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Abstract: Selection of machining parameters in any machining process significantly affects the
production rate, quality, and cost of a component. This paper presents the multi-objective
optimization of process parameters of a grinding process using various non-traditional optimi-
zation techniques such as artificial bee colony, harmony search, and simulated annealing algo-
rithms. The objectives considered in the present work are production cost, production rate, and
surface finish subjected to the constraints of thermal damage, wheel wear, and machine tool
stiffness. The process variables considered for optimization are wheel speed, workpiece speed,
depth of dressing, and lead of dressing. The results of the algorithms presented are compared
with the previously published results obtained by using other optimization techniques.

Keywords: multi-objective optimization, artificial bee colony, harmony search algorithm,
simulated annealing, grinding

1 INTRODUCTION

Grinding is a key process in automobile industries
where a variety of components in large numbers are
required to be ground to very close tolerance with a
high surface finish. The success of the grinding pro-
cess in terms of cost and quality depends on proper
selection of various operating conditions in the
grinding process such as wheel speed, workpiece
speed, depth of dressing and lead of dressing, area of
contact, grinding fluid, and so on. A significant
improvement in the process efficiency may be
obtained by optimization of these process para-
meters that identifies and determines the regions of
critical process control factors leading to desired
outputs with acceptable variations ensuring a lowest
cost of manufacturing.

Previous work on the optimization of grinding
parameters has concentrated on possible approaches
for optimizing constraints during grinding. Amitay [1]
reported the technique of optimizing both grinding
and dressing conditions for the maximum workpiece
removal rate subjected to constraints on workpiece

burn and surface finish in an adaptive control system.
Wen et al. [2] applied the successive quadratic pro-
gramming (QP) approach using a multi-objective
function model with a weighted approach for optimi-
zation of surface-grinding process parameters. How-
ever, using this approach the convergence to an
optimal solution depends on the chosen initial solu-
tion. Also, the algorithm tends to become stuck to the
local optimal solution. Rowe et al. [3] provided an
extensive review of various approaches based on the
application of artificial intelligence to the grinding
process. A genetic algorithm (GA)-based optimization
procedure has been developed by Saravanan et al. [4]
to optimize the grinding conditions. However, the GA
has its own limitations such as risk of replacement of a
good parent string with the deteriorated child, less
convergence speed, and difficulty in selecting the
controlling parameters such as population size,
crossover rate, and mutation rate. Also, the results of
GA presented by the authors are erroneous. Dhavali-
kar et al. [5] applied combined Taguchi and dual
response methodology to determine the robust con-
dition for minimization of out-of-roundness error of a
workpiece for centreless grinding operation. Optimi-
zation was then carried out by using the Monte Carlo
simulation procedure. Mitra and Gopinath [6] used
non-dominated sorting GAs for the multi-objective
optimization of industrial grinding process. Krishna
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[7] applied a differential evolution (DE) algorithm for
the optimization of the process parameters of the
grinding operation. However, the solutions obtained
using the differential algorithm are erroneous for
rough grinding operations whereas, for the finish
grinding operation the optimum values suggested by
the author lie outside their respective bounds and
hence, the solution is not valid.

Although few non-traditional methods are applied
to the optimization of process parameters of the
grinding operation, the efforts must be continued to
use more recent optimization algorithms, which are
more powerful, robust, and able to provide accurate
solutions. The artificial bee colony (ABC) algorithm
developed by Karaboga [8] and Karaboga and Basturk
[9, 10] is one of the most recent algorithms and no
effort has been made yet for the optimization of
process parameters of any of the machining pro-
cesses by using this algorithm. Hence, in this paper
an attempt is made to apply the ABC. For purposes of
comparison, other non-traditional methods of opti-
mization such as the harmony search (HS) and
simulated annealing (SA) algorithms have also been
tried for optimization of the process parameters of
the grinding operation.

Section 2 provides the details of the optimization
model of the grinding process used in the present
work.

2 OPTIMIZATION MODEL OF THE GRINDING
PROCESS

The optimization model for the grinding process
formulated in the present work is based on the
analysis given by Wen et al. [2]. The four decision
variables considered for this model are: wheel speed
‘Vs’ (m/min), workpiece speed ‘Vw’ (m/min), depth of
dressing ‘doc’ (mm), and lead of dressing ‘L’
(mm/rev).

2.1 Objectives

The three objectives considered in this work are:

(a) minimization of production cost ‘CT ’($/pc);
(b) maximization of the production rate in terms of

workpiece removal parameter ‘WRP’ (mm3/minN).
(c) minimization of surface roughness ‘Ra’ (mm).

However, bearing in mind the specific require-
ments of the finish grinding and rough grinding
operations, these three objectives are divided into
two groups as follows:
1. For the rough grinding operation the following

two objective functions are considered with the
condition that the surface roughness value
should not exceed 1.8mm:

(a) minimization of production cost (CT) in $/piece;
(b) maximization of the production rate in terms of

workpiece removal parameter ‘WRP’ (mm3/minN).

2. For the finish grinding operation the following
two objective functions are considered with the
condition that the workpiece removal parameter
should not be less than 20 mm3/min N:

(a) minimization of production cost ‘CT ’($/pc);
(b) minimization of surface roughness ‘Ra’ (mm).

These three objective functions ‘CT’, ‘WRP’, ‘Ra’
can be expressed in terms of the process variables as
given by equations (1), (2), and (3) respectively [2].
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60p

Lw þ Le

Vw1000

� �
bw þ be

fb

� �
aw

ap
þ Sp þ awbwLw

pDebsapG

� �

þ Mc

60p

Sd
Vr

þ t1

� �
þMctch

60Nt
þ McpbsDe

60pNdLVs1000

þ Cs
awbwLw

pG
þ pðdocÞbsDe

pNd

� �
þ Cd

pNtd

ð1Þ
where Mc is the cost per hour labour and adminis-
tration, Lw is the length of the workpiece, Le is the
empty length of grinding, bw is the width of the
workpiece, be is the empty width of the grinding, fb is
the cross feed rate, aw is the total thickness of cut, ap
is the down feed of the grinding, Sp is the number of
the spark out grinding, De is the diameter of the
wheel, bs is the width of the wheel, G is the grinding
ratio, Sd is the distance of the wheel idling, p is the
number of workpieces loaded on the table, Vr is the
speed of wheel idling, t1 is the time of loading and
unloading workpieces, tch is the time of adjusting the
machine tool, Nt is the batch size of the workpieces,
Nd is the total number of workpieces to be ground
between two dressings, Ntd is the total number of
workpieces to be ground during the life of the dres-
sing, and Cd is cost of dressing.

WRP ¼ 94:4
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where VOL is the wheel bond percentage, dg is the
grind size, Rc is the workpiece hardness.

Ra ¼ 0:4587T 0:30
ave for 0<Tave < 0:254

else; Ra ¼ 0:78667T 0:72
ave for 0:254<Tave < 2:54

ð3Þ
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2.2 Constraints

Three constraints are considered in this optimization
model [2].

2.1.1 Thermal damage constraint

The grinding process requires very high energy per
unit volume of material removed. Whatever the
energy that is concentrated within the grinding zone,
it is converted into heat. The high thermal energy
causes damage to the workpiece, and it leads to the
reduced production rate. The specific energy U is
calculated by equation (5)

U ¼ 13:8þ 9:64 · 10�4Vs

apVw
þ 6:9 · 10�3 2102:4Vw

DeVs

� �

· A0 þ KuVsLwaw

VwD
1=2
e a

1=2
p

 !
VsD

1=2
e

Vwa
1=2
p

ð5Þ
where Ku is the wear constant.

The critical specific energy U* at which burning
starts is expressed in terms of the operating para-
meters as

U� ¼ 6:2þ 1:76
D

1=4
e

a
3=4
p V

1=2
w

 !
ð6Þ

The thermal damage constraint is then specified as

U� �U > 0 ð7Þ

2.1.2 Wheel wear parameter constraint

The wheel wear parameter WWP (mm3/min N) is
related directly to the grinding conditions. For single-
point diamond dressing, it is given by equation (8).

WWP ¼ kpapd
5=38
g R

27=29
c

D
1:2=VOL�43=304
c VOL0:38

 !

·
1þ doc=Lð Þ½ �L27=19 Vs=Vwð Þ3=19Vw

1þ 2doc=3Lð Þ½ �

ð8Þ

From equations (2) and (8) the wheel wear constraint
is obtained as

WRP

WWP
� G> 0 ð9Þ

2.1.3 Machine tool stiffness constraint

Chatter results in poorer surface quality and lowers
the machining production rate. Chatter avoidance is
therefore a significant constraint in the selection of
machining parameters. The relationship between
grinding stiffness Kc (N/mm), wheel wear stiffness

Ks (N/mm), and operating parameters during grind-
ing is given below

Kc ¼ 1000Vwfb
WRP

ð10Þ

Ks ¼ 1000Vsfb
WWP

ð11Þ

To avoid chatter during machining, the constraint
given by equation (12) has to be fulfilled

MSC� Remj j
Km

> 0 ð12Þ

where MSC is machine stiffness constraint and

MSC ¼ 1

2Kc
1þ Vw

VsG

� �
þ 1

Ks
ð13Þ

where Rem is the dynamic machine characteristics,
Km is the static machine stiffness.

The above optimization model with the given pro-
cess parameters, objective function, and constraints
is considered in the present work for the multi-
objective optimization of the grinding process using
non-traditional optimization algorithms such as ABC,
HS, and SA. These algorithms are explained briefly in
the following sections.

3 PRESENTED NON-TRADITIONAL
OPTIMIZATION ALGORITHMS

Three non-traditional optimization algorithms are
considered in the present work for grinding para-
meter optimization and are described below.

3.1 Artificial bee colony algorithm

A branch of nature-inspired algorithms, called swarm
intelligence, is focused on insect behaviour in order
to develop some meta-heuristics which can mimic
an insect’s problem solution abilities. Interaction
between insects contributes to the collective intelli-
gence of the social insect colonies. These commu-
nication systems between insects have been adapted
to scientific problems for optimization. The foraging
behaviour, learning, memorizing, and information-
sharing characteristics of honey bees have recently
been some of the most interesting research areas in
swarm intelligence. The ABC algorithm has been
developed to model the intelligent behaviours of
honey bee swarms [8–10]. The honey bee swarms
consist of two essential components (i.e. food sour-
ces and foragers) and define two leading modes of
behaviour (i.e. recruitment to a nectar source and
abandonment of a source). A flow chart for the ABC
algorithm is shown in Fig. 1 [11]. Various steps used
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for the optimization of the grinding operation using
ABC algorithm are discussed below.

Step 1: Parameter selection

As discussed in the description of the ABC algorithm,
food source represents a possible solution to the
problem of minimization of production time in the
present work. Five initial solutions (i.e. the number of
food sources) were considered in this work. The value
of each food source depends on the fitness value of
the objective function given by equation (22).

For every food source there is only one employed
bee (employed forager). In other words, the number
of employed bees is equal to the number of food
sources. Hence, in the present work the number of
employed bees is considered to be five. The unem-
ployed forager can be a scout or an onlooker bee. The
number of onlooker bees must be greater than the
number of employed bees. As the number of onloo-
ker bees and hence the population size increases, the
algorithm performs better in terms of convergence
rate. However, after a sufficient value number of
onlooker bees, any increment in the value does not
improve the performance of the algorithm. For the

problem considered in this work, the number of
onlooker bees is considered to be 11, which can
provide an acceptable convergence speed for search.
The colony size is the sum of the number of
employed bees and the number of onlooker bees.
Hence, the colony size is 16. The number of scout
bees is usually 5–30 per cent of the colony size. In the
present work, the number of scout bees is taken to be
5 per cent of the colony size, i.e. one. The parameters
of optimization thus selected in this work are sum-
marized below:

(a) number of employed bees¼ 5;
(b) number of onlookers bees¼ 11;
(c) number of scout bees¼ 1;
(d) maximum number of iterations¼ 150.

Step 2: Calculate the nectar amount of each
food source

The employed bees are moved to the food sources
and the nectar amount of these food sources is eval-
uated based on their fitness value as defined by the
objective function given by equation (22) subject to
constraints given by equations (7), (9), and (12).

Fig. 1 Artificial bee colony algorithm [11]
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Step 3: Determine the probabilities by using
the nectar amount

If the nectar amount of a food source ‘ui’ is Fi, then
the probability (Pi) of choosing this food source by an
onlooker bee is expressed as

Pi ¼

PS
i¼1

ð1=fiÞ
� ��1

fi
ð14Þ

where S is the number of food sources.

Step 4: Calculate the number of onlooker bees that will
be sent to food sources

Based on the probabilities calculated in step 3, the
number (N) of onlooker bees sent to food source ‘ui’
is calculated as

N ¼ Pi*m ð15Þ
where m is the total number of onlooker bees.

Step 5: Calculate the fitness value of each onlooker bee

After watching the dances of employed bees, an
onlooker bee goes to the region of food source ‘ui’ by
the probability given by equation (14). The position
of the selected neighbour food source is calculated as
shown in equation (16).

uiðc þ 1Þ ¼ uiðcÞ –�iðcÞ ð16Þ
where c is the generation number, fi (c) is a randomly
produced step to find a food source with more
available nectar ‘ui’. The value of fi (c) is calculated
by taking the difference of the same parts of ui(c) and
uk(c) (‘k’ is a randomly produced index) food posi-
tions. If the nectar amount Fi(cþ 1) at ui(cþ 1) is
higher than at ui(c), then the bees go to the hive and
share information with others and the position ui(c)
of the food source is changed to ui(cþ 1), otherwise
ui(c) is kept as it is. If the position ‘ui’ of the food
source ‘i’ cannot be improved through the pre-
determined number of trials, then that food source
‘ui’ is abandoned by its employed bee and the bee
becomes a scout. The scout starts searching for a new
food source, and after finding the new source, the
new position is accepted as ‘ui’.

Step 6: Evaluate the best solution

The position of the best onlooker bee is identified for
each food source. The global best of the honey bee
swarm in each generation is obtained and it may
replace the global best of a previous generation if it
has a better fitness value.

Step 7: Update the scout bee

The worst-employed bees, as many as the number
of scout bees in the population, are respectively
compared with the scout solution. If the scout solution
is better than the employed solution, then the
employed solution is replaced with the scout solution.

Otherwise, the employed solution is transferred to
the next generation without any change.

3.2 Harmony search algorithm

The HS algorithm, which is a meta-heuristic optimi-
zation algorithm, has been recently developed by
Geem et al. [12]. This algorithm is conceptualized
from the musical process of searching for a perfect
state of harmony, such as jazz improvement. The jazz
improvisation seeks the best state (fantastic har-
mony) determined by an estimation performed by a
set of pitches played by each instrument.

The various steps used for the optimization of the
grinding operation using the harmony search algo-
rithm are discussed below.

Step 1: Determine algorithm parameters

In this step, the optimization problem is specified in
terms of objective functions, constraints, and deci-
sion variables along with their upper and lower-
bound values. The HS algorithm parameters are the
harmony memory size (HMS), or the number of
solution vectors in the harmony memory; the har-
mony memory considering rate (HMCR); the pitch
adjusting rate (PAR); the number of decision vari-
ables (N), and the number of improvisations (NI), or
stopping criteria. For the harmony search algorithm a
value of HMCR is considered between 0.7–0.95 and a
PAR is considered between 0.05–0.7. For the present
example the following values of the algorithm para-
meters are selected after various trials:

(a) HMS¼ 5;
(b) HMCR¼ 0.9;
(c) PAR¼ 0.4;
(d) NI¼ 150.

Step 2: Improvise a new harmony

A new harmony vector is generated based on three
rules: (a) memory consideration, (b) pitch adjust-
ment, and (c) random selection. Generating a new
harmony is called ‘improvisation’. In the memory
consideration stage, the value of the first decision
variable (x1) for the new vector is chosen from any of
the values in the specified HM range (x1–xHMS).
Values of the other decision variables are chosen in
the same manner. The HMCR, which varies between
0 and 1, is the rate of choosing one value from the
historical values stored in the HM, while (1–HMCR) is
the rate of randomly selecting one value from the
possible range of values, as shown in the following
equation:

If HMCR>randðÞ; x;i 2 x1i ; x
2
i ; :::::x

HMS
i

� 	
otherwise x

0
i 2 Xi

ð17Þ
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where, rand () is a random number between 0 and 1.
Every component obtained by the memory con-
sideration is examined to determine whether it
should be pitch-adjusted. This operation uses the
PAR parameter, which is the rate of pitch adjustment
as follows:

If PAR> randðÞ; x0
i ¼ x;i

then x
0
i ¼ x

0
i � randðÞ ·bw

ð18Þ

where bw is an arbitrary distance bandwidth. In this
step, harmony memory consideration and pitch
adjustment are applied to each variable of the new
harmony vector one by one.

Step 3: Update harmony memory

If the new harmony vector has better fitness function
than the worst harmony in the HM, the new harmony
is included in the HM and the existing worst har-
mony is excluded from the HM. The harmony search
algorithm is shown in Fig. 2.

3.3 Simulated annealing algorithm

Simulated annealing (SA) is a probabilistic hill-
climbing algorithm in which if ‘i’ is the current con-
figuration with cost C(i), then using the Metropolis
algorithm [13], the probability of accepting ‘j’ as the
next configuration depends on the difference in the
function value at these two points or on DC¼ C(j)� C
(i) and is calculated using the Boltzman probability
distribution

Pr new ¼ jjcurrent ¼ if g ¼ 1
e�DC=T

if DC 6 0
otherwise


 �
ð19Þ

For the SA technique, the parameters of optimization
are the initial temperature, decrement factor, and
number of improvisations. The initial temperature
(T0) can be obtained by calculating the average of the
function values at a boundary point

T0 ¼ SZNb=n ð20Þ

where ZNb is the value of objective function at each
boundary point and n is the number of boundary
points. For present examples, the initial temperature
is considered as 200 with the decrement factor as 0.1.
At any current point x(t), the new value of the para-
meters for the successive iterations is calculated
using the formula

xðt þ 1Þ ¼ xðtÞ þ s ·
XN
i¼1

Ri �N

2
ð21Þ

where s¼ (xmax – xmin)/6, R is the random number;
and N is the number of random numbers used. In the
present work, six random numbers are used. While
starting the process, the initial values for the para-
meters are taken as the average of the respective
parameter limits. The algorithm is terminated when a
sufficiently small temperature is obtained or a small
enough change in function value is found.

The software for the optimal selection of process
parameters in the grinding process using ABC, HS,
and SA is written in Cþþ language and has been
implemented on a Pentium-IV system.

Section 4 provides two examples to demonstrate
and validate the application of the presented ABC,
HS, and SA algorithms.

4 APPLICATION EXAMPLES

To demonstrate and validate the proposed algo-
rithms, two examples are considered for the optimi-
zation of grinding process parameters.

Input f(x), HMS, HMCR, PAR

Randomly generate number of 
solution vectors (equal to HMS) 

Is
HMCR > rand() 

?

}{ HMS
iiii xxxx ,....., 21, ∈

N

Is
PAR > rand() 

?

,'
ii xx =

ii Xx ∈'

N
bwrandxx ii ×±= ()''

Y

Calculate f(x)

Is better 
than worst?

Update HM 

Y

N

Fig. 2 Harmony search algorithm [12]
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4.1 Example 1

This example presents the multi-objective optimiza-
tion of the rough grinding process. The combined
objective function (to beminimized) formulated for the
rough grinding operation (ZR) is given in equation (22)

MinZR ¼ W1*ðCT=CT*Þ�W2*ðWRP=WRP*Þ ð22Þ

whereW1 andW2 are the weighting factors with value
0.5 each. This is subject to the constraints specified
by equations (7), (9), and (12).

Parameter bounds for the four process variables
are as follows

1000 6 Vs 6 2023 m/min
10 6 Vw 6 22.70 m/min
0.01 6 doc 6 0.1370 mm
0.01 6 L 6 0.1370 mm/rev

Values of the constants and parameters considered
in the present work are as given in Table 1. The

optimum process parameter values obtained by
using the ABC algorithm are given below:

(a) wheel speed (Vs)¼ 2023 (m/min);
(b) workpiece speed (Vw)¼ 10.973 (m/min);
(c) depth of dressing (doc)¼ 0.097 (mm);
(d) lead of dressing (L)¼ 0.137 (mm/rev);
(e) total production cost (CT)¼ 7.942 $/piece;
(f) workpiece removal parameter (WRP)¼ 25.00

mm3/min-N;
(g) surface roughness (Ra)¼ 1.80 m.

Optimality of the above-mentioned solution could
be confirmed from Figs 3 to 6. Figure 3 shows varia-
tion of the wheel wear parameter constraint, surface
roughness constraint, and combined objective func-
tion with wheel speed. Since the thermal damage
constraint and machine tool stiffness constraint have
almost constant positive values for all values of wheel
speed, Fig. 3 is plotted neglecting thermal damage
constraint and machine tool stiffness constraint to
indicate more clearly the variation of the other two
constraints with wheel speed. As shown in Fig. 3, the
combined objective function value reduces as wheel
speed increases. This is because with increase in
wheel speed, the workpiece removal parameter
increases without affecting cost. Moreover, the sur-
face roughness constraint is satisfied only at a wheel
speed of 2023 m/min. Hence, the optimum value of
wheel speed selected at its upper bound value of 2023
m/min is appropriate. If the wheel speed is increased,
the size of the chips removed by a single abrasive
grain is reduced, which in turn reduces the wear of
the wheel. Thus, from the point of view of wear also,
it is better to operate at a higher wheel speed.

Figure 4 shows the variation of thermal damage
constraint, wheel wear parameter constraint, surface
roughness constraint, and combined objective func-
tion with workpiece speed. Figure 4 is plotted
neglecting the machine tool stiffness constraint as it
has almost constant positive values for all values of
workpiece speed. As shown in Fig. 4, the combined
objective function value reduces (as the workpiece
removal parameter increases and cost reduces) as the
workpiece speed increases. Thus, the higher value of
workpiece speed is desirable. However, at any value
of workpiece speed higher than 10.973 m/min, the
surface roughness constraint is violated. This is due
to the fact that, if the workpiece speed is high, the
wheel wear will be high.

Figure 5 shows the variation of the wheel wear
parameter constraint, surface roughness constraint,
and combined objective function with depth of
dressing. Since the thermal damage constraint and
machine tool stiffness constraint have almost con-
stant positive values for all values of wheel speed,
Fig. 5 is plotted neglecting the thermal damage con-
straint and the machine tool stiffness constraint. As

Table 1 Values of the constants and parameters used in
grinding process parameter optimization

Notation Description Unit Value

ap Down feed of grinding mm/pass 0.0505
aw Total thickness of cut mm 0.1
be Empty width of grinding mm 25
bs Width of wheel mm 25
bw Width of workpiece mm 60
Cs Cost of wheel per mm3 $ 0.003
Cd Cost of dressing $ 25
dg Grind size mm 0.3
De Diameter of wheel mm 355
fb Cross feed rate mm/pass 2
G Grinding ratio 60
Ka Constant dependent on

coolant and grain type
0.0869

Km Static machine stiffness N/mm 100 000
Ku Wear constant mm�1 3.937·10�7

Le Empty length of grinding mm 150
Lw Length of workpiece mm 300
Mc Cost per hour of labour

and administration
$/hr 30

Nd Total number of
workpieces to be ground
between two dressings

20

Nt Batch size of the
workpieces

12

Ntd Total number of
workpieces to be ground
during the life of the
dresser

2000

p Number of workpieces
loaded on the table

1

Rc Workpiece hardness HRC 58
Rem Dynamic machine

characteristics
1

Sd Distance of wheel idling mm 100
Sp Number of spark out

grinding
2

t1 Time of loading and
unloading workpieces

min 5

tch Time of adjusting
machine tool

min 30

Vr Speed of wheel idling mm/min 254
VOL Wheel bond percentage 6.99
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shown in Fig. 5, the combined objective function
value decreases with the increase in depth of dres-
sing. Thus, the higher value of depth of dressing is
desirable. However, for any value of depth of dressing
higher than 0.097 mm, the surface roughness con-
straint is violated. This confirms the optimum value
depth of dressing selected using the particle swarm
optimization algorithm for the rough grinding
operation. Figure 6 shows variation of wheel wear
parameter constraint, surface roughness constraint,
and the combined objective function with lead of
dressing. Since the thermal damage constraint and
machine tool stiffness constraint have almost con-
stant positive values for all values of wheel speed,
Fig. 6 is plotted neglecting the thermal damage con-
straint and machine tool stiffness constraint. As
shown in Fig. 6, the combined objective function
value initially increases up to a certain value and
thereafter decreases with the increase in the lead of
dressing. Thus, the minimum value of the combined
objective function occurred at both lower bound and

upper bound values of lead of dressing. However, the
upper bound value of lead of dressing should be
selected, as at lower bound value of lead of dressing,
the surface roughness constraint is violated.

Table 2 shows the optimum process parameter
data for the above example using ABC, HS, and SA
algorithms along with the previously published
results obtained by using other methods. As shown in
Table 2, although the result of optimization using the
DE algorithm [7] seems to be better than that using
ABC, HS, and SA algorithms, it is erroneous and the
corrected result is not valid as the surface roughness
value (1.87mm) exceeds the permissible value
(1.80mm) for the given parameter combination.
Table 3 shows the improvement in combined objec-
tive function for rough grinding using various
algorithms rather than quadratic programming [2].
Figure 7 shows the convergence of ABC, HS, and SA
algorithms for rough grinding operations. As shown
in Fig. 7, the convergence rate of the ABC algorithm is
better than those of the HS and SA algorithms.

Fig. 3 Variation of wheel wear parameter constraint, surface roughness constraint, and combined
objective function with wheel speed (Vs)
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Fig. 4 Variation of thermal damage constraint, wheel wear parameter constraint, surface roughness
constraint, and combined objective function with workpiece speed (Vw)

Fig. 5 Variation of wheel wear parameter constraint, surface roughness constraint, and combined
objective function with depth of dressing (doc)
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4.2 Example 2

This example presents the multi-objective optimiza-
tion of the finish grinding process. The combined
objective function formulated for the finish grinding
operation (ZF) is given in equation (23)

Min:ZF ¼ W1*ðCT=CT*Þ þW3*ðRa=Ra*Þ ð23Þ

where W1 and W3 are the weighting factors with
values 0.3 and 0.7 respectively, subjected to the con-
straints specified by equations (7), (9), and (12). The

Fig. 6 Variation of wheel wear parameter constraint, surface roughness constraint, and combined
objective function with lead of dressing (L)

Table 2 Results of optimization for rough grinding operation

Method Authors Vs Vw doc L CT WRP Ra ZR

QP Wen et al. [2] 2000 19.96 0.055 0.044 6.2 17.47 1.74 �0.127
GA Saravanan et al. [4] 1998 11.30 0.101 0.065 7.1 21.68 1.79 �0.187
DE Krishna [7] 2023 10.00 0.130 0.109 7.9 26.57 1.80* �0.249
DE 2023 10.00 0.130 0.109 7.9 26.57 1.87y �0.249
SA 2023 11.48 0.089 0.137 7.755 24.45 1.789 �0.223
HS 2019.35 12.455 0.079 0.136 7.455 23.89 1.796 �0.225
ABC 2023 10.973 0.097 0.137 7.942 25.00 1.80 �0.226

* Values wrongly calculated by Krishna [7],
y Corrected values

Table 3 Improvement in combined objective function in
rough grinding operation using various algo-
rithms over that using quadratic programming
(QP)

Method Authors COF
% improvement
(over QP)

QP Wen et al. [2] �0.127 —
GA Saravanan et al. [4] �0.187 47.24
SA �0.223 75.59
HS �0.225 77.16
ABC �0.226 78.00
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parameter bounds for the four process variables are
the same as those given in example 1.

Table 4 shows the optimum process parameter
data for the above example, along with the previously
published results using other methods. As shown in
Table 4, although the result of optimization using
the DE algorithm [7] seems to be better than those
of the SA, HS, and ABC algorithms, this is not valid as
the values of some process parameters such as wheel
speed (Vs) and depth of dressing (doc) lie outside
their respective bounds (Vs¼ 2170> 2023 and
doc¼ 0.008< 0.01). The result obtained by using GE
[4] is erroneous. Table 5 shows the improvement in

the combined objective function for finish grinding
using various algorithms over that of quadratic pro-
gramming [2].

5 CONCLUSIONS

In the present work, multi-objective optimization
aspects of rough grinding as well as finish grinding
process parameters are considered using three non-
traditional algorithms; ABC, HS, and SA. The three
objectives considered are: minimization of produc-
tion cost, maximization of production rate, and
maximization of surface finish, i.e. minimization of
roughness value subjected to the constraints of
thermal damage, wheel wear parameter, and
machine tool stiffness.

The performance of three non-traditional optimi-
zation algorithms such as ABC, HS, and SA is studied
in terms of convergence rate and accuracy of
the solution. It can be seen from Table 3 that for
the rough grinding operation, the ABC algorithm
outperformed all other algorithms, i.e. quadratic
programming, GA, HS, and SA, showing significant

Fig. 7 Convergence of ABC, HS, and SA algorithms for rough grinding

Table 4 Results of optimization for finish grinding operation

Method Author Vs Vw doc L CT WRP Ra ZF

QP Wen et al. [2] 2000 19.99 0.052 0.091 7.7 20.00 0.83 0.554
GA Saravanan et al. [4] 1986 21.40 0.024 0.136 6.6* 20.08 0.83 0.521a
GA 1986 21.40 0.024 0.136 7.36y 20.08 0.83 0.542b
DE Krishna [7] 2170 17.49 0.008 0.137 7.48 20.33 0.65 0.497
SA 2023 22.7 0.01 0.137 7.11 20.01 0.79 0.520
HS 2023 22.7 0.01 0.137 7.11 20.01 0.79 0.520
ABC 2023 22.7 0.01 0.137 7.11 20.01 0.79 0.520

* Values wrongly calculated by Saravanan et al. [4],
yCorrected values

Table 5 Improvement in the combined objective function
in rough grinding operation using various algo-
rithms over that using quadratic programming

Method Author COF
% improvement
(over QP)

QP Wen et al. [2] 0.554 —
GA Saravanan et al. [4] 0.542 2.30
ABC, HS and SA 0.520 6.54
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improvement of 78 per cent over quadratic pro-
gramming. This improvement is due mainly to the
fact that the ABC algorithm combines both the sto-
chastic selection scheme carried out by onlooker
bees, and the greedy selection scheme used by
onlookers and employed bees to update the source
position. Also, the neighbour source production
mechanism in ABC is similar to the mutation process,
which is self-adapting. The random selection process
carried out by the scout bees maintains diversity in
the solution. Table 5 shows that the accuracy of
solution for process parameter optimization of the
finish grinding operation obtained using the ABC,
HS, and SA algorithms is equally good. The con-
vergence rate of the ABC algorithm is better than
the HS and SA algorithms. The presented ABC, HS,
and SA algorithms can be easily modified to suit
optimization of process parameters of other
machining processes such as milling, turning, dril-
ling, and so on.

� Authors 2010
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