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Abstract: The optimum selection of process parameters is essential for advanced machining
processes as these processes incur high initial investment, tooling cost, operating cost, and
maintenance cost. Wire electrical discharge machining (WEDM) is a widely accepted advanced
material removal process used to manufacture components with intricate shapes and profiles.
The present work highlights the development of mathematical models using response surface
modelling (RSM) for correlating the inter-relationships of various WEDM parameters such as
pulse-on time, pulse-off time, peak current, and servo feed setting on the machining speed and
surface roughness. A recently developed advanced optimization technique, known as artificial
bee colony (ABC), is then applied to find the optimal combination of process parameters with
an objective of achieving maximum machining speed for a desired value of surface finish.
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1 INTRODUCTION

In recent years an increasing demand for machining
of complex shapes made of hard and difficult-to-
machine materials with exact tolerances and surface
finish requirements has resulted in the development
of many advanced machining processes based on
chemical, electro-chemical, thermal, electro-thermal,
mechanical, and other means of material removal.
Wire electrical discharge machining (WEDM) is one
of the widely accepted advanced machining pro-
cesses used to machine components with intricate
shapes and profiles. It is considered as a unique
adaptation of the conventional EDM process which
uses an electrode to initialize the sparking process. As
shown in Fig. 1, WEDM utilizes a continuously tra-
velling wire electrode made of thin copper, brass, or
tungsten. On application of a proper voltage, dis-
charge occurs between the wire electrode and the
workpiece in the presence of a flood of deionized
water of high insulation resistance. The material is
eroded ahead of the wire through a series of repetitive

sparks between electrodes, i.e. workpiece and the
wire.

WEDM has been gaining wide acceptance in
modern tooling applications, in the machining of
advanced ceramic materials and modern composite
materials owing to the following reasons [1].

1. As the wire diameter is small (0.05–0.3mm), the
process is capable of achieving very small corner
radii.

2. The wire is kept in tension using a mechanical
tensioning device, reducing the tendency to pro-
duce inaccurate parts.

3. During the WEDM process there is no direct
contact between the workpiece and the wire,
eliminating the mechanical stresses during
machining.

4. The WEDM process is able to machine exotic,
high-strength, and temperature-resistive (HSTR)
materials and eliminate the geometrical changes
occurring in the machining of heat-treated steels.

WEDM manufacturers and users always want to
achieve higher machining productivity with a desired
accuracy and surface finish. Performance of the
WEDM process, however, is affected by many factors
such as servo feed setting, peak current, pulse-on
time, pulse-off time, wire tension, etc. and a single
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parameter change will influence the process in a
complex way. The many variables and the complex
and stochastic nature of the process mean that
achieving the optimal performance, even for a highly
skilled operator with a state-of-the-art WEDM
machine, is rarely possible. An effective way to solve
this problem is to discover the relationship between
the performance of the process and its controllable
input parameters by modelling the process through
suitable mathematical techniques and optimization
using a suitable optimization algorithm. In the pre-
sent work, response surface methodology (RSM) is
used to model the process whereas the optimum
parameter setting is achieved through a recently
developed evolutionary optimization algorithm
known as the artificial bee colony (ABC) algorithm.

The next section presents a brief review of the past
research work done on the modelling and optimiza-
tion of WEDM process parameters.

2 REVIEW OF PAST RESEARCH WORK

Several attempts have been made in the past to study
the influence of different process parameters on the
important performance measures of the WEDM pro-
cess by using various problem-solving tools. Huang
and Liao [2] used grey relational and signal-to-noise
(S/N) ratio analysis to demonstrate the influence of
table feed and pulse-on time on the material removal

rate (MRR). It was found that the table feed rate had a
significant influence on the metal removal rate, while
the gap width and surface roughness were mainly
influenced by pulse-on time. Tosun et al. [3] investi-
gated the effect of the pulse duration, open circuit
voltage, wire speed, and dielectric flushing pressure
on workpiece surface roughness. It was found that the
increasing pulse duration, open circuit voltage, and
wire speed increases the surface roughness whereas
the increasing dielectric fluid pressure decreases the
surface roughness. The variation of surface roughness
with machining parameters was modelled by using a
power function.

Hewidy et al. [4] developed a mathematical model
based on response surface methodology or modelling
(RSM) for correlating the inter-relationships of various
WEDM parameters of Inconel 601 material – such as
peak current, duty factor, wire tension and water
pressure – on the metal removal rate, wear ratio, and
surface roughness. Kanlayasiri and Boonmung [5]
presented an investigation of the effects of machining
variables on the surface roughness of wire electrical
discharge machined DC53 die steel. The machining
variables investigated were pulse-peak current, pulse-
on time, pulse-off time, and wire tension. The authors
had developed a mathematical model using the mul-
tiple regressionmethod to formulate the pulse-on time
and pulse-peak current to the surface roughness. The
developed model was validated with experimental
data. Hascalyk and Caydas [6] showed through
experimental investigations that intensity of the pro-
cess energy affects significantly the amount of recast,
surface roughness, and microcracking but the wire
speed and dielectric fluid pressure do not have sig-
nificant influence.

Quite a few researchers have tried to optimize the
cutting performance by adopting various traditional
and non-traditional optimization techniques. Metal
removal rate and surface finish were optimized by
Scott et al. [7] by explicit enumeration based on S/N
ratio. Further, they split the problem into optimization
ofMRRwith surface finish constraint and optimization
of surface finish with MRR as constraint and applied a
dynamic programming method. Tarng et al. [8] used a
simple weighting method to transform the cutting
velocity and surface roughness into a single objective
and arrived at the optimal parameters by employing a
simulated annealing technique. They considered
pulse-on/off duration, peak current, open circuit vol-
tage, and servo reference voltage; electrical capaci-
tance and table speed are the critical parameters for
the estimation of the cutting rate and surface finish.
Liao et al. [9] applied a method of feasible direction for
optimization of the process parameters such as table
feed rate and pulse-on time with an objective to max-
imize the MRR with surface roughness and spark gap
as constraints.

Fig. 1 Basic scheme of WEDM process
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Spedding and Wang [10] optimized the process
parameter settings by using artificial neural network
modelling to characterize the WEDM workpiece sur-
faces. They obtained the optimum combination of the
parameters, namely pulse width, time between two
pulses, wire mechanical tension, and wire feed space
for maximum cutting speed, keeping the surface
roughness and waviness within the required limits.
Kuriakose and Shunmugam [11] presented a multiple
regression model to represent relationship between
input variables and two conflicting objectives, i.e.
cutting velocity and surface finish. A multi-objective
optimization method based on a non-dominated
sorting genetic algorithm (NSGA) was then used to
optimize the WEDM process. Tosun et al. [12] pre-
sented an investigation on the optimization and
the effect of machining parameters on kerf and the
MRR in WEDM operations. The simulated annealing
algorithm was then applied to select optimal values
of machining parameters for a multi-objective pro-
blem considering minimization of kerf and max-
imization of MRR.

Sarkar et al. [13] obtained pareto optimal combina-
tions of process variables – namely pulse-on time,
pulse-off time, peak current, servo reference voltage,
wire tension, and dielectric flowrate – for maximiza-
tion of cutting speed with constraint on surface
roughness and dimensional deviation; however, the
method of optimization is not specified. Konda et al.
[14] applied the design of experiments (DOE) techni-
que to optimize the possible effects of process vari-
ables during process design and development and
validated the experimental results using S/N ratio
analysis. Gokler and Ozanozgu [15] provided the
selection of the most suitable cutting and offset para-
meter combination to obtain the desired surface
roughness for a constant wire speed and dielectric
flushing pressure.

Although various researchers have considered the
effect of different process variables on various per-
formance measures, these efforts need to be further
extended by considering more performance mea-
sures and more input variables. Machining speed and
surface finish are considered to be crucial perfor-
mance measures for WEDM, hence they are con-
sidered in the present work. A mathematical model is
developed relating these performance measures to
four important process parameters, namely pulse-on
time (Ton), pulse-off time (Toff), peak current (Ip), and
servo feed setting (F), and using a second-order
RSM technique, as first-order models often give lack
of fit [16].

Furthermore, it is observed from the literature
that mathematical programming techniques such
as the method of feasible direction, Taguchi
methods, etc. have been used in the past to solve
optimization problems in the WEDM process.

These traditional methods of optimization do not
fare well, however, over a broad spectrum of pro-
blem domains. Moreover, traditional techniques
may not be robust and they tend to obtain a local
optimal solution. Considering the drawbacks of
traditional optimization techniques, attempts are
being made to optimize the machining problem
using evolutionary optimization techniques. These
methods use the fitness information instead of the
functional derivatives, making them more robust
and effective. These methods thus avoid the pro-
blem of becoming trapped in local optima and
enable a global (or nearly global) optimum solu-
tion to be obtained. Efforts are continuing to use
more recent optimization algorithms, which are
more powerful, robust, and able to provide an
accurate solution. The ABC algorithm developed by
Karaboga [17] and Karaboga and Basturk [18, 19]
is one of the recent algorithms; no effort has yet
been made to optimize the process parameters of
any machining processes by using this algorithm.
Hence, in the current paper, an attempt is made to
apply the ABC algorithm for optimization of the
process parameters of the WEDM process.

The next section describes the development of a
mathematical model for a WEDM process.

3 RESPONSE SURFACE MODELLING

Response surface modelling is a collection of sta-
tistical and mathematical methods that are useful
for modelling and optimization of engineering
science problems. RSM quantifies the relationship
between the controllable input parameters and the
obtained responses. In modelling of manufacturing
processes using RSM, sufficient data are collected
through designed experimentation. An experiment
is designed with 2k (where k¼number of variables;
in this study k¼ 4) factorial with central composite–
second-order ratable design. This consists of the
number of corner points¼ 16, number of axial
points¼ 8, and a centre point at zero level¼ 4. The
axial points are located in a coded test condition
space through parameter ‘a’. For the design to remain
rotatable, ‘a’ is determined as ð2kÞ1=4 ¼ 2. Thus the
coded level for the axial points is at 2. The centre
point is repeated four times to estimate the pure
error. The coded value corresponding to the actual
value for each process variable is derived using the
following formula

Coded test condition ¼
actual test
condition

� mean test
condition

range of test conditions=2

ð1Þ
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As an illustration, if the actual test condition of
‘pulse-on time (Ton)’ is 5, then the corresponding
coded value is 5� [(4þ 8)/2]/[(8� 4)/2]¼�0.5.
The coded numbers are thus obtained from the
following transformation equations

x1 ¼ Ton � Ton0

DTon
ð2Þ

x2 ¼ Toff � Toff0

DToff
ð3Þ

x3 ¼
Ip � Ip0

DIp
ð4Þ

x4 ¼ F � F0

DF
ð5Þ

where x1, x2, x3, and x4 are the coded values of the
variables Ton, Toff, Ip, and F respectively. Ton0

, Toff0 ,
Ip0

, and F0 are the values of pulse-on time, pulse-off
time, peak current, and servo feed setting at zero
level. DTon, DToff, DIp, and DF are the intervals of
variation in Ton, Toff, Ip, and F respectively. Table 1
shows coded values of the process variables. The
details of the experimental set-up used for data col-
lection are given below

Machine type/make: CNC-WEDM, Elektra
ELPULSE-30
Wire material: brass
Wire diameter: 0.25mm
Wire tension: 8N
Dielectric fluid: deionized water
Workpiece specification: rectangular, cavity of
size: 60mm · 110mm· 12mm, oil hardened and
nitrided steel (OHNS)
Surface roughness measuring device: Hommel
tester T-500

The experimental matrix that was adopted in the
present study in the coded form is shown in Table 2.
To study the effect of process parameters, i.e. Ton,
Toff, Ip, and F, on performance measures, i.e.
machining speed (Vm) and surface roughness (Ra), a
second-order polynomial response is fitted into the
following equation

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

Xk

j> 1

bij xi xj ð6Þ

Where y is the response and xi (1, 2, . . ., k) are coded
levels of k quantitative variables. The coefficient b0 is
the free term, the coefficients bi are the linear terms, the
coefficients bii are the quadratic terms, and the coeffi-
cientsbij are the interaction terms. Equations (7) and (8)
are then derived by determining the values of the coef-
ficients using the least-squares technique for the obser-
vations collected as shown in Table2, for machining
speed (Vm) and surface roughness (Ra) respectively.

Vm ¼ 1:555þ 0:1095x1 � 0:187x2 þ 0:0929x3

þ 0:1279x4 þ 0:0393x1x2 � 0:0793x1x3

� 0:01188x1x4 � 0:01688x2x3 � 0:0493x2x4

� 0:0606x3x4 � 0:03219x21 þ 0:02031x22

� 0:0909x23 � 0:06094x24 ð7Þ

Ra ¼ 3:6þ 0:2979x1 � 0:2979x2 � 0:1479x3

� 0:03542x4 þ 0:021875x1x2 � 0:2031x1x3

þ 0:04062x1x4 þ 0:01562x2x3 � 0:1531x2x4

� 0:1031x3x4 � 0:3182x21 � 0:3807x22

� 0:4057x23 � 0:2682x24 ð8Þ

Table 1 Coded values of process variables

Coded levels

Factors �2 �1 0 þ1 þ2

Pulse-on time 2 4 6 8 10
Pulse-off time 6* 10 20 30 40
Peak current 65 90 115 140 165
Servo feed setting 20 30 40 50 60

*Although by using equation (1) the coded value is ‘0’, the
minimum possible value of ‘6’ is considered.

Table 2 Design of experiments and the results

Serial
number

Ton

(ms)
Toff

(ms)
Ip
(A) F

Vm

(mm/
min)

Ra

(mm)

1 �1 �1 �1 �1 1.15 1.6
2 1 �1 �1 �1 1.50 2.5
3 �1 1 �1 �1 0.93 1.5
4 1 1 �1 �1 1.16 1.8
5 �1 �1 1 �1 1.54 2.2
6 1 �1 1 �1 1.58 2.3
7 �1 1 1 �1 1.13 1.7
8 1 1 1 �1 1.30 2.0
9 �1 �1 �1 1 1.58 2.3

10 1 �1 �1 1 1.90 3.7
11 �1 1 �1 1 1.05 1.5
12 1 1 �1 1 1.48 2.4
13 �1 �1 1 1 1.90 3.1
14 1 �1 1 1 1.57 2.4
15 �1 1 1 1 1.10 1.5
16 1 1 1 1 1.28 2.1
17 0 0 0 0 1.55 3.4
18 0 0 0 0 1.55 4.0
19 0 0 0 0 1.56 3.5
20 0 0 0 0 1.56 3.5
21 2 0 0 0 1.75 3.3
22 �2 0 0 0 1.13 1.6
23 0 2 0 0 1.35 1.8
24 0 �2 0 0 1.95 2.6
25 0 0 2 0 1.60 1.2
26 0 0 �2 0 0.81 3.0
27 0 0 0 2 1.70 1.6
28 0 0 0 �2 0.95 3.7
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To test whether the data are well fitted in the model
or not, the values of standard error of estimate (S) of
the regression analysis for machining speed and
surface roughness are obtained as 0.148 and 0.644
respectively. The values of standard deviation (Sy) for
machining speed and surface roughness are obtained
as 0.443 and 1.186 respectively. S< Sy indicates that
both regression models have merit. The actual extent
of improvement by using regression analysis is
quantified by coefficient of determination R2.R2 var-
ies from 0 to 1 and a value of R2¼ 1 indicates a perfect
fit and R2¼ 0 indicates no improvement. The calcu-
lated values of R2 for machining speed and surface
roughness models are 0.89 and 0.71 respectively. The
R2 value is moderately high for the machining speed
model and is moderate for the surface roughness
model. Hence, the models developed for machining
speed and surface roughness fit the data well. Fur-
thermore, F-statistics are used in the present work to
check whether these results with such high values of
R2 have occurred by chance. Probabilities that these
high values of R2 have occurred by chance are cal-
culated as 0.000 459 and 0.008 05 for machining
speed and surface roughness models respectively. As
these probability values are very small, it can be
concluded that the regression analysis presented in
this work is useful in predicting the responses.

Now an advanced optimization method based on
the ABC algorithm is used to optimize the WEDM
process parameters. The next section briefly
describes the algorithm.

4 ARTIFICIAL BEE COLONY ALGORITHM

A branch of nature-inspired algorithms, called swarm
intelligence, is focused on insect behaviour in order to
develop some meta-heuristics which can mimic
insects’ problem-solving abilities. Interaction between
insects contributes to the collective intelligence of the
social insect colonies. These communication systems
between insects have been adapted to scientific pro-
blems for optimization. The foraging behaviour,
learning, memorizing, and information sharing char-
acteristics of honey bees have recently been one of the
most interesting research areas in swarm intelligence.
The ABC algorithm is developed to model the intelli-
gent behaviours of honey bee swarms [17–19]. The
honey bee swarms consist of two essential compo-
nents (i.e. food sources and foragers) and define two
leading modes of behaviour (i.e. recruitment to a
nectar source and abandonment of a source).

4.1 Food sources

The value of a food source depends on different
parameters such as its proximity to the nest, richness

of energy, and ease of extracting this energy. For
simplicity, the ‘profitability’ of a food source can be
represented with a single quantity.

4.2 Foragers

Foragers can be unemployed, employed, or experi-
enced.

4.2.1 Unemployed foragers

If it is assumed that a bee has no knowledge about
the food sources in the search field, the bee initializes
its search as an unemployed forager. There are two
possibilities for an unemployed forager.

1. Scout bee: if the bee starts searching sponta-
neously without any knowledge, it will be a scout
bee. The percentage of scout bees varies from
5 per cent to 30 per cent according to the infor-
mation into the nest. The mean number of scouts
averaged over conditions is about 10 per cent.

2. Recruit: if the unemployed forager attends to a
waggle dance done by some other bee, the bee
will start searching by using the knowledge from
the waggle dance.

4.2.2 Employed foragers

When the recruit bee finds and exploits the food
source, it becomes an employed forager and mem-
orizes the location of the food source. After the
employed foraging bee loads a portion of nectar from
the food source, it returns to the hive and unloads the
nectar to the food area in the hive. There are three
possible options related to the residual amount of
nectar for the foraging bee. If the nectar amount has
decreased to a low level or become exhausted, the
foraging bee abandons the food source and becomes
an unemployed bee. If there is still a sufficient
amount of nectar in the food source, the bee can
continue to forage without sharing the food source
information with the nest mates, or it can go to the
dance area to perform a waggle dance to inform the
nest mates about the same food source. The prob-
ability values for these options are highly related to
the quality of the food source.

4.2.3 Experienced foragers

These types of foragers use their historical memories
for the location and quality of food sources. This type
of forage can be an inspector, controlling the recent
status of a food source already discovered. It can also
be a reactivated forager by using the information
from the waggle dance. It tries to explore the same
food source discovered by itself if there are some
other bees to confirm the quality of the same food
source. It can become scout bee to search out new
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patches if the whole food source is exhausted. It can
also become a recruit bee, searching out a new food
source declared in the dancing area by another
employed bee.

Communication among bees related to the quality
of food sources occurs in the dancing area. The related
dance is called the waggle dance. As information about
all the current rich sources is available to an onlooker
on the dance floor, she probably could watch numer-
ous dances and choose to employ herself at the most
profitable source. There is a greater probability of
onlookers choosing more profitable sources because
more information is circulating about the more profit-
able sources. Employed foragers share their informa-
tion with a probability, which is proportional to the
profitability of the food source, and the sharing of this
information through waggle dancing is longer in
duration. Hence, the recruitment is proportional to
profitability of a food source. An illustrative example is
discussed in the next section to demonstrate and
validate the ABC algorithm for determining the opti-
mum WEDM parameters.

5 EXAMPLE

Now to demonstrate and validate the ABC algorithm,
an example is considered for the optimization of
WEDM process parameters, based on the model
developed in section 3.

Objective function: maximize Vm (specified by equa-
tion (7) )
Constraint: Constraint is to ensure that the surface
roughness value Ra should not exceed permissible
surface roughness Rper as specified by

Rper � Ra > 0 ð9Þ
where Ra is the surface roughness value as specified
by equation (8).

Parameters and parameter bounds: The four process
parameters considered in the present work are pulse-
on time (Ton), pulse-off time (Toff), peak current (Ip),
and servo feed setting (F). The upper and lower bound
values for these parameters are as given below

46Ton 6 8ms ð10Þ

106Toff 6 30ms ð11Þ

906 Ip 6 140A ð12Þ

306F 6 50 ð13Þ
Now various steps of ABC algorithms are applied as
described below.

Step 1: Parameter selection. As discussed in section 4,
food source represents a possible solution to the
problem of minimization of production time in
the present work. The number of initial solutions
(i.e. the number of food sources) considered in this
work is five. The value of each food source depends
on the fitness value of the objective function given
by equation (7).

For every food source there is only one employed
bee (employed forager). In other words, the number
of employed bees is equal to the number of food
sources. Hence, in the present work, the number of
employed bees is considered to be five. The unem-
ployed forager can be a scout or an onlooker bee. The
number of onlooker bees must be greater than the
number of employed bees. As the number of on-
looker bees and hence the population size increases,
the algorithm performs better in terms of con-
vergence rate. However, after a sufficient value of the
number of onlooker bees, any increment in the value
does not improve the performance of the algorithm.
For the problem considered in this work, the number
of onlooker bees is considered to be 11, which can
provide an acceptable convergence speed for search.
The colony size is the sum of the number of
employed bees and the number of onlooker bees.
Hence the colony size is 16. The number of scout
bees is usually 5–30 per cent of the colony size. In the
present work, the number of scout bees is taken as 5
per cent of the colony size, i.e. one. The parameters of
optimization thus selected in this work are summar-
ized below:

(a) number of employed bees¼ 5;
(b) number of onlooker bees¼ 11;
(c) number of scout bees¼ 1;
(d) maximum number of iterations¼ 50.

Step 2: Calculate the nectar amount of each food
source. The employed bees are moved to the food
sources and the nectar amount of these food sources
is evaluated based on their fitness value as defined by
the objective function given by equation (7), subject
to the constraints given by equation (9).

Step 3: Determine the probabilities by using the nectar
amount. If the nectar amount of a food source ui is Fi,
then the probability Pi of an onlooker bee is choosing
this food source expressed as

Pi ¼

PS

k¼ 1

ð1=fkÞ�1

fi
ð14Þ

where S is the number of food sources.

Step 4: Calculate the number of onlooker bees, which
will be sent to food sources. Based on the probabilities
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calculated in step 3, the number N of onlooker bees
sent to the food source ui is calculated as

N ¼ Pi · m ð15Þ
where m is the total number of onlooker bees.

Step 5: Calculate the fitness value of each onlooker bee.
After watching the dances of employed bees, an
onlooker bee goes to the region of the food source ui
by the probability given by equation (14). The posi-
tion of the selected neighbour food source is calcu-
lated as

uiðc þ 1Þ ¼ uiðcÞ –�iðcÞ ð16Þ
where c is the number of generations, fi(c) is a ran-
domly produced step to find a food source with more
nectar around ui, fi(c) is calculated by taking the
difference of the same parts of ui(c) and uk(c) (k is a
randomly produced index) food positions. If the
nectar amount Fi(cþ 1) at ui(cþ 1) is higher than at
ui(c), then the bees go to the hive and share infor-
mation with others and the position ui(c) of the food
source is changed to ui(cþ 1), otherwise ui(c) is kept
as it is. If the position ui of the food source i cannot be
improved through the predetermined number of
trials, then that food source ui is abandoned by its
employed bee and then the bee becomes a scout. The
scout starts searching for a new food source and, after
finding the new source, the new position is accepted
as ui.

Step 6: Evaluate the best solution. The position of the
best onlooker bee is identified for each food source.
The global best of the honey bee swarm in each
generation is obtained and it may replace the global
best at a previous generation if it has a better fitness
value.

Step 7: Update the scout bee. The worst employed
bees, as many as the number of scout bees in the
population, are respectively compared with the scout
solutions. If the scout solution is better than the
employed solution, then the employed solution is
replaced with the scout solution. Else the employed
solution is transferred to the next generation without
any change.

Table 3 shows the optimum values of process vari-
ables for various values of surface roughness as per the
customer requirement. For Rper¼ 2.0ms, optimality of
the above-mentioned solution could be confirmed
from Figs 2 to 5. Figure2 shows the variation of
machining speed and constraint value with pulse-on
time. As shown in Fig. 2, the machining speed increa-
ses with increase in pulse-on time; hence a higher
value of pulse-on time is desired. Thus the selection of
the upper bound value of pulse-on time Ton¼ 8ms is
appropriate. It is also observed that the surface
roughness initially increases and then decreases with
pulse-on time. Hence, the constraint is initially vio-
lated beyond the value of Tonffi 5.3ms, however, it is
satisfied again at Ton¼ 8ms. Variation of machining
speed and constraint with pulse-off time is shown in

Table 3 Results of optimization using ABC algorithm for
various permissible values of Ra

Permissible
Ra value

Ton

(ms)
Toff

(ms)
Ip
(A) F

Vm

(mm/min)

2.0 8 30 132.57 50 1.422
2.1 4 21.65 140 50 1.465
2.2 4 19.68 140 50 1.522
2.3 4.05 10 139.50 50 1.827
2.4 4.14 10 138.25 50 1.835

Fig. 2 Variation of machining speed and constraint value with pulse-on time
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Fig. 3. As shown in Fig. 3, machining speed decreases
but surface finish increases with the increase in pulse-
off time. Thus, from the machining speed point
of view, a lower value of pulse-off time is desired.
However, the upper bound value (30ms) of pulse-off
time is selected as for any value below 30ms, the
surface roughness constraint is violated.

Figure 4 shows variation of machining speed and
constraint value with peak current. As shown in
Fig. 4, the machining speed initially increases slightly
with peak current up to a certain value (ffi107A) and

then decreases with increases in peak current. Values
of peak current up to 107A cannot be selected, as for
these values the constraint is violated. From this
point of view, a lower value of peak current should be
selected. As the value selected for peak current of
132.52 A is the lowest value at which the constraint is
satisfied, it is appropriate. Figure 5 shows variation of
machining speed and constraint value with servo
feed setting. It is observed from Fig. 5, that servo feed
setting has less effect on machining speed but affects
the surface roughness significantly. Better surface

Fig. 3 Variation of machining speed and constraint value with pulse-off time

Fig. 4 Variation of machining speed and constraint value with peak current
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finish can be achieved for a higher value of servo feed
setting. From this point of view, selection of the
upper bound value of servo feed setting (¼ 50) is
appropriate.

The model formulated in this work is highly multi-
modal as it has a number of local optima. As an
illustration, for the desired value of Ra¼ 2.1mm, one
of the local optimum solutions is Ton¼ 4, Toff¼ 10,
Ip¼ 90, and F¼ 31, with corresponding value of
Vm¼ 1.106mm/min and constraint value zero, thus
showing no scope for further improvement. The
global optimum solution obtained using ABC, how-
ever, provides Vm¼ 1.465mm/min, showing about
32per cent improvement over the local optimum
solution that is generally obtained by using tradi-

tional methods of optimization. This clearly justifies
the use of an advanced optimization algorithm such
as ABC, as in the present study, to solve such multi-
modal problems.

6 CONCLUSIONS

In the present work modelling and optimization
aspects of WEDM process parameters are considered.
The objective considered is maximization of
machining speed subject to the surface roughness
constraint. A mathematical model is developed based
on the RSM approach for correlating the combined
effects of pulse-on time, pulse-off time, peak current,

Fig. 5 Variation of machining speed and constraint value with servo feed setting

Fig. 6 Convergence of ABC algortihm

JEM1559 Proc. IMechE Vol. 223 Part B: J. Engineering Manufacture

Modelling and optimization of process parameters 1439



and servo feed setting on machining speed and sur-
face roughness. The optimum setting of the process
parameters is then obtained using a recently devel-
oped ABC optimization algorithm.

The performance of the ABC algorithm is studied in
terms of convergence rate and accuracy of the solu-
tion. The ABC algorithm combines both the sto-
chastic selection scheme carried out by onlooker
bees and the greedy selection scheme used by
onlookers and employed bees to update the source
position. Also, the neighbour source production
mechanism in ABC is similar to the mutation process,
which is self-adapting. The random selection process
carried out by the scout bees maintains diversity in
the solution. The convergence rate of the ABC algo-
rithm is also very high and the algorithm requires
only 20–30 iterations for convergence to the optimal
solution, as shown in Fig. 6. The ABC algorithm is
thus flexible, simple to use, and a robust optimization
algorithm, which can be used effectively in the opti-
mization of multi-modal and multi-variable pro-
blems. The algorithm can also be easily modified to
suit optimization of process parameters of other
advanced machining processes such as electro-
chemical machining, laser beam machining, plasma
arc machining, and so on.

� Authors 2009
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