assumption 1, state
observer can be built. Therefore, the control (18) is replaced
with

u = −Kyzy − Kẑ (22)

where ẑ is an estimated state vector with e = z − ẑ satisfying

ė = (A − LC)e (23)

with L as an observer gain for (13)-(14). Then, control (22)

u = −Kyzy − Kz + Ke. (24)

Substituting (24) into (16) and combining with (23) yield

ζ̇ = Aaugζ + Baugyref (25)

y = Caugζ (26)

where ζ = [zT
y zT eT ]T and

Aaug =
⎡

⎣
0 C 0

−BKy A − BK BK
0 0 A − LC

⎤

⎦ =
[

Â − B̂K̂ B̂K
0 A − LC

]

Baug =
⎡

⎣
−Ip

0
0

⎤

⎦ =
[

Ê
0

]
, Caug =

⎡

⎣
0

CT

0

⎤

⎦

T

=
[

ĈT

0

]T

.

It is important to note that

Gcl(s) = Caug[sI2n+p − Aaug]−1Baug (27)

is similar to (21). Thus, the reference tracking proper-
ties of the system are conserved in the presence of plant
parameter variations and disturbances whether the integral
state feedback or observer-based integral output feedback is
employed.

B. Controller Synthesis for Three-Time-Scale System
Three-time-scale systems are characterized by the three

widely separated groups of eigenvalues emerging into an
overall stiff system, demanding expensive algebraic routines
for feedback and observer gain designs. Perversely computa-
tional complexity arising due to three-time-scale nature can
be efficiently handled by advised three-stage design for both
feedback gain K̂ for (16)-(17) and observer gain L for (13)-
(14). Before proceeding, following Lemma 1 is introduced.

Lemma 1: If the system (13)-(14) exhibits three-time-scale
property, with n1 “slow,” n2 “fast,” and n3 “very fast” modes,
such that n1 +n2 +n3 = n, then the system (16)-(17) of order
n + p also bears three-time-scale form with “slow,” “fast,” and
“very fast” modes, respectively, of orders n1 + p, n2, and n3.

Proof: The eigenvalues of the systems (13)-(14) and
(16)-(17) can, respectively, be given by the characteristic
equations

D1(s) = det
[
sIn − A

]
(28)

D2(s) = det

[
sIp −C
0 sIn − A

]
. (29)

It is apparent that, the solution of (29) adds p eigenvalues
at the origin to the solution of (28) which already has
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n1 “slow,” n2 “fast,” and n3 “very fast” eigenvalue modes.
The modes of the system are decided by absolute eigenvalues,
i.e., eigenvalues near to the imaginary axis are clubbed as
“slow,” far and farther from the imaginary axis as “fast” and
“very fast,” respectively. Consequently, p eigenvalues at origin
are undoubtedly counted in “slow” mode, which increases the
order of slow mode of the system (16)-(17) from n1 to n1 + p
without changing the eigenvalues in the “fast” and “very fast”
modes.

Mostly, “fast” and “very fast” modes are stable but “slow”
ones are unstable. And, when integral state feedback control is
attempted then again “p” poles are added at the origin, which
further boosts instability. For such systems, the straightforward
design of (18) is computationally tough. This is equally true
for observer gain in (23). Hence, these gains are designed in
three stages using the two-time-scale method, by regrouping
of states. As the design is based on similarity transformations,
Assumption 1 is also applicable to decoupled subsystems.
Here, the design procedure for K̂ is conveyed first and then
for L.

1) Design of Feedback Gain (K̂): Let (13)-(14) be repre-
sented into standard singularly perturbed three-time-scale form

⎡

⎣
ż1
ż2
ż3

⎤

⎦ =
⎡

⎣
Ao11 Ao12 Ao13
Ao21

ε
Ao22

ε
Ao23

ε
Ao31
μ

Ao32
μ

Ao33
μ

⎤

⎦

⎡

⎣
z1
z2
z3

⎤

⎦ +
⎡

⎣
Bo1
Bo2
ε

Bo3
μ

⎤

⎦ u (30)

y = [
Co1 Co2 Co3

] [
zT

1 zT
2 zT

3

]T
(31)

where z1 ∈ �n1 , z2 ∈ �n2 , and z3 ∈ �n3 are, respectively,
slow, fast, and very fast states, u ∈ �m is input and y ∈ �p

is output. Aoi j , Boi , and Coi are of appropriate dimensions
(subscript "o" stands for original system). Parameters ε and
μ are speed ratios of z1 versus z2 versus z3 states, such that
μ � ε � 1.

Assumption 3: Ao22 and Ao33 are invertible [26].
This is standard assumption, needed to get solutions of

algebraic equations treated in this section. Now, augmenting
the system (30)-(31) with (15), following singularly perturbed
form of (16)-(17), as proved in Lemma 1, is obtained

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
A11 A12 A13
A21
ε

A22
ε

A23
ε

A31
μ

A32
μ

A33
μ

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+
⎡

⎢
⎣

B1
B2
ε

B3
μ

⎤

⎥
⎦ u+

⎡

⎣
Ê
0
0

⎤

⎦ yref (32)

y = [
C1 C2 C3

] [
xT

1 xT
2 xT

3

]T
(33)

where x1 = [zT
y zT

1 ]T , x2 = z2, and x3 = z3 with appropriate
regrouping of matrices Ai j , Bi , and Ci , respectively. Matrix
Ê = [−Ip 0]T with 0 as null matrix of dimension n1 × p.
As assumed that the matrices Ao22 and Ao33 are invertible, A22
and A33 are also invertible. Because, A22 = Ao22 and A33 =
Ao33. Here, the main objective is to design a feedback gain
K̂, so that the system (16)-(17) [i.e., (32)-(33)] is stabilized,
i.e., λ(Â − B̂K̂) < 0. As the application of input (18) to the
system (16) keeps the term Êyref in (19) unchanged, it is not
considered further in designing control.

First of all, system (32) is transformed into lower tri-
angular form, and then, three-stage design is carried out.
For simplifying the design, consider state regrouping of the

system (32) as

xa = [
xT

1 xT
2

]T
and xb = x3. (34)

Therefore, the system (32) can be rewritten as
[

ẋa

ẋb

]
=

[
Ā11 Ā12
Ā21
μ

Ā22
μ

][
xa

xb

]
+

[
B̄1
B̄2
μ

]

u (35)

where Āi j and B̄i are reorganized accordingly. The system
(35) is the two-time-scale representation of system (32), where
n1 + p “slow” and n2 “fast” states are merged to form (n1 +
n2 + p) “slow” states and n3 “very fast” states are taken as
“fast” states. Now, the application of transformation

xs = xa + μPxb (36)

to the system (35), produces
[

ẋs

ẋb

]
=

[
Ās 0
Ā21
μ

Ā f
μ

][
xs

xb

]
+

[
B̄s
B̄2
μ

]

u (37)

where Ās = Ā11 +PĀ21, Ā f = Ā22 −μĀ21P, and B̄s = B̄1 +
PB̄2. As A33, i.e., Ā22 is invertible (Assumption 3), the unique
solution of P can be obtained by solving

Ā12 + PĀ22 − μ(Ā11 + PĀ21)P = 0 (38)

iteratively for sufficiently small value of μ [26]. Consequently,
the system (37) is modeled into lower triangular form, where
xs is completely decoupled from xb and it is given by

ẋs = Āsxs + B̄su. (39)

Recall that, xs combines (n1 + p) “slow” and n2 “fast” states
of the system (32). Hence, it can also be written in two-time-
scale form, by partitioning Ās and B̄s suitably, as

[
ẋs1
ẋs2

]
=

[
Ās11 Ās12
Ās21

ε
Ās22

ε

] [
xs1
xs2

]
+

[
B̄s1
B̄s2
ε

]

u (40)

where xs = [xT
s1xT

s2]T with xs1 ∈ �n1+p and xs2 ∈ �n2 . At this
moment, a linear transformation

xss = xs1 + εPsxs2 (41)

is applied to (40). Here, Ps is determined by solving

Ās12 + PsĀs22 − ε(Ās11 + PsĀs21)Ps = 0. (42)

Solution of Ps is obtained under Assumption 3 that A22,
i.e., Ās22 is invertible for a small value of ε. Accordingly,
a lower triangular form of (40) is obtained as

[
ẋss

ẋs2

]
=

[
Āss 0
Ās21

ε
Ās f
ε

][
xss

xs2

]
+

[
B̄ss
B̄s2
ε

]

u (43)

where Āss = Ās11+PsĀs21, Ās f = Ās22−εĀs21Ps , and B̄ss =
B̄s1 +PsB̄s2. Thus, using block triangular forms (37) and (43)
of two-time-scale representations, the original three-time-scale
system (32) is converted into block triangular form

⎡

⎣
ẋss

ẋs2
ẋ3

⎤

⎦ =
⎡

⎢
⎣

Āss 0 0
Ās21

ε
Ās f
ε 0

Ā31
μ

Ā32
μ

Ā f
μ

⎤

⎥
⎦

⎡

⎣
xss

xs2
x3

⎤

⎦ +

⎡

⎢
⎢
⎣

B̄ss

B̄s2
ε

B̄2
μ

⎤

⎥
⎥
⎦ u (44)

where Ā21 in (37) is appropriately partitioned as [Ā31 Ā32].
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Now, one can proceed for three-stage feedback control
design starting with the “slow” subsystem xss . To begin with,
the control is designed for the system (40) and then for the
system (35). In the first stage, applying feedback control

u = −Kssxss + us f (45)

to the system (43), leads to
[

ẋss

ẋs2

]
=

[
Āss − B̄ssKss 0

Ās21−B̄s2Kss
ε

Ās f
ε

][
xss

xs2

]
+

[
B̄ss
B̄s2
ε

]

us f (46)

where Kss is selected such that λ(Āss − B̄ssKss) are “slow”
and in left half of s-plane. Now, using change of the variables

xs f = −Msxss + xs2 (47)

the system (46) is modified to block diagonal form
[

ẋss

ẋs f

]
=

[
Āss − B̄ssKss 0

0 Ās f
ε

][
xss

xs f

]
+

[
B̄ss
B̄s f
ε

]

us f (48)

where B̄s f = B̄s2 − εMs B̄ss and matrix Ms satisfies

Ās21 − B̄s2Kss − εMs(Āss − B̄ssKss) + Ās f Ms = 0. (49)

Solution of (49) exists if Assumption 4 is satisfied.
Assumption 4: λ(Āss − B̄ssKss) �= λ(Ās f /ε).
It is satisfied because (Āss − B̄ssKss) is user designed and

has desired “slow” eigenvalues, while
Ās f
ε has original “fast”

subsystem eigenvalues. In (48), subsystem xs f is made totally
independent of xss . Thus, in the second stage

us f = −Ks f xs f (50)

is applied to the system (48) as
[

ẋss

ẋs f

]
=

[
Āss − B̄ssKss −B̄ssKs f

0 Ās f −B̄s f Ks f
ε

][
xss

xs f

]
(51)

so that λ((Ās f − B̄s f Ks f )/ε) are made asymptotically stable.
Thus, the overall input for the system (40) is computed using
transformations (41) and (47) and controls (45) and (50) as

u = −Ks
[
xT

s1 xT
s2

]T = −Ksxs (52)

where

Ks = [
Kss − Ks f Ms ε(Kss − Ks f Ms)Ps + Ks f

]
. (53)

Actually, (52) is the input for (39), which is the decoupled
part of (37). Therefore, the overall input (52) has the form

u = −Ksxs + u f (54)

and is passed on to the system (37). This results in
[

ẋs

ẋb

]
=

[
Ās − B̄sKs 0

Ā21−B̄2Ks
μ

Ā f
μ

][
xs

xb

]
+

[
B̄s
B̄2
μ

]

u f . (55)

Once again introducing change of coordinates as

x f = −Mxs + xb (56)

for the system (55), subsystem x f is isolated from xs as
[

ẋs

ẋ f

]
=

[
Ās − B̄sKs 0

0 Ā f
μ

][
xs

x f

]
+

[
B̄s
B̄ f
μ

]

u f (57)

where B̄ f = B̄2 − μMB̄s and M is evaluated by setting

Ā21 − B̄2Ks − μM(Ās − B̄sKs) + Ā f M = 0. (58)

Assumption 5 is needed to solve (58).
Assumption 5: λ(Ās − B̄sKs) �= λ(Ā f /μ).
And, it can be convinced by the fact that (Ās − B̄sKs)

is designed with desired eigenvalues laying in “slow” and

“fast” dynamic modes and Ā f
μ has “very fast” eigenvalues of

full-order system. Finally, in the third stage

u f = −K f x f (59)

is applied to the system (57) as
[

ẋs

ẋ f

]
=

[
Ās − B̄sKs −B̄sK f

0 Ā f −B̄ f K f
μ

][
xs

x f

]
(60)

so as to place λ((Ā f − B̄ f K f )/μ) at desired locations. There-
fore, the overall input for the system (35), consequently for
system (32), can be obtained from (52), (54), (56), and (59) as

u = −K̂
[
xT

a xT
b

]T = −K̂x (61)

where

K̂ = [
Ks − K f M μ(Ks − K f M)P + K f

]
. (62)

This is the composite feedback gain, derived from subsystem
feedback gains designed independently, so that the original
system (16) is asymptotically stable, i.e., λ(Â − B̂K̂) < 0.

Remark 1: It is interesting to note the following points.
1) Compared to three equations in [24], only two nonsym-

metric Riccati equations (38) and (42), respectively, for
P and Ps are needed to solve to get lower triangular
form (44) of (32). Again, in contrast to three equations
in [24], the solutions of simply two Sylvester equa-
tions (49) and (58), respectively, for Ms and M are
required to perform the three-stage design. The solutions
of these algebraic equations can be obtained using the
fixed-point iteration method used in [24].

2) Although only four algebraic equations are required
to be solved in comparison to six equations in [24],
these four equations are of higher order than six equa-
tions in [24]. Hence, floating point operations (FLOPs)
required to find the solution, expressed as a function of
the matrix dimension, are determined and compared for
both the methods. If n1, n2, and n3 are the orders of the
slow, fast, and very fast subsystems, inequality

2n3 + 6h3 + 2

3
n3

3 + n2 + n2
3 > 2h2(1+4n)+4n1n2n3

(63)

is derived, in which n = n1 + n2 + n3 and h =
n1 + n2. It is noticed that the online computational
requirements will be reduced by the proposed method
if the inequality (63) is satisfied.

3) In addition, the offline computational requirements are
significantly reduced as calculations are done with the
(2×2) matrix representation instead of (3×3) matrix
representation, without the loss of accuracy and the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

freedom to design different local feedback controllers
for individual subsystems.

Remark 2: If λ(Ā f /μ) < 0, only “slow” and “fast” sub-
systems are needed to be stabilized by corresponding controls
(45) and (50). Accordingly, K f can be set to zero in (62),
resulting in K̄ = [Ks μKsP], where Ks is given by (53).

Remark 3: In the presence of λ
(

Ās f
ε

)
< 0 and

λ(Ā f /μ) < 0, “slow” subsystem alone demands stabilization
as per control (45). As a deduction, both Ks f and K f can be
replaced with zeros in (53) and (62), respectively, ending with
gain as K̃ = [K̃s μK̃sP], where K̃s = [Kss εKssPs].

In case of controller formulation as per Remark 2, one has
to deal with three algebraic equations, i.e., for P, Ps , and Ms ,
while, in controller design, using Remark 3 only two equation,
namely, for P and Ps . This further cuts down computations.

2) Design of Observer Gain (L): Designing an observer
gain for (13)-(14) is analogous to solving an eigenvalue
assignment problem for the dual system

η̇ = AT η + CT ν (64)

ξ = BT ν (65)

with control ν = LT η, such that λ(A − LC) < 0, pro-
vided Assumption 1 is fulfilled. Note that dual system
(64)-(65) also displays three-time-scale property, because
λ(A) = λ(AT ). And so, for the suggested three-stage observer
design, consider an analogous system to (30)-(31) [21] as

⎡

⎣
η̇1
η̇2
η̇3

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

AT
o11

AT
o21
ε

AT
o31
μ

AT
o12

AT
o22
ε

AT
o32
μ

AT
o13

AT
o23
ε

AT
o33
μ

⎤

⎥
⎥
⎥
⎦

⎡

⎣
η1
η2
η3

⎤

⎦ +
⎡

⎢
⎣

CT
o1

CT
o2

CT
o3

⎤

⎥
⎦ ν. (66)

Introducing
⎡

⎣
q1
q2
q3

⎤

⎦ =
⎡

⎣
In1 0 0
0 In2

ε 0
0 0 In3

μ

⎤

⎦

⎡

⎣
η1
η2
η3

⎤

⎦ = T

⎡

⎣
η1
η2
η3

⎤

⎦ (67)

standard singularly perturbed three-time-scale form of (66) is
obtained as

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ =

⎡

⎢
⎢
⎣

AT
o11 AT

o21 AT
o31

AT
o12
ε

AT
o22
ε

AT
o32
ε

AT
o13
μ

AT
o23
μ

AT
o33
μ

⎤

⎥
⎥
⎦

⎡

⎣
q1
q2
q3

⎤

⎦ +

⎡

⎢
⎢
⎣

CT
o1

CT
o2
ε

CT
o3
μ

⎤

⎥
⎥
⎦ ν (68)

where q1 ∈ �n1 , q2 ∈ �n2 , and q3 ∈ �n3 . The three-stage
design of an observer gain can be completed exactly in
a similar manner as that of feedback gain, mentioned in
Section III-B1 from (34) to (62), namely, constructing lower
triangular form of (68) and exercising three stages of design
for observer gain to get Lss , Ls f , and L f at the end of
each stage, such as Kss , Ks f , and K f , respectively. However,
the difference is in dimensions of the state transformations,
as the observer gain is designed for the original system
(30)-(31) and feedback gain is designed for the augmented
system (32)-(33). Besides the final composite observer gain
should be represented in the original states by using (67).
While designing subsystem observer gains, care must be taken
to meet Assumptions 3–5.

IV. CONTROL DESIGN AND APPLICATION TO CFPP

This section deliberates control design aspects first and after
that its application to 300-MW CFPP under representative
transients.

A. Controller Design
The three-time-scale structure of the 300-MW CFPP is

identified in Section II. It has two outputs and six states.
Applying an integral control makes the order of the augmented
system (16) as eight. Hence according to Lemma 1, the order
of “slow” mode increases from 2 to 4 with eigenvalues
as (0, 0,−0.0026,−0.0071). No change is observed in the
location of eigenvalues of “fast,” “very fast” modes. Ratios ε
and μ also remain unchanged. The next step is to obtain the
overall state feedback gain using merely “slow” subsystem
states, because of stable “fast” and “very fast” states. It is
worth noting that the augmented model of CFPP is in implicit
singularly perturbed form. Hence, it is transformed into explic-
itly singularly perturbed form by replacing some rows of the
system matrix such that inverses of A22 and A33 exist [26].
After that, with suggested divisions and mergers of states,
the system (38) is solved to get P which helps to find Ā f

and Ās . Here, one can affirm that the eigenvalues of Ā f are one
and the same as that of “very fast” mode, whereas eigenvalues
of Ās are the union of “slow” and “fast” modes. Now solving
(42) provides Ps . Resultantly, one can gain Āss and Ās f .
Again, it is checked that the eigenvalues of Āss and Ās f

are equivalent to the eigenvalues of “slow” and “fast” modes,
respectively. Considering no requirement of controls for “fast”
and “very fast” modes, the desired eigenvalues of “slow” sub-
system are selected as (−0.97,−0.86,−0.75,−0.64)×10−3,
and these are accurately placed by determining feedback
gain Kss . Substituting Ks f = 0, the feedback gain at the end
of second stage is obtained and again making K f = 0, one
can have K̃, after third stage. The closed-loop eigenvalues,
i.e., λ(Â − B̂K̃) are found to be precisely placed at

λcl = [−0.00064 −0.00075 −0.00086 −0.00097

− 0.0454 −0.1306 ± j0.0361 −0.2497
]
. (69)

The maximum value of the feedback gain is −19.0392,
which seems to be practically realizable. Feedback gain,
by the direct design, to place the eigenvalues at locations
(69) is also calculated. With the desire to implement con-
troller, observer gains are determined for (13) using both
three-stage design and direct design to place observer poles at
(−3.7455,−1.9590 ± j0.5415,−0.0683,−0.0146,−0.0129).
The gains obtained by the procedure of [24] are noticed to
be the same. On the contrary, the FLOPs are observed to
be more, as the inequality (63) is satisfied. FLOPs required
for determining feedback and observer gains by the proposed
method are 1092 and 528, respectively, whereas as per [24],
respectively, 1259 and 711 FLOPs are required.

B. Simulation Results
Simulation results due to feedback gains obtained by the

proposed three-stage design and direct design are generated
and compared with DEB-based PI (DEB-PI) controller [10].
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Fig. 1. Effect of change in operating conditions from 285.9 to 185.9 MW on
(a) electrical power and (b) throttle pressure (black dashed-dotted line: set
point; blue solid line: three-stage design; red dashed line: DEB-PI).

TABLE I

COMPARISON OF THREE-STAGE DESIGN AND DEB-PI

Before initiating any transient, it is ensured that the
plant (1)–(8) is at steady state. To start with, estimation
errors with both the observer gains (i.e., three-stage and direct
design) are compared to evaluate their convergence. It is
observed that the convergence with the three-stage design is
better than the direct design. Hence, in all the cases, observer
gain obtained with the three-stage design is used.

1) Tracking Performance: In this case, the operating condi-
tion, starting at 500 s, is slowly decreased from 285.9 MW by
20 MW after every 1000 s, as shown in Fig. 1(a). Correspond-
ing variations in throttle pressure are shown in Fig. 1(b). It is
learned that as the operating point decreases, response due to
directly designed feedback control starts oscillating with an
increasing amplitude and becomes unstable after 225.9 MW.
Hence, it is not shown in Fig 1. However, with three-stage
design and DEB-PI, the overall response was found to be
stable with tracking rate of output power as 1.6% of the full
load per minute [Fig, 1(a)]. In addition, the reverse response of
the throttle pressure is also inspected to be within ±0.4 MPa
[refer inset of Fig. 1(b)]. As the proposed control and DEB-PI
are showing identical responses, their results are compared by
calculating error indices for power as tabulated in Table I.
Table I displays the improvement in suggested three-stage
design over DEB-PI.

2) Regulating Performance: First, boiler demand is cut by
5% of the nominal value after 50 s and then restored. Effect
of this on the output power and throttle pressure is supervised
in Fig. 2. Second, a throttle opening position is dropped by
5% after 50 s and regained later. Influence of this on the power
and pressure is represented in Fig. 3. In both the cases, power
and pressure are efficiently regulated by all the controllers.
Collectively, the response due to proposed three-stage design
is observed to be superior to other two controllers.

3) Disturbance Rejection and Robustness: Here, the effect
of coal quality variation is studied with 20% quick increase at
100 s and then continuous variation with the period of 628 s
after 2100 s. For the abrupt change, both power and pressure
are controlled by all the controllers as reflected in Fig. 4.

Fig. 2. Effect of 5% variation in boiler demand on (a) electrical power
and (b) throttle pressure.

Fig. 3. Effect of 5% variation in throttle opening position on (a) electrical
power and (b) throttle pressure.

Fig. 4. Effect of change in coal quality on (a) electrical power and (b) throttle
pressure.

However, response due to three-stage design is found to be
better than direct design and DEB-PI. For periodic fluctua-
tions, power shows oscillations of nearly the same magnitude
and pressure shows oscillations of lesser magnitude as that
obtained with DEB-PI. Corresponding variations in control
inputs, displayed in Fig. 5, also indicate the performance
improvement by three-stage design over the direct design
and DEB-PI. Although the sudden change in coal quality is
handled competently, periodic changes result in oscillations
in power and pressure. This is due to the strong couplings
between the main steam pressure control loop and the power
output control loop. Finally, to assess the robustness of
controllers for parameter uncertainty, the set-point variations
with the change in the dynamic constants given in [10] are
observed. Here, the control due to direct design resulted in an



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 5. Effect of change in coal quality on control inputs. (a) Boiler
demand (t/h). (b) Throttle opening position (%).

Fig. 6. Effect of parameter uncertainty on electrical power.

unstable response, whereas the three-stage design and DEB-PI
gave responses as illustrated in Fig. 6. The instants of set-point
initiations are shown in the inset of Fig. 6.

V. CONCLUSION

In this brief, an observer-based output feedback control
using an integral action for a three-time-scale system is pro-
posed in which both feedback and observer gains are designed
in three stages using the two-time-scale approach. The pre-
sented three-stage design method offers significant online
and offline computation savings and obviates ill-conditioning
concerns of the higher order multitime-scale system. The
effectiveness and merits of the proposed controller are val-
idated through the nonlinear simulations of a large-scale
300-MW CFPP. From simulations, it is observed that the sug-
gested controller achieves significant tracking and regulating
control in the presence of input and parameter perturbations
compared to direct design approach and DEB-based PI con-
troller and meets the stringent control requirements of the
practical power plant. The controller design with the input
time delay compensation may be considered in the future.
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