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Grinding is one of the very important machining operations in engineering industries. Optimization of grinding processes still remains as one of
the most challenging problems because of its high complexity and non-linearity. This makes the application of traditional optimization algorithms
quite limited. Hence, there is a need to apply most recent and powerful optimization techniques to get desired accuracy of optimum solution.
In this paper, a recently developed nontraditional optimization technique, particle swarm optimization (PSO) algorithm is presented to find the
optimal combination of process parameters of grinding process. The objectives considered in the present work are, production cost, production
rate, and surface finish subjected to the constraints of thermal damage, wheel wear, and machine tool stiffness. The process variables considered
for optimization are wheel speed, workpiece speed, depth of dressing, and lead of dressing. The results of the algorithm are compared with the
previously published results obtained by using other traditional optimization techniques.

Keywords Differential evolution; Genetic algorithm; Grinding process; Multiobjective optimization; Particle swarm optimization; Production
cost; Production rate; Quadratic programming.

Introduction

Grinding is one of the important and widely used
manufacturing processes in engineering industries. The
success of any grinding process in terms of cost and quality
depends on proper selection of various operating conditions
in grinding process such as wheel speed, workpiece speed,
depth of dressing and lead of dressing, area of contact,
grinding fluid, etc. A significant improvement in the
process efficiency may be obtained by optimization of
these process parameters that identifies and determines the
regions of critical process control factors leading to desired
outputs with acceptable variations ensuring lowest cost of
manufacturing.
Previous work on the optimization of grinding parameters

has concentrated on possible approaches for optimizing
constraints during grinding. Amitay [1] reported in his
work the technique of optimizing both grinding and
dressing conditions for the maximum workpiece removal
rate subjected to constraints on workpiece burn and surface
finish in an adaptive control system. Wen et al. [2] applied
successive quadratic programming (QP) approach using a
multiobjective function model with a weighted approach
for optimization of surface grinding process parameters.
However, by this approach the convergence to an optimal
solution depends on the chosen initial solution. Also the
algorithm tends to get stuck to the local optimal solution.
Rowe et al. [3] provided an extensive review on various
approaches based on artificial intelligence to the grinding

Received May 3, 2009; Accepted June 1, 2009
Address correspondence to R. V. Rao, S.V. National Institute of

Technology, Ichchanath, Surat, Gujarat 395 007, India; Fax: 91-261-
2201571; E-mail: ravipudirao@gmail.com

process. A genetic algorithm (GA)-based optimization
procedure has been developed by Saravanan et al. [4] to
optimize the grinding conditions. However, the GA has its
own limitations such as risk of replacement of a good parent
string with the deteriorated child, less convergence speed,
and difficulty in selecting the controlling parameters such
as population size, crossover rate, and mutation rate. Also
the results of GA presented by the authors are erroneous.
Dhavalikar et al. [5] applied combined Taguchi and dual
response methodology to determine the robust condition
for minimization of out of roundness error of workpiece
for centerless grinding operation. Optimization was then
carried out by using Monte Carlo simulation procedure.
Gopala [6] applied differential evolution (DE) algorithm for
optimization of process parameters of grinding operation.
However, the solution obtained using differential algorithm
are erroneous for rough grinding operation whereas, for
finish grinding operation the optimum values suggested by
the author lies outside their respective bounds, and hence
the solution is not valid.
In the present work, an effort is made to verify if

any improvement in the solution is possible by employing
more recent optimization techniques such as particle swarm
optimization to the optimization model proposed by Wen
et al. [2]. Particle swarm optimization (PSO) is reported
to be the better algorithm for continuous optimization
as well as discrete optimization problems [7]. PSO
algorithm has been used for identification of constitutive
material model parameters for high-strain rate metal cutting
conditions [8] and for process parameter optimization
of few manufacturing processes such as pulsed laser
micromachining [9], electro-chemical machining [10],
friction welding [11], and boring [12]. Hence, PSO
algorithm is considered in this work for multiobjective
optimization of surface grinding process parameters.
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The next section provides the details of optimization
model of the grinding process used in the present work.

Optimization model of grinding process

As numerous process parameters are involved in grinding
process, it is difficult and complex to optimize each
and every parameter. Various process parameters, such
as wheel speed, wokpiece speed, cutting depth, infeed,
traverse feed, area of contact, dressing, etc., affect
significantly the performance measures such as production
cost, production rate, and surface finish. However, to
compare the performance of PSO algorithm with that of
QP [2], GA [4], and DE [7], the same process parameters,
i.e., wheel speed ‘Vs’ (m/min), workpiece speed ‘Vw’
(m/min), depth of dressing ‘doc’ (mm), and lead of dressing
‘L’ (mm/rev) as considered by Wen et al. [2], Saravanan
et al. [4], and Gopala [6] are considered in this work also.
The objective functions and the constraints are formulated
as discussed below.

Objectives
The three objectives considered in this work are the

following ones:

a) Minimization of production cost ‘CT ’ ($/pc);
b) Maximize the production rate in terms of workpiece

removal parameter ‘WRP’ (mm3/min.N);
c) Minimization of surface roughness ‘Ra’ (�m).

However, keeping in view the specific requirement of finish
grinding and rough grinding operation, these three objective
functions are divided into two groups as follows. For rough
grinding operation following two objective functions are
considered with the condition that the surface roughness
value should not exceed 1�8�m:

a) Minimization of production cost (CT� in $/piece;
b) Maximize the production rate in terms of workpiece

removal parameter ‘WRP’ (mm3/min.N).

For the finish grinding operation, the following two
objective functions are considered with the condition that
the workpiece removal parameter should not be less than
20mm3/minN:

a) Minimization of production cost ‘CT ’ ($/pc);
b) Minimization of surface roughness ‘Ra’ (�m).

These three objective functions ‘CT ’, ‘WRP’, ‘Ra’ can be
expressed in terms of the process variables as given by
Eqs. (1)–(3), respectively [2]:

CT = Mc

60p

(
Lw +Le

Vw1000

)(
bw + be

fb

)(
aw

ap

+ Sp +
awbwLw

�DebsapG

)

+ Mc

60p

(
Sd
Vr

+ t1

)
+ Mctch

60Nt

+ Mc�bsDe

60pNdLVs1000

+ Cs

(
awbwLw

pG
+ ��doc�bsDe

pNd

)
+ Cd

pNtd

� (1)

where Mc is cost per hour labor and administration, Lw is
length of workpiece, Le is the empty length of grinding, bw
is width of workpiece, be is the empty width of grinding,
fb is cross-feed rate, aw is total thickness of cut, ap is
the down-feed of grinding, Sp is the number of spark out
grinding, De is the diameter of wheel, bs is the width of
wheel, G is the grinding ratio, Sd is the distance of wheel
idling, p is the number of workpieces loaded on the table,
Vr is the speed of wheel idling, t1 is the time of loading and
unloading workpieces, tch is the time of adjusting machine
tool, Nt is the batch size of the workpieces, Nd is the total
number of workpieces to be ground between two dressing,
Ntd is the total number of workpieces to be ground during
the life of dresser, Cs is the cost of wheel per mm3, and Cd
is the cost of dressing;

WRP = 94�4
�1+ �2doc/3L��L11/19�Vw/Vs�

3/19Vs

D
43/304
e VOL0�47d

5/38
g R

27/19
c

� (2)

where VOL = wheel bond percentage, dg = grind size,
Rc = workpiece hardness;

Ra = 0�4587T 0�30
ave � for 0 < Tave < 0�254 else�

(3)
Ra = 0�78667T 0�72

ave for 0�254 < Tave < 2�54�

where

Tave = 12�5× 103
d16/27
g a19/27

p

D
8/27
e

(
1+ doc

L

)
L16/27

(
Vw

Vs

)16/27

�

(4)

Constraints
Various constraints considered in the optimization

model [2] are discussed below.

Thermal Damage Constraint. The grinding process
requires very high energy per unit volume of material
removed. Whatever the energy that is concentrated within
the grinding zone, it is converted into heat. The high thermal
energy causes damage to the workpiece, and it leads to the
reduced production rate. The specific energy U is calculated
by Eq. (5)

U = 13�8+ 9�64× 10−4Vs

apVw

+
(
6�9× 10−3 2102�4Vw

DeVs

)

×
(
A0 +

KuVsLwaw

VwD
1/2
e a

1/2
p

)
VsD

1/2
e

Vwa
1/2
p

(5)

Ku = wear constant.
The critical specific energy U ∗ at which burning starts is

expressed in terms of the operating parameters as

U ∗ = 6�2+ 1�76
(

D1/4
e

a
3/4
p V

1/2
w

)
(6)

The thermal damage constraint is then specified as

U ∗ − U ≥ 0� (7)
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Wheel Wear Parameter Constraint. Wheel wear
parameter WWP �mm3/minN ) is related directly to the
grinding conditions. For single-point diamond dressing, it
is given by Eq. (8):

WWP =
(

kpapd
5/38
g R27/29

c

D
1�2/VOL−43/304
c VOL0�38

)

×�1+ �doc/L��L27/19�Vs/Vw�
3/19Vw

�1+ �2doc/3L��
� (8)

From Eqs. (2) and (8), the wheel wear constraint is
obtained as

WRP

WWP
−G ≥ 0� (9)

Machine Tool Stiffness Constraint. Chatter results in
poorer surface quality and lowers machining production
rate. Chatter avoidance is, therefore, a significant constraint
in selection of machining parameters. The relationship
between grinding stiffness Kc (N/mm), wheel wear stiffness
Ks (N/mm), and operating parameters during grinding is
given below:

Kc =
1000Vwfb
WRP

(10)

Ks =
1000Vsfb
WWP

� (11)

To avoid chatter during machining, the constraint given by
Eq. (12) has to be fulfilled:

MSC − �Rem�
Km

≥ 0� (12)

where

MSC = 1
2Kc

(
1+ Vw

VsG

)
+ 1

Ks

� (13)

where Rem = dynamic machine characteristics, Km = Static
machine stiffness.
The next section briefly describes the particle swarm

optimization algorithm.

PSO

PSO is an evolutionary computation technique developed
by Kennedy and Eberhart [13]. It exhibits common
evolutionary computation attributes including initialization
with a population of random solutions and searching for
optima by updating generations. Potential solutions, called
particles, are then “flown” through the problem space by
following the current optimum particles. The particle swarm
concept was originated as a simulation of a simplified social
system. The original intent was to graphically simulate the
graceful but unpredictable choreography of a bird flock.

Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution (fitness)
it has achieved so far. This value is called ‘pBest.’ Another
“best” value that is tracked by the global version of the
PSO is the overall best value, and its location obtained
so far by any particle in the population. This location is
called ‘gBest.’ The PSO concept consists of, at each step,
changing the velocity (i.e., accelerating) of each particle
toward its ‘pBest’ and ‘gBest’ locations (global version of
PSO). Acceleration is weighted by a random term with
separate random numbers being generated for acceleration
toward ‘pBest’ and ‘gBest’ locations. The updates of the
particles are accomplished as per the following equations:

Vi+1 = w × Vi + c1 × r1 × �pBesti − Xi�

+ c2 × r2 × �gBesti − Xi� (14)

Xi+1 = Xi + Vi+1� (15)

Equation (14) calculates a new velocity (Vi+1� for each
particle (potential solution) based on its previous velocity,
the best location it has achieved (‘pBest’) so far, and the
global best location (‘gBest’), the population has achieved.
Equation (15) updates individual particle’s position (Xi) in
solution hyperspace. The two random numbers ‘r1’ and ‘r2’
in Eq. (14) are independently generated in the range 0–1.
The acceleration constants ‘c1’ and ‘c2’ in Eq. (14)

represent the weighting of the stochastic acceleration terms
that pull each particle towards ‘pBest’ and ‘gBest’ positions.
‘c1’ represents the confidence the particle has in itself
(cognitive parameter) and ‘c2’ represents the confidence the
particle has in swarm (social parameter). Thus, adjustment
of these constants changes the amount of tension in the
system. Low values of the constants allow particles to
roam far from target regions before being tugged back,
while high values result in abrupt movement toward, or
past through target regions [14]. The inertia weight ‘w’
plays an important role in the PSO convergence behavior
since it is employed to control the exploration abilities of
the swarm. The large inertia weights allow wide velocity
updates allowing to globally explore the design space while
small inertia weights concentrate the velocity updates to
nearby regions of the design space. The optimum use of
the inertia weight “w” provides improved performance in
a number of applications. The effect of w, c1, and c2 on
convergence for standard numerical benchmark functions is
provided by Bergh and Engelbrecht [15].
To achieve the dimensional consistency of Eqs. (14) and

(15), the dimension of the term ‘c × r’ in Eq. (14) could be
taken as (time)−2. This way, the second and the third terms
in Eq. (14) assume the dimension of acceleration. To get the
correct dimension of velocity, as required by the left-hand
side, one needs to multiply them by �t, the time step, which
becomes unity in the present case, denoting changes from
iteration i to i+1. Similarly, the second term in Eq. (15)
assumes the correct dimension when taken as Vi+1�t and
the present form results through the implicit assumption that
�t = 1 [16, 17].
Particle’s velocities on each dimension are confined to

a maximum velocity parameter Vmax, specified by the user.
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If the sum of accelerations would cause the velocity on
that dimension to exceed Vmax, then the velocity on that
dimension is limited to Vmax.
Unlike genetic algorithm, PSO algorithm does not need

complex encoding and decoding process and special genetic
operator. PSO takes real number as a particle in the
aspect of representation solution and the particles update
themselves with internal velocity. In this algorithm, the
evolution looks only for the best solution and all particles
tend to converge to the best solution. In the implementation
process, particles randomly generated at the beginning
or generated by internal velocity during the evolutionary
process usually violate the system constraints resulting
in infeasible particles. Therefore, the handling of system
constraints, particularly nonlinear equation constraints, and
the measurement and evaluation of infeasible particles
is very important. To cope with constrained problems
with evolutionary computation, various approaches such
as rejection of infeasible individuals, repair of infeasible
individuals, replacement of individuals by their repaired
versions, and penalty function methods can be adopted.
Among them, the penalty function methods are particularly
promising [14] as evidenced by recent developments.
The next section presents an application example to

demonstrate and validate the particle swarm optimization
algorithm with constant values of inertia weight and
acceleration coefficient. The values of inertia weight and
acceleration coefficients, for which the algorithm shows
better performance in terms of convergence rate, are
obtained through several trials with initial guess as given
by Bergh and Engelbrecht [15].

Examples

Now two examples are considered for the optimization
of grinding process parameters using the PSO algorithm.

Example 1
This example presents the multiobjective optimization of

rough grinding process. The combined objective function
(to be minimized) formulated for rough grinding operation
(ZR) is given in Eq. (16):

Min ZR = W ∗
1 �CT/C

∗
T �−W ∗

2 �WRP/WRP∗�� (16)

where W1 and W2 are the weighing factors with value 0.5
each.

C∗
T = 10 �$/pc�� WRP∗ = 20mm3/min.N�

subjected to the constraints specified by Eqs. (7), (9), and
(12).
Parameters bounds for the four process variables are as

follows:

1000 ≤ Vs ≤ 2023m/min

10 ≤ Vw ≤ 22�70m/min

0�01 ≤ doc ≤ 0�1370mm

0�01 ≤ L ≤ 0�1370mm/rev�

The optimum selection of operating parameters of PSO
algorithm like acceleration constants ‘c1’ and ‘c2’ as well
as inertia coefficient ‘w’ is very essential for convergence
of the algorithm. Considering the velocity and positions of
a particle at discrete time steps, by substitution of Eq. (14)
into Eq. (15), the following non-homogeneous recurrence
relation is obtained:

Xi+1 = �1+ w − 	1 − 	2�Xi − wXi−1

+ 	1 × pBesti + 	2 × gBesti� (17)

where 	1 = c1 × r1 and 	2 = c2 × r2.
This recurrence relation can be written in matrix-vector

notation as the product

[
Xi+1
Xi

1

]

=
[
1+ w − 	1 − 	2 −w 	1 × pBesti + 	2 × gBesti

1 0 0
0 0 1

]

×
[

Xi

Xi−1
1

]
� (18)

The characteristics polynomial of the matrix in Eq. (18) is

�1− 
��w − 
�1+ w − 	1 − 	2�+ 
2�� (19)

The solution to this polynomial gives eigen values


1 =
1+ w − 	1 − 	2 + �

2
� (20)


2 =
1+ w − 	1 − 	2 − �

2
� (21)

where,

� = √
�1+ w − 	1 − 	2�

2 − 4w� (22)

Now, to ensure the convergence of algorithm, the values of

1 and 
2 should be such that

max��
1�� �
2�� < 1� (23)

This can be achieved only when the condition given by
Eq. (24) is satisfied [11].

w > 0�5�	1 + 	2�− 1� (24)

As the feasible range for w is 0–1, and for c1 and c2 is
0–2, the selected values of w, c1, and c2 should be such
that Eq. (24) is satisfied for all possible values of random
numbers r1 and r2 in the range 0–1. Keeping in view of this,
considerable number of trials is conduced, and the values
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Table 1.—Values of the constants and parameters used in process parameter
optimization of grinding process.

Notation Description Unit Value

Mc Cost per hour labor and
administration

$/hr 30

Lw Length of workpiece mm 300
Le Empty length of grinding mm 150
bw Width of workpiece mm 60
be Empty width of grinding mm 25
fb Cross-feed rate mm/pass 2
aw Total thickness of cut mm 0.1
ap Down-feed of grinding mm/pass 0.0505
Sp Number of spark out grinding 2
De Diameter of wheel mm 355
bs Width of wheel mm 25
G Grinding ratio 60
Sd Distance of wheel idling mm 100
p Number of workpieces loaded

on the table
1

Vr Speed of wheel idling mm/min 254
t1 Time of loading and unlading

workpieces
min 5

tch Time of adjusting
machine tool

min 30

Nt Batch size of the workpieces 12
Nd Total number of workpieces

to be ground
20

between two dressings
Ntd Total number of workpieces

to be ground during
2000

the life of dresser
Cs Cost of wheel per mm3 $ 0.003
Cd Cost of dressing $ 25
VOL Wheel bond percentage 6.99
dg Grind size mm 0.3
Rc Workpiece hardness HRC 58
Ku Wear constant mm−1 3�937× 10−7

Rem Dynamic machine
characteristics

1

Km Static machine stiffness. N/mm 100000
Ka Constant dependent on

coolant and grain type
0.0869

of w, c1, and c2 are finally selected as 0.65, 1.65, and 1.55,
respectively. Hence, the selected values of w, c1, and c2
in the present work are appropriate for convergence of the
algorithm.
Values of the constants and parameters considered in the

present work are as provided in Table 1. The optimum
process parameter values obtained by using PSO algorithm
are given in Table 2.
For the selected values of optimization parameters, the

convergence of the PSO algorithm is shown in Fig. 1.
Optimality of the above mentioned solution could be

confirmed from Figs. 2–5. Figure 2 shows variation of wheel
wear parameter constraint, surface roughness constraint,
and combined objective function with wheel speed. Since

Table 2.—Optimum process parameter values for rough grinding operation
obtained by using PSO algorithm.

Vs

(m/min)
Ra

(m/min)
Vw

(mm)
doc

(mm/rev)
L

($/piece)
CT (mm3/
min-N)

WRP

��m�

2023 10 0.110 0.137 8.33 25.63 1.798

Figure 1.—Convergence of PSO algorithm for rough grinding.

the thermal damage constraint and machine tool stiffness
constraint are having almost constant positive values for all
values of wheel speed, Fig. 2 is plotted neglecting thermal
damage constraint and machine tool stiffness constraint to
indicate more clearly the variation of other two constraints
with wheel speed. As shown in Fig. 2, the combined
objective function value reduces with increase in wheel
speed. This is due to the fact that with increase in wheel
speed, the workpiece removal parameter increases without
affecting cost. The constraints are also well satisfied at

Figure 2.—Variation of wheel wear parameter constraint (C2), surface
roughness constraint (C4), and combined objective function �ZR� with wheel
speed �Vs�.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
 
V
 
N
a
t
i
o
n
a
l
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
1
6
:
2
3
 
1
0
 
J
u
n
e
 
2
0
1
0



OPTIMIZATION OF GRINDING PROCESS PARAMETERS 429

Figure 3.—Variation of thermal damage constraint (C1), wheel wear
parameter constraint (C2), surface roughness constraint (C4), and combined
objective function �ZR� with workpiece speed �Vw�.

higher values of wheel speed. Hence the optimum value of
wheel speed selected at its upper bound value of 2023m/min
is appropriate. If the wheel speed is increased the size of the
chips removed by a single abrasive grain is reduced which
in turn reduces the wear of the wheel. Thus from the point
of view of wear also, it is better to operate at higher wheel
speed.
Figure 3 shows the variation of thermal damage

constraint, wheel wear parameter constraint, surface
roughness constraint, and combined objective function with
workpiece speed. Figure 3 is plotted neglecting the machine
tool stiffness constraint as it has almost constant positive
values for all values of workpiece speed. As shown in
Fig. 3, the combined objective function value reduces (as
workpiece removal parameter increases and cost reduces)
with increase in workpiece speed. Thus, higher value of
workpiece speed is desirable. However, at any value of
workpiece speed higher than 10m/min (i.e., lower bound
value), the surface roughness constraint is violated. This is
due to the fact that if the workpiece speed is high, then the
wheel wear increases.
Figure 4 shows the variation of wheel wear parameter

constraint, surface roughness constraint, and combined
objective function with depth of dressing. Since the thermal
damage constraint and machine tool stiffness constraint are
having almost constant positive values for all values of
wheel speed, Fig. 4 is plotted neglecting thermal damage

Figure 4.—Variation of wheel wear parameter constraint (C2), surface
roughness constraint (C4), and combined objective function �ZR� with depth
of dressing.

constraint and machine tool stiffness constraint. As shown
in Fig. 4, the combined objective function value decreases
with the increase in depth of dressing. Thus the higher
value of depth of dressing is desirable. However, for any
value of depth of dressing higher than 0.11mm, the surface
roughness constraint is violated. This confirms the optimum
value depth of dressing selected using particle swarm
optimization algorithm for rough grinding operation.
Figure 5 shows variation of wheel wear parameter

constraint, surface roughness constraint, and combined
objective function with lead of dressing. Since the thermal
damage constraint and machine tool stiffness constraint are
having almost constant positive values for all values of
wheel speed, Fig. 5 is plotted neglecting thermal damage
constraint and machine tool stiffness constraint. As shown
in Fig. 5, the combined objective function value initially
increases up to a certain value and thereafter decreases with
increase in lead of dressing. Thus, the minimum value of
combined objective function occurred at both, lower bound
and upper bound values of lead of dressing. However, the
upper bound value of lead of dressing should be selected, as
at lower bound value of lead of dressing, surface roughness
constraint is violated.
Table 3 shows the optimum process parameter data

for above example, along with the previously published
results using other methods. As shown in Table 3, although
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Figure 5.—Variation of wheel wear parameter constraint, surface roughness
constraint, and combined objective function �ZR� with lead of dressing �L�.

the result of optimization using differential evolution
algorithm [7] seems to be better than that using PSO, is
erroneous and the corrected result is not valid as the surface
roughness value (1�87�m) exceeds than the specified
value (1�8�m). Using PSO algorithm, the improvement in

Table 4.—Optimum process parameter values for finish grinding operation
obtained by using PSO algorithm.

Vs

(m/min)
Ra

(m/min)
Vw

(mm)
doc

(mm/rev)
L

($/piece)
CT (mm3/
min-N)

WRP

��m�

2023 22.7 0.01 0.137 7.11 20.01 0.79

combined objective function for rough grinding over that of
QP [2] is 76% and GA [4] is 19.78%. This improvement is
mainly due to use of better optimization technique.

Example 2
This example presents the multiobjective optimization of

finish grinding process. The combined objective function
formulated for finish grinding operation (ZF ) is given in
Eq. (25):

Min.ZF = W ∗
1 �CT/C

∗
T �+W ∗

3 �Ra/R
∗
a�� � (25)

where W1 and W3 are the weighting factors with value 0.3
and 0.7, respectively; subjected to the constraints specified
by Eqs. (7), (9), and (12).
Parameters bounds for the four process variables are same

as given in Example 1. For finish grinding, the values of
operating parameters of PSO algorithm ‘w,’ ‘c1,’ and ‘c2’
selected are: inertia weight factor �w� = 0�65; acceleration
coefficients: c1 = 1�65 and c2 = 1�55.
The optimum process parameter values obtained by using

PSO algorithm are given in Table 4.
For the selected values of optimization parameters, the

convergence of the PSO algorithm is shown in Fig. 6.

Figure 6.—Convergence of PSO algorithm for finish grinding.

Table 3.—Results of optimization for rough grinding operation.

Method
Author(s)
COF Vs Vw doc L CT WRP Ra

Q.P. Wen et al. [2] 2000 19.96 0.055 0.044 6.2 17.47 1.74 −0�127
GA Saravanan et al. [4] 1998 11.30 0.101 0.065 7.1 21.68 1.79 −0�187
DE Gopala [6] 2023 10.00 0.130 0.109 7.9 26.57 1.80a −0�249
DE 2023 10.00 0.130 0.109 7.9 26.57 1.87b −0�249
PSO 2023 10.00 0.110 0.137 8.33 25.63 1.798 −0�224

a: Values wrongly calculated by Gopala [6]; b: Corrected values.
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Table 5.—Results of optimization for finish grinding operation.

Method
Author(s)
COF Vs Vw doc L CT WRP Ra

Q.P. Wen et al. [2] 2000 19.99 0.052 0.091 7.7 20.00 0.83 0.554
GA Saravanan et al. [4] 1986 21.40 0.024 0.136 6.6a 20.08 0.83 0.521a
GA 1986 21.40 0.024 0.136 7.36b 20.08 0.83 0.542b
DE Gopala [6] 2170 17.49 0.008 0.137 7.48 20.33 0.65 0.497
PSO 2023 22.7 0.01 0.137 7.11 20.01 0.79 0.520

a: Values wrongly calculated by Saravanan et al. [4], b: Corrected values.

Table 5 shows the optimum process parameter data for
the above example, along with the previously published
results using other methods. As shown in Table 5, although
the result of optimization using differential evolution
algorithm [7] seems to be better than that using PSO, is not
valid as the values of some process parameters like wheel
speed (Vs) and depth of dressing (doc) lies outside their
respective bounds, (Vs = 2170 > 2023 and doc = 0�008 <
0�01). The result obtained by using genetic algorithm [4]
is erroneous. By using PSO algorithm, the improvement in
combined objective function for finish grinding over that of
QP [2] is 6.54% and genetic algorithm [4] is 4.23%.

Conclusions

In the present work, multiobjective optimization aspects
of rough grinding as well as finish grinding process
parameters are considered using a PSO algorithm. The
three objectives considered are, minimization of production
cost, maximization of production rate and maximization
of surface finish subjected to the constraints of thermal
damage, wheel wear parameter, and machine tool stiffness.
It is observed that the results obtained by using
particle swarm optimization algorithm outperformed other
optimization techniques such as QP, GA, and DE algorithm
for both rough grinding as well as finish grinding operations.
The performance of the PSO in terms of convergence

rate and accuracy of the solution is studied. Compared to
other nonconventional optimization methods, few trials are
required to predict the best and worst operating parameters
of particle swarm optimization algorithm. The proposed
algorithm requires only 30 to 40 iterations for convergence
to the optimal solution. The algorithm can also be easily
modified to suit optimization of process parameters of other
machining processes such as milling, turning, drilling, etc.
Also the proposed algorithm can efficiently handle the
multiobjective optimization models.
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