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Abstract: The optimum selection of process parameters is essential for 
advanced machining processes as these processes incur high initial investment, 
tooling cost, operating and maintenance cost. This paper presents the results  
of optimisation of process parameters of mechanical type advanced machining 
processes using a simulated annealing algorithm. The results obtained are  
then compared with those obtained using a genetic algorithm. It is observed 
that simulated annealing algorithm has outperformed the genetic algorithm in 
the present work. 
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1 Introduction 

The use of new materials like carbides, ceramics, nimonics, diamonds, etc., is increasing 
in industries like aerospace, nuclear engineering and many others owing to their  
high strength to weight ratio, hardness and heat resistant qualities (Benedict, 1987).  
The conventional machining processes in spite of recent technological advancements  
are inadequate to machine these materials from standpoint of economic production. 
Besides, machining of these materials into complex shapes is difficult, time consuming 
and sometimes impossible. Advanced machining processes have emerged to overcome 
these difficulties. According to the nature of energy employed in machining, these 
processes are classified as below: 

1 Mechanical processes like Ultrasonic Machining (USM), Abrasive Jet Machining 
(AJM), Water Jet Machining (WJM) and Abrasive Water Jet Machining (AWJM). 

2 Chemical and electrochemical processes like Electro Chemical Machining (ECM), 
Electro Chemical Grinding (ECG) and Electro Chemical Honing (ECH) 

3 Thermal and electro thermal processes like Electric Discharge Machining (EDM), 
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Ion Beam 
Machining (IBM). 

The present study is mainly focused on mechanical type advanced machining processes. 
Most of these processes (except WJM) use abrasive particles as tool, and the work 
material is invariably removed by the phenomenon of erosion. Erosion or erosive cutting 
is defined as removal of material from the work surface by a stream of impinging  
solid abrasive particles carried in a suitable carrier. Basically, the process of material 
removal by erosion is similar to that of grinding and single point tool cutting in the sense 
that material is removed by an individual particle (or tool) by displacing (in ductile 
materials) or fracturing (in brittle materials). Erosion is difficult to describe due to 
uncertainties involved in determining number, shape, velocity and direction of the 
striking particles. Material removal through erosion may take place either due to cutting 
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wear or deformation wear or both depending on the work material characteristics and 
conditions of striking. 

Comprehensive qualitative and quantitative analysis of the material removal 
mechanism and subsequently the development of analytical models of material  
removal are necessary for a better understanding and to achieve the optimum process 
performance. Analytical material models are also necessary for simulation, optimisation 
and planning of the process, prediction of process performance indicators, verification 
and improvements of experimental results, selection of appropriate models for specific 
type of work material and machining conditions. Since the inception of different 
advanced machining processes, various investigators have proposed different analytical 
models of material removal as functions of controllable process variables. 

An analytical model for erosive cutting of brittle materials by normal impact of 
abrasives was developed by Sheldon and Finnie (1966a). Sarkar and Pandey (1976) 
proposed a model for AJM of the brittle materials considering the effect of nozzle 
pressure on the material removal rate. 

Moore and King (1980) studied abrasive wear and indentation properties, hardness 
and fracture of a wide range of engineering ceramics and brittle solids and concluded  
that both plastic deformation mechanisms and fracture mechanisms cause material 
removal during the abrasive wear of brittle solids. The effects of various input parameters  
such as stand-off distance, mixture ratio, carrier fluid pressure, grain size, etc., on the 
material removal rate as well as penetration rate in the AJM were presented by  
Verma and Lal (1984). Experimental results indicated that both material removal rate  
as well as penetration rate depends on stand off distance, mixture ratio, and pressure  
and grain size. 

Sundarajan (1984) proposed an empirical equation relating the volume of the crater 
formed during high velocity oblique impact tests to the velocity and angle of impact  
and to the target material hardness, which can predict the volume of the crater  
formed quite accurately over a wide range of impact velocities. Chen et al. (1996) 
developed experimental techniques based on statistical experimental design principles 
and theoretical investigations were conducted to study AWJM cutting of alumina-based 
ceramics. Semi-empirical cutting depth equations were determined for the prediction and 
optimisation of the abrasive WJM cutting performance.  

Wang and Rajurkar (1996) suggested more realistic model considering the stochastic 
and dynamic nature of the ultrasonic process. However, it is applicable to perfectly brittle 
materials only. Choi and Choi (1997) developed an analytical model for material removal 
in AWJM of brittle material. The proposed model was experimentally evaluated.  
The experimental results suggested that the abrasion mechanisms for ductile and brittle 
materials are different. For ductile materials, material removal is mainly due to plastic 
deformation, while crack propagation plays a major role for brittle materials, due to 
which the material removal rate is high for brittle materials in case of AWJM. 

Lee and Chan (1997) measured the effects of amplitude of the tool tip, the static load 
applied and the size of the abrasive on the material removal rate and the surface 
roughness and concluded that any increase in the amount of energy imparted to the 
engineering ceramics in terms of the amplitude of the tool vibration, the static load 
applied and the grit size of the abrasive, would result in an increase in the material 
removal rate and roughening of the machined surfaces. 
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Chen et al. (1998) investigated geometry characteristics, especially of the  
uncut-through kerf of ceramics. The experimental study involving multi-directional 
cutting and the application of cutting head oscillation techniques in the AWJM  
was conducted for enhancing AWJM cutting quality. Paul et al. (1998) developed  
a mathematical model to predict the total depth of cut of brittle polycrystalline  
material by AWJM taking into account the variation in the shape and size of the  
abrasive particles. Process parameter optimisation for AWJM using fuzzy rules  
was carried out by Chakravathy and Babu (1999) with objectives to maximise the 
production rate and to minimise abrasive consumption. Jain and Jain (2001) reviewed 
various analytical and some semi-empirical/empirical material removal models for 
different mechanical type advanced machining processes comprehensively and 
exhaustively. 

Khan and Haque (2007) presented a comparative analysis of the performance of 
garnet, aluminium oxide and silicon oxide during AWJM of glass. The study showed  
that width of cut increases as the stand-off distance of the nozzle from the work is 
increased which is due to divergence shape of the abrasive water jet. Jain et al. (2007) 
used genetic algorithms for optimisation of process parameters of mechanical type 
advanced machining processes. The authors had considered optimisation of four 
processes namely, USM, AJM, WJM and AWJM. The formulated optimisation models 
were multi variable, non-linearly constrained single objective optimisation problems.  
To ensure that the obtained optimum solution was global optimum or near global 
optimum, concept of statistical DOEs was used to optimise the three most influential and 
important parameters of real–coded GA namely population size, SBX parameter,  
and polynomial mutation parameter. The optimisation model proposed by the authors was 
based on the material removal rate only. Further, different crossover and mutation 
probabilities were not tried to check the accuracy of results. 

Advanced machining processes are having relatively higher initial investment cost, 
tooling cost, power consumption and maintenance. It is therefore very essential to 
optimise the various parameters of these processes to get higher material removal rate 
and low specific energy in order to make them cost effective. The traditional methods of 
optimisation and search do not fare well over a broad spectrum of problem domains. 
Traditional techniques are not efficient when practical search space is too large. 
Numerous constraints and number of passes make the machining process optimisation 
problem more complicated. Traditional techniques such as geometric programming, 
dynamic programming, branch and bound techniques and quadratic programming may 
not be suitable to solve these problems and they are inclined to obtain a local optimum 
solution. 

It is with this spirit, a simulated annealing algorithm for optimisation of process 
parameters of advance machining processes is proposed in this paper. This paper also 
compares the results obtained using genetic algorithm by Jain et al. (2007). 

The next section describes the simulated annealing algorithm. 

2 Simulated annealing algorithm 

The simulated annealing algorithm simulates this process of slow cooling of molten metal 
through annealing to achieve the minimum function value in the minimisation problem. 
The cooling phenomenon is simulated by controlling a temperature like parameter 
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introduced with the concept of Boltzman probability distribution. According to Boltzman 
probability distribution, a system in a thermal equilibrium at a temperature ‘T’ has its 
energy distributed probabilistically according to the following expression: 

P(E) = exp(–E/KT) (1) 

where ‘K’ is Boltzman constant. This expression suggests that a system at high a 
temperature has almost uniform probability of being at any energy state. Therefore  
by controlling the temperature ‘T’ and assuming that the search process follows Boltzman 
probability distribution, the convergence of an algorithm can be controlled. At any 
current point X(t), the new value of the variables for the successive iterations is calculated 
using the formula, 

1
( 1) ( )

2

N

i
i

NX t X t Rσ
=

 + = + − 
 
∑  (2) 

where σ = (Xmax – Xmin)/6; R = Random number; and N = Number of random numbers 
used. 

In this work six random numbers are used. While starting the process, the initial 
values for the variables are taken as the average of the respective variable limits. 

Using the Metropolis algorithm (Metropolis et al., 1953), we can say that the 
probability of the next point being accepted at X(t + 1) depends on the difference in  
the function value at these two points or on ∆E = E(t + 1) – E(t) and is calculated using 
the Boltzman probability distribution: 

P(E(t + 1)) = min (1, exp(–∆E/KT). (3) 

If ∆E ≤ 0, this probability is one and the point X (t + 1) is always accepted.  
In the function minimisation context, this makes sense because if the functional value at 
X(t + 1) is better than X (t), the point X (t + 1) must be accepted. The interesting situation 
happens when ∆E is bigger than zero, which implies that the function value at X(t + 1)  
is worst than at X(t). According to many traditional algorithms, the point should not  
be chosen. According to the Metropolis algorithm, there is some finite probability of 
selecting the point X(t + 1) even though it is worst than point X(t). However  
the probability is not same in all situations. This probability depends on the magnitude  
of ∆T and T values.  

Simulated annealing algorithm begins with an initial point and a high temperature T. 
A second point is created at random in the vicinity of .the initial point and the difference 
in the function values [∆E] at these two points is calculated. If the second point has a 
smaller function value, the point is accepted, otherwise the point is accepted with the 
probability of exp [–∆E/T]. This completes an iteration of this simulated annealing 
procedure. In the next generation, another point is created at random in the 
neighbourhood of the current point and the Metropolis algorithm is used to accept or 
reject the point in order to simulate the thermal equilibrium at every temperature the 
number of points ‘n’ is usually tested at a particular temperature, before reducing the 
temperature. The algorithm is terminated when a sufficiently small temperature is 
obtained or a small enough change in function value is found. The flowchart for 
simulated annealing algorithm is shown in Figure 1. 
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Figure 1 Flow chart for simulated annealing algorithm 

 

3 Examples 

Now to demonstrate and validate the proposed simulated annealing algorithm,  
four examples are considered. Jain et al. (2007) had presented a genetic algorithm 
approach for optimisation of the process parameters of four mechanical type advanced 
machining processes namely, USM, AJM, WJM and AWJM. 

Now, considering the same objective functions and constraints for the four 
mechanical type advanced machining processes, a simulated annealing algorithm is 
applied for optimisation and discussed in the following subsections. 

3.1 Ultrasonic Machining (USM) 

The term ultrasonic is used to describe the vibratory wave of frequency above that of 
upper frequency limit of the human ear. USM is a process in which material is removed 
due to action of abrasive grains. The abrasive particles are driven into the work surface 
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by a tool oscillating normal to the work surface at a high frequency. For this process, the 
material removal rate is not a function of a load or imposed stress on the tool.  
There appears no simple relationship between the material removal rate and the physical 
characteristic of the process such as tensile strength, percent elongation, microhardness or 
impact strength (Pandey and Shan, 1980). Various researchers had reported the different 
relationships between the amplitude of vibration and material removal rate. The results 
presented by Shaw (1956) indicating the variation of the material removal rate to be 
proportional to (amplitude)3/4 are used in the present study, as it can be applicable to all 
type of materials. The frequency of vibration used for the machining process must be the 
resonant frequency of the acoustic system in order to obtain the greatest amplitude at the 
tool tip and thus achieve the maximum utilisation of the acoustic system.  

Material removal rate increases linearly with the grain size. However, the optimum 
grain size is governed by the amplitude of the tool vibration and as the grain size become 
comparable with the amplitude the optimum condition is achieved. Surface finish is  
also greatly affected by the grain size. The machining load reaches the maximum as the 
static load on the tool is increased. The optimum value static load is governed by the 
amplitude of vibration and the cross sectional area of the tool. The rise in material 
removal rate can be achieved with an increase in the slurry concentration. However, the 
saturation occurs when a volume of slurry is 30–40% of the abrasive water mixture 
(Neppiras and Foskett, 1957). 

The same decision variables, objective function, surface roughness constraint and 
variable bounds as considered by Jain et al. (2007) are considered in the present work  
and are given below. 

Decision variables: Five, i.e., amplitude of vibration ‘Av’ (mm); frequency of vibration 
‘fv’ (Hz); Mean diameter of abrasive grain ‘dm’ (mm); Volumetric concentration of 
abrasive particles in slurry ‘Cav’ and static feed force ‘Fs’ (N). 

Objective function: Maximise material removal rate (Z1): 
0.750.25

0.75 0.75 0.25
1 s0.75

4.963 
[ (1+ )]

t u
v av m v

fw

A K
Z F A C d f

σ λ
=  (4) 

where Ku is a constant of proportionality (mm–1) relating mean diameter of abrasive 
grains, and diameter of projections on an abrasive grain (= Kudm

2). 
Surface roughness constraint (Z2): 

0.5

2 0.5
max

1154.71.0 0.
[ (1 )] (Ra)

s v m

avt fw

F A dZ
CAσ λ

 
= − ≥ +  

 (5) 

Variable bounds: 

0.005 ≤ Av ≤ 0.1 (mm);   10000 ≤ fv ≤ 40000;   0.007 ≤ dm ≤ 0.15 (mm); 
0.05 ≤ Cav ≤ 0.5;   4.5 ≤ Fs ≤ 45 (N). 

Now using the simulated annealing algorithm, the objective function is written as: 

Minimise Z = – Z1 – Penalty × Z2   (penalty = 21 if Z2 < 0, else penalty = 0). 
 
 



   

 

   

   
 

   

   

 

   

   90 R. Venkata Rao et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Penalty is defined in such a way that a point having higher value of Z1 but with small 
negative value of Z2 should be accepted at higher temperature to search another point in 
the vicinity. 

Value of Z2 must be positive to satisfy the constraint. However, at some iteration  
a solution may exist with significant improvement in Z1 but slightly violating  
the constraint Z2. As this solution has a potential to search global optimum solution,  
it must be accepted at high temperatures even though the constraints are violated. 
However, care should be taken that such a point should never appear in the final solution. 
This task is achieved by assigning suitable penalty value to the constraint function.  
The penalty value is assigned only to the solutions which violates the constraint function. 
For all other solutions the penalty value assigned is zero. 

The procedure used in this work for selecting the penalty function is summarised  
as below: 

i Calculate values of Z1 and Z2 at all boundary points. 

ii Select the points which violate the constraint i.e., having negative values of sZ2. 

iii Calculate the ratio (r) = Z1 / Z2 at all points selected in step (ii). 

iv Select the maximum value (rmax) among the ratio ‘r’ calculated in step (iii). Assign  
a penalty as a value slightly higher than rmax. 

In the case of USM process described above, a boundary point having process  
parameter values as, Fs = 4.5, Av = 0.1, Cav = 0.5, dm = 0.007, Fv = 40000, has objective 
function value Z1 = 5.79 with surface roughness constraint value Z2 = 0.303. Thus  
rmax = (5.79/0.303) = 19.10. Hence a penalty value of 21 is selected. 

The same procedure is followed to assign the penalty values for the optimisation  
of process parameters of all other processes discussed ahead in this paper such as AJM, 
WJM and AWJM. 

The constants used in the process parameter optimisation of USM and their values  
are given in Table 1. The results of optimisation of process parameters of USM are 
presented in Table 2. From the results shown in Table 2, it is observed that for USM the 
material removal rate obtained using simulated annealing is 3.660 mm3/s which is better  
(by about 3%) than the final results obtained by Jain et al. (2007) using genetic algorithm. 
It can be observed from the model that the effect of two parameters i.e., static feed force 
(Fs) and amplitude of vibration (Av) on the objective function is almost same. However 
‘Av’ is more sensitive to the objective function as compared to ‘Fs’ and hence higher 
value of ‘Av’ up to the limit of specified constraint leads to the improved solution. 

Table 1 Values of the constants used in process parameter optimisation of USM 

Notation Details Units Values 

At Cross section area of cutting tool mm2 20 
σfw Flow stress of work material  MPa 6900 
Ku Constant of proportionality mm–1 0.1 
(Ra)max Allowable surface roughness µ 0.8 

λ Indentation ratio  0.246 
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Table 2 Results of optimisation for USM process 

Variables Results of S.A. Results of G.A. 

Static feed force (N) 4.53 10.8 
Amplitude of vibration (mm) 0.077 0.0263 
Volumetric concentration of particles in slurry 0.5 0.479 
Mean diameter of abrasive grain (mm) 0.114 0.1336 
Frequency of vibration (Hz) 40,000 39333.9 
Material removal rate (mm3/s) 3.660 3.553 

3.2 Abrasive Jet Machining (AJM) 

AJM uses a stream of fine-grained abrasives mixed with air or some other carrier gas at 
high pressure. This stream is directed by means of suitably designed nozzle on to the 
work surface. Metal removal occurs due to erosion caused by the abrasive particles 
impacting the work surface at high speed (Pandey and Shan, 1980) Metal removal rate 
increases with increase in mass flow rates of the abrasive particles. However, large value 
of mass flow rate has been found to adversely influence jet velocity and hence optimum 
value of mass flow rate is required to found out. The rate of metal removal also depends 
on the grain size. Finer grains are less irregular in shape and hence possess lesser cutting 
ability. The kinetic energy of the abrasive jet is utilised for metal removal by erosion.  
For erosion to occur the jet must impinge the work surface with a certain minimum 
velocity (Sheldon and Finnie, 1966b). 

The decision variables, objective function, surface roughness constraint and variable 
bounds as considered by Jain et al. (2007) are considered in the present work also and are 
given below: 

3.2.1 Optimisation model for brittle materials at normal impingement  
of abrasive particles  

The decision variables, objective function, surface finish constraint and the variable 
bounds are given below: 

Decision variables: Three, namely Mass flow rate of abrasives ‘Ma’ (kg/s); Mean radius 
of abrasives ‘rm’ (mm); and Velocity of abrasive particles ‘va’ (mm/s). 

Objective function: Maximise material removal rate (Z1) 
1.5

1 0.75 0.25

0.0035   .a a a

fw a

n M vZ
σ ρ

=  (6) 

Surface finish constraint (Z2): 
0.5

2
max

18.261.0 0.
(Ra)

a
m a

fw

Z r v
ρ

σ
 

= − ≥  
 

 (7) 

Variable bounds:  

0.0000167 ≤ Ma ≤ 0.0005 (kg/s);   0.005 ≤ rm ≤ 0.075;   150000 ≤ va ≤ 400000. 
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Now using the simulated annealing algorithm, the objective function is written as:  

Min. Z = – Z1 – Penalty × Z2 (penalty = 44.21 if Z2 < 0, else penalty = 0). 

Values of the constants used in the process parameter optimisation of AJM for  
brittle materials are given in Table 3. The results of optimisation of process parameter of 
AJM for brittle materials are presented in Table 4. From the results shown in Table 4,  
it is observed that for AJM of brittle materials, the material removal rate obtained using 
simulated annealing is 8.257 mm3/s which is slightly more (by about 0.254%) than the 
final results obtained by Jain et al. (2007) using genetic algorithm. This is because of 
higher value of velocity of abrasive particle is obtained using simulated annealing than 
that obtained using genetic algorithm. 

Table 3 Values of the constants used in process parameter optimisation of Abrasive Jet 
Machining of brittle materials 

Notation Details Units Values 

ρa Density of abrasive particle kg/mm3 3.85 × 10–6 (Al2O3) 
na Proportion of abrasive particles effectively 

participating in the machining process 
 0.7 

σfw Flow stress of work material MPa 5000 (Glass) 
(Ra)max Allowable surface roughness µm 0.8 

Table 4 Results of optimisation for Abrasive Jet Machining of brittle materials 

Variables Results of S.A. Results of G.A. 

Mass flow rate of abrasives (kg/s) 0.0005 0.0005 
Mean radius of abrasives (mm) 0.005 0.005 
Velocity of abrasive particles (mm/s) 315764.8 315504.3 
Material removal rate (mm3/s) 8.257 8.236 

3.2.2 Optimisation model for ductile materials at normal impingement  
of abrasive particles 

The decision variables, objective function, surface finish constraint and the variable 
bounds are given below: 

Decision variables: Three, namely Mass flow rate of abrasives ‘Ma’ (kg/s); Mean radius 
of abrasives ‘rm’ (mm); and Velocity of abrasive particles ‘va’ (mm/s). 

Objective function: Maximise material removal rate (Z1) 

6 3 3
1 2 1.5 0.51.0436 10 (mm /s).w

a a
a

Z M V
H

ρξ
δ ρ

−= ×  (8) 

Surface finish constraint (Z2): 
0.5

2
25.821 0.a

m aZ r v
Ra H

ρ = − ≥ 
 

 (9) 
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Variable bounds:  

0.0000167 ≤ Ma ≤ 0.0005 (kg/s);   0.005 ≤ rm ≤ 0.075;   150000 ≤ va ≤ 400000. 

Now using the simulated annealing algorithm, the objective function is written as: 

Min. Z = – Z1–Penalty × Z2. 

Values of the constants used in the process parameter optimisation of AJM for ductile 
materials are given in Table 5. The results of optimisation of process parameter of AJM 
of ductile material are presented in Table 6. From the results shown in Table 6, it is 
observed that for AJM of ductile material, the material removal rate obtained using 
simulated annealing is 0.6053 mm3/s which is slightly higher (by about 0.46%) than the 
final results obtained by Jain et al. (2007) using genetic algorithm. This is because of 
higher value of velocity of abrasive particle is obtained using simulated annealing than 
that obtained using genetic algorithm. 

Table 5 Values of the constants used in the process parameter optimisation of Abrasive Jet 
Machining for ductile materials 

Notation Details Units Values 

ρa Density of abrasive particle  kg/mm3 2.48 × 10–6 (Glass bead) 

δ Critical plastic strain of work material  1.5 

H Dynamic hardness of work material MPa 1150 (Al–6061–T6) 

ξ Indentation volume plastically deformed  1.6 

(Ra)max Allowable surface roughness µm 2.0 

Table 6 Results of optimisation for Abrasive Jet Machining of ductile materials 

Variables Results of S.A. Results of G.A. 

Mass flow rate of abrasives (kg/s) 0.0005 0.0005 
Mean radius of abrasives (mm) 0.005 0.005 
Velocity of abrasive particles (mm/s) 333549.08 333214.7 
Material Removal Rate (mm3/s) 0.6053 0.6025 

3.3 Water Jet Machining (WJM) 

Important process parameters of WJM are stand-off-distance, water pressure, travel speed 
of jet, and nozzle diameter. An optimum value of stand-off-distance exists for maximum 
material removal rate and it has been confirmed experimentally by Hashish and  
duPlessis (1979). Material removal rate increases with increasing stand-off-distance,  
but beyond a certain value of stand-off-distance, material removal rate starts  
decreasing due to a reduction in jet velocity with increasing distance from the nozzle tip. 
Stand-off-distance also affects accuracy and quality of cut. A divergent jet cuts less 
effectively and less accurately. Machined depth increases with an increase in water 
pressure for both metals and non-metals. Also, a threshold pressure exists below  
which no cutting takes place. The rate of cutting increases with an increase in nozzle 
diameter (Meng et al., 1998) an optimum value of feed rate of jet also exists for 
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maximum material removal. Cutting and piercing ability of the jet is most effective when 
it is directed normal to the work surface. Depth of groove also decreases with increasing 
feed rate. Geometry and finish of cut depend on nozzle design, jet velocity, feed rate, 
depth of cut and properties of target material. As with the AJM process, nozzle wear 
depends on nozzle material, its hardness, nozzle design and pressure of the water jet 
(Mishra, 1997). 

For WJM, the multi-objective optimisation model is formulated with maximisation of 
material removal rate and minimisation of specific energy. However, Jain et al. (2007) 
had solved a single objective optimisation problem considering maximisation of the 
material removal rate only. In this work, this problem is solved initially as a single 
objective optimisation problem (for comparison purpose) and is subsequently solved as 
multi-objective optimisation problem. 

The same decision variables, objective function, power consumption constraint and 
variable bounds as considered by Jain et al. (2007) are considered in the present work  
and are given below. 

Decision variable: Water jet pressure at nozzle exit ‘Pw’ (MPa); diameter of water  
jet nozzle ‘d’ (mm); transverse or feed rate of the nozzle ‘fn’ (mm/s); stand off distance 
‘X’ (mm). 

Objective function: 

1 Maximise material removal rate (Z1): 
15 0.5 2 / 3

2256.76 /( )
1

0.297
1 1 e

2
fw w w nC P n fywn

fw w

d f X
Z

C P
φσψ

φ
−   = − −    

 (10) 

2 Minimise specific energy (Z3): 
15 0.5 1.5

3 2256.76 /( )2 / 3 0.5

3.74 10

[1 ( / 2 ] 1 e fw w w n

fw w
C P n f
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×
=
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where 

2

1

2 [0.5 0.57 0.2 ]
K

φ ψ ψ= − +  

111
2

cw

w

K
P

σψ = −  

K1 = X/Xi; and CD ≈ 0.7. 

Power consumption constraint (Z2): 
1.5 2 1.5

2
max

1.11 101 0.D wC d PZ
P

−×
= − ≥  (12) 

Variable bounds: 

1.0 ≤ Pw ≤ 400.0 (MPa);   0.05 ≤ d ≤ 0.5 (mm);   1.0 ≤ fn ≤ 300.0 (mm/s); 
2.5 ≤ X ≤ 50.0 (mm). 
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Now using the simulated annealing algorithm, the objective function considering 
maximisation of material removal rate only is written as: 

Min. Z = – Z1 – Penalty × Z2 (penalty = 8540 if Z2 < 0, else penalty = 0). 

Values of the constants used in the process parameter optimisation of WJM are given  
in Table 7. The results of optimisation of process parameter of WJM are presented  
in Table 8. From the results shown in Table 8, it is observed that for WJM (considering 
single objective function) the material removal rate obtained using simulated annealing is 
almost same as that obtained using genetic algorithm. However, using simulated 
annealing, the solution converges to slightly higher values of water jet pressure and 
transverse rate of nozzle and lower value of stand off distance which indicates that 
simulated annealing algorithm provides better search than genetic algorithm. 

Table 7 Values of the constants used in the process parameter optimisation of Water Jet 
Machining 

Notation Details Units Values 

Cfw Skin friction coefficient of work material  0.005 
nw Damping coefficient of work material kg mm–1s–1 2357.3 

σcw Compressive yield strength of work material MPa 26.2 

σyw Tensile yield strength of work material MPa 3.9 

Xi Length of initial region of water jet mm 20 
Pmax Allowable power consumption value kW 50 

Table 8 Results of optimisation for Water Jet Machining considering only material removal 
rate as an objective function 

Variables Results of S.A. Results of G.A. 

Water jet pressure at nozzle exit (MPa) 398.12 397 
Diameter of water jet nozzle (mm) 0.5 0.5 
Traverse rate of nozzle (mm/s) 215.63 214.41 
Stand off distance (mm) 2.5 2.54 
Material removal rate (mm3/s) 140.25 139.79 

In addition to the material removal rate, specific energy can also be considered as another 
objective and the problem is solved as multi-objective optimisation problem.  
The methodology for multi-objective optimisation problem in brief can be evolved as 
follows. 

Step 1: Defining the combined objective function (Z): 

Z = w1 × (– Z1) + w2 × Z3 

where w1 and w2 are the weights assigned to given objectives Z1 and Z3. 
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Step 2: Determining the values of weightages w1 and w2: 

The weightages assigned to the objectives in this example are given below: 

w1 = weight factor for material removal rate = 0.555. 

w2 = weight factor for specific energy = 0.444. 

However, it may be added that, in actual practice, these values of weightages 
can he judiciously decided by the decision-maker depending upon the policies  
of the company. Analytical Hierarchy Process (AHP) method proposed by  
Saaty (2000) may be used to assign the weights of importance to the objectives.  
The assigned values in this paper are for demonstration purpose only.  

Step 3: Normalising the objective function:  

In order to achieve the proportionate contribution of each objective in the 
combined objective function, each objective at any point is divided by its 
maximum or minimum value (considering the optimisation of individual 
objective function for the given constraints) to get the normalised combined 
objective function as given below. 

Min. ZN = w1 × (– Z1)/Z1max + w2 × Z3/Z3min 

where, Z1max = Maximum value of Z1 

 Z3min = Minimum value of Z3 

 ZN = Normalised combined objective function. 

Step 4: Assigning penalty: 

To take into account the effect of power consumption constraint, the penalty is 
assigned as below. 

Penalty = Zmin/Z2max 

where, Zmin = Minimum value of combined objective function without 
considering penalty. 

Z2max = Maximum of negative values of power consumption constraint. 

In present case, penalty = 28.56 if Z2 < 0; else penalty = 0. 

Step 5: Determining the initial temperature and initial solution: 

The initial temperature is obtained by calculating the average of the function 
values at a boundary points. 

Initial temperature T0 = ΣZNb/n 

where, ZNb = Value of normalised objective function at each boundary point and  
n = Number of boundary points. 

The initial solution is taken as: Pw = 250; d = 0.3; fn = 200; X = 20. 

Step 6: Optimising the process parameters using simulated annealing algorithm.  
The results of optimisation of process parameter of WJM (considering  
multi-objective optimisation) are presented in Table 9. 
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Table 9 Results of optimisation for Water Jet Machining considering material removal rate  
as well specific energy 

Variables Results of S.A. 

Water jet pressure at nozzle exit (MPa) 398.12 
Diameter of water jet nozzle (mm) 000.5 
Traverse rate of nozzle (mm/s) 215.63 
Stand off distance (mm) 002.5 
Material removal rate (mm3/s) 140.25 
Specific energy (J/mm3) 514.316 
Value of normalised objective function 000.441 

3.4 Abrasive Water Jet Machining (AWJM) 

The AWJM process uses a high velocity water jet in combination with abrasive particles 
for cutting different types of materials. A stream of small abrasive particles is introduced 
and entrained in the water jet in such a manner that water jet’s momentum is partly 
transferred to the abrasive particles. The role of carrier water is primarily to accelerate 
large quantities of abrasive particles to a high velocity and to produce a highly coherent 
jet. Important process parameters of AWJM can be categorised as hydraulic parameters: 
water pressure, and water flow rate, abrasive parameters: type, size, shape, and flow  
rate of abrasive particles; cutting parameters: traverse rate and stand-off-distance.  
The relationship between water pressure and for different abrasive flow rates and nozzle 
diameters is almost linear. Depth of cut increases with an increase in water flow rate with 
decreasing slope as the saturation point is reached, while it varies linearly with water jet 
nozzle diameter for a given pressure (Hashish, 1989). The relationship between abrasive 
flow rate and depth of cut is linear up to a point. This linearity terminates at higher 
abrasive flow rates because particle velocity decreases more rapidly than the increase in 
number of impacts (Hashish, 1984). Depth of cut decreases with increasing traverse rate 
while an optimum traverse rate exists for maximum kerf area generation (= traverse rate 
times depth of cut). A minimum (or critical) traverse rate exists below which no further 
increase in depth of cut can be obtained. Cutting wear may often occur at low traverse 
rates and deformations wear at higher traverse rates. An increase in stand-of-distance 
rapidly decreases machined depth, because with an increase the jet breaks into droplets 
resulting in free abrasive particles hence shallow penetration. A maximum value of stand 
off distance exists beyond which no cutting will take place (Jain, 2001). 

The decision variables, objective function, power consumption constraint and 
variable bounds as considered by Jain et al. (2007) are considered in the present work 
also and are given below. 

Decision variables: Five, namely water jet pressure at the nozzle exit ‘Pw’ (MPa); 
diameter of abrasive water jet nozzle ‘dn’ (mm); traverse rate of nozzle ‘f ’ (mm/s);  
Mass flow rate of water ‘Mw’ (kg/s); Mass flow rate of abrasives ‘Ma’ (kg/s). 

Objective function: Maximise material removal rate (Z1) 

Z1 = dn f (hc + hd). (13) 
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The indentation depth of cutting wear ‘hc’ can be calculated using the following  
equation. 

hc = (1.028 × 104.5 ξ/Ck ρ0.4)(dn
0.2Ma0.4/f 0.4)[MwPw

0.5/(Ma + Mw)] 
        – [(18.48 K2/3ξ1/3)/(Ck

1/3fr
0.4)][MwPw

0.5/(Ma + Mw)]1/3;   if αt ≤ α0 

hc = 0,   otherwise. (14) 

Here α0 is the angle of impingement at which the maximum erosion occurs and  
is given by  

α0 = [(0.02164 Ck1/3fr
0.4)/(K2/3ξ1/3)][(Ma + Mw)/(MwPw

0.5)]1/3. (15) 

And αt is the angle of impingement at the top of the machined surface, which is 
approximately given by 

αt = (0.389 × 10–4.5ρa
0.4Ck/ξ)[dn

0.8f 0.4(Ma + Mw)/Ma
0.4MwPw

0.5] (16) 

Ck = (3000 σfw fr
0.6/ ρa)0.5 (mm/s). (17) 

Indentation depth due to the deformation wear ‘hd’ can be found using  
0.5 2

1
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where vac is a critical velocity of the abrasive particles,  
22.5 2 2

2
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ρ

 − −
= + 

 
 (19) 

and K1 = 1.4142 × 104.5 ξ. 

Power consumption constraint: (Z2) 

2
max

1 0.w wP MZ
P

= − ≥  (20) 

Variable bounds:  

50.0 ≤ Pw ≤ 400.0 (MPa);   0.5 ≤ dn ≤ 5.0 (mm);   0.2 ≤ f ≤ 25.0 (mm/s); 
0.02 ≤ Mw ≤ 0.2 (kg/s);   0.0003 ≤ Ma ≤ 0.08 (kg/s). 

Now using the simulated annealing algorithm, the objective function is written as: 

Min. Z = – Z1 – Penalty × Z2 (penalty = 270 if Z2 < 0, else penalty = 0). 

Values of the constants used in the process parameter optimisation of AWJM are given  
in Table 10. The results of optimisation of process parameters of AWJM are presented  
in Table 11. 

For AWJM, it can be seen from the model that, as the angle ‘αt’ increases, 
indentation depth of cutting wear (hc) and hence the material removal rate increases. 
However, Paul et al. (1998) had reported that if angle ‘αt’ exceeds the critical impact 
angle ‘α0’ then no material removal is assumed to occur by cutting wear (hc = 0) and the 
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material removal takes place only due to the deformation wear, which causes the material 
removal rate to reduce drastically.  

Table 10 Values of constants used in process parameter optimisation of Abrasive Water Jet 
Machining 

Notation Details Units  Values 

ρa Density of abrasive particles kg/mm3
 3.95 × 10–6 for Al2O3 

νa Poisson’s ratio of abrasive particles  0.25 

EYa Young’s modulus of elasticity of abrasive MPa 350000 
fr Roundness factor of abrasive particle  0.35 
fs Sphericity factor of abrasive particle  0.78 

ηa Proportion of abrasive grains effectively 
participating in the machining 

 0.7 

νw Poisson’s ratio of the work material  0.2 (for Ti) 

EYw Young’s modulus of elasticity of work material MPa 114000 

σew Elastic limit of work material MPa 883 

σfw Flow stress of the work material  MPa 8142 

Cfw Skin friction of the work material  0.002 

ξ Mixing efficiency between water and abrasives  0.8 

Pmax Allowable power consumption value kW 56 

Table 11 Results of optimisation for Abrasive Water Jet Machining process 

Variables Results of S.A. Results of G.A. 

Water jet pressure at nozzle exit (MPa) 400 398.3 

Diameter of abrasive water jet nozzle (mm) 2.9 3.726 
Traverse rate of nozzle (mm/s) 15 23.17 
Mass flow rate of water (kg/s) 0.138 0.141 
Mass flow rate of abrasives (kg/s) 0.08 0.079 
Material removal rate (mm3/s) 218.19 90.28 

For the solution obtained by Jain et al. (2007) using genetic algorithm as ‘αt’ exceeds 
‘α0’, indentation depth of cutting wear (hc) becomes zero and hence results in less 
material removal rate as compared to the solution obtained by simulated annealing 
algorithm (for which ‘αt’ < ‘α0’). The solution obtained by simulated annealing algorithm 
also results in higher value of depth of deformation wear (hd) than that obtained  
with genetic algorithm, which further increases the value of material removal rate.  
The combined effect thus leads to the improvement in objective function by 141.68%. 

The simulated annealing algorithm used in this paper needs to store a single value of 
objective function, which is then compared with the value obtained in the next iteration; 
hence the memory requirement is less. Also as most of the operations performed by 
simulated annealing are comparisons only, the computational efforts and time required is 
less which may lead to reduced computational cost as compared to genetic algorithm. 
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4 Conclusion 

The simulated annealing algorithm proposed in the present work has outperformed the 
genetic algorithm for optimisation of process parameters of mechanical type advanced 
machining processes. About 3% improvement is obtained for optimisation of process 
parameters of USM and the improvement is up to 141.68% in the case of optimisation  
of process parameters of AWJM. The proposed algorithm can be easily modified  
to suit advance machining processes of other types like EDM, PAM, etc. The proposed 
algorithm is easy to use, simple to implement and can efficiently handle the  
multi-objective optimisation models. 
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