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Sliding Mode Control for Spatial Stabilization of
Advanced Heavy Water Reactor

R. K. Munje, B. M. Patre, S. R. Shimjith, and A. P. Tiwari

Abstract—Spatial oscillations in neutron flux distribution re-
sulting from xenon reactivity feedback are a matter of concern in
large nuclear reactors. If the spatial oscillations in power distribu-
tion are not controlled, power density and rate of change of power
at some locations in the reactor core may exceed their respective
limits causing increase in chances of fuel failure. Hence, during
the design stages of any large nuclear reactor, it is essential to
identify the existence of spatial instabilities and to design suitable
control strategy for regulating the spatial power distribution. This
paper presents a method to design and analyze the effect of sliding
mode control (SMC) for spatial control of Advanced Heavy Water
Reactor (AHWR). The AHWR model considered here is of 90th
order with 5 inputs and 18 outputs. In this paper, numerically
ill-conditioned system of AHWR is separated into 73rd order
‘slow’ subsystem and 17th order ‘fast’ subsystem and SMC is
designed from slow subsystem. Further, using simple linear trans-
formation matrices, SMC for full system is constructed. Also, it is
proved that slow subsystem SMC results in a sliding mode motion
for full system. Dynamic simulations has been carried out using
nodal core model of AHWR to show effectiveness and robustness
of proposed method.

Index Terms—Siding mode control, sliding mode motion, spatial
oscillations, two-stage decomposition.

NOMENCLATURE

System state matrix.

System input matrix.

Delayed neutron precursor concentration.

Average thermal energy liberated per fission, J.

Identity matrix of dimension .

Position of regulating rod, % in.

Iodine concentration.

System output matrix.

Fission power, W.

Volume, m .

Xenon concentration.
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Hyperplane matrix.

Enthalpy, kJ/kg.

Mass flow rate, kg/s.

Control input vector.

Voltage signal to regulating rod drive, V.

Sliding surface.

Exit mass quality.

Output vector.

State vector.

Coupling coefficient.

Delayed neutron fraction.

Fraction fission yield.

Decay constant.

Prompt neutron life-time, s.

Reactivity, k.

Microscopic absorption cross-section, cm .

Macroscopic absorption cross-section, cm .

Macroscopic fission cross-section, cm .

Constant of regulating rod position.

Deviation parameter.

Eigenvalue.

Perturbation parameter.

Positive scalar.

As Subscripts:

Precursor.

Position of regulating rod.

Iodine.

Left.

Power.

Right.

Xenon.

Vaporization.

Downcomer.

Feed water, Fast, Fission.

0018-9499 © 2013 IEEE



MUNJE et al.: SLIDING MODE CONTROL FOR SPATIAL STABILIZATION OF ADVANCED HEAVY WATER REACTOR 3041

Node number.

System dimensions.

Steam, Slow, Spatial power.

Water.

Exit quality.

Global power.

Equivalent.

I. INTRODUCTION

I N India, Advanced Heavy Water Reactor (AHWR), a 920
MW (thermal), vertical pressure tube type nuclear reactor,

moderated by heavy water, cooled by boiling light water under
natural circulation is designed. The AHWR is fueled with
(Th- U)O pins and (Th-Pu)O pins. The reactivity control
devices in AHWR consist of eight absorber rods (ARs), eight
shim rods (SRs) and eight regulating rods (RRs). Among these,
RRs are used for fine adjustments in reactor power. Out of the
eight RRs, four are available for automatic control whereas
the remaining four are under manual operation. The neutron
flux is measured using out-of-core ion chambers as well as
in-core detectors. In-core detectors, however, are provided
primarily for monitoring of spatial flux distribution in the core
[1]–[3]. The core heat is removed by boiling light water under
natural circulation at a pressure of 7 MPa. Reactor consists of
4 interconnected steam drums. Water from each steam drum
flows down to a common inlet header. Individual coolant
channels of the core are fed from this common header through
individual feeder pipes [1], [4]. AHWR has a significant degree
of coupling between the neutronics and the two-phase thermal
hydraulics. The physical dimensions of AHWR are large
compared to the neutron migration length in the core, making
it susceptible to xenon-induced spatial oscillations [5]. To
suppress these oscillations it is necessary to design controller
for stabilization of total power and core-power distribution.
The analysis and control of large scale systems is complicated

due to high order nature and interacting dynamic phenomena of
widely different speeds, which gives rise to time-scales. Such
systems are extensively studied in control theory by singular
perturbations and time-scale methods. Excellent survey of such
methods carried out first by Kokotovic [6] and later by Saksena
[7] are available. These methods work by decoupling the fast
and slow varying phenomena. The task of decomposition of the
system leads to model order reduction. In two-stage decomposi-
tion, higher order system is decomposed into two comparatively
lower order subsystems, namely, ‘slow’ subsystem and ‘fast’
subsystem. The model order reduction procedure and it’s vali-
dation along with composite controller design can be found in
[8]–[13]. Tiwari et al. [14] have developed the non-linear math-
ematical model of Pressurized Heavy Water Reactor (PHWR)
characterized by 56 state variables and 14 inputs. Singularly
perturbed structure of linear model is exploited to decompose
it into fast subsystem of 14th order and slow subsystem of 42nd
order. Separate regulators are designed and finally combined to
obtain the near optimal composite control for the original model.

Various other techniques are applied to control xenon induced
spatial oscillations in PHWR and AHWR. Such techniques can
be found in [4], [15]–[27].
Variable structure control (VSC) with sliding mode control

(SMC) were first proposed and elaborated in the early 1950’s
in the Soviet Union by Emelyanov and several co-researchers
[28], [29]. Since then the significant interest on variable struc-
ture system (VSS) and SMC has been generated in the control
research community worldwide. One of the most intriguing
aspects of sliding mode is the discontinuous nature of control
action whose primary function of each feedback channel is to
switch between the two distinctively different system structures
such that the new type of system motion, called sliding mode,
exists in the manifold. This peculiar system characteristics is
claimed to result in superb system performance which includes
insensitivity to parameter variations, and complete rejection
of disturbance [29], [30]. However, it is not easy to design
a sliding mode control law for singularly perturbed systems
due to the complication of different time-scale behavior and
the discontinuous nature of switching action. Various attempts
to apply sliding mode control strategy to singularly perturbed
system have been reported by several researches [31]–[38]. A
singularly perturbed system is first decomposed into slow and
fast subsystems and then a composite control law derived from
slow and fast SMC is proposed in [31] in order to stabilize
a class of linear time-invariant systems. A similar kind of
approach was studied by Li et al. [32], in which the upper
bound problem of singular perturbation parameter in such a
control system is also determined. In [35] global stability of
closed loop system reduced in their fast and slow subsystem
using singular perturbation with sufficiently small perturbation
parameter is addressed. However, in these papers the external
disturbances were not considered. Yue and Xu [33] proposed
design of SMC for singular perturbation system with parameter
uncertainties and external disturbances, but it is difficult to
compute some parameters for the control law design. SMC
designed for slow subsystem only of singular perturbation
system to control the full order model is investigated in [34].
The fast subsystem is considered as unmodeled high frequency
dynamics. Recently, Nguyen et al. in [35] proposed a method
in which a state feedback control law is firstly established to
stabilize either slow or fast dynamics and secondly a SMC law
is designed for remaining dynamics of the system to ensure
stability and disturbance rejection. Further, in [36] the problem
of SMC for singularly perturbed systems in the presence of
matched bounded external disturbance is discussed. In this,
sliding surfaces are designed on the Lyapunov equations for
slow and fast subsystems. In [38], Bandyopadhyay et al. have
proposed sliding mode control design via reduced model ap-
proach, in which higher order system is decoupled by similarity
transformation into slow and fast subsystems. It is also shown
that the SMC designed for slow subsystem alone can result in
sliding mode motion for the high order system.
Rest of the paper is organized in the following sequence. In

Section II modeling of AHWR is explained along with state-
space representation. Control problem of AHWR is discussed
in Section III. In Section IV brief overview of sliding mode
control is given. Section V presents proposed control law. The
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application of control strategy to AHWR and transient simula-
tions are illustrated in Section VI followed by the conclusion in
Section VII.

II. MATHEMATICAL MODEL OF AHWR

A very extensive derivation of AHWR mathematical model
is given in [2] and [3] and the same has been used here for the
study carried out in this paper. However, for brevity the model
is discussed briefly in the following.

A. Core Neutronics Model

The AHWR core is considered to be divided in 17 relatively
large nodes as shown in Fig. 1. Based on finite difference ap-
proximation of the two group neutron diffusion equations and
the associated equations for an effective single group of delayed
neutron precursor’s concentration, xenon and iodine concentra-
tion, the nodal core model has been developed in [2]. The fol-
lowing equations constitute the core neutronics model:

(1)

(2)

(3)

(4)

(5)

where and denote the coupling coefficients between th
and th nodes and self coupling coefficients of th node respec-
tively. and is control signal ap-
plied to the RR drive and is a constant having value 0.56. The
neutronic parameters, nodal volumes and cross-sections, nodal
powers and coolant flow rates under full power operation and
coupling coefficients are given in [4].

B. Thermal Hydraulics Model

The thermal hydraulics model derived from [39] is given by

(6)

(7)

where, and . In [4], values of
and are given and the same are used here.

C. Reactivity Feedbacks

The reactivity term in (1) is expressed as
, where is the reactivity introduced by the control rods,
is the reactivity feedback due to xenon and is the reac-

tivity feedback due to coolant void fraction. The reactivity con-

Fig. 1. 17 nodes AHWR scheme.

tributed by the movement of the RRs around their equilibrium
positions is expressed as

The xenon reactivity feedback in node can be expressed as

The reactivity contribution by the coolant void fraction is

D. Linearization and State-Space Representation

The set of equations given by (1)–(7) can be lin-
earized around steady state operating conditions

and the linear equa-
tions so obtained can be represented in standard state space
form. For this, define the state vector as

(8)

where and the rest
, in

which denotes the deviation from respective steady
state value of the variable. Likewise define the input
vector as and output vector as

where
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and corresponds to normalized total reactor
power and nodal powers respectively. Then the system given
by (1)–(7) can be expressed in standard linear state space form
as

(9)

(10)

where is feed water flow rate. Matrices and
are given in [4]. Eigenvalues of fall in two distinct clusters.
First cluster has 73 eigenvalues ranging from to

and the second one is of 17 eigenvalues ranging
from to . Six eigenvalues of have
their real parts positive while four eigenvalues are at the origin
(grouped in first cluster), which indicates instability. Hence, it is
necessary to design an effective controller to maintain the total
power of the reactor while the xenon induced oscillations are
being controlled.

III. CONTROL PROBLEM OF AHWR

The control of large nuclear reactors has been a challenging
problem. Many authors have addressed the control problem of
other reactors in the perspective of modern control methodolo-
gies, but very few literatures are available onAHWR. Control of
AHWR refers to maintaining the total power constant and nodal
power distribution as given in [4]. This is referred as spatial
control, by means of which xenon induced oscillations are sup-
pressed from growing. The spatial control problem of AHWR
has been attempted by Shimjith et al. in [4], [15], [27]. In [4]
control strategy based on feedback of total power as well as spa-
tial power distribution signal is suggested. The design of con-
troller utilizing merely the feedback of outputs does not ensure
better transient performance and robustness characteristics. In
extension to this, the three-time-scale property of AHWR has
been directly exploited in [15] to design a spatial control based
on state feedback approach. In this, quasi-steady-state method is
used to decouple the system in ‘slow’, ‘fast 1’ and ‘fast 2’ sub-
systems which involves approximation. Further, the practical
implementation of such a state feedback controller demands
a state observer of large order. To overcome this, Fast Output
Sampling (FOS) controller is proposed in [27]. This method is
based on multirate output feedback, by which the states of the
system can be computed exactly. The method has its own ad-
vantages, but these methods do not assure robustness.
In this paper, spatial controller is designed for numerically

ill-conditioned system of AHWR based on sliding mode control
technique. However, it is not easy and straightforward to synthe-
size a sliding mode control law for numerically ill-conditioned
system due to the complication of different time-scale behavior
and the discontinuous nature of switching actions. Hence, the
higher order system is first decoupled into slow and fast sub-
system and sliding mode control is designed using only slow
subsystem. It is also shown that if a SMC is designed using slow
subsystem and if applied to full order system by simple trans-
formation, it results in the sliding mode motion of full order
system. The controller so designed has been used for simulation
of non-linear model and the results have been found to be sat-

isfactory and better than three-time-scale based and fast output
sampling feedback based controllers. Moreover, the controller
design and simulation results are directly relevant to India’s on-
going nuclear power programme.

IV. BRIEF OVERVIEW OF SLIDING MODE CONTROL

The design of sliding mode control law involves, designing a
switching surface to represent a desired system dynamics,
which is of lower order than the given plant and then designing
a suitable control, such that any state of the system outside the
switching surface is driven to reach the surface in finite time.
Consider the linear time-invariant controllable system of order
, as

(11)

(12)

where is the system state, is the control with
and is the system output. The matrices

and are constant matrices of appropriate dimensions.
Controllability of implies the existence of transforma-
tion matrix such that

(13)

where and is nonsingular. Under this transforma-
tion, system (11) is transformed into regular form given as

(14)

where and are of orders and respectively and

(15)

A. Sliding Surface Design

Consider the sliding surface [28], [29] of form with
sliding function parameter of form

(16)

The normal form of system (14), when restricted on sliding sur-
face , would obey the relationship

(17)

Thus, the dynamics of can be represented as

(18)

From (14), variable should be regarded as a control input to
the dynamic equation of . The controllability of im-
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plies controllability of . As a result, from (18) if is
selected such that eigenvalues of are assigned in
desired locations, then is stabilized when confined to sliding
surface. Consequently, due to algebraic relationship (17), is
also stable confined to sliding surface. Thus, stability require-
ment of the sliding surface is satisfied and it can be expressed
in terms of original state coordinates as

(19)

B. Controller Design

When sliding surface (19) is designed, it is necessary that
for all initial conditions, the system states converge towards the
switching surface. In other words, if then and, if

then . This may be combined to yield

(20)

This is the existence condition for sliding mode motion. And,
when sliding motion takes place after finite time
and for all . Substituting for from (11)

gives equivalent sliding mode control [29] as

(21)

The control law (21) satisfies only the sliding condition. One
must add a regulating control force in order to satisfy the
reaching condition. Thus, define

(22)

where can be designed by sigmoid function [32] to eliminate
the chattering and is implemented as

(23)

where “ ” represents the array multiplication, is a positive
scalar and

The system (11) is asymptotically stable in sliding mode on
sliding surface (19) [32].

V. PROPOSED CONTROL LAW

The quasi-steady-state method [8] is a good method for de-
coupling the full order system for sufficiently small perturba-
tion parameter. However, for large systems like nuclear reactor

the perturbation parameter is not zero. As a result, when using
quasi-steady state method the eigenvalues of the slow and fast
subsystem are no longer in the same position as the eigenvalues
of the full order system. This can be avoided by employing
two-stage decomposition method [6].

A. Two-Stage Decomposition

Consider the singularly perturbed form of the system (11),
rewritten as

(24)

where denote states such that ,
the matrices and are of appropriate dimensionality and
parameter is a scalar representing the speed ratio of the
slow versus fast phenomenon. The model represented by (24)
is a standard singularly perturbation model extensively studied
in the control literature. As the parameter tends to zero, the
solution behaves non-uniformly, producing so called singularly
perturbed stiff problem. Suppose be the eigenvalues of
matrix arranged in increasing order of absolute values as

where

Thus the system (24) has dominant (slow)modes and non-
dominant (fast) modes. The basic idea of using the two-stage
decomposition approach in generating lower order models is to
decouple the dominant modes from non-dominant modes. This
is performed through use of two-stage linear transformations
[11], [12]. The first stage is to apply the change of variables

(25)

to system (24). Here and are respectively and
identity matrices and matrix satisfies the equation

(26)

Then system (24) transforms into

(27)

where
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If is invertible, unique solution of in (26) can be deter-
mined by iterative procedure. Now the second linear transfor-
mation is applied as

(28)

to system (27) and choose matrix such that

(29)

Then (27) transforms into

(30)

where

Thus, the application of two-stage linear transformation results
in decoupling of system (24) into separate slow and fast subsys-
tems in (30) from where the slow and fast variables and
can be solved independently. Also, the magnitude of the largest
eigenvalue of is much smaller than the magnitude of the
smallest eigenvalue of , i.e.,

The transformations (25) and (28) relate the slow and fast vari-
ables and with the original variables and as

(31)

where and .

B. Sliding Mode Control Law Design Using Slow Subsystem

The system formulation (30) is related to its original form
(24) via linear transformation (31). Therefore, controllability of
(11) implies the controllability of subsystems i.e., pairs
and are controllable. In addition, it is assumed that fast
subsystem is asymptotically stable, i.e., . Since, in
case of majority of physical systems, fast subsystem is stable,
therefore, sliding mode control law is designed using slow sub-
system alone. From (30), slow subsystem can be written as

(32)

The relationship between the slow subsystem states (32) and
states of system (30) is given as

(33)

where . Let be a stable sliding surface
for slow subsystem (32). Hence, the motion around can be
obtained by setting . Therefore, equivalent sliding mode
control is

(34)

Thus, motion along is given by

(35)

As the system (35) is stable by design, eigenvalues of
will be stable.

Lemma 1: If motion around for system (32) is
stable then the motion around

(36)

for system (24) is also stable.
Proof: Since, is a stable sliding surface for

system (32), from (33) sliding surface for system (30) can be
written as

(37)

Sliding motion around for system (30) can be obtained by
setting . As a result equivalent control becomes

(38)

Thus, motion around switching surface is

(39)

which is obtained from (30) by replacing with . As
is stable by design and is assumed

to be stable, the sliding motion of (30) is stable. System formu-
lation (30) is related to its original form (24) via linear trans-
formation (31). Therefore, is also stable sliding
surface for (24).
Now setting , equivalent control for system (24) can be
obtained from (38) as

(40)
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The control (40) satisfies only sliding condition for system (24),
as proved in Lemma 1, however, reaching condition is satisfied
by (23), where total control law is given by (22).
Lemma 2: Full order system (24) is asymptotically stable in

sliding mode on sliding surface (36).
Proof: From (31), (33) and (36) sliding surface for full

order system (24) can be written as

Now, choosing Lyapunov function as

for all . The reaching condition is thus satisfied.

VI. APPLICATION TO AHWR

The linear model of the AHWR given by (9)–(10) presented
in Section II-D, is found to be controllable and observable
[4]. Small and medium size nuclear reactors are generally
controlled based on feedback of total power, however, large
reactors, like AHWR, require feedback of spatial power distri-
bution along with the total power feedback for effective spatial
control. Hence, conventional controller for total reactor power
is designed first.

A. Total Power Feedback

Consider the input in (9) of the form

(41)

where, and give respectively the global power and spatial
power components. Now, consider the total power feedback as,

(42)

where is (4 18) matrix given by ,
in which represents vectors of (4 1) dimension and

such that the feedback gain cor-
responding to total power is for all RRs and is zero
corresponding to nodal powers. Using (42) the state equation
(9) becomes

(43)

where . Submatrices of and are
given in [15]. The stability characteristic of the system (43) is
investigated by varying the value of and for ,
the gross behavior of the system seems stable though the
system can show spatial instability [15]. This is revealed by
simulating transient involving a spatial power disturbance
using non-linear model of the reactor given by (1)–(7) using

MATLAB/SIMULINK. It was assumed that the reactor was
operating initially at full power, with control signal generated
by (42). The RR2 which was initially at its equilibrium position
was driven out by about 1% by giving proper control signal.
Immediately after that, RR2 was driven back to its original
position and thereafter left under the influence of controller.
The response of the model to this disturbance was investigated
in terms of variations in total power and tilts in the first and
second azimuthal modes defined as:

It was observed in the simulation that, in spite of the global
power being regulated at full power as shown in Fig. 2(a), the
power distribution in the core undergoes oscillations. Within 38
h, the first and second azimuthal modes of oscillations grow to
the amplitudes of the order of 1.4% and 0.75% respectively as
shown in Fig. 2(b). Period of the oscillations are observed to
be 20 h and 12 h respectively for first azimuthal and second
azimuthal. These spatial oscillations and subsequent local over-
powers pose a potential threat to the fuel integrity of any nuclear
reactor, and hence require control. Therefore, it is necessary to
devise a suitable spatial power controller for AHWR.

B. Spatial Control for AHWR

After designing the global power control component, we turn
our attention to the spatial control component of input in (41).
Along with the total power and spatial power feedbacks, state
equation (9) becomes

(44)

where, given by (43) has eigenvalues falling in two different
clusters. First cluster of 73 eigenvalues ranging from

to with three eigenvalues at the origin
and second cluster of 17 eigenvalues range from to

. Hence, it is possible to transform model (44)
into singularly perturbed form (24).
1) Singularly Perturbed Form of AHWR Model: In case of

AHWR, after linearization of set of equations given by (1)–(7),
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Fig. 2. Unstable modes of spatial instability. (a) Global Power, (b) First and
Second Azimuthal Tilts.

it is indeed observed that coefficients in the 17 equations for
nodal powers, contain in their denominator. Its value is

s. This parameter can be picked up as . There-
fore, the state variables of system defined by (8) are grouped
into slow and fast ones as

(45)

(46)

Now, the AHWR model is transformed into standard singularly
perturbed form where and . Submatrices

and are respectively of
dimensions (73 73), (73 17), (17 73), (17 17), (73 4)
and (17 4).
2) Control Law Design: Transformation matrices and ,

fast subsystemmatrix and slow subsystems matrix
can be obtained very easily by using the procedure explained
in Section V-A. The eigenvalues of matrices and are
given in Tables (I) and (II) respectively. It is seen that the eigen-
values of and are in excellent agreement with the
last 17 and remaining 73 eigenvalues of matrix respectively.
Hyperplane matrix for slow subsystem is determined using
the method explained in Section V-B. From Table I it can be ob-
served that the eigenvalues of fast subsystem are asymptotically
stable i.e., . Hence, sliding mode control law can
be constructed using the slow subsystem as given below.

(47)

TABLE I
EIGENVALUES OF FAST SUBSYSTEM

TABLE II
EIGENVALUES OF SLOW SUBSYSTEM

where is the switching surface given by

C. Transient Simulations

The reactor was assumed to be initially operating at full
power equilibrium condition. Shortly, RR6, originally under
auto control was driven out by almost 2% manually by giving
proper control signal and simultaneously RR4 was driven
in by 2%. Subsequently these regulating rods were left at
their new positions under the effect of controller. The control
signals to RR drives were generated as per (47). Non-linear
model of the reactor given by (1)–(7) is simulated using
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Fig. 3. Variations inRR positions.(a)Three-time-scale approach (Shimjith et al.
[15]), (b) Proposed approach.

MATLAB/SIMULINK for step size of 10 ms. Generated re-
sults are shown in Fig. 3. From the simulations, it was noticed
that RRs were driven back to their equilibrium positions by
controller (Fig. 3(b)). This result is compared with the result
obtained by applying three-time scale control law given in [15].
It is observed that, both the controllers are driving RRs back to
their equilibrium positions but time required to do so is much
less in the proposed controller.
Fig. 4 shows the closed loop system response during another

spatial power transient initiated by a momentary disturbance in
positions of RR2 and RR4. RR2 which was initially at its equi-
librium position was driven out by 1% and RR4 was parallelly
driven in by the same amount. Immediately after that these RRs
were driven back to their original positions respectively and
thereafter again transferred under the influence of the controller
(42). As a consequence of this disturbance and as the control
is based only on feedback of the total power, the tilts started
picking up. After about 16 hours and 40 minutes the spatial con-
trol component was introduced in the control signal. Fig. 4(a)
shows the variations in first and second azimuthal and Fig. 4(b)
shows a zoomed version of the former, focusing the region near
the introduction of spatial control. It was observed that tilts are
controlled within 50 seconds and completely suppressed in 2
hours. Furthermore, when control signal is given to the rods as
shown in Fig. 5(a), the variations in control rod positions is ob-
served, as depicted in Fig. 5(b). This resulted in the perturbation
in spatial power distribution, which were suppressed by the spa-
tial controller within about 70 s, as shown in Fig. 6(a)–(d).

Fig. 4. Suppression of tilts after introduction of spatial control. (a) First and
Second Azimuthal Tilts, (b) First and Second Azimuthal Tilts.

Fig. 5. Effect of spatial control (change in RR2 and RR6). (a) Control signal
to RR drive, (b) Rod Positions.

VII. CONCLUSION

In this paper, sliding mode control law is proposed for spa-
tial stabilization of AHWR. The original numerically ill-condi-
tion system is decomposed into two subsystems. Sliding mode
control law is then designed for slow subsystem. Subsequently,
SMC law for full order system is designed using linear trans-
formation matrices. Performance of the proposed control law is
judged via simulations carried out under various transient con-
ditions with step time of 10 ms. It is observed that the controller
is stabilizing the spatial oscillations and nodal power variations
in very small time. The control strategy for AHWR, presented
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Fig. 6. Variations in nodal powers. (a) Node-1, 2, 3, 4 and 5 Powers, (b) Node-6, 7, 8 and 9 Powers, (c) Node-10, 11, 12 and 13 Powers, (d) Node-14, 15, 16 and
17 Powers.

here, utilizes the feedback of nodal powers, regulating rods’ po-
sitions and xenon and iodine concentrations. For the latter two
variables, it would be necessary to employ an observer or esti-
mator.
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