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ABSTRACT
This article presents the performance of a very recently proposed Jaya
algorithm on a class of constrained design optimization problems. The dis-
tinct feature of this algorithm is that it does not have any algorithm-specific
control parameters and hence the burden of tuning the control parame-
ters isminimized. Theperformanceof theproposed Jaya algorithm is tested
on 21 benchmark problems related to constrained design optimization. In
addition to the 21 benchmark problems, the performance of the algorithm
is investigated on four constrained mechanical design problems, i.e. robot
gripper, multiple disc clutch brake, hydrostatic thrust bearing and rolling
element bearing. The computational results reveal that the Jaya algorithm
is superior to or competitive with other optimization algorithms for the
problems considered.
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1. Introduction

Design optimization problems are important from both an industrial and a scientific perspective.
In practical design problems and situations, there are more design variables and their influence on
the objective function is significant. Moreover, the designer requires a global optimum, whereas the
objective functionmay become trapped in local optima. Classical methods are not efficient in solving
such problems since they compute only local optima. Therefore, an intelligent method is required for
solving constrained design problems effectively.

The field of optimization has grown rapidly during the past few decades. Many new theoretical,
algorithmic and computational contributions of optimization have been proposed to solve various
problems in engineering and management. Recent developments of optimization methods can be
mainly divided into deterministic and heuristic approaches. Deterministic approaches take advantage
of the analytical properties of the problem to generate a sequence of points that converge to a global
optimal solution. Deterministic approaches (e.g. linear programming, nonlinear programming and
mixed-integer nonlinear programming) can provide general tools for solving optimization problems
to obtain a global or an approximately global optimum (Lin, Tsai, and Yu 2012). For solving non-
convex or large-scale optimization problems, it may not be easy to derive a globally optimal solution
within a reasonable time using deterministic methods, owing to the high complexity of the problem.
Heuristic approaches have been found to bemore flexible and efficient than deterministic approaches
and reduce the computational time taken to solve an optimization problem, but the obtained solution
is not guaranteed to be a feasible or globally optimal solution.

Constrained design optimization problems have been addressed by various researchers using dif-
ferent techniques such as the genetic algorithm (GA) (Goldberg 1989), particle swarm optimization
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2 R. VENKATA RAO AND G.G. WAGHMARE

(PSO) (Kennedy and Eberhart 1995; Clerc 2006; Liu, Cai, and Wang 2010), artificial bee colony
(ABC) (Karaboga 2005; Karaboga and Basturk 2007), ant colony optimization (ACO) (Dorigo and
Stutzle 2004; Blum 2005), harmony search (HS) (Lee and Geem 2004) and the grenade-explosion
method (GEM) (Ahrari and Atai 2010). These algorithms have been effectively used for solving
many optimization problems. Lee and Geem (2004) attempted unconstrained, constrained and
structural optimization problems using the HS algorithm. Parsopoulos and Vrahatis (2005) solved
four well-known constrained design optimization problems (i.e. tension/compression spring, welded
beam, gear train and pressure vessel) using a unified particle swarm optimization (UPSO) method.
Mezura-Montes and Coello (2005) solved engineering design problems without using a penalty func-
tion by introducing an evolutionary algorithm to maintain infeasible solutions close to the feasible
region. Becerra and Coello (2006) solved constrained optimization problems by proposing a cultural
algorithm using differential evolution (CDE). Huang, Wang, and He (2007) solved constrained opti-
mization problems using a co-evolutionary differential evolution (CoDE) algorithm. He and Wang
(2007) effectively tackled constrained optimization problems employing a co-evolutionary model in
the particle swarm optimization technique (CPSO). Liao (2010) tested the performance of two hybrid
differential evolution (DE) algorithms on 14 engineering design problems. Akay andKaraboga (2010)
tested engineering design problems using the ABC algorithm. Rao, Savsani, andVakharia (2011) pro-
posed and tested the performance of the teaching–learning-based optimization (TLBO) algorithmon
design optimization problems. Zhang et al. (2013) combined a tissue membrane system and DE in
their differential evolution algorithm and tissue P systems (DETPS) algorithm and solved constrained
design optimization problems. Pavone, Narzisi, and Nicosia (2012) presented an immunological
algorithm to solve global numerical optimization problems for high-dimensional instances. The
authors designed two versions of the immunological algorithms: the first based on binary-code rep-
resentation and the second based on real values. Brajevic and Tuba (2013) tackled constrained design
optimization problems using an upgraded ABC algorithm. Rios and Sahinidis (2013) addressed
the solution of bound-constrained optimization problems using a derivative-free algorithm which
required only the availability of objective function values but no derivative information. The authors
provided a review of derivative-free algorithms, followed by a systematic comparison of 22 related
implementations using a test set of 502 problems. Rao andWaghmare (2014) tested the performance
of an elitist teaching–learning-based optimization algorithm (Elitist TLBO) on constrained design
problems. The TLBO algorithm has gained wide acceptance among optimization researchers.

In view of the success of the TLBO algorithm, Rao (2016) very recently proposed another
algorithm-specific parameter-free algorithm named the Jaya algorithm. The Jaya algorithm requires
only the common control parameters and not the algorithm-specific parameters. Common control
parameters such as population size, number of generations and elite size are common to running
any of the optimization algorithms, whereas algorithm-specific parameters are specific, i.e. different
algorithms have different specific parameters to control. The other evolutionary algorithms require
control of common control parameters as well as their own algorithm-specific parameters. For
example, the GA requires the tuning of specific parameters such as crossover probability, mutation
probability and selection operator, in addition to tuning the common control parameters. Similarly,
the PSO algorithm requires tuning of specific parameters including inertia weight, social factors and
cognitive factors, in addition to the tuning of common control parameters. Thus, the burden of tuning
of control parameters is reduced in the Jaya algorithm as it requires tuning of only the common con-
trol parameters. Unlike the two phases (i.e. teacher phase and learner phase) of the TLBO algorithm,
the Jaya algorithm has only one phase and is comparatively simple to apply. The working of the
Jaya algorithm is different from that of the TLBO algorithm. In the previous work by Rao (2016),
the Jaya algorithm was tested on unconstrained and constrained benchmark problems. However, to
check the effectiveness of any new proposed algorithm, its performance on a number of complex
benchmark problems must be assessed. In this article, the performance of the Jaya algorithm is inves-
tigated by extending the evaluation through experimentation with 21 constrained benchmark design
optimization problems and four mechanical design optimization problems. To validate the proposed
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ENGINEERING OPTIMIZATION 3

algorithm, its results are compared with the results of different algorithms for different benchmark
functions. The following section presents a brief description of the Jaya algorithm (Rao 2016).

2. Jaya algorithm

Let f (x) be the objective function to be minimized (or maximized). At any iteration i, assume that
there are m design variables and n candidate solutions (i.e. population size, k = 1,2, . . . ,n). Let the
best candidate, ‘best’, obtain the best value of f (x) (i.e. f (x)best) in the entire candidate solutions and
the worst candidate, ‘worst’, obtain the worst value of f (x) (i.e. f (x)worst) in the entire candidate solu-
tions. If Xj,k,i is the value of the jth variable for the kth candidate during the ith iteration, then this
value is modified as per Equation (1):

X′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − |Xj,k,i|) − r2,j,i(Xj,worst,i − |Xj,k,i|) (1)

where Xj,best,i is the value of the variable j for the best candidate and Xj,worst,i is the value of the
variable j for the worst candidate. X’j,k,i is the updated value of Xj,k,i, and r1,j,i and r2,j,i are the
two random numbers for the jth variable during the ith iteration in the range [0, 1]. The term r1,j,i
((Xj,best,i –Xj,k,i) indicates the tendency of the solution to move closer to the best solution, and the
term –r2,j,i (Xj,worst,i –Xj,k,i|) indicates the tendency of the solution to avoid the worst solution. X’j,k,i
is accepted if it gives a better function value. All the accepted function values at the end of the iteration
are maintained and these values become the input to the next iteration. In the proposed algorithm,
the solution obtained for a given problem is moving towards the best solution and avoiding the worst
solution. The random numbers r1 and r2 ensure good exploration of the search space. The absolute
value of the candidate solution (|Xj,k,i|) considered in Equation (1) further enhances the exploration
ability of the algorithm. Figure 1 shows the flowchart of the Jaya algorithm.

Figure 1. Flowchart of the Jaya algorithm (Rao 2016).
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4 R. VENKATA RAO AND G.G. WAGHMARE

The next section deals with the experimentation of the Jaya algorithm on various constrained
benchmark functions and design optimization problems.

3. Experiments on constrained benchmark optimization problems

In this section, 21 constrained design benchmark optimization problems and four mechanical
design problems from the literature are used to test the performance of the Jaya algorithm. Var-
ious researchers had attempted these problems using different optimization algorithms. Now, the
Jaya algorithm is applied to the same problems and comparisons are made. One of the major issues
of constrained optimization is how to deal with infeasible individuals throughout the search space,
using procedures commonly known as constraint handling methods. Constraint handling methods
are categorized based on different handling techniques, such as methods based on penalty functions,
methods based on searching for feasible solutions, methods based on preserving the feasibility of
solutions and hybrid methods. Deb’s heuristic constrained handling method (Deb 2000) is used to
handle the constraints in the present experiments. This method transforms a constrained optimiza-
tion problem into an unconstrained problem by adding a penalty factor to the fitness value of each
infeasible individual so that it is penalized for violating one or more of the constraints. The statistical
results on constrained design benchmark problems using the Jaya algorithm and its comparison with
other optimization algorithms are explained in detail in the following section.

4. Experimental results and discussion

Details of the 21 constrained design benchmark optimization problems and four mechanical design
problems are presented in Appendix 1. Problem 1 is a minimization problem and the objective func-
tion involves 13 variables and nine linear inequality constraints. The Jaya algorithm is applied to solve
this problem and its performance is compared with eight other optimization algorithms. Just like any
other algorithm, the Jaya algorithm requires proper tuning of common control parameters such as
population size and number of generations to execute the algorithm effectively. After running a few
trials, a population size of 50 and number of function evaluations (NFE) of 1500 are considered. The
results of Elitist TLBO,DETPS, TLBO,multimembered evolution strategy (M-ES), particle evolution-
ary swarm optimization (PESO), CDE, CoDE and ABC are taken from Rao and Waghmare (2014),
Zhang et al. (2013), Rao, Savsani, and Vakharia (2011), Mezura-Montes and Coello (2005), Zavala,
Aguirre, and Diharce (2005), Becerra and Coello (2006), Huang,Wang, and He (2007) and Karaboga
and Basturk (2007), respectively.

Problem 2 is amaximization problem involving 10 variables and a nonlinear constraint. After run-
ning a few trials, a population size of 50 and function evaluations of 25,000 are considered. Problem 3
is a minimization problem which involves seven variables and four nonlinear inequality constraints.
After running a few trials, a population size of 10 and NFE of 30,000 are considered.

Problem 4 is a linear minimization problem which involves eight variables and three nonlinear
inequality and three linear inequality constraints. After running a few trials, a population size of 10
and NFE of 99,000 are considered. The convergence plot of the proposed algorithm for problem 4 is
presented in Figure 2.

Problem 5 is a maximization problem involving three design variables and 729 nonlinear inequal-
ity constraints. After running a few trials, a population size of 50 andNFE of 5000 are considered. The
comparison of statistical results of the considered nine algorithms for test problems 1–5 is presented
in Table 1, where ‘Best’, ‘Mean’ and ‘Worst’ represent the best solution, mean best solution and worst
solution, respectively, over 30 independent runs.

Problem 6 is minimization of cost for a welded beam design having four continuous design vari-
ables as shown in Figure 3. A population size of 10 and NFE of 10,000 are used. Problem 7 is
minimization of total cost for a pressure vessel design involving three linear constraints and one
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ENGINEERING OPTIMIZATION 5

Figure 2. Convergence plot of the proposed algorithm for problem 4.

nonlinear inequality constraint, and two discrete and two continuous design variables, as shown in
Figure 4. A population size of 10 and NFE of 10,000 are considered.

Problem 8 is minimization of weight for tension/compression spring design involving one linear
constraint and three nonlinear inequality constraints with three continuous design variables. The
tension/compression spring is shown in Figure 5. A population size of 10 and NFE of 10,000 are
considered. Problem9 isminimization ofweight for a speed reducer design involving one discrete and
six continuous design variables, and four linear and seven nonlinear inequality constraints, as shown
in Figure 6. After running a few trials, a population size of 10 and NFE of 10,000 are considered.
Table 2 presents the statistical results of 11 algorithms for test problems 6–9 over 30 independent
runs.

For problems 10, 11 and 12, population sizes of 10, 100, 50 and NFE of 4000, 79,000, 5000, respec-
tively, are considered after running a few trials. Problems 13, 14, 15 and 16 are process synthesis design
problems, for which population sizes of 10, 10, 10, 10 and NFE of 900, 500, 1000, 7000, respectively,
are considered. For problems 17, 18 and 19, population sizes of 10, 10, 10 and NFE of 300, 2900, 100,
respectively, are considered.

Problem 20 is minimization of total cost for a pressure vessel design. A population size of 50
and NFE of 5000 are considered. Problem 21 is maximization of material removal rate for a ceramic
grinding process. A population size of 10 and NFE of 1000 are considered.

For each of the above problems, 30 independent runs are carried out and the NFE is recorded in
Table 3. Table 4 presents the statistical results of the mean best solution and standard deviation for
six optimization algorithms.

In addition to the 21 benchmark problems, the performance of the Jaya algorithm is investigated
on four constrained mechanical design problems, namely a robot gripper, multiple disc clutch brake,
hydrostatic thrust bearing and rolling element bearing, taken fromRao, Savsani, andVakharia (2011).
Table 5 presents the comparison of results for these mechanical design problems obtained using the
Jaya, TLBO and ABC algorithms. The robot gripper design is related to minimization of the objec-
tive function of the difference between the maximum and minimum force applied by the gripper for
the range of gripper end displacements problem involving seven continuous design variables and six
different constraints. After running a few trials, a population size of 50 and NFE of 25,000 are con-
sidered. The multiple disc clutch brake problem involves minimization of the mass of multiple disc
clutch brakes as an objective function using the inner radius, outer radius, thickness of discs, actuating
force and number of friction surfaces as five discrete variables. After running a few trials, a popula-
tion size of 20 and NFE of 600 are considered. The minimization of the power loss is considered as

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

3:
41

 1
5 

A
pr

il 
20

16
 



6
R.VEN

KA
TA

RA
O
A
N
D
G
.G
.W

A
G
H
M
A
RE

Table 1. Comparison of statistical results of nine algorithms for test problems 1–5.

Problem Jaya algorithm

Elitist TLBO (Rao
and Waghmare

2014)
DETPS (Zhang
et al. 2013)

TLBO (Rao,
Savsani, and
Vakharia 2011)

M-ES (Mezura-
Montes and
Coello 2005)

PESO (Zavala,
Aguirre, and
Diharce 2005)

CDE (Becerra and
Coello 2006)

CoDE (Huang,
Wang, and He

2007)
ABC (Karaboga and

Basturk 2007)

1 Best −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0
Mean −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0
Worst −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0 −15.0
SD 0.000 1.9e-6 – – – – – – –
NFE 75,000 14,009 20,875 25,000 240,000 350,000 100,100 2,48,000 240,000

2 Best 1.000 1.000 1.001 1.000 1.000 1.005 0.995 – 1.000
Mean 1.000 1.000 0.992 1.000 1.000 1.005 0.789 – 1.000
Worst 1.000 1.000 0.995 1.000 1.000 1.005 0.640 – 1.000
SD 0.000 0.000 – – – – – – –
NFE 25,000 69,996 90,790 100,000 240,000 350,000 100,100 – 240.000

3 Best 680.630 680.630 680.630 680.630 680.632 680.630 680.630 680.771 680.634
Mean 680.639 680.631 680.630 680.633 680.643 680.630 680.630 681.503 680.640
Worst 680.651 680.633 680.630 680.638 680.719 680.630 680.630 685.144 680.653
SD 2.9e-2 3.4e-3 – – – – – – –
NFE 30,000 30,019 32,586 100,000 240,000 350,000 100,100 240,000 100,000

4 Best 7049.248 7049.248 7049.257 7049.248 7051.903 7049.459 7049.248 – 7053.904
Mean 7056.632 7050.261 7050.834 7083.673 7253.047 7099.101 7049.248 – 7224.407
Worst 7087.620 7055.481 7063.406 7224.497 7099.101 7251.396 7049.248 – 7604.132
SD 2.6e-2 2.8e-2 – – – – – – –
NFE 99,000 99,987 100,000 100,000 240,000 350,000 100,100 – 240,000

5 Best 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Worst 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SD 0.000 0.000 – – – – – – –
NFE 5000 5011 6540 50,000 240,000 350,000 100,100 240,000 100,000

Note: Elitist TLBO = elitist teaching-learning-based optimization; DETPS = differential evolution algorithm and tissue P systems; TLBO = teaching-learning-based optimization;
M-ES = multimembered evolution strategy; PESO = particle evolutionary swarm optimization; CDE = cultural differential evolution; CoDE = co-evolutionary differential evolution;
ABC = artificial bee colony; NFE = number of function evaluations; – = result is not available.
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ENGINEERING OPTIMIZATION 7

Figure 3. The welded beam design problem (Rao, Savsani, and Vakharia 2011).

Figure 4. Centre and end section of the pressure vessel design problem (Rao, Savsani, and Vakharia 2011).

Figure 5. The tension/compression spring design problem (Rao, Savsani, and Vakharia 2011).

an objective function for a hydrostatic thrust bearing containing four design variables and seven dif-
ferent constraints. A population size of 50 and NFE of 25,000 are considered. Maximization of the
dynamic load-carrying capacity of a rolling element bearing is considered as an objective function
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8 R. VENKATA RAO AND G.G. WAGHMARE

Figure 6. The speed reducer problem (Rao, Savsani, and Vakharia 2011).

involving five design variables, namely, ball diameter, pitch diameter, inner and outer raceway curva-
ture coefficients, and number of balls. After running a few trials, a population size of 50 and NFE of
10,000 are considered. A system with an Intel core i3 2.53GHz processor and 1.85GB RAM is used
for implementing the MATLAB code for the Jaya algorithm on the considered problems.

The statistical results of nine algorithms for test problems 1–5 are shown in Table 1. For problem 1,
the Jaya algorithm finds the same global optimum solution as that given by the Elitist TLBO, DETPS,
TLBO, M-ES, PESO, CDE, CoDE and ABC algorithms, but the Jaya algorithm uses 31.25%, 21.42%,
74.92%, 30.24% and 31.25% function evaluations to obtain competitive results compared to M-ES,
PESO, CDE, CoDE and ABC, respectively, while the Elitist TLBO requires approximately 94%, 94%,
86%, 96%, 94%, 44% and 33% function evaluations compared to ABC, CoDE, CDE, PESO, M-ES,
TLBO andDETPS, respectively. The Jaya algorithm is superior to the Elitist TLBO algorithm in terms
of standard deviation and robustness for problem 1.

For problem 2, the Jaya algorithm finds a better quality of solution than DETPS and CDE. The
results of the Jaya algorithm are same as those of the Elitist TLBO, TLBO, M-ES and ABC algo-
rithms, but it uses 35.71%, 27.53%, 25%, 10.41%, 7.41%, 24.97% and 10.41% function evaluations
to obtain competitive results compared to Elitist TLBO, DETPS, TLBO, M-ES, PESO, CDE, and
ABC, respectively. The Jaya algorithm also computes the function value in less time than the other
optimization algorithms considered.

For problem 3, the results of the Jaya algorithm are same as those of the Elitist TLBO, DETPS,
TLBO, PESO and CDE algorithms in terms of the best solution, but the Jaya algorithm uses 99.23%,
92.06%, 30%, 12.5%, 8.57%, 29.97%, 12.5% and 30% function evaluations to obtain competitive results
compared to Elitist TLBO, DETPS, TLBO, M-ES, PESO, CDE, CoDE and ABC, respectively. For
problem 3, the solutions given by the Jaya algorithm, Elitist TLBO,M-ES, CoDE and ABC algorithms
are inferior to those given byDETPS, PESO andCDE in terms ofmean andworst solutions. However,
to obtain the global optimum solution, DETPS, PESO and CDE needed more function evaluations
than the Jaya algorithm.

For problem 4, the results of the Jaya algorithm are same as those of the Elitist TLBO, TLBO and
CDE algorithms in terms of the best solution, but the Jaya algorithm uses 99.01%, 99% and 98.90%
function evaluations to obtain competitive results compared to Elitist TLBO, TLBO andCDE, respec-
tively. However, the solution given by CDE is better than those given by the Jaya algorithm, Elitist
TLBO, DETPS, TLBO, M-ES, PESO, CoDE and ABC algorithms in terms of mean and worst solu-
tions. However, CDE requires more function evaluations than the Jaya algorithm to obtain the global
optimum solution. The Jaya algorithm uses 99.01%, 99%, 99%, 41.25%, 28.28%, 98.90% and 41.25%
function evaluations to obtain competitive results compared to Elitist TLBO, DETPS, TLBO, M-ES,
PESO, CDE and ABC, respectively.
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Table 2. Comparison of statistical results of 11 algorithms for test problems 6–9.

Problem
Jaya

algorithm

Elitist TLBO
(Rao and
Waghmare

2014)

DETPS
(Zhang

et al. 2013)

(µ+ λ)-ES
(Mezura-

Montes and
Coello 2005)

UPSO
(Parsopoulos
and Vrahatis

2005)

CPSO (He
and Wang,
2007)

CoDE
(Huang,

Wang, and
He 2007)

PSO-DE (Liu,
Cai, and

Wang 2010)

ABC (Akay
and

Karaboga
2010)

TLBO (Rao,
Savsani, and
Vakharia
2011)

MBA
(Sadollah
et al. 2013)

Welded beam Best 1.724852 1.724852 1.724852 1.724852 1.92199 1.728024 1.733462 1.724853 1.724852 1.724852 1.724853
Mean 1.724852 1.724852 1.724852 1.777692 2.83721 1.748831 1.768158 1.724858 1.741913 1.728447 1.724853
Worst 1.724853 1.724853 1.724853 2.074562 4.88360 1.782143 1.824105 1.724881 – – 1.724853
SD 3.3e-2 3.3e-2 2.1e-7 8.8e-2 6.8e-1 1.3e-2 2.2e-2 4.1e-6 3.1e-2 – 6.9e-19
NFE 10,000 9991 10,000 30,000 100,000 200,000 240,000 33,000 30,000 10,000 47,340

Pressure vessel Best 5885.3336 5885.3336 5885.3336 6059.7016 6544.27 6061.0777 6059.7340 6059.7143 6059.7147 6059.7143 5889.3216
Mean 5885.3338 5887.3338 5887.3161 6379.9380 9032.55 6147.1332 6085.2303 6059.7143 6245.3081 6059.7143 6200.64765
Worst 5885.805 5956.6921 5942.3234 6820.3975 11638.20 6363.8041 6371.0455 6059.7143 – – 6392.5062
SD 1.0e+1 1.1e+1 1.0e+1 2.1e+2 9.9e+2 8.6e+1 4.3e+1 1.0e-10 2.1e+2 – 160.34
NFE 10,000 4992 10,000 30,000 100,000 200,000 240,000 42,100 30,000 10,000 70,650

Tension
compression
spring

Best 0.012665 0.012665 0.012665 0.012689 0.013120 0.012675 0.012670 0.012665 0.012665 0.012665 0.12665

Mean 0.012666 0.012678 0.012680 0.013165 0.022948 0.012730 0.012703 0.012665 0.012709 0.012666 0.012713
Worst 0.012679 0.012758 0.012769 0.014078 0.050365 0.012924 0.012790 0.012665 – – 0.012900
SD 4.9e-4 4.9e-4 2.7e-5 3.9e-4 7.2e-3 5.2e-5 2.7e-5 1.2e-8 1.3e-2 – 6.3e-5
NFE 10,000 7022 10,000 30,000 100,000 200,000 240,000 24,950 30,000 10,000 7650

Speed reducer Best 2996.348 2996.348 2996.348 2996.348 – – – 2996.348 2997.058 2996.348 2994.74421
Mean 2996.348 2996.348 2996.348 2996.348 – – – 2996.348 2997.058 2996.348 2996.769019
Worst 2996.348 2996.348 2996.348 2996.348 – – – 2996.348 – – 2999.6524
SD 0.0 4.5e-5 5.2e-5 0.0 – – – 6.4e-6 0.0 – 1.56
NFE 10,000 9.988 10,000 30,000 – – – 54,350 30,000 10,000 6300

Note: Elitist TLBO = elitist teaching-learning-based optimization; DETPS = differential evolution algorithm and tissue P systems; (µ+ λ)-ES = (µ+ λ)-evolutionary strategy; UPSO = unified parti-
cle swarm optimization; CPSO = co-evolutionary particle swarm optimization; CoDE = co-evolutionary differential evolution; PSO-DE = hybridizing particle swarm optimization with differential
evolution; ABC = artificial bee colony; TLBO = teaching-learning-based optimization; MBA = mine blast algorithm; SD = standard deviation; NFE = number of function evaluations; - = result
is not available.
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10 R. VENKATA RAO AND G.G. WAGHMARE

Table 3. Number of function evaluations of five algorithms for test problems 10–21.

Problem maxNFE Jaya
Elitist TLBO (Rao and
Waghmare 2014)

DETPS (Zhang
et al. 2013) MDE (Liao 2010)

MA-MDE
(Liao 2010)

MDE-IHS
(Liao 2010)

10 15,000 4,000 4,033 14,360 7,777 4,436 5,359
11 100,000 79,000 79,994 100,000 96,718 93,524 83,442
12 15,000 5,000 5,029 7,254 7,688 13,023 14,518
13 5,000 900 1,019 1,720 1,075 1,430 3,297
14 5,000 500 599 1,726 827 653 1,409
15 50,000 1,000 4,112 5,309 30,986 25,766 22,146
16 50,000 7,000 7,987 8,907 37,739 20,116 27,1163
17 5,495 300 312 3,242 1,240 1,955 493
18 50,000 2,900 2,989 4,597 21,539 35,180 9,733
19 1,000 100 105 144 333 449 176
20 50,000 5,000 5,012 5,054 46,868 39,902 38,237
21 10,000 1,000 1,499 9,181 1,679 2,827 4,266

Note: maxNFE = maximum number of function evaluations as the termination criterion; Elitist TLBO = elitist teaching–learning-
based optimization; MDE = modified differential evolution; MA-MDE = modified differential evolution–local search hybrid;
MDE-IHS = modified differential evolution–improved harmony search hybrid.

Table 4. Comparison of statistical results of mean best solution (MBS) and standard deviation (SD) for test problems 10–21.

Problem Jaya

Elitist TLBO
(Rao and
Waghmare

2014)
DETPS (Zhang
et al. 2013) MDE (Liao 2010)

MA-MDE
(Liao 2010)

MDE-IHS
(Liao 2010)

10 MBS 87.500012 87.50002 87.500012 89.879034 88.230145 87.497550
SD 0.000299 0.000299 0.000002 2.768746 1.899683 0.002118

11 MBS 7.6671 7.815678 7.931112 7.918619 7.883841 7.848896
SD 0.0000 0.056831 0.000000 0.047891 0.098982 0.121909

12 MBS 4.579592 4.579592 4.579593 4.661414 4.579595 4.579599
SD 0.000017 0.000029 0.000000 0.311365 0.000003 0.000005

13 MBS 2.000000 2.000000 2.000000 2.009348 2.000000 2.000001
SD 0.000000 0.000000 0.000000 0.043579 0.000000 0.000000

14 MBS 2.124701 2.124781 2.182346 2.167894 2.124574 2.124604
SD 0.000098 0.000098 0.149789 0.132196 0.000071 0.000076

15 MBS 1.076599 1.076599 1.076700 1.124453 1.099805 1.094994
SD 0.000389 0.000409 0.000391 0.075163 0.055618 0.952898

16 MBS 3.567464 3.557493 3.557574 3.599903 3.564912 3.561157
SD 0.000678 0.000587 0.000275 0.059012 0.029017 0.008381

17 MBS −32,217.430718 −32,217.430718 −32,217.407346 −32,217.427262 −32,217.427106 −32,217.427780
SD 0.000000 0.000000 0.005418 0.002836 0.003690 0.000000

18 MBS −0.808844 −0.808844 −0.808844 −0.807608 −0.807907 −0.808844
SD 0.000378 0.000397 0.000000 0.005615 0.003077 0.000000

19 MBS −0.974565 −0.974565 −0.974565 −0.974505 −0.974335 −0.974565
SD 0.0000247 0.0000267 0.000000 0.000330 0.000977 0.000000

20 MBS 5850.77012 5850.770128 5850.723228 6070.604982 6040.005940 6082.551078
SD 89.573821 141.163893 0.032991 109.163780 168.603518 185.056741

21 MBS −75.134101 −75.134130 −75.136711 −75.134137 −75.134130 −75.134137
SD 0.000037 0.000046 0.0000010 0.000023 0.000024 0.000025

Note: Elitist TLBO = elitist teaching–learning-based optimization; DETPS = differential evolution algorithm and tissue P systems;
MDE = modified differential evolution; MA-MDE = modified differential evolution–local search hybrid; MDE-IHS = modified
differential evolution–improved harmony search hybrid.

For problem 5, the Jaya algorithm finds the same global optimum solution as the Elitist TLBO,
DETPS, TLBO, M-ES, PESO, CDE, CoDE and ABC algorithms, but Jaya uses 99.78%, 76.45%, 10%,
2.08%, 1.42%, 4.99%, 2.08% and 5% function evaluations to obtain competitive results compared to
Elitist TLBO, DETPS, TLBO, M-ES, PESO, CDE, CoDE and ABC, respectively.

The statistical results of 11 algorithms for test problems 6–9 are compared in Table 2. For the
welded beam (problem 6), the results of the Jaya algorithm, Elitist TLBO and DETPS are better than
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ENGINEERING OPTIMIZATION 11

Table 5. Comparison of results for mechanical design problems obtained using the Jaya, teaching–learning-based optimization
(TLBO) and artificial bee colony (ABC) algorithms for the four mechanical design problems.

Problem Jaya
TLBO (Rao, Savsani, and

Vakharia 2011)
ABC (Rao, Savsani, and

Vakharia 2011)

Robot gripper Best 4.247644 4.247644 4.247644
Mean 4.93765920 4.93770095 5.086611
Worst 8.07837533 8.141973 6.784631
SR 0.59 0.56 0.07

Multiple disc clutch brake Best 0.313657 0.313657 0.313657
Mean 0.324425 0.3271662 0.324751
Worst 0.3867384 0.392071 0.352864
SR 0.69 0.67 0.54

Hydrostatic thrust bearing Best 1625.44271 1625.443 1625.44276
Mean 1796.89367 1797.70798 1861.554
Worst 2104.3776 2096.80127 2144.836
SR 0.21 0.19 0.05

Rolling element bearing Best 81,859.7419 81,859.74 81,859.7416
Mean 81,439.712 81,438.987 81,496
Worst 80,808.46758 80,807.8551 78,897.81
SR 0.70 0.66 0.69

Note: SR = success rate.

those of the other algorithms. The results of the mine blast algorithm (MBA) are better those of
the other nine optimization algorithms in terms of standard deviation. However, the Jaya algorithm
uses 33.33%, 10%, 5%, 4.16%, 30.30%, 33.33% and 21.12% function evaluations to obtain competitive
results compared to the (μ+ λ)-evolutionary strategy [(μ+ λ)-ES], UPSO, CPSO, CoDE, PSO-DE,
ABC and MBA, respectively.

For the pressure vessel (problem 7), the Jaya algorithm is better than the other 10 algorithms,
except for the Elitist TLBO algorithm, using fewer function evaluations to obtain the global opti-
mum solution. The Elitist TLBO is superior to the other nine optimization algorithms and inferior
to DETPS, but it requires far fewer function evaluation than DETPS. In terms of standard devia-
tion, PSO-DE is superior and shows robustness. However, the Jaya algorithm uses 33.33%, 10%, 5%,
4.16%, 23.75%, 33.33% and 33.33% function evaluations to obtain competitive results compared to
(μ+ λ)-ES, UPSO, CPSO, CoDE, PSO-DE, ABC and MBA, respectively.

For the tension/compression spring (problem 8), the Jaya algorithm is superior to the other 10
algorithms in terms of quality of solution, requiring fewer function evaluations to obtain the best and
mean solutions and less computational time and effort. The Elitist TLBO is superior to UPSO and
ABC and is inferior to DETPS, (μ+ λ)-ES, CPSO, CoDE, MBA and PSO-DE in terms of standard
deviation. PSO-DE is the best optimization algorithm in terms of standard deviation for this problem.

For the speed reducer (problem 9), the Jaya algorithm produces the same results as the Elitist
TLBO, DETPS, TLBO, (μ+ λ)-ES and PSO-DE, while MBA has the first rank in terms of the best
solution among the algorithms. The Jaya algorithm, Elitist TLBO, DETPS, (μ+ λ)-ES and PSO-
DE produce the same worst value. However, the Jaya algorithm, DETPS and Elitist TLBO need
fewer function evaluations than (μ+ λ)-ES and PSO-DE to produce the same worst value. The Jaya
algorithm, (μ+ λ)-ES and ABC are better and more robust optimization algorithms for this problem
since zero standard deviation is achieved using these algorithms. The Elitist TLBO is inferior to the
Jaya algorithm, (μ+ λ)-ES, PSO-DE and ABC in terms of standard deviation for this problem.

Table 3 presents the NFE for test problems 10–21 over 30 independent runs. The statistical results
of themean best solutions and standard deviations for problems 10–21 are shown inTable 4. For prob-
lem 10, the Jaya algorithm gives better solutions than the Elitist TLBO, DETPS, modified differential
evolution (MDE), modified differential evolution–local search hybrid (MA-MDE) and modified dif-
ferential evolution–improved harmony search hybrid (MDE-IHS). DETPS is better than the Jaya
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12 R. VENKATA RAO AND G.G. WAGHMARE

algorithm, Elitist TLBO, MDE, MA-MDE and MDE-IHS algorithms in terms of standard deviation.
The first rank is obtained by the Jaya algorithm among these six algorithms and has better robust-
ness than the Elitist TLBO,MDE,MA-MDE andMDE-IHS for problem 11. The experimental results
in Table 4 show that the Jaya and Elitist TLBO algorithms achieve better solutions than the other
four algorithms for problem 12. Also, it can be seen from Table 3 that the Jaya algorithm requires
far fewer function evaluations than the other algorithms. For problem 13, the Jaya algorithm, Elitist
TLBO, DETPS and MA-MDE achieve better solutions than the remaining algorithms considered for
comparison. However, to achieve the best quality solution the Jaya algorithm requires fewer function
evaluations than the other algorithms. The Jaya algorithm, Elitist TLBO, DETPS andMA-MDE show
equal robustness in terms of the standard deviation.

For problem 14, the MA-MDE algorithm produces better solutions than the other optimization
algorithms considered. For problem 15, the Jaya and Elitist TLBO algorithm provide better solutions,
in terms of mean best solution, than the other algorithms. Moreover, the Jaya algorithm requires
fewer function evaluations to achieve the global optimum. The Jaya algorithm is superior in terms of
standard deviation and shows robustness.

For problem 16, the Jaya algorithm is competitive with the other five algorithms with respect to
the quality of the solution and NFE. The Elitist TLBO algorithm is superior to the Jaya algorithm,
DETPS,MDE,MA-MDEandMDE-IHS.However, to achieve the bestmean solution the Elitist TLBO
requires more function evaluations than the Jaya algorithm. DETPS achieves the best result in terms
of standard deviation.

For problem 17, the Jaya and Elitist TLBO algorithms are superior to the other four optimization
algorithms. The Jaya algorithm, DETPS and MDE-IHS have better robustness in terms of standard
deviation.

For problem 18, the Jaya, Elitist TLBO, DETPS andMDE-IHS algorithms provide the same global
optimum solution and are superior to the other two algorithms. However, to achieve the global opti-
mum solution the Jaya algorithm requires fewer function evaluations than the Elitist TLBO, DETPS
and MDE-HIS algorithms. DETPS and MDE-IHS are superior in terms of standard deviation.

For problem 19, the Jaya, Elitist TLBO, DETPS andMDE-IHS algorithms provide the same global
optimum solution and are superior to the other two algorithms. However, to achieve the global opti-
mum solution the Jaya algorithm requires fewer function evaluations than the Elitist TLBO, DETPS
and MDE-HIS algorithms. DETPS and MDE-IHS are superior in terms of standard deviation.

For problem 20, DETPS produces better solutions than the other optimization algorithms but
at the cost of more function evaluations. For problem 21, DETPS provides better solutions than
the five other algorithms in terms of mean best solution and standard deviation. From Table 3 it
can be observed that for problems 10–21 the NFE required to achieve the global optimum solu-
tion by the Jaya algorithm is lower than for the other five algorithms for all the problems considered
for comparison.

The time taken by the Jaya algorithm for 30 runs in problems 1–21 is presented in Table 6. The
results of Wilcoxon’s test are presented in Table 7, which gives p values stating whether a statistical
difference is significant or not. The smaller the p value, greater the difference between the considered
algorithms. The Jaya algorithm shows similar performance to Elitist TLBO,DETPS, TLBO andMDE-
IHS, and shows improvement over ABC, MDE andMA-MDE, with a level of significance (α) of 0.05.

Table 5 presents the comparison of results for the fourmechanical design problems, i.e. robot grip-
per, multiple disc clutch brake, hydrostatic thrust bearing and rolling element bearing, obtained using
the Jaya, TLBO and ABC algorithms. It is observed from Table 5 that for the robot gripper problem,
the mean value obtained using the Jaya algorithm is better than the results obtained by the TLBO and
ABC. The result of the Jaya algorithm is similar to the results of the TLBO and ABC algorithms in
terms of the best solution. The Jaya algorithm is superior to the TLBO and ABC algorithms in terms
of success rate (SR) for the robot gripper problem.

For the multiple disc clutch brake problem, the Jaya algorithm obtains first rank in terms of the
mean solution among the three algorithms. The performance of the Jaya, TLBO and ABC algorithms
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ENGINEERING OPTIMIZATION 13

Table 6. Time taken by the Jaya
algorithm for different experiments.

Problem Time (s)

1 2.16
2 8.97
3 9.75
4 10.56
5 21.89
6 1.39
7 1.10
8 1.11
9 1.56
10 1.59
11 8.89
12 1.37
13 0.51
14 0.61
15 4.56
16 5.18
17 0.49
18 5.28
19 0.27
20 5.23
21 1.03

Table 7. Results of Wilcoxon’s test.

Comparison p value

Jaya versus DETPS 0.3928
Jaya versus TLBO 0.1241
Jaya versus ES 0.0619
Jaya versus ABC 0.0302
Jaya versus MDE 0.0009
Jaya versus MA-MDE 0.0051
Jaya versus MDE-IHS 0.1032
Jaya versus Elitist TLBO 0.3952

Note: DETPS = differential evolution algorithm and tissue P systems;
TLBO = teaching–learning-based optimization; ES = evolution strategy;
ABC = artificial bee colony; MDE = modified differential evolution;
MA-MDE = modified differential evolution–local search hybrid; MDE-
IHS = modified differential evolution–improved harmony search hybrid;
Elitist TLBO = elitist teaching–learning-based optimization.

is similar in terms of the best solution. Also, it is observed from Table 5 that the SR obtained using
the Jaya algorithm is better than for the other algorithms considered for comparison.

For the hydrostatic thrust bearing problem, the Jaya algorithm obtains first rank in terms of the
mean solution among the three algorithms. The performance of the Jaya, TLBO and ABC algorithms
is similar in terms of the best solution. Also, it is observed from Table 5 that the SR obtained using
the Jaya algorithm is better than for the other algorithms considered for comparison.

For the rolling element bearing problem, the Jaya algorithm obtains first rank in terms of the best
solution among the three algorithms. The performance of the ABC algorithm is superior to the Jaya
and TLBO algorithms in terms of themean solution, while the Jaya algorithm is superior to the TLBO
and ABC algorithms in terms of the worst solution. Also, it is observed from Table 5 that the SR
obtained using the Jaya algorithm is better than for the other algorithms considered for comparison.

5. Conclusions

In the present work, the performance of a very recently proposed Jaya algorithm is investigated on
21 well-defined constrained design optimization problems and four constrained mechanical design
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14 R. VENKATA RAO AND G.G. WAGHMARE

problems. For the considered optimization problems, comparisons are made between the results
obtained using the Jaya algorithm and the other optimization algorithms. In addition,Wilcoxon’s test
is performed to check the statistical significance of the differences. The computational results reveal
that the Jaya algorithm is competitive with or superior to the other optimization algorithms for the
considered problems. More complex problems can be investigated using the Jaya algorithm in the
near future. Various methods for adapting the common control parameters and constraint handling
methods and their effects will also be researched.
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Appendix 1. Details of the 21 constrained design benchmark optimization problems
and four mechanical design problems

Constrained design benchmark optimization problems

Problem 1

min f (x) = 5
4∑

i=1
xi − 5

4∑
i=1

xi2 −
13∑
i=5

xi (A1)

s.t. g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0 (A2)

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0 (A3)

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0 (A4)

g4(x) = −8x1 + x10 ≤ 0 (A5)

g5(x) = −8x2 + x11 ≤ 0 (A6)

g6(x) = −8x3 + x12 ≤ 0 (A7)

g7(x) = −2x4 − x5 + x10 ≤ 0 (A8)

g8(x) = −2x6 − x7 + x11 ≤ 0 (A9)

g9(x) = −2x8 − x9 + x12 ≤ 0 (A10)

where 0 ≤ xi ≤ 1, i = 1,2,3, . . . , 9; 0 ≤ xi ≤ 100, i = 10,11,12; 0 ≤ x13 ≤ 1.
The optimal solution is f (x*) = −15 at x* = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1).

Problem 2

max f (x) = (√
n
)n n∏

i=1
xi (A11)

s.t. h(x) =
n∑

i=1
xi2 − 1 = 0 (A12)

where n = 10 and 0 ≤ xi ≤ 10, i = 1,2,3, . . . ,n.
The global maximum f (x*) = 1 at x* = (1/n0.5, 1/n0.5, . . . ).

Problem 3

min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x34 + 3(x4 − 11)2 + 10x56 + 7x62 + x74 − 4x6x7 − 10x6 − 8x7 (A13)

s.t. g1(x) = −127 + 2x12 + 3x24 + x3 + 4x42 + 5x5 ≤ 0 (A14)

g2(x) = −282 + 7x1 + 3x2 + 10x32 + x4 − x5 ≤ 0 (A15)

g3(x) = −196 + 23x1 + x22 + 6x62 − 8x7 ≤ 0 (A16)

g4(x) = 4x12 + x22 − 3x1x2 + 2x32 + 5x6 − 11x7 ≤ 0 (A17)

where −10 ≤ xi ≤ 10, i = 1,2,3, . . . ,7.
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16 R. VENKATA RAO AND G.G. WAGHMARE

The optimal solution is f (x*) = 680.6300573 at x* = (2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870,
1.1038131, 1.594227).

Problem 4

min f (x) = x1 + x2 + x3 (A18)

s.t. g1(x) = −1 + 0.0025(x4 + x6) ≤ 0 (A19)

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0 (A20)

g3(x) = −1 + 0.01(x8 − x5) ≤ 0 (A21)

g4(x) = −x1x6 + 833.3325x4 + 100x1 − 83333.333 ≤ 0 (A22)

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0 (A23)

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0 (A24)

where 100 ≤ x1 ≤ 10,000, 1000 ≤ xi ≤ 10,000, i = 2,3, 100 ≤ xi ≤ 10,000, i = 4,5, . . . ,8.
The optimal solution is f (x*) = 7049.248021 at x* = (579.3066, 1359.9709, 510.9707, 182.0177, 295.601, 217.982,

286.165, 395.6012).

Problem 5

max f (x) = 100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
(A25)

s.t. g(x) = (x1 − p)2 − (x2 − q)2 − (x3 − r)2 ≤ 0 (A26)

where 0 ≤ xi ≤ 10, i = 1,2,3, p,q,r = 1,2,3, . . . ,9.
The optimal solution is f (x*) = 1 at x* = (5,5,5).

Problem 6
This is a welded beam design problem, which is designed for the minimum cost subject to constraints on shear stress
(τ ), bending stress in the beam (σ ), buckling load on the bar (Pc), end deflection of the beam (δ) and side constraints.
There are four design variables, i.e. h(x1), l(x2), t(x3) and b(x4). This problem can be mathematically formulated as
follows:

min f (x) = 1.10471x12x2 + 0.04811x3x4(14.0 + x2) (A27)

s.t. g1(x) = τ(x) − τmax ≤ 0 (A28)

g2(x) = σ(x) − σmax ≤ 0 (A29)

g3(x) = x1 − x4 ≤ 0 (A30)

g4(x) = 0.10471x12 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0 (A31)

g5(x) = 0.125 − x1 ≤ 0 (A32)

g6(x) = δ(x) − δmax ≤ 0 (A33)

g6(x) = P − Pc(x) ≤ 0 (A34)

where

τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R

+ (τ ′)2 (A35)

τ ′ = P
20.5x1x2

(A36)

τ ′′ = MR
J

(A37)

M = P
(
L + x2

2

)
(A38)
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ENGINEERING OPTIMIZATION 17

R =
√
x22
4

+
(
x1 + x3

2

)2
(A39)

J = 2
{
20.5x1x2

[
x22
12

+
(
x1 + x3

2

)(
x1 + x3

2

)]}
(A40)

σ(x) = 6PL
x4x23

(A41)

δ(x) = 4PL3

Ex33x4
(A42)

Pc(x) =
4.013E

√
x23x

6
4/36

L2

(
1 − x3

2L

√
E
4G

)
(A43)

where P = 6000 lb, L = 14 in., E = 30× 106 psi, G = 12× 106 psi, τmax = 13,600 psi, σmax = 30,000 psi, δmax =
0.25 in., 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2.

Problem 7
This is a pressure vessel design problem for minimizing the total cost f (x) of a pressure vessel considering the cost of
the material, forming and welding. There are four design variables: Ts (x1, thickness of the shell), Th (x2, thickness of
the head), R (x3, inner radius) and L (x4, length of the cylindrical section of the vessel, not including the head). Among
the four variables, Ts and Th, which are integer multiples of 0.0625 in., are the available thickness of rolled steel plates,
and R and L are continuous variables. This problem can be formulated as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x21x4 + 19.84x21x3 (A44)

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0 (A45)

g2(x) = −x2 + 0.00954x3 ≤ 0 (A46)

g3(x) = −�x23x4 − 4
3
�x23 + 1296000 ≤ 0 (A47)

g4(x) = x4 − 240 ≤ 0 (A48)

where
1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (A49)

Problem 8
This is a tension/compression spring design problem for minimizing the weight (f (x)) of a tension/compression spring
subject to constraints on minimum deflection, shear stress, surge frequency, and limits on outside diameter and on
design variables. The design variables are the mean coil diameter D (x2), the wire diameter d (x1) and the number of
active coils P (x3). The mathematical formulation of this problem can be described as follows:

min f (x) = (x3 + 2)x2x21 (A50)

s.t. g1(x) = 1 − x32x3
71785x41

≤ 0 (A51)

g2(x) = 4x22 − x1x2
12566(x2x31 − x41)

+ 1
5108x21

− 1 ≤ 0 (A52)

g3(x) = 1 − 140.45x1
x22x3

≤ 0 (A53)

g4(x) = x1 + x2
1.5

− 1 ≤ 0 (A54)

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

Problem 9
This is a speed reducer design problem for minimizing the weights of the speed reducer subject to constraints on bend-
ing stress of the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shafts. The parameters
x1, x2, . . . ,x7 represent the face width (b), module of the teeth (m), number of teeth in the pinion (z), length of the
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18 R. VENKATA RAO AND G.G. WAGHMARE

first shaft between bearings (l1), length of the second shaft between bearings (l2), and the diameters of the first shaft
(d1) and the second shaft (d2).

min f (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3 − 43.0934) − 1.508x1(x26 + x27) + 7.4777(x36 + x37) (A55)

s.t. g1(x) = 27
x1x22x3

− 1 ≤ 0 (A56)

g2(x) = 397.5
x1x22x

2
3

− 1 ≤ 0 (A57)

g3(x) = 1.93x34
x2x3x46

− 1 ≤ 0 (A58)

g4(x) = 1.93x35
x2x3x47

− 1 ≤ 0 (A59)

g5(x) =
√

(745x4/x2x3)
2 + 16.9 × 106

110.0x36
− 1 ≤ 0 (A60)

g6(x) =
√

(745x4/x2x3)
2 + 157.5 × 106

85.0x36
− 1 ≤ 0 (A61)

g7(x) = x2x3
40

− 1 ≤ 0 (A62)

g8(x) = 5x2
x1

− 1 ≤ 0 (A63)

g9(x) = x1
12x2

− 1 ≤ 0 (A64)

g10(x) = 1.5x6 + 1.9
x4

− 1 ≤ 0 (A65)

g11(x) = 1.1x7 + 1.9
x5

− 1 ≤ 0 (A66)

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤
x7 ≤ 5.5.

Problem 10

min f = 7.5y1 + 6.4x1 + 5.5y2 + 6.0x2 (A67)

s.t. 0.8x1 + 0.67x2 = 10 (A68)

x1 − 20y1 ≤ 0 (A69)

x2 − 20y1 ≤ 0 (A70)

where x1, x2 ∈ [0,20]; y1, y2 ∈ 0,1}.
The global optimum f* is 87.5 at x = [12.5006, 0] and y = [1, 0].

Problem 11

min f = 2x1 + 3x2 + 1.5y1 + 2y2 − 0.5y3 (A71)

s.t. (x1)2 + y1 = 1.25 (A72)

(x2)1.5 + 1.5y2 = 3 (A73)

x1 + y1 ≤ 1.6 (A74)

1.333x2 + y2 ≤ 3 (A75)

−y1 − y2 + y3 ≤ 0 (A76)

where x1, x2 ∈ [0, 2]; y1, y2, y3 ∈ {0, 1}.
The global optimum f ∗is 7.667 at x = [1.118, 1.310] and y = [0, 1, 1].
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ENGINEERING OPTIMIZATION 19

Problem 12

min f = (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2 − ln(y4 − 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 (A77)

s.t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5 (A78)

y23 + x21 + x22 + x23 ≤ 5.5 (A79)

y1 + x1 ≤ 1.2 (A80)

y2 + x2 ≤ 1.8 (A81)

y3 + x3 ≤ 2.5 (A82)

y4 + x1 ≤ 1.2 (A83)

y22 + x22 ≤ 1.64 (A84)

y23 + x23 ≤ 1.25 (A85)

y22 + x23 ≤ 4.64 (A86)

where x1 ∈ [0, 1, 2]; x2 ∈ [0, 1.281]; x3 ∈ [0, 2.062]; y1, y2, y3, y4 ∈ {0, 1}.
The global optimum f ∗is 4.5796 at x = [0.2, 0.8, 1.908] and y = [1, 1, 0, 1].

Problem 13
This is a process synthesis problem.

min f = 2x + y (A87)

s.t. 1.25 − x2 − y ≤ 0 (A88)

x + y ≤ 1.6 (A89)

where x ∈ [0, 1.6]; y ∈ {0, 1}.
The global optimum f ∗is 2 at x = 0.5 and y = 1.

Problem 14
This is a process synthesis design problem.

min f = y + 2x1 − ln
(x1
2

)
(A90)

s.t. − x1 − ln
(x1
2

)
+ y ≤ 0 (A91)

where x1 ∈ [0.5, 1.4]; y ∈ {0, 1}.
The global optimum f ∗is 2.1247 at x1 = 1.375 and y = 1.

Problem 15
This is a process flow sheeting problem.

min f = −0.7y + 5(x1 − 0.5)2 + 0.8 (A92)

s.t. − exp (x1 − 0.2) − x2 ≤ 0 (A93)

x2 + 1.1y ≤ −1.0 (A94)

x1 − 1.2y ≤ 0.2 (A95)

where x1 ∈ [0.2, 1]; x2 ∈ [−2.22554,−1]; y ∈ {0, 1}.
The global optimum f ∗is 1.076543 at x = [0.94194, 2.1] and y = 1.
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20 R. VENKATA RAO AND G.G. WAGHMARE

Problem 16
This is a process synthesis problem.

min f = (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2 − ln(y4 − 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 (A96)

s.t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5 (A97)

y23 + x21 + x22 + x23 ≤ 5.5 (A98)

y1 + x1 ≤ 1.2 (A99)

y2 + x2 ≤ 1.8 (A100)

y3 + x3 ≤ 2.5 (A101)

y4 + x1 ≤ 1.2 (A102)

y22 + x22 ≤ 1.64 (A103)

y23 + x23 ≤ 4.25 (A104)

y22 + x23 ≤ 4.64 (A105)

where x1 ∈ [0, 1.2]; x2 ∈ [0, 1.8]; x3 ∈ [0, 2.5]; y1, y2, y3, y4 ∈ {0, 1}.
The global optimum f ∗is 3.557473 at x = [0.2, 1.28062, 1.95448] and y = [1, 0, 0, 1].

Problem 17
This is a process design problem.

min f = 5.357854x21 + 0.835689y1x3 + 37.29329y1 − 40792.141 (A106)

s.t. 85.334407 + 0.0056858y2x3 + 0.0006262y1x2 − 0.0022053x1x3 ≤ 92 (A107)

80.51249 + 0.0071317y2x3 + 0.0029955y1y2 + 0.0021813x21 − 90 ≤ 20 (A108)

9.300961 + 0.0047026x1x3 + 0.0012547y1x1 + 0.0019085x1x2 − 20 ≤ 5 (A109)

where x1, x2, x3 ∈ [27, 45]; y1 ∈ {78, . . . , 102}, integer; y2 ∈ {33, . . . , 45}, integer.
The global optimum f ∗is −32217.4 at x = [27, any, 27] and y = [78, any].

Problem 18

min f = −
10∏
j=1

[1 − (1 − pj)mj] (A110)

s.t.
10∏
j=1

(aijm2
j + cijmj) ≤ bi, i = 1, 2, 3, 4 (A111)

[pj] = (0.81, 0.93, 0.92, 0.96, 0.99, 0.89, 0.85, 0.83, 0.94, 0.92)

[aij] =

⎡
⎢⎢⎢⎣
2730569481
4927108356
5174360982
8356972401

⎤
⎥⎥⎥⎦

[cij] =

⎡
⎢⎢⎢⎣
7146825933
4657269108
11035478946
23257861091

⎤
⎥⎥⎥⎦

[bi] = (2.0 × 1013, 3.1 × 1012, 5.7 × 1013, 9.3 × 1012)

mj ∈ [1,6], j = 1, . . . ,10.
The global optimum f* is −0.808844 atm = [2,2,2,1,1,2,3,2,1,2].
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ENGINEERING OPTIMIZATION 21

Problem 19

min f = −
4∏

j=1
Rj (A112)

s.t.
4∑

j=1
d1jm2

j ≤ 100 (A113)

4∑
j=1

d2j
(
mj + exp

(mj

4

))
≤ 150 (A114)

4∑
j=1

d3jmjexp
(m2

4

)
≤ 160 (A115)

mj ∈ [1, 6], j = 1, 2, 4

m3 ∈ [1, 5]

where

R1 = 1 − q1((1 − β1)q1 + β1)
m1−1 (A116)

R2 = 1 − β2q2 + p2qm2
2 (1 − β2)

m2

p2 + β2q2
(A117)

R3 = 1 − qm3
3 (A118)

R4 = 1 − q4((1 − β4)q4 + β4)
m4−1 (A119)

[pj] = (0.93, 0.92, 0.94, 0.91)

[qj] = (0.07, 0.08, 0.06, 0.09)

[βj] = (0.2, 0.06, 0.0, 0.3)

[dij] =
⎡
⎣12347757
7886

⎤
⎦

The global optimum f* is −0.974565 atm = [3, 3, 2, 3].

Problem 20
This is also a pressure vessel design problem for minimizing the total cost f (x) of a pressure vessel considering the cost
of material, forming and welding. A cylindrical vessel is capped at both ends by hemispherical heads. There are four
design variables: R (x1, inner radius), L (x2, length of the cylindrical section of the vessel, not including the head), Ts
(x3, thickness of the shell) and Th (x4, thickness of the head). This problem can be formulated as follows:

min f = 0.6224x1x2x3 + 1.7781x21x4 + 3.1661x2x23 + 19.84x1x23 (A120)

s.t. 0.0193
x1
x3

− 1 = 0 (A121)

0.00954
x1
x4

− 1 = 0 (A122)

x2
240

− 1 = 0 (A123)

1296000 − 4
3πx

3
1

πx21x2
− 1 ≤ 0 (A124)

where x1 ∈ [25, 150]; x2 ∈ [25, 240]; x3, x4 ∈ [0.0625, 0.125, . . . , 1.1875, 1.25].
The global optimum f* is 5850.770 at x = [38.858,221.402,0.750,0.375].
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22 R. VENKATA RAO AND G.G. WAGHMARE

Problem 21
This is a ceramic grinding process optimization problem for maximizing the material removal rate subject to a set of
constraints on surface roughness, number of flaws and input variables. The problem is formulated as

min F = −f dc (A125)

s.t. 0.145d0.1939c J0.7071M−0.2343 = Ra(max) (A126)

29.67d0.4167c f−0.8333 = Nc(max) (A127)

where dc is the depth of cut, dc ∈ [5,30] μm; f is the table feed rate, f ∈ [8.6,13.4] m/min; Ra(max) and Nc(max) are the
maximum allowable values of surface roughness and number of flaws; andM is the grit size,M ∈ {120, 140, 170, 200,
230, 270, 325, 400, 500}.

The global optimum f* is −75.1341 at dc = 5.6070 and f = 13.4 when Ra(max) = 0.3 and Nc(max) = 7.

Constrainedmechanical design problems

1. Robot gripper
Minimize f (x) = max

z
Fk(x, z) − min

z
Fk(x, z) (A128)

subject to:

g1(x) = Ymin − y(x,Zmax) ≥ 0 (A129)

g2(x) = y(x,Zmax) ≥ 0 (A130)

g3(x) = y(x, 0) − Ymax ≥ 0 (A131)

g4(x) = YG − y(x, 0) ≥ 0 (A132)

g5(x) = (a + b)2 − l2 − e2 ≥ 0 (A133)

g6(x) = (l − Zmax)
2 + (a − e)2 − b2 ≥ 0 (A134)

g7(x) = l − Zmax ≥ 0 (A135)

where

g =
√
l − z2 + e2 (A136)

α = arccos(a2 + g2 − b2/2ag) + φ (A137)

β = arccos(b2 + g2 − a2/2bg) − φ (A138)

φ = arctan(e/l − z) + φ (A139)

Fk = (pb sin(α + β)/2c cos(α)) (A140)

y(x, z) = 2(e + f + c sin (β + δ)) (A141)

Ymin = 50, Ymax = 100, YG = 150, Zmax=100, P = 100, 10 ≤ a, b, f ≤ 150, 100 ≤ c ≤ 200, 0 ≤ e ≤ 50, 100 ≤ l ≤
300, 1 ≤ δ ≤ 3.14.

2. Multiple disc clutch brake design
Minf (x) = π(r2o − r2i )t(Z + 1)ρ (A142)

subject to:

g1(x) = ro − ri − �r ≥ 0 (A143)

g2(x) = lmax − (Z + 1)(t + δ) ≥ 0 (A144)

g3(x) = pmax − prz ≥ 0 (A145)

g4(x) = pmaxvsrmax − przvsr ≥ 0 (A146)

g5(x) = vsrmax − vsr ≥ 0 (A147)

g6(x) = Tmax − T ≥ 0 (A148)

g7(x) = Mh − sMs ≥ 0 (A149)

g8(x) = T ≥ 0 (A150)
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ENGINEERING OPTIMIZATION 23

where

Mh = 2
3
μFZ

r3o − r3i
r2o − r2i

(A151)

prz = F
π(r2o − r2i )

(A152)

vsr = 2πn(r3o − r3i )
90(r2o − r2i )

(A153)

T = Izπn
30(Mh + Mf )

(A154)

�r = 20mm, tmax = 3mm, tmax = 1.5mm, μ = 0.5, s = 1.5,Ms = 40Nm,Mf = 3Nm, n = 250 rpm, pmax =
1MPa, Iz = 55 kgmm2,Tmax = 15s, Fmax = 1000N, rimin = 55mm, romax = 110mm.

3. Hydrodynamic thrust bearing design

Minimize : f (x) = QPo
0.7

+ Ef (A155)

subject to:

g1(x) = W − Ws ≥ 0 (A156)

g2(x) = Pmax − Po ≥ 0 (A157)

g3(x) = �Tmax − �T ≥ 0 (A158)

g4(x) = h − hmin ≥ 0 (A159)

g5(x) = R − Ro ≥ 0 (A160)

g6(x) = 0.001 − γ

gPo

(
Q

2πRh

)
≥ 0 (A161)

g7(x) = 5000 − W
π(R2 − R2o)

≥ 0 (A162)

where

W = πPo
2

R2 − R2o
lnR/Ro

(A163)

Po = 6μQ
πh3

ln
R
Ro

(A164)

Ef = 9336QγC�T (A165)

�T = 2(10p − 560) (A166)

P = log10log10(8.122e6μ + 0.8) − C1

n
(A167)

h =
(
2πN
60

)2 2πμ

Ef

(
R4

4
− R4o

4

)
(A168)

where
γ = 0.0307,C = 0.5, n = −3.55,C1 = 10.04,Ws = 101, 000, Pmax = 1000,�Tmax = 50, hmin = 0.001, g = 386.4,

N = 750.
1 ≤ R,Ro,Q ≤ 16, 1e-6 ≤ μ ≤ 16e-6.

4. Rolling element bearing

MaximizeCd = fcZ2/3D1.8
b if Db ≤ 25.4mm (A169)

Cd = fcZ2/3D1.8
b if Db ≤ 25.4mm (A170)
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24 R. VENKATA RAO AND G.G. WAGHMARE

subject to:

g1(x) = φo

2sin−1(Db/Dm)
− Z + 1 ≥ 0 (A171)

g2(x) = 2Db − KDmin(D − d) ≥ 0 (A172)

g3(x) = KDmax(D − d) − 2Db ≥ 0 (A173)

g4(x) = ξBw − Db ≥ 0 (A174)

g5(x) = Dm − 0.5(D + d) ≥ 0 (A175)

g6(x) = (0.5 + e)(D + d) − Dm ≥ 0 (A176)

g7(x) = 0.5(D − Dm − Db) − ξDb ≥ 0 (A177)

g8(x) = f1 ≥ 0.515 (A178)

g9(x) = fo ≥ 0.515 (A179)

where

fc = 37.91

⎡
⎣1 +

{
1.04

(
1 − γ

1 + γ

)1.72( f1(2fo − 1)
fo(2f1 − 1)

)0.41
}10/3

⎤
⎦

−0.3

(A180)

γ = Db cosα
Dm

(A181)

f1 = r1
Db

(A182)

φo = 2π − 20cos−1 [{(D − d)/2 − 3(T/4)2 + {D/2 − (T/4 − Db)}2 − {d/2 + (T/4)}2}]
2{D − d/2 − 3(T/4)}{D/2 − (T/4) − Db}

(A183)

T = D − d − 2Db (A184)

D = 160, d = 90,Bw = 30 (A185)

0.5(D + d) ≤ Dm ≤ 0.6(D + d) (A186)

0.15(D − d) ≤ Db ≤ 0.45(D − d) (A187)

4 ≤ Z ≤ 50

0.515 ≤ f1 ≤ 0.6

0.515 ≤ fo ≤ 0.6

0.4 ≤ KDmin ≤ 0.5

0.6 ≤ KDmax ≤ 0.7

0.3 ≤ ε ≤ 0.4,

0.02 ≤ e ≤ 0.1

0.6 ≤ ξ ≤ 0.85

D
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