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ABSTRACT

Usage of feature similarity is expected when the nearest neighbors are to be explored. Examples in multi-
label datasets are associated with multiple labels. Hence, the use of label dissimilarity accompanied by 
feature similarity may reveal better neighbors. Information extracted from such neighbors is explored 
by devised MLFLD and MLFLD-MAXP algorithms. Among three distance metrics used for computation 
of label dissimilarity, Hamming distance has shown the most improved performance and hence used 
for further evaluation. The performance of implemented algorithms is compared with the state-of-the-
art MLkNN algorithm. They showed an improvement for some datasets only. This chapter introduces 
parameters MLE and skew. MLE, skew, along with outlier parameter help to analyze multi-label and 
imbalanced nature of datasets. Investigation of datasets for various parameters and experimentation 
explored the need for data preprocessing for removing outliers. It revealed an improvement in the per-
formance of implemented algorithms for all measures, and effectiveness is empirically validated.

INTRODUCTION

Many scenarios in the real-life today depict applications of multi-label data. A document may be related 
to health as well as education, according to its text. A piece of news may focus on new technology that 
is helpful for safety as well. An image may contain several objects like roads, shops, buildings, etc. 
Contents of a paper may be relevant to multiple domains. A video may focus on topics of networking 
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along with virtualization. Thus many objects reveal multiple semantic meanings. Many researchers are 
working for the last few decades on multi-label classification. It is a task that assigns with a thing a set 
of predefined labels as per its properties.

BACKGROUND

The related work about multi-label classification and label imbalance is presented here. For multi-label 
classification, there exist methods that use the transformation approach. It changes multi-label data such 
that methods for single-label classification can be used. Sometimes multi-label data is not modified. Thus 
adaptation methods modify the process of dealing with such data. There also exists an approach that 
ensembles multiple existing methods. CC (Read, 2009), MLkNN (Zhang & Zhou, 2007) and RAkEL 
(Tsoumakas et al., 2011) are examples of these three approaches respectively.

For few decades, many researchers have worked in the field of multi-label classification (Tsoumakas 
& Katakis, 2007) (Tsoumakas et al., 2009) (Trohidis et al., 2008) (Tsoumakas et al., 2010) (Madjarov 
et al., 2012) (Zhang & Zhou, 2014) (Tidake & Sane, 2018). K nearest neighbor has also been the choice 
of many researchers for multi-label classification. From the study, it is noticed that neighbors are ob-
tained using only features always. In contrast, the scenario is different for data that is multi-label. Each 
instance belongs to a predefined set of labels. Hence it is possible to consider labels along with features 
for obtaining neighbors.

Zhang and Zhou discuss an approach in (Zhang & Zhou, 2007). It follows an algorithm adaptation 
approach. It is an improved version of the well-known nearest neighbor algorithm. Several researchers 
use it to perform multi-label classification. It utilizes feature similarity to determine nearest neighbors 
(Zhang & Zhou, 2005) (Zhang & Zhou, 2007) (Spyromitros-Xioufis et al., 2008). In the case of multi-
label classification, since the instances are associated with multiple labels, label dissimilarity may also 
help determine a set of nearest neighbors.

Class imbalance also poses problems to multi-label classifiers and may lower their performance. 
According to Spyromitros-Xioufis (2011), label skew is considered a class imbalance when considering 
each class individually. Francisco et al. (2013) have proposed how to measure the level of imbalance in 
a multi-label scenario. They have also presented two dataset preprocessing methods specially designed 
for multi-label datasets. They used sampling and LP for preprocessing. Those label sets that occur in a 
majority (minority) were reduced (increased). A method was suggested by Huang et al. (2015) for the 
improvement of multi-label classifier involving several binary classifiers. It can be used for feature selec-
tion also. SOSHF was extended from structured forests (Zachary et al., 2017). At each node, it has used 
transformation followed by split action to tackle class imbalance. An imbalance ratio was defined using 
positive and negative samples (Zhang et al., 2018). This ratio and label correlation was considered to 
improve BR models. Liu and Tsoumakas (2018) have handled the imbalance faced by ECC. They used 
an ensemble of CC with random under-sampling that helps to balance the distribution of each class. 
COCOA method explored joint label correlation and imbalance ratio from skewness between positive 
and negative samples (Zhang et al., 2020). It induced an imbalanced multi-class classifier per label.
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MAIN FOCUS OF THE CHAPTER

A novel algorithm adaptation approach called MLFLD (Sane & Tidake, 2020) considered features and 
labels of instances to determine nearest neighbors while assigning weights to the neighbors. When two 
instances possess similar features, the chances of its selection as the nearest neighbor is more. Though 
labels of these instances are different, the possibility of its choice as nearest neighbor is low. The ex-
perimentation presented has shown the importance of using both features and labels to improve the 
classifier’s performance. It has also demonstrated how the usage of particular distance measure affected 
the performance of devised algorithms.

Datasets may have an imbalance in the form of feature values. That can be checked by examining 
the existence of outliers. At the same time, multi-label datasets may have an imbalance in the form of 
labels also. This imbalance was measured using MLE (multi-label examples), skew and outliers, among 
other characteristics. The first two parameters are introduced in this chapter. These parameters computed 
using experiments helped to analyze the multi-label and imbalanced nature of datasets. Datasets were 
preprocessed to remove outliers. The performance of algorithms before and after preprocessing was ana-
lyzed, keeping an eye on the dataset characteristics. There is a need to explore how to handle imbalance.

In the subsequent sections, the work adopted by authors for the handling of multi-label data is pre-
sented. Six variants of experiments for developed algorithms are also focused on. Then multi-label datasets 
and their properties are described. Next, experimental results are discussed, followed by a conclusion.

DEVISED PARAMETERS AND ALGORITHMS FOR 
MULTI-LABEL CLASSIFICATION

Before presenting the work adopted by authors to handle multi-label data, different general and introduced 
parameters for measuring the multi-label and imbalanced nature of datasets are shown in the current 
section. Then two devised algorithms are presented, followed by two conventional and one introduced 
distance measures used by algorithms.

Parameters to Measure Multi-Label and Imbalance 
Nature of Multi-Label Datasets

Along with general parameters, two introduced parameters helped to analyze the multi-label and imbal-
anced nature of datasets.

Let AL denotes the actual label set present in dataset D. Let E and F be numbers of examples and 
features in D, respectively, as in Table 1. A proposed parameter MLE denotes the number of Multi-Label 
Examples: those with a count of labels more than 1 (Eq. (1)). A more considerable value shows more 
multi-label examples.

MLE D
E

V AL
i

E
i� � � �

��1 1
1
( ) .	 (1)
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Here V (.) = 1 if a count of labels associated with instance i is more than 1, otherwise it is 0. Another 
proposed parameter is skew that denotes the proportion of the most frequent label set (Eq. (2)). A smaller 
value shows an imbalanced label set nature.

Skew D
E

AL AL AL AL
AL AL D i i j j
i j

� � � � � � � � �
�

1
max , }
,

{ |� � .	 (2)

Here � x� � .denotes occurrence count of label set x in dataset D. One more parameter used is an 
outlier that tells a number of features having std. deviation ±1.5 (3) from the mean (Eq. (3)). A larger 
value shows imbalanced nature in the form of feature values.

Outlier D
F

V
i

F
i� � � � �� �

��1 1 5
1
Ã . .	 (3)

Here V (.) = 1 if the standard deviation of feature i is more than ±  1.5, else it is 0. Weka (Hall et al., 
2009) and Mulan (Tsoumakas et al., 2011) libraries were used for computation of these parameters. 
Table 1 shows these parameters that give a glance at the multi-label and imbalanced nature of used 
datasets.

Algorithm MLFLD

An algorithm for Multi-Label classification by exploring Feature Similarity and Label Dissimilarity 
(MLFLD) was designed for selecting proper neighbors for improving the performance of a multi-label 
classifier. MLFLD took the following parameters as input: a multi-label dataset (MLDB) with q instances, 
threshold (Th), number of neighbors (k), smoothing factor (p), and the distance measure for label dis-
similarity (Ldistance). It operated in two stages.

In stage one, prior probabilities of each label c were obtained using Eq. (4)-(5). cnt c� � .for label c was 
obtained from known instances.

P H p cnt p qc
c�� � � �� � � �� �� �

1 2/ .	 (4)

P H P Hc c�� � � � �� �0 1 1 .	 (5)

Then MLFLD has used available labels of those instances that are already known. While searching 
for the neighbors, MLFLD utilized their features. Required data were obtained from these neighbors for 

each label and stored in F
c
j� �� �

1
.and F

c
j� �� �

1
.arrays. This information was utilized for the estima-

tion of likelihood probabilities (Eq. (6)-(7)). 
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In stage two, estimated probabilities of label c were utilized to predict label c for an unlabeled in-
stance using Eq. (8)-(9).
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.	 (8)

t if
P H P E j H

P H P E j H P H P E jc
c c

c c c

�
�� �� � �� �

�� �� � �� � � �� �� �
1

1 1

1 1 0
,

|

| ||H
Th

c �� �
�

�
��

�

�
�� �0

.	 (9)

Algorithm MLFLD-MAXP

In most of the applications involving multi-label data, it is expected that an instance belongs to a mini-
mum of one label (Read, 2010) (Godbole & Sarawagi, 2004) (Zhu et al., 2005) (Kiritchenko, 2005) 
(Ghamrawi & McCallum, 2005). Algorithm MLFLD was expanded to avoid the prediction of no label. 
Authors expanded algorithm MLFLD with MAXimum Probability (MLFLD-MAXP) that predicted 
the most probable label from the label set for an instance under consideration, using Eq. (10) (Tidake 
& Sane, 2021).

x max
P H P E j H

P H P E j H P H P Ec
c c

c c c
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Distance Metrics for Label Dissimilarity

From the study, it has been noticed that neighbors were obtained using features always. While the 
scenario for multi-label data is that each instance is relevant to a predefined set of labels. Hence both 
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devised algorithms have used labels and features of known instances to locate neighbors. They computed 
feature similarity using Euclidean distance (Han & Kamber, 2012) and label dissimilarity using distance 
measures, namely Hamming, Jaccard and SimIC as shown in Eq. (11)-(13).

Hamming distance obtains a difference between a total number of distinct and shared labels between 
the two instances (Read et al., 2008) (Godbole & Sarawagi, 2004). Jaccard distance (Han & Kamber, 
2012) uses a ratio of intersection of labels to their union to compute distance (Pesquita et al., 2007) 
(Veloso et al., 2007). SimIC (Similarity of Information Content) is motivated from SimGIC distance 
(Aleksovski et al., 2009). It computed information for label c using its probability in the dataset.

Hamming X X
Labels X Labels X Labels X Labels X

i j
i j i j

,� � �
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.	 (11)
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For a set of labels A L L Ln� �� �1 2, . IC A� � .was obtained from the sum of the information content 
of L L Ln1 2, … .each from Eq. (14).

IC c p c� � � � � �� �log .	 (14)

RESULTS AND DISCUSSION

Before discussion of results, an overview of used multi-label data is taken in the current section. Differ-
ent values obtained through experiments for introduced parameters along with general characteristics of 
data are presented. The nature of datasets is analyzed based on these values. Then the performance of 
devised algorithms for six variants of distance measures is compared with MLkNN. Among six variants, 
the variant performing best is used in further data preprocessing experiments to analyze outliers’ effect.
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Multi-Label Data

Benchmark datasets are provided by resources such as Mulan (Tsoumakas et al., 2011) and MEKA 
(Read & Peter, 2012) (Tidake & Sane, 2016). Table 1 describes used multi-label datasets having numeric 
features only. All the datasets were normalized before use.

General characteristics of the benchmark datasets are shown in Table 1. Only the CAL500 dataset 
has labels approx. three times more than features. The rest of the datasets have feature count lesser or 
equal to label count. Also, it is essential to notice that in CAL500, each label set occurs precisely once. 
Hence the %Unique is 100.

Table 1 shows Label Cardinality and Label Density of datasets (Zhang & Zhou, 2007) (Carvalho & 
Freitas, 2009) (Read et al., 2009). They represent an average number of labels/example, and Cardinal-
ity/number of labels, respectively. Unique (some researchers denote it as label diversity) (Tsoumakas & 
Katakis, 2008) shows distinct combinations of labels present in the dataset.

From Figure 1(a), Emotions, Image and Scene, have Cardinality one. Many instances in them have 
only one label. In Yeast, Cardinality 4 shows many instances have approx. 4 labels. Only CAL500 has 
Cardinality 26, while the rest datasets have Cardinality less than five. All datasets have minimal Density, 
except Emotions and Yeast followed by Image. The first two datasets have around 30%, while the third 
dataset has about 25% labels associated with almost every example. Each label set in CAL500 occurs 
only once, which means its labelling scheme is very irregular than the remaining datasets.

From Figure 1(b), Scene and Image have only 7% and 22% records associated with more than one 
label, respectively. The remaining datasets contain more than 70% MLE.

%Skew shows that Scene and Image have higher label skew comparatively than that of Yeast and 
Emotions. More examples are associated with the most frequent label combination, whereas the remain-
ing examples are associated with rare label combination. Skew in CAL500 is less.

Outliers deviate the performance of a classifier (M. Hall et al., 2009). From Table 1, both Image and 
Scene contain more %outliers shown by 86 and 72, respectively.

In Figure 2(a), %Skew shows conflicting performance than %Ex/Label. For more skew, %Ex/label is 
less and vice-versa. Scene and Image datasets have comparatively less unique and more skew label sets, 
as shown in Table 1. As in Figure 2(b), datasets contain 3-26 labels. But most datasets contain examples 

Table 1. Characteristics of datasets

Datasets Type F L E Cardinality Density % Unique %Ex/ 
Label

% 
MLE

% 
Skew % Outlier

Emotions Media 72 6 593 1.868 0.311 4.6 31.0 70.0 13.7 18.9

Image Media 294 5 2000 1.236 0.247 1.0 24.7 22.9 18.9 86.2

Scene Media 294 6 2407 1.074 0.179 0.6 17.9 7.4 16.8 72.2

Yeast Bio 103 14 2417 4.237 0.303 8.2 30.2 98.7 9.8 29.6

CAL500 Media 68 174 502 26.044 0.15 100.0 14.9 100 0.2 16.3

F: #Features, L: #Labels, E: #Examples
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Figure 1a. Label statistics

Figure 1b. Multi-label examples of datasets
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associated with very few labels. Used datasets have 14-31% examples per label, but unique label sets 
are 1-8% only except CAL500.

Comparison of Performance for Label Dissimilarity Distance Measures

As three measures for label dissimilarity, namely Hamming, Jaccard and SimIC distance, were used, 
their effect is observed in this section. Ten criteria were used for performance evaluation as shown in 
Table 2 (Tsoumakas & Katakis, 2007) (Tsoumakas et al., 2009) (Trohidis et al., 2008) (Tsoumakas et 
al., 2010) (Madjarov et al., 2012) (Zhang & Zhou, 2014) (Tidake & Sane, 2018).

Figure 2a. Label distribution

Figure 2b. Cardinality of labels
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During the experimentations, the primary aim was to explore how measures of label dissimilarity 
influence MLFLD and MLFLD-MAXP. First, Euclidean and Hamming were used for feature similar-
ity and label dissimilarity. Then Hamming was replaced by Jaccard and SimIC in further experiments. 
Obtained 6 variants were compared with each other and MLkNN.

Table 2a. Effect of label dissimilarity on hamming loss (↓)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.1959 0.1938 0.1989 0.1952 0.1938 0.1952 0.1944

Image 0.1690 0.1631 0.1632 0.1620 0.1656 0.1661 0.1657

Scene 0.0861 0.0797 0.0795 0.0792 0.0812 0.0811 0.0807

Yeast 0.1940 0.1981 0.1967 0.2036 0.1977 0.1961 0.2041

CAL500 0.1388 0.1394 0.1393 0.1409 0.1394 0.1393 0.1409

Average 0.1568 0.1548 0.1555 0.1562 0.1555 0.1556 0.1572

Rank 6 1 2 5 3 4 7

Table 2b. Effect of label dissimilarity on ranking loss (↓)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.1959 0.1938 0.1989 0.1952 0.1938 0.1952 0.1944

Image 0.1690 0.1631 0.1632 0.1620 0.1656 0.1661 0.1657

Scene 0.0861 0.0797 0.0795 0.0792 0.0812 0.0811 0.0807

Yeast 0.1940 0.1981 0.1967 0.2036 0.1977 0.1961 0.2041

CAL500 0.1388 0.1394 0.1393 0.1409 0.1394 0.1393 0.1409

Average 0.1568 0.1548 0.1555 0.1562 0.1555 0.1556 0.1572

Rank 6 1 2 5 3 4 7

Table 2c. Effect of label dissimilarity on one error (↓)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.2699 0.2492 0.2508 0.2610 0.2492 0.2508 0.2610

Image 0.3000 0.2916 0.2916 0.2901 0.2916 0.2916 0.2901

Scene 0.2256 0.2050 0.2050 0.2046 0.2050 0.2050 0.2046

Yeast 0.2300 0.2378 0.2311 0.2506 0.2378 0.2311 0.2506

CAL500 0.1176 0.1160 0.1140 0.1240 0.1160 0.1140 0.1240

Average 0.2286 0.2199 0.2185 0.2261 0.2199 0.2185 0.2261

Rank 7 3 1 5 3 1 5
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In this section, the performance was studied for ten folds using six variants for label dissimilarity. It 
is detailed in Table 2(a)-2(k) with a summary at the end. For comparison, two criteria, namely minimum 
average rank and a maximum number of wins, were used.

Table 2d.Effect of label dissimilarity on coverage (↓)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 1.7764 1.7102 1.7542 1.7576 1.7102 1.7542 1.7576

Image 0.9390 0.8964 0.8964 0.8999 0.8964 0.8964 0.8999

Scene 0.4753 0.4258 0.4288 0.4304 0.4258 0.4288 0.4304

Yeast 6.2750 6.2905 6.3183 6.3697 6.2905 6.3183 6.3697

CAL500 130.564 130.524 130.512 130.652 130.524 130.512 130.652

Average 28.0059 27.9694 27.9819 28.0219 27.9694 27.9819 28.0219

Rank 5 1 3 6 1 3 6

Table 2e.Effect of label dissimilarity on average precision (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.8034 0.8183 0.8094 0.8061 0.8183 0.8094 0.8061

Image 0.8030 0.8105 0.8106 0.8104 0.8105 0.8106 0.8104

Scene 0.8652 0.8785 0.8785 0.8785 0.8785 0.8785 0.8785

Yeast 0.7650 0.7648 0.7663 0.7550 0.7648 0.7663 0.7550

CAL500 0.4942 0.4918 0.4927 0.4871 0.4915 0.4927 0.4871

Average 0.7462 0.7528 0.7515 0.7474 0.7527 0.7515 0.7474

Rank 7 1 3 5 2 3 5

Table 2f.Effect of label dissimilarity on accuracy (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.5340 0.5483 0.5158 0.5401 0.5627 0.5463 0.5619

Image 0.4937 0.5588 0.5709 0.5702 0.6169 0.6187 0.6179

Scene 0.6635 0.7083 0.7194 0.7110 0.7599 0.7604 0.7615

Yeast 0.5162 0.5116 0.5172 0.4862 0.5140 0.5195 0.4899

CAL500 0.1972 0.2023 0.1951 0.2077 0.2023 0.1951 0.2077

Average 0.4809 0.5059 0.5037 0.5030 0.5312 0.5280 0.5278

Rank 7 4 5 6 1 2 3
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From Figure 3 and Table 2(k), <MLFLD-MAXP, Hamming, Euclidean> triplet topped among seven 
experiments with average rank 1.5 and 7 wins. To brief,

•	 All six variants got a better average rank than MLkNN. It showed 6.7 average rank and 0 wins.

Table 2g. Effect of label dissimilarity on subset accuracy (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.2934 0.3051 0.2915 0.3068 0.3136 0.3017 0.3169

Image 0.4090 0.4632 0.4657 0.4702 0.5108 0.5063 0.5093

Scene 0.6248 0.6629 0.6758 0.6696 0.7117 0.7150 0.7171

Yeast 0.1874 0.2046 0.2033 0.1954 0.2046 0.2037 0.1959

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3029 0.3272 0.3273 0.3284 0.3481 0.3453 0.3478

Rank 7 6 5 4 1 3 2

Table 2h. Effect of label dissimilarity on Ex-F1 (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.6141 0.6274 0.5901 0.6155 0.6441 0.6279 0.6415

Image 0.5223 0.5916 0.6070 0.6044 0.6532 0.6572 0.6551

Scene 0.6764 0.7235 0.7340 0.7249 0.7761 0.7756 0.7763

Yeast 0.6204 0.6109 0.6165 0.5819 0.6145 0.6201 0.5875

CAL500 0.3240 0.3311 0.3212 0.3377 0.3311 0.3212 0.3377

Average 0.5514 0.5769 0.5738 0.5729 0.6038 0.6004 0.5996

Rank 7 4 5 6 1 2 3

Table 2i. Effect of label dissimilarity on macro-F1 (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.6226 0.6584 0.6399 0.6596 0.6609 0.6534 0.6667

Image 0.5815 0.6287 0.6358 0.6358 0.6482 0.6507 0.6496

Scene 0.7364 0.7683 0.7718 0.7696 0.7795 0.7789 0.7793

Yeast 0.3853 NaN NaN NaN NaN NaN NaN

CAL500 0.1714 NaN NaN NaN NaN NaN NaN

Average 0.4994 0.6851 0.6825 0.6883 0.6962 0.6943 0.6985

Rank 7 5 6 4 2 3 1
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•	 For all metrics, variants of implemented algorithms exceeded MLkNN except hamming and rank-
ing loss along with coverage.

•	 MLFLD and MLFLD-MAXP showed the same behavior for the first five measures.

From Table 1, Yeast and CAL500 were the most multi-label as implied by larger MLE values. But 
at the same time, their most frequent label set was associated with fewer examples indicated by smaller 
skew, inferring an imbalance label set. In contrast, these datasets have a lesser imbalance in terms of 
feature values. The emotions dataset also has a larger MLE. Simultaneously it has better skew and lesser 
outlier values. In Table 2(a)-2(k), MLkNN is better for datasets with very large MLE and smaller skew, 
while devised algorithms could not. They seemed evidenced better for datasets with lesser MLE but 
with more outliers.

Table 2j. Effect of label dissimilarity on micro-F1 (↑)

Dataset MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Emotions 0.6610 0.6727 0.6476 0.6665 0.6766 0.6633 0.6745

Image 0.5842 0.6259 0.6346 0.6328 0.6449 0.6483 0.6461

Scene 0.7332 0.7617 0.7641 0.7621 0.7706 0.7702 0.7709

Yeast 0.6471 0.6426 0.6477 0.6218 0.6439 0.6492 0.6227

CAL500 0.3209 0.3294 0.3182 0.3377 0.3294 0.3182 0.3377

Average 0.5893 0.6065 0.6024 0.6042 0.6131 0.6098 0.6104

Rank 7 4 6 5 1 3 2

Table 2k. Summarized performance for label dissimilarity

Performance Metric MLkNN
MLFLD MAXP

Hamming Jaccard SimIC Hamming Jaccard SimIC

Hamming Loss (↓) 0.1568 0.1548 0.1555 0.1562 0.1555 0.1556 0.1572

Ranking Loss (↓) 0.1509 0.1452 0.1466 0.1494 0.1452 0.1466 0.1494

One Error (↓) 0.2286 0.2199 0.2185 0.2261 0.2199 0.2185 0.2261

Coverage (↓) 28.006 27.969 27.982 28.022 27.969 27.982 28.022

Avg. Precision (↑) 0.7462 0.7528 0.7515 0.7474 0.7528 0.7515 0.7474

Accuracy (↑) 0.4809 0.5059 0.5037 0.5030 0.5312 0.5280 0.5278

Subset Accuracy (↑) 0.3029 0.3272 0.3273 0.3284 0.3481 0.3453 0.3478

Ex-F1 (↑) 0.5514 0.5769 0.5738 0.5729 0.6038 0.6004 0.5996

Macro-F1 (↑) 0.4994 0.6851 0.6825 0.6883 0.6962 0.6943 0.6985

Micro-F1 (↑) 0.5893 0.6065 0.6024 0.6042 0.6131 0.6098 0.6104

Exec. Time (↓) 17 60 62 65 58 52 55

Avg. Rank (↓) 6.7 3 3.9 5.1 1.5 2.7 3.9

#Wins (↑) 0 4 1 0 7 1 1
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Performance After Outlier Removal

In the previous section, devised algorithms were seemed influenced mainly by the presence of more 
outliers. To check their influence, outliers were removed during preprocessing. The goal was to examine 
their performance on datasets of different nature. Here, devised algorithms were noticed for Hamming 
and Euclidean distance as their performance was seen to exceed compared to others. After removing 
outliers, datasets were supplied to three algorithms to be evaluated.

Summarized Table 3(b) has shown that both algorithms have defeated MLkNN after outlier removal 
from datasets. MLFLD-MAXP was seen much better than MLFLD. Figure 4(a)-4(e) has shown that for 
the first five metrics, devised algorithms behaved the same. For the rest five metrics, MLFLD-MAXP 
has surpassed MLFLD, as in Figure 4(g)-4(j). To summarize,

•	 Table 3 has illustrated that MLFLD always was better than MLFLD-MAXP for hamming loss 
enhancement, while MLFLD-MAXP appeared better after outlier removal.

•	 Both algorithms behaved the same for average precision, coverage, ranking loss, and one error 
(shown in Figure 4) with 2, 10, 33, and 37 percent increase than MLkNN, respectively. With 
MLFLD-MAXP and MLFLD, the highest enhancement was spotted as 46% and 35% for sub-
set accuracy, and the same for accuracy was 32% and 24%, respectively. MLFLD-MAXP beat 
MLFLD for micro-F1 and ex-F1 with (21, 18) and (28, 21) percent, respectively. They have im-
proved than MLkNN except for two datasets for macro-F1.

•	 The execution time was comparable for all experiments.

In Table 3(a)-3(b), after removing outliers, the scenario appeared very different. For all the metrics, 
both devised algorithms surpassed MLkNN. Thus, the imbalance of feature values influenced the de-
signed algorithms for datasets with larger MLE and smaller label set skew.

Figure 3. Performance comparison for distance measures used for label dissimilarity
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FUTURE RESEARCH DIRECTIONS

In this work, multi-label data was observed for MLE, skew and outlier along with other properties. 
These were obtained through experimentation. It exhibited how performance was affected due to these 
properties. Multi-label data can be preprocessed further for a feature and instance selection or handling 
of skew nature. Observations of dataset characteristics showed that more MLE implied more skew. But 

Table 3a. Effect of outlier removal

     (a) Hamming loss (↓)      (b) Ranking loss (↓)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.1878 0.1115 0.1104 Emotions 0.1582 0.0502 0.0502

Scene 0.1052 0.0914 0.0877 Scene 0.0946 0.0669 0.0669

Image 0.1919 0.1444 0.1474 Image 0.2089 0.1537 0.1537

Yeast 0.1967 0.1522 0.1522 Yeast 0.1638 0.0971 0.0971

CAL500 0.1394 0.1324 0.1324 CAL500 0.1837 0.1696 0.1696

Average 0.1642 0.1264 0.1260 Average 0.1618 0.1075 0.1075

Rank 3 2 1 Rank 3 1 1

     (c) One Error (↓)      (d) Coverage (↓)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2599 0.1042 0.1042 Emotions 1.7959 1.1792 1.1792

Scene 0.2910 0.2302 0.2302 Scene 0.5612 0.4154 0.4154

Image 0.3765 0.2815 0.2815 Image 1.0545 0.8259 0.8259

Yeast 0.2222 0.1147 0.1147 Yeast 6.2599 5.1735 5.1735

CAL500 0.1095 0.0597 0.0597 CAL500 131.057 130.036 130.036

Average 0.2518 0.1581 0.1581 Average 28.1457 27.5260 27.5260

Rank 3 1 1 Rank 3 1 1

     (e) Average Precision (↑)      (f) Accuracy (↑)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.8073 0.9278 0.9278 Emotions 0.5665 0.7276 0.7380

Scene 0.8301 0.8700 0.8700 Scene 0.6060 0.6667 0.7407

Image 0.7568 0.8201 0.8201 Image 0.3937 0.5722 0.6630

Yeast 0.7696 0.8634 0.8634 Yeast 0.5058 0.6235 0.6236

CAL500 0.4946 0.5369 0.5369 CAL500 0.1936 0.2385 0.2385

Average 0.7317 0.8036 0.8036 Average 0.4531 0.5657 0.6008

Rank 3 1 1 Rank 3 2 1

     (g) Subset Accuracy (↑)      (h) Ex-F1 (↑)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.3223 0.5083 0.5167 Emotions 0.6458 0.7948 0.8059

Scene 0.5701 0.6189 0.6907 Scene 0.6179 0.6826 0.7574

Image 0.3501 0.5148 0.5963 Image 0.4084 0.5920 0.6858

Yeast 0.1805 0.2806 0.2806 Yeast 0.6111 0.7206 0.7209

CAL500 0.0000 0.0000 0.0000 CAL500 0.3186 0.3781 0.3781

Average 0.2846 0.3845 0.4169 Average 0.5204 0.6336 0.6696

Rank 3 2 1 Rank 3 2 1

     (i) Macro-F1 (↑)      (j) Micro-F1 (↑)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.6404 0.8166 0.8196 Emotions 0.6814 0.8220 0.8247

Scene 0.6336 0.6998 0.7397 Scene 0.6715 0.7225 0.7514

Image 0.4455 0.5961 0.6153 Image 0.4768 0.6414 0.6700

Yeast 0.3858 NaN NaN Yeast 0.6396 0.7403 0.7404

CAL500 0.1957 NaN NaN CAL500 0.3147 0.3831 0.3831

Average 0.4602 0.7042 0.7249 Average 0.5568 0.6619 0.6739

Rank 3 2 1 Rank 3 2 1
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at the same time, when MLE was less, outliers were more. It needs further investigation and empirical 
evaluation because experimentation was done on only five datasets.

CONCLUSION

Being associated with multiple labels, the use of label dissimilarity with feature similarity by MLFLD-
MAXP has exceeded its performance. While the computation of label dissimilarity was observed for 
three distance measures, Hamming distance has shown maximum enhancement. When data was seen 
for outlier existence, its removal seemed more beneficial on MLFLD and MLFLD-MAXP. All the ex-
periments implied that both the algorithms were sensitive to the presence of outliers. They were also 
affected by skew and the unique characteristics of datasets. It can be concluded that devised algorithms 
seemed more susceptible to datasets having very high MLE. The imbalance of feature values influenced 
the designed algorithms for datasets with larger MLE and smaller label set skew. Different forms of 
preprocessing on multi-label data can be further applied and observed.

Table 3b. Summarized performance after outlier removal

Performance Metric MLkNN MLFLD MAXP

Hamming Loss (↓) 0.1642 0.1264 0.1260

Ranking Loss (↓) 0.1618 0.1075 0.1075

One Error (↓) 0.2518 0.1581 0.1581

Coverage (↓) 28.146 27.526 27.526

Avg. Precision (↑) 0.7317 0.8036 0.8036

Accuracy (↑) 0.4531 0.5657 0.6008

Subset Accuracy (↑) 0.2846 0.3845 0.4169

Ex-F1 (↑) 0.5204 0.6336 0.6696

Macro-F1 (↑) 0.4602 0.7042 0.7249

Micro-F1 (↑) 0.5568 0.6619 0.6739

Exec. Time (↓) 6 8 8

Avg. Rank (↓) 3 1.6 1

#Wins (↑) 0 4 10
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Figure 4. Performance after outlier removal
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