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Abstract: The selection of optimum values of important process parameters of electrochemical
machining processes such as the tool feed rate, electrolyte flow velocity, and applied voltage play
a significant role in optimizing the measures of process performance. These performance mea-
sures generally include dimensional accuracy, tool life, material removal rate, and machining
cost. In this paper, a particle swarm optimization algorithm is presented to find the optimal com-
bination of process parameters for an electrochemical machining process. The objectives consid-
ered are dimensional accuracy, tool life, and thematerial removal rate subjected to the constraints
of temperature, choking, and passivity. Both single- and multi-objective optimization aspects are
considered. The results of the proposed algorithm are compared with the previously published
results obtained by using other optimization techniques.

Keywords: electrochemical machining, multi-objective optimization, particle swarm optimi-
zation

1 INTRODUCTION

Traditional machining processes, such as turning,
grinding, drilling, milling, etc., remove material by
chip formation, abrasion, or microchipping. There
are situations, however, where these processes are
not satisfactory, economical, or even possible, for
the following reasons [1]:

1. The hardness and strength of the material is very
high (typically above 400 HB) or the material is
too brittle.

2. The workpiece is too flexible, slender, or delicate
to withstand the cutting or grinding forces, or the
parts are too difficult to fix.

3. The shape of the part is complex.
4. Surface finish and dimensional tolerance require-

ments are more rigorous than those obtained by
other processes.

5. Temperature rise and residual stresses in the
workpiece are not desirable or acceptable.

These requirements have led to the development
of chemical, electrochemical, thermal, electrothermal,
mechanical, and other means of material removal.
Beginning in the 1940s, these advanced methods
are called non-traditional or unconventional machin-
ing processes. Over the last four decades, there has
been a large increase in the number of non-traditional
machining processes (NTMP). Today, non-traditional
machining processes with vastly different capabilities
and specifications are available for a wide range of
applications. These processes are classified according
to the nature of energy employed inmachining, as dis-
cussed below:

(a) chemical and electrochemical processes like
chemical milling, electrochemical machining,
electrochemical grinding, electrochemical hon-
ing, etc.;

(b) thermal and electrothermal processes like elec-
tric discharge machining, laser beam machining,
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plasma arc machining, electron beam machin-
ing, ion beam machining, etc.;

(c) mechanical processes like ultrasonic machining,
abrasive jet machining, water jet machining, etc.;

(d) hybrid processes like electrochemical discharge
grinding, abrasive electrical discharge machin-
ing, vibration-assisted electrochemical machin-
ing, etc.

Among various advanced machining processes
mentioned above, the electrochemical machining
(ECM) process is one of the most highly developed
processes and the present study is mainly focused
on this process. The basis of the ECM process is
the phenomenon of electrolysis, whose laws were
established by Faraday in 1833. The principle and
equipment used in the ECM process are illustrated
in Fig. 1 [2]. The workpiece and tool are the anode
and cathode, respectively, of an electrolytic cell,
and a constant potential difference (usually about
5–30 V) is applied across them, producing a high
current density of 10–200A/cm2. A suitable electro-
lyte (NaCl or NaNO3 aqueous solution) is chosen
so that the cathode shape remains unchanged during
electrolysis. The electrolyte is pumped at a rate of
3–60m/s, through the gap between the electrodes,
to remove the machining waste (i.e. dissolved mate-
rial, usually metal hydroxide) and to diminish
unwanted effects such as those that arise with catho-
dic gas generation and electrical heating. The rate at
which metal is then removed from the anode is
approximately in inverse proportion to the distance
between the electrodes. As machining proceeds,
and with the simultaneous movement of the cathode
at a typical rate, e.g. 0.02 mm/s towards the anode,
the gap width along the electrode length will gradu-
ally tend to reach a steady state value. Under these
conditions, a shape that is approximately a negative
mirror image of the cathode will be reproduced on
the anode as the cathode does not alter during the

ECM process. A typical gap width then can be about
0.4 mm.

The ECM process can handle a large variety of mate-
rials, limited only by their electrochemical properties
and not by their strength. This process is characterized
by high metal removal rates for high-strength and dif-
ficult-to-machine alloys. Fragile parts that are not
easily machinable can be shaped by the ECM process.
Certain characteristics of the ECM process, such as the
ability to machine three-dimensional curved surfaces
without the striation marks, stress-free and burr-free
machining, no thermal damage to the workpiece, and
ideally no tool wear, etc., make this process widely
applicable.

However, the main limitation of the ECM process is
the high initial investment along with high power
consumption and large floor space requirement.
Therefore use of this process is a costly affair. This
problem is further compounded by the corrosion,
toxicity, and safety-related problems of the electro-
chemical machining process. Also, electrochemical
machining is a complex process and it is difficult to
predict the changes that may occur in the interelec-
trode gap. The electrolyte properties vary due to the
emission of a considerable amount of heat and gas
bubbles. In addition, hydrodynamic parameters,
such as pressure, also vary along the electrolyte flow
direction and make the analysis quite complicated.
It is therefore essential to make a careful decision
during process planning before using electrochemi-
cal machining for practical purposes. A human pro-
cess planner selects proper machining process
parameters using his or her own experience or from
the handbooks. However, these parameters do not
give an optimal result. The selection of optimum pro-
cess parameters plays a significant role in improving
the process performance and process economics by
reducing various costs.

The next section presents a brief review of the
past research work done on the optimization of
ECM process parameters.

2 REVIEW OF PAST RESEARCH WORK

Bhattacharyya et al. [3] proposed a two-dimensional
interelectrode gap model in which maximization of
the metal removal rate was considered as the objec-
tive function with the tool feed rate and electrolyte
flow velocity as the design variables. The three con-
straints considered were temperature, passivity, and
choking. However, the authors had considered only
a single-objective optimization problem and solved
the same using a graphical solution technique,
which, in itself, was less accurate. This model was
also based on many simplified assumptions, such asFig. 1 ECM principle and equipment [2]
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the constant void fraction, electrolyte conductivity as
a function of the void fraction only, and constant
electrolyte pressure along its flow path. Furthermore,
no variable bounds were used.

El-Dardery [4] proposed a cost model of the ECM
process considering various costs involved in the
process. The cost equation was arranged in terms
of decision variables, namely feed rate, electrolyte
flowrate, and voltage. The optimum values of the
decision variables were obtained by partial differ-
entiation of the cost equation with respect to the
decision variables. However, as no constraints were
considered in this model, the values of decision
variables obtained were not practical.

Hewidy et al. [5] analysed the components of ECM
cost (such as costs of power consumption, machin-
ing, electrolyte, and labour) with the objective to
set out the basic principles for selecting a suitable
electrochemical machine to meet the local produc-
tion requirements of a company. The authors men-
tioned the impossibility of having a generalized
model for this purpose. In another work, Hewidy
et al. [6] modelled the performance of ECM assisted
by low-frequency vibrations using an analytical
approach.

Acharya et al. [7] considered the multi-objective
optimization model for the ECM process with maxi-
mization of the material removal rate, minimization
of dimensional inaccuracy, and maximization of
tool life as three conflicting objectives. The decision
variables were the tool feed rate, electrolyte flow
velocity, and applied voltage. The constraints used
in this model were temperature constraint, passivity
constraint, and choking constraint. The optimi-
zation problem was solved by goal programming
after linearizing the objective functions and con-
straint equations by regression analysis. This model
overcame the limitations of the model proposed by
Bhattacharyya et al. [3]. However, it did not include
the variable bounds for feed rate and differences in
the interelectrode gap.

The drawbacks of the model proposed by Acharya
et al. [7] were overcome by Choobineh and Jain [8].
The authors had considered only two objective func-
tions, i.e. maximization of the material removal rate
andmaximization of dimensional accuracy. The third
objective to maximize the tool life was eliminated as
tool life is overachieved in most practical cases.
They used the vertex method to find appropriate dis-
tribution of the objective functions. The modified
goal-programming problem was then solved in the
same manner as in Acharya et al. [7].

Jain and Jain [9] formulated the optimization
model based on the analysis given in Acharya et al.
[7] with certain modifications, i.e. expanding the
variable bound ranges for the tool feed rate and
electrolyte flow velocity but without linearizing the

objective functions and constraints. The optimization
problem was then solved using a genetic algorithm.
However, the authors had considered only a single-
objective optimization problem, i.e. to minimize
the dimensional inaccuracy. Also the passivity con-
straint was violated in their approach. Furthermore,
the genetic algorithm has its own limitations, such
as the risk of replacement of a good parent string
with the deteriorated child, less convergence speed,
and difficulty in selecting the controlling para-
meters such as population size, crossover rate, and
mutation rate.

It is observed from the review of past work that
the graphical solution technique and mathematical
programming techniques like goal programming,
partial differentiation, etc., had been used to solve
the problem of optimization of process parameters
of electrochemical machining. However, these tradi-
tional methods of optimization do not fare well over
a broad spectrum of problem domains. Moreover,
traditional techniques are not robust. Due to the
complex nature of the optimization problem, these
techniques are not ideal for solving these problems,
as they tend to obtain a local optimal solution. To
overcome the drawbacks of traditional optimization
techniques, researchers are now using evolutionary
optimization techniques. Evolutionary computation
consists of a variety of methods including optimiza-
tion paradigms that are based on evolution mechan-
isms such as biological genetics and natural
selection. These methods use the fitness information
instead of the functional derivatives, making them
more robust and effective. The most commonly
used non-traditional optimization technique is the
genetic algorithm. However, this method provides a
near-optimal solution for a complex problem having
large numbers of variables and constraints. This is
mainly due to difficulty in determining optimum
controlling parameters. Therefore efforts are conti-
nuing to use more recent optimization algorithms,
which are more powerful, robust, and able to provide
accurate solution. This paper is intended to apply
one of such recently developed optimization algo-
rithms, known as particle swarm optimization, for
optimization of process parameters of electrochemi-
cal machining.

In the present work, an effort is made to verify
whether any improvement in the solution is possible
by employing some other recent optimization techni-
ques such as particle swarm optimization to the same
optimization model. Particle swarm optimization
(PSO) is reported to be the better algorithm for con-
tinuous optimization as well as discrete optimization
problems [10–12]. Hence, PSO is considered in this
work for single-objective optimization and multi-
objective optimization of electrochemical machining
process parameters. The optimization model given in
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Acharya et al. [7] is also considered by expanding the
variable bound ranges for the tool feed rate and elec-
trolyte flow velocity.

3 OPTIMIZATION MODEL OF
ELECTROCHEMICAL MACHINING

Formulation of the optimization model is the most
important task in the optimization process. It invol-
ves identifying decision variables to be optimized,
expressing the objective functions and constraints
as functions of decision variables, setting up the
bounds for decision variables, and finally expressing
the optimization problem as a mathematical model
in a standard format that can be directly solved by
the optimization algorithm. The optimization model
for the electrochemical machining process is formu-
lated in the present work based on the analysis
given by Acharya et al. [7]. The three decision vari-
ables considered for this model are tool feed rate
f (mm/s), electrolyte flow velocityU(cm/s), and applied
voltage V.

3.1 Objectives

The various objectives under consideration are
described below.

3.1.1 Maximization of the material removal rate

This is the product of projected area and tool feed
rate. Maximization of the tool feed rate would maxi-
mize the material removal rate (MRR) since the pro-
jected area is constant. Thus

MRRmax ¼ fmax ð1Þ
3.1.2 Maximization of dimensional accuracy

ECM is perhaps the only machining process that does
not allow the workpiece dimensions to be checked in
the course of machining. Although few techniques
such as ultrasonic measurement of the interelectrode
gap can be used [13], it is necessary to predetermine
the control parameters to ensure the desired dimen-
sional accuracy. Dimensional accuracy depends
upon the difference in the interelectrode gap from
inlet Y

i
to outlet Y

o
, which is given by

Yo � Yi ¼ Ko

Ki
� 1

� �
KiMwhiV

rwZwFf
ð2Þ

Kx

K i
¼ 1� a

0
x

� �n
1þ a Tx � TiÞð �½ ð3Þ

with Ko ¼ K
x

at the outlet. The objective of
maximizing the dimensional accuracy is attained by
minimizing ðYo � YiÞ

3.1.3 Maximization of tool life

Maximization of tool life is ensured by minimiz-
ing the number of sparks per cm as given by the
equation

Nmin ¼ aþ bEi
f 2

VU
þ c

f

V
ð4Þ

where a, b, and c are constants and

Ei ¼ 1000 ·
Aa

B

r2wZwF

KiMwhi

� �
ð5Þ

3.2 Constraints

The following three constraints are considered in this
optimization model.

3.2.1 Temperature constraint

To avoid boiling the electrolyte, the electrolyte tem-
perature at the outlet should be less than the electro-
lyte boiling temperature. Mathematically this can be
expressed as

Ti � 1

a
1� 1þ Sk f

2

1� a
0
max

� �n
U

 !1=2
2
4

3
56Tb ð6Þ

where

Sk ¼ 2ag2L

KireCeJcn
ð7Þ

g ¼ ZwFrw
Mwhi

ð8Þ

3.2.2 Passivity constraint

Oxygen evolved during electrochemical machining
forms an oxide film, which is the root cause of
passivity. To avoid passivity, the thickness of the
oxygen gas bubble layer must be greater than the
passive layer thickness. Mathematically, this can be
expressed as

Gt
f To þ 273ð Þ

Ua0
max

>1 ð9Þ

where

Gt ¼ RrfRfLg

P0tpi
ð10Þ

3.2.3 Choking constraint

Hydrogen evolved at the cathode during the ECM
process can choke the electrolyte flow. To avoid
choking the electrolyte flow, the maximum thickness
of the hydrogen bubble layer should be less than the
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equilibrium interelectrode gap. Mathematically, it
can be expressed as

Ht f
2 To þ 273ð Þ

VUa
0
max 1� a

0
max

� �n
1þ a To � Tið Þ½ �61

ð11Þ

where

Ht ¼ MhRLg
2

ZhPoFKi
ð12Þ

The next section briefly describes the PSO algorithm.

4 PARTICLE SWARM OPTIMIZATION (PSO)

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Kennedy and
Eberhart [10]. It exhibits common evolutionary com-
putation attributes, including initialization with a
population of random solutions and searching for
optima by updating generations. Potential solutions,
called particles, are then ‘flown’ through the problem
space by following the current optimum particles.
The particle swarm concept was originated as a simu-
lation of a simplified social system. The original
intent was to simulate the graceful but unpredictable
choreography of a bird flock graphically. Each parti-
cle keeps track of its coordinates in the problem
space, which are associated with the best solution
(fitness) it has achieved so far. This value is called
‘pBest’. Another ‘best’ value that is tracked by the
global version of the PSO is the overall best value
and its location obtained so far by any particle in
the population. This location is called ‘gBest’. The
PSO concept consists of, at each step, changing the
velocity (i.e. accelerating) of each particle towards
its ‘pBest’ and ‘gBest’ locations (global version of
PSO). Acceleration is weighted by a random term
with separate random numbers being generated for
acceleration towards ‘pBest’ and ‘gBest’ locations.
The updates of the particles are accomplished as
per the following equations

Viþ1 ¼ wVi þ c1r1 pBesti � Xið Þ þ c2r2 gBesti � Xi

� �
ð13Þ

Xiþ1 ¼ Xi þ Viþ1 ð14Þ
Equation (13) calculates a new velocity (Vi+1) for each
particle (potential solution) based on its previous
velocity, the best location it has achieved (‘pBest’) so
far, and the global best location (‘gBest’) the population
has achieved. Equation (14) updates an individual
particle’s position (Xi) in the solution hyperspace.
The two random numbers r1 and r2 in equation (13)
are independently generated in the range [0,1].

The acceleration constants cl and c2 in equation
(13) represent the weighting of the stochastic accel-
eration terms that pull each particle towards ‘pBest’
and ‘gBest’ positions, where c1 represents the confi-
dence the particle has in itself (cognitive parameter)
and c2 represents the confidence the particle has in
a swarm (social parameter). Thus, adjustment of
these constants changes the amount of tension in
the system. Low values of the constants allow parti-
cles to roam far from target regions before being
tugged back, while high values result in abrupt move-
ment towards, or through target regions [12]. The
inertia weight w plays an important role in the PSO
convergence behaviour since it is employed to con-
trol the exploration abilities of the swarm. The large
inertia weights allow wide velocity updates to explore
the design space globally while small inertia weights
concentrate the velocity updates to nearby regions
of the design space. The optimum use of the inertia
weight w provides improved performance in a num-
ber of applications. The effect of w, c1, and c2 on
convergence for standard numerical benchmark
functions is provided by Bergh and Engelbrecht [14].

Particle velocities on each dimension are confined
to a maximum velocity parameter Vmax, specified by
the user. If the sum of accelerations cause the velo-
city on that dimension to exceed Vmax, then the velo-
city on that dimension is limited to Vmax.

Although the heuristics are developed to deter-
mine the inertia weights and acceleration constants
for guaranteed convergent trajectories, it is mainly
applicable to single-objective optimization. It is very
difficult to obtain the values of inertia weights and
acceleration constants for multi-objective optimiza-
tion problems, due to the inherent conflicting nature
of objectives to be optimized. To overcome this pro-
blem a time variant PSO was described by Tripathi et
al. [15]. The proposed algorithm was made adaptive
in nature by allowing its vital parameters, i.e. inertia
weights and acceleration constants, to change with
iterations. This adaptiveness helps the algorithm to
explore the search space more efficiently. A mutation
operator was also included to overcome the premature
convergence. The performance of the algorithm was
then measured with respect to the main four perfor-
mance measures, i.e. convergence rate, diversity,
purity, and minimal spacing.

Unlike a genetic algorithm, the PSO algorithm does
not need a complex encoding and decoding process
or a special genetic operator. PSO takes the real num-
ber as a particle in the aspect of the representation
solution and the particles update themselves with
internal velocity. In this algorithm, the evolution
looks only for the best solution and all particles
tend to converge to the best solution. In the imple-
mentation process, particles randomly generated
at the beginning or generated by internal velocity
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during the evolutionary process usually violate the
system constraints, resulting in infeasible particles.
Therefore, the handling of system constraints, parti-
cularly non-linear equation constraints and the mea-
surement and evaluation of infeasible particles, is
very important. To cope with constrained problems
with evolutionary computation, various approaches
such as rejection of infeasible individuals, repair of
infeasible individuals, replacement of individuals by
their repaired versions, and penalty function meth-
ods can be adopted. Among them, the penalty func-
tion methods are particularly promising [12], as
evidenced by recent developments.

The next section presents two examples consider-
ing single-objective and multi-objective optimiza-
tion to demonstrate and validate the proposed
PSO algorithm with constant values of inertia weight
and acceleration coefficient. Variable inertia weight
and acceleration coefficients may be applied to the
multi-objective optimization problem [15]. However,
the multi-objective optimization problem considered
in the present work is limited to three objectives sub-
jected to only three constraints; hence the constant
values of inertia weight and acceleration coefficients
are used. The values of inertia weight and accelera-
tion coefficients, for which the algorithm shows bet-
ter performance in terms of the convergence rate,
are obtained through several trials with an initial
guess as given by Bergh and Engelbrecht [14].

5 EXAMPLES

To demonstrate and validate the proposed PSO
algorithm, two examples are considered for the
optimization of electrochemical machining process
parameters, based on the model given by Acharya
et al. [7].

5.1 Example 1

This example presents the single-objective optimi-
zation case for minimization of dimensional inaccu-
racy subjected to the constraints of temperature,
passivity, and choking. Data for this example
are the same as those considered by Acharya et al.
[7] and are given in Table 1. On substituting the
values given in Table 1 in equations (1) to (12),
the following objective function and constraints are
formulated:

Objective function:

Minimize Z ¼ f 0:381067U�0:372623V 3:155414e�3:128926

ð15Þ
where, Z ¼ dimensional inaccuracy (mm)

Constraints:

(a) Temperature constraint:

1� f 2:133007U�1:088937V�0:351436e0:321968
� �

> 0

ð16Þ

(b) Passivity constraint:

f �0:844369U�2:526076V 1:546257e12:57697
� �� 1> 0

ð17Þ

(c) Choking constraint:

1� f 0:075213U�2:488362V 0:240542e11:75651
� �

> 0 ð18Þ

Parameter bounds:

86 f 6 200 (mm/s)
300 6 U 6 5000 (cm/s)
3 6 V 6 21 (V)

Now, the proposed PSO algorithm is applied
to solve the above optimization problem. The follow-
ing parameters of optimization are selected after
various trials:

(a) maximum number of iterations: 50;
(b) inertia weight factor (w): 0.65;
(c) acceleration coefficients: c1 ¼ 1.65 and c2 ¼ 1.75.

Table 2 shows the optimum process parameter
data for Example 1, along with the previously pub-
lished results using other methods. The optimum pro-
cess parameter values are f ¼ 8 mm/s, U ¼ 300 cm/s,
and V ¼ 9.835 V. It is observed from the results that
the solution obtained by PSO gives a significantly
smaller value of dimensional inaccuracy as com-
pared to that of Acharya et al. [7], Choobineh and
Jain [8], and Jain and Jain [9] when applied to the
model of Acharya et al.[7]. This improvement is
mainly due to the use of a better optimization techni-
que, PSO. It is also observed that the results obtained
by using a genetic algorithm [9] violate the passivity
constraint when applied to the model as Acharya
et al. [7]. Jain and Jain [9] had used the same model
as Acharya et al. [7] for optimization of ECM process
parameters. Even though Jain and Jain [9] had men-
tioned that all constraints were satisfied, when the
values obtained by them are substituted in the con-
straint equations, the passivity constraint becomes
violated. The same is the case for the value of dimen-
sional inaccuracy (Z). Jain and Jain [9] mentioned
that they had obtained an optimum value of Z equal
to 7.4633. However, by putting the optimum values
of f, U, and V obtained by Jain and Jain [9] using the
genetic algorithm in the model proposed by Acharya
et al. [7], the value of Z turns out to be 33.62 with
violation of the passivity constraint.
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Optimality of the above-mentioned solution can be
confirmed from Figs 2 to 4. As shown in Fig. 2, the
dimensional inaccuracy increases with the tool feed
rate. Therefore, the smallest possible value of the tool
feed rate will minimize the dimensional inaccuracy.
Also the passivity constraint will be violated if a higher

value of tool feed rate is selected. Hence the tool feed
rate at the lower bound ( f ¼ 8 mm/s) is selected.

The variation of electrolyte flow velocity is shown
in Fig. 3. As the dimensional inaccuracy decreases
with an increase in the electrolyte flow velocity,
selection of a higher value of electrolyte flow

Table 1 Values of the constants and decision variables used in the single-objective optimization problem

Notation Details Unit Value

a, b, and c Constants used in the tool life equation �2.05, �0.325, and 26.78
Aa Projected area cm2

B Width of workpiece cm
Ce Specific heat of electrolyte cal/g �C 0.997
f Feed rate mm/s
fmax Maximum feed rate mm/s
F Faraday’s constant coulombs 96500
i Ionic current density A/cm2 1.25
Jcn Joule’s constant J/cal 4.186
Ki Electrical conductivity of electrolyte at inlet S/cm 0.3333
Ko Electrical conductivity of electrolyte at outlet S/cm
Kx Electrical conductivity of electrolyte at a distance S/cm

x from inlet
L Length of workpiece cm 3
Mh Atomic weight of hydrogen g 1
Mw Atomic weight of workpiece g 56
n Exponent
Nmin Minimum number of sparks per cm
P Pressure of electrolyte MPa
Po Pressure of electrolyte at outlet MPa
R Gas constant g cm/g K 4.203· 104
Rf Roughness factor 1.25
tp Time taken for film formation s 60
Tb Permitted electrolyte temperature �C 65
Ti Room temperature �C 27
To Electrolyte temperature at outlet �C
Tx Electrolyte temperature at a distance x from inlet �C
U Electrolyte flow velocity cm/s
V Voltage V
Yi Interelectrode gap at inlet mm 0.0002
Yo Interelectrode gap at outlet mm
Zh Valency of hydrogen 2
Zw Valency of workpiece 2

a Temperature coefficient of electrolyte conductivity /�C 0.02
a0 Void fraction
a0

max Maximum void fraction 0.7
hi Current efficiency 0.95
re Density of electrolyte g/cm3 1
rf Passive film density g/cm3 0.042
rh Density of hydrogen g/cm3 7.86
rw Density of workpiece g/cm3 7.86
s Slip ratio between electrolyte and hydrogen gas 1

Table 2 Results of single-objective optimization

Method Author(s) f(mm/s) U(cm/s) V(V) TC PC CC Z

GP Acharya et al. [7] 18.96 179 15 0.001 2.422 0.204 100
Fuzzy sets Choobineh and Jain [8] 12.75 400 21 0.841 0.0559 0.886 181.07
GA* Jain and Jain [9] 8 2978.45 16.5 0.992 �0.993 0.999 33.62
PSO 8 300 9.835 0.895 0.001 0.810 15.452

TC ¼ value of temperature constraint; PC ¼ value of passivity constraint; CC ¼ value of choking constraint; Z ¼ dimensional inaccuracy
(single-objective); GP ¼ goal programming.
* For comparison purposes, this result is obtained by putting the optimum values of f, U, and V obtained by Jain and Jain [9] using a genetic
algorithm (GA) in the model proposed by Acharya et al. [7].

JEM1158 � IMechE 2008 Proc. IMechE Vol. 222 Part B: J. Engineering Manufacture

Multi-objective optimization of electrochemical machining process parameters 955



velocity is desirable. However, the value of electrolyte
flow velocity at the lower bound (U ¼ 300 cm/s) is
obtained, for at any higher value than this the passiv-
ity constraint is violated. This may be the reason
for violation of the passivity constraint for the
solution obtained by using the genetic algorithm [9]
when used in the optimization model of Acharya
et al. [7].

Figure 4 shows that the dimensional inaccuracy
increases with an increase in voltage. Hence,

selection of a lower value of applied voltage is desir-
able. However, to ensure the non-negativity of the
passivity constraint, the value of voltage (V) equal to
9.835 V is selected.

5.2 Example 2

This example presents a multi-objective optimization
case considering all three objectives, namely material
removal rate, tool life, and dimensional inaccuracy
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subjected to the constraints of temperature, passivity,
and choking.

The first objective is to minimize the dimensional
inaccuracy as given by the following expression

Z1 ¼ f 0:381067U�0:372623V 3:155414e�3:128926 ð19Þ
where Z1 ¼ dimensional inaccuracy (mm).

The second objective is to maximize the tool life by
minimizing the number of sparks per millimetre,
which is given by the following expression

Z2 ¼ f 3:528345U0:000742V�2:52255e0:391436 ð20Þ
where Z2 ¼ number of sparks per millimetre.

The third objective is to maximize the material
removal rate,which is givenby the following expression

Z3 ¼ f (21)

where Z3 ¼ material removal rate ðmm=sÞ
Decision variables, variable bounds, and con-

straints are the same as specified in Example 1. The
normalized combined objective function (Z) is for-
mulated by considering different weightages to all
objectives and is given by the following equation

Z ¼ w1Z1=Z1minð Þ þ w2Z2=Z2minð Þ � w3Z3=Z3maxð Þ
ð22Þ

where
Z1min¼minimum value of dimensional inaccuracy

obtained when the single-objective opti-
mization problem considering only dimen-
sional inaccuracy as an objective was
solved for the given three constraints ¼
15.452 mm

Z2min¼minimum value of number of sparks per
millimetre obtained when the single-
objective optimization problem consider-
ing only the tool life (in terms of number
of the sparks) as an objective was solved
for the given three constraints ¼ 1.055

Z3max¼maximum value of feed rate obtained when
the single-objective optimization problem
considering only the material removal rate
(in terms of the feed rate) as an objective
was solved for the given three constraints
¼ 25 mm/s.

w1, w2, and w3 ¼ weightages assigned to the objec-
tive functions Z1, Z2, and Z3 respectively.

The values of weightages can be calculated by using
the analytic hierarchy process [16]. However, in the
present example, equal weightages are assumed.

The following parameters of optimization were
selected after various trials:

(a) maximum number of iterations: 50;
(b) inertia weight factor (w): 0.65;
(c) acceleration coefficients: c1 ¼ 1.65 and c2 ¼ 1.75.

The results of multi-objective optimizations along
with the previously published results using other meth-
ods are as given inTable 3. It is observed from the results
that the combined objective function (Z) obtained
by PSO shows substantial improvement over Acharya
et al. [7] and Choobineh and Jain [8]. The results
obtained by putting the optimum values of the genetic
algorithm [9] in the model proposed by Acharya et al.
[7] are also shown for comparisonpurposes for the three
objectives and the combined objective function.
Although the results obtained by the genetic algorithm
seem to be better than those obtained by PSO, they vio-
late the passivity constraint and hence are not valid.

In the present work, both single objective andmulti-
objective aspects of optimization are considered using
the PSO algorithm. The comparative performance of
single-objective and multi-objective optimizations is
shown in Table 4. As shown in Table 4, the solution
converges to a higher value of voltage using multi-
objective optimization as compared to the results
obtained for single-objective optimization. As the vol-
tage increases, the dimensional inaccuracy (Z1)
increases, but the number of spark (Z2) decreases
(and hence increasing the tool life) substantially. The
value of the material removal rate (Z3) is the same
for both single-objective optimization and multi-
objective optimization. The combined objective func-
tion (Z) therefore seems to be better.

6 CONCLUSIONS

The selection of proper values for the parameters
of an electrochemical machining process is crucial
to the efficiency and high quality of the outcome of

Table 3 Results of multi-objective optimization

Method f(mm/s) U(cm/s) V(V) TC PC CC Z1 Z2 Z3 Z

GP 18.96 179 15 0.001 2.422 0.204 100 51.79 18.96 18.22
Fuzzy set 12.75 400 21 0.841 0.0559 0.886 181.1 5.47 12.75 5.47
GA* 8 2978.45 16.5 0.992 �0.993 0.999 33.62 1.94 8 1.23
PSO 8 300 13.225 0.905 0.583 0.799 39.34 3.39 8 1.811

Z ¼ normalized combined objective function.
* For comparison purposes, this result is obtained by putting the optimum values of f, U, and V obtained by Jain and Jain [9] using a genetic
algorithm (GA) in the model proposed by Acharya et al. [7].
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that process. The efficiency and quality of the
outcome may be measured based on one or more
objectives. These objectives, generally, are functions
of the operating parameters and often their func-
tional forms are defined through careful deduction
of physical laws of nature.

In the present work, both single-objective optimiza-
tion and multi-objective optimization aspects of
electrochemical machining process parameters are
considered using a PSO algorithm. The three objec-
tives considered are minimization of dimensional
inaccuracy, maximization of tool life by minimizing
the number of sparks per millimetre, and maximiza-
tion of the material removal rate subjected to the con-
straints of temperature, passivity, and choking. It is
observed that the results obtained by using the PSO
algorithm show significant improvement over other
optimization techniques such as goal programm-
ing, fuzzy set theory, and genetic algorithms. When
the results of single-objective and multi-objective
optimizations obtained by PSO are compared, the
combined objective function seems to be better. How-
ever, it can be observed that in both cases, the tool life
is overachieved, as indicated by very low values of the
number of sparks. Therefore, the solution obtained
using single-objective optimization is preferred as it
gives maximum dimensional accuracy along with the
necessary tool life.

In this paper, the performance of PSO in terms of
convergence rate and accuracy of the solution is stu-
died. Compared to other non-conventional optimiza-
tion methods, few trials are required to predict the
best and worst operating parameters of the PSO algo-
rithm. The proposed algorithm requires only 30 to
40 iterations for convergence to the optimal solution.
The algorithm can also be easily modified to suit
optimization of process parameters of other advanced
machining processes such as electrical discharge
machining, ultrasonic machining, abrasive jet machin-
ing, water jet machining, etc. Also, the proposed algo-
rithm can handle the multi-objective optimization
models efficiently.
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