
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 2, Issue 2, March – April 2013 ISSN 2278-6856

Volume 2, Issue 2 March – April 2013 Page 95

Abstract: In distributed database, data resides in various
sites and many transactions can originate at any number of
sites randomly. These transactions can execute concurrently.
This concurrency leads to deadlock in which transactions
may enter into an infinite waiting state so deadlock handling
is an important criteria in distributed transaction processing.
So, an efficient algorithm for detecting deadlock is to be
devised. Various approaches are there for detecting deadlock
in distributed database such as chandy & Mishra Algorithm
[5], Sinha’s Algorithm [8], Obermack’s Algorithm [3].All of
which have been implemented and tested in distributed
database where data is distributed among various sites and
data is not replicated. As data replication improves
availability, it is necessary to implement and test the
performance of deadlock detection algorithm in a replicated
environment.
Keywords: Distributed Database, Deadlock, Replication

1. INTRODUCTION
Deadlock handling is an important component of
transaction management in a database system. In this
paper an algorithm for detecting and resolving deadlock
in distributed database is discussed which can improve in
development of transaction Management. In distributed
database with replication same data may reside in several
locations. A transaction initiated at one site can request
data for which it is not the owner. Deadlock occurs in
database system that permits concurrent execution of
transaction using locking protocol. Deadlock detection is
very difficult in distributed database system because no
controller has complete and current information about the
system and data dependencies. This new algorithm is
based on creating a Linear Transaction Structure (LTS),
Distributed Transaction Structure (DTS) finding local
and global cycle, deciding priority ID of the transaction
and aborting the selected victim. It also ensures that it
will not detect false deadlock.

 In Section 2 a survey of existing algorithms is
discussed and in section 3 a new technique is discussed
and in section 4 architectural model is presented and in
section 5 experimental setup and conclusions in section 6.

2. LITERATURE SURVEY
The taxonomy of databases and locking methods is
presented below.

 Taxonomy of database:

Figure 1. Classification of Data Storage

Figure 2.Classification of Locking Protocols

There are various algorithms existing for deadlock
detection in distributed database. A survey of such
algorithm is done in this section. The existing deadlock
detection algorithm are divided into two category
1. Pass Information about transaction request to maintain
a global wait for graph.
2. Simpler messages are sent among the transactions. No
global wait for graph is explicitly constructed.
Ho’s Algorithm [9]
In this Algorithm each site maintains a status table for all
the processes that are initiated at the site. For each
process, the tables keep track of the resources the process

Deadlock Detection in Distributed Database

I.Priyadarshini1, Prof. Dr. S. S. Sane2, Rutuja Jadhav3

1,3 Dept. of Computer Engg.
KKWIEER, Nasik, India

2Head, Dept. of Computer Engg.
KKWIEER, Nasik

Nasik, India

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 2, Issue 2, March – April 2013 ISSN 2278-6856

Volume 2, Issue 2 March – April 2013 Page 96

has locked and the resources for which it is waiting for.
Periodically a site is chosen as a controller and the
following things happen.
Phase one:
(i)The Controller broadcast a message requesting all the
sites to send their status table.
(ii) When all the sites have sent their status table it
constructs a wait for graph.
(iii)If a cycle is detected then initiates the second phase
else reports no deadlock and releases its control.
Phase Two:
(i) It is a verification phase. It broadcast a second
message requesting everyone to send their status table.
(ii) When it receives the entire message then it constructs
a wait for graph.
(iii) If there is a cycle it reports deadlock to a deadlock
resolver. Else releases its control.
Advantage:
It is simple to implement.
Disadvantages:
It requires 4n messages to determine a deadlock in n site
system.
It may detect false deadlock.
Obermack’s Algorithm [3]
In this approach an external node Text is added to a local
wait for graph to indicate the agent at remote site.
(i) When a transaction T1 at site s1, creates an agent at
site s2 then an edge is added to the local WFG from T1 to
Text node at site1.
(ii) Similarly at site S2 an edge is added to the local wait
for graph from the Text node to the agent of T1.
(iii) If a local WFG contains a cycle that does not include
Text then the site is in deadlock and the deadlock can be
broken at local site.
(iv)A global deadlock is detected if any local WFG
contains a cycle including Text node. Then to determine
the deadlock graphs has to be merged.
(v) If site s1 has a deadlock, its local WFG is of the form
Text TiTj…Tk Text.
(vi) A time stamp is allocated to each transaction and
imposes a rule that site s1 will send WFG to the site Tk is
waiting for, say Sk if and only if ts (Ti) < ts(Tk).
(vii)Site Sk will include it in its WFG and check for cycle
not involving Text
(viii). If there is no cycle, the process continues until
either a cycle appear or entire global WFG is constructed
and no cycle has been detected.
Performance Analysis:
(i) It requires n (n-1) messages to be transmitted for n
sites.
Advantages:
The number of messages to be transmitted is less when
compared to HO’S Algorithm.
Disadvantages:
It may detect false deadlock because wait for graph
constructed do not represent a snap shot of global TWFG
at any instant.
Chandy & Mishra Algorithm [5]

Chandy-Misra-Haas’s distributed deadlock detection
algorithm for AND model is based on edge-chasing.
(i) The algorithm uses a special message called probe,
which is a triplet (i, j, k), denoting that it belongs to a
deadlock detection initiated for process Pi and it is being
sent by the home site of process Pj to the home site of
process Pk
(ii) A probe message travels along the edges of the global
WFG graph, and a deadlock is detected when a probe
message returns to the process that initiated it.
Performance Analysis:
Every single deadlock detection computation involves at
most e probes, where e is the number of communicating
pairs of controllers in the network. Hence in the worst
case e = N (N - 1) and N is the number of nodes. It may
detect false deadlock.

3. MICHAEL’S ALGORITHM [1]
The algorithm proposed by Michael [1] for deadlock
detection is presented below.

The new technique uses the following:

1. Linear Transaction Structure (LTS) for each local
site.

2. Distributed Transaction Structure (DTS) for
global resource transaction communication.

In this technique, a Linear Transaction Structure (LTS) is
maintained at each site.

i. LTS Creation:

 If any transaction Tp requests a data item that is held by
another transaction Tq of same site then this technique
stores the values of p and q to the linear transaction
structure (LTS), where p and q represents their
corresponding transaction number.

ii. DTS Creation:

 Distributed Transaction Structure (DTS) stores all the
transactions which are interconnected (requests for data
item from other sites) from one site to another site. DTS
also records the transaction’s (i.e. for transactions
connected to other site) intra requests DTS is managed by
Data Manager (DM).

To detect local deadlock LTS of the site is checked. If
there is cycles then the priority (which is assigned by
local transaction manager at the time of initiation using
timestamp) of the transaction involved in the cycle are
entered into a queue Q maintained by that transaction
manager of that site. Based on the priority, a victim is
chosen.

To detect a global deadlock GTM records priority
transaction id in TQ for those transactions which form
cycles in DTS. The priority id which is least has lowest
priority and it is the youngest transaction. Less priority id
for the transaction’s data request from one site to another

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 2, Issue 2, March – April 2013 ISSN 2278-6856

Volume 2, Issue 2 March – April 2013 Page 97

site, is given in DTS, global deadlock cycles become free
from deadlock after aborting the transaction’s data
request from one site to another site.

Performance Analysis:

It detects local deadlock as well as global deadlock and it
resolve deadlock by selecting a victim transaction and it
does not detect false cycle. When any transaction has to
wait its status is entered into the table.

Figure 3: System Architecture diagram

4. EXPERIMENTAL SETUP
A. Software used

a. Java Development Kit 1.6 or later
B. Hardware specification

a. RAM 1GB
b. Pentium 4 or later

C. Platform
a. Windows

D. Tools
a. Net beans 6.8 IDE

 A. Sample Test Cases:
Distributed Database:

The data is randomly distributed across required
number of sites.

Input:

The input to the above system is given in two manners.

1. User can define the transaction in files and give it as
input to the system. Transactions are set of read and write
statements. The system is tested with various scenarios of
deadlock and without deadlock.

 Sample Scenario 1:

Site 1 Site 2 Site 3

Transaction 1 Transaction 3 Transaction 5

Read 1 Write 3 Read 5
Write 2 Write 4 write 6
Write 3 Write 5 Write 1

Transaction 2 Transaction 4 Transaction 6
Read 10 write 0 read 11
Read 11 read 10 read 10
Read 12 read 12

DTS (for deadlock detection)
Requestor Holder
(trans.id) (trans.id)

1 3(for resource 3)
3 5(for resource 5)

 5 1(for resource 1).

Circular wait condition

Deadlock Detected between transactions 1, 3 and 5.
Victim selected as T5 based on Timestamp of transaction
T5:aborted.all other executed successfully.

2. Alternatively, The transactions are not user defined in
files rather they are generated randomly by simulation
methods in which 80% transaction are read only as in
real case and the system is tested.

 6. Conclusions
This Paper makes a survey of various algorithms of
detecting deadlock in distributed database and also shows
the implementation details of one such algorithm. Now,
the same algorithm has to be tested on the database of
replicated environment and its correctness has to be
verified. In that case the locking mechanism will change,
any of replicated concurrency control protocol such as
primary copy has to be incorporated and further testing
has to be done in order to analyze the correctness.

REFERENCES
[1]B. M. M. Alom, F. Henskens, and M. Hannaford,

"Deadlock Detection Views of Distributed Database,"
in International conference on Information
Technology & New Generation (ITNG-2009) Las
Vegas, USA: IEEE Computer Society, 2009.

[2] A. K. Elmagarmid, "A Survey Of Distributed
Deadlock Detection Algorithms,"
SIGMODRECORD, vol. 15: 3, pp. 37-45, 1986.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 2, Issue 2, March – April 2013 ISSN 2278-6856

Volume 2, Issue 2 March – April 2013 Page 98

[3] R. Obermarck, "Distributed Deadlock Detection
Algorithm," ACM Transaction on Database Systems,
vol. 7:2, pp. 187-208, 1982.

[4] J. N. Gray, "A discussion on distributed systems,"
IBM Research Division, 1979.

[5] K. M. Chandy, J. Misra, and L. M. Hass,"Distributed
Deadlock Detection," ACM Transaction on
Computer Systems, vol. 1:2, pp.144-56, 1983.

[6] X. M. Chandy and J. Misra, "A Distributed Algorithm
for Detecting Resource Deadlocks in Distributed
Systems” in ACM, 1982.

[7] D. A. Menasce and R. R. Muntz, "Locking and
Deadlock Detection in Distributed Data Bases "IEEE
Transaction on Software Engineering, vol.5:3, pp.
195-202, 1979.

[8] M. K. Sinha and N. Natarjan, "A Priority Based
Distributed Deadlock Detection Algorithm "IEEE
Transaction on Software Engineering, vol. 11:1, pp.
67-80, 1985.

[9] G. S. Ho and C. V. Ramamoorthy, "Protocols for
Deadlock Detection in Distributed Database Systems
" IEEE Transaction on Software Engineering, vol.
8:6, pp. 554-557, 1982.

[10] S. Kawazu, S. Minami, K. Itoh, and K.
Teranaka,"Two-Phase Deadlock Detection Algorithm
in Distributed Databases” in IEEE, 1979.

AUTHORS
Prof. I.Priyadarshini, BE Computer engr, K.K.Wagh
Insitute of engg.education anresearch.Nasik.

Dr. S.S.Sane, PHD, HOD K.K.Wagh Insitute of
engg.education and research. Nasik.

Prof.Rutuja Jadhav, BE Computer engr, K.K.Wagh
Insitute of engg.education and research.Nasik.

