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per National Education Policy (NEP)2020. 

This book is a specially prepared student centric book in which different domains of fluid 

Mechanics are introduced in simple manner. This book includes fundamnetals of fluid mechanincs 

in total of six units as properties of fluids, fluid statics, buoyancy and flotation, fluid kinematics, 

fluid dynamics and dimensional analysis. Efforts have been made to explain the fundamental 

concepts of the subject in the simplest possible way. Main purpose of this book is to help under 

graduate civil engineering students to understand and apply the basics of fluid mechanics to 

applications in engineering problems. The content of this book is aligned with the model curriculum 

of AICTE by mapping of Course Outcome, Programs Outcomes and Unit Outcomes. At the start 

of each unit, rationale, pre-requisite of that unit are mentioned along with unit (learning) outcomes 

to make the students aware about the  expected outcome from the same unit . In addition to the 

essential information, experiments related to the units are provided along with the objecties , 

procedres and necessary calcualtion basics. Every unit is well supported by a set of objective 

questions, theory questions and numerical problems in addition to the solved numerical examples. 

The subject matters are presented in a constructive manner so that an engineering degree prepares 

students to work in different sectors or in national laboratories at the very forefront of technology. 

We sincerely hope that the book will inspire the students to learn and discuss the ideas behind basic 

principles of Fluid Mechanics and will surely contribute to the development of a solid foundation 

of the subject. We would be thankful to all beneficial comments and suggestions which will 

contribute to the improvement of the future editions of the book. It gives us utmost satisfaction to 

place this book in the hands of the teachers and students. The authors extend best wishes to students 

for the preparation of the fluid Mechanics course. 

 

Prof. Shreenivas Londhe 

Dr. Pradnya Dixit 
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Outcome Based Education 

 
For the implementation of an outcome-based education the first requirement is to develop an 

outcome-based curriculum and incorporate an outcome-based assessment in the education system. 

By going through outcome-based assessments evaluators will be able to evaluate whether the 

students have achieved the outlined standard, specific and measurable outcomes. With the proper 

incorporation of outcome-based education there will be a definite commitment to achieve a 

minimum standard for all learners without giving up at any level.  

At the end of the programme running with the aid of outcome-based education, a student will be 

able to arrive at the following outcomes: 

 

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering problems. 

 

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of mathematics, 

natural sciences, and engineering sciences. 

 

PO3. Design / development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations.  

 

PO4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of the 

information to provide valid conclusions. 

 

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with 

an understanding of the limitations. 

 

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the 

professional engineering practice. 

PO7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for 

sustainable development. 

 

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 
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PO9. Individual and team work: Function effectively as an individual, and as a member or leader 

in diverse teams, and in multidisciplinary settings. 

 

PO10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports and design documentation, make effective presentations, and give and receive 

clear instructions. 

 

PO11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and leader 

in a team, to manage projects and in multidisciplinary environments. 

 

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage 

in independent and life-long learning in the broadest context of technological change. 
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Course Outcomes 

 

At the end of the course, the student will be able to:  

CO-1: Understand the broad principles of fluid statics, kinematics and dynamics  

CO-2: Understand definitions of the basic terms used in fluid mechanics  

CO-3: Understand classifications of fluid flow  

CO-4: Apply the continuity, momentum, and energy principles  

CO-5: Apply dimensional analysis  
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Guidelines for Teachers 

 

To implement Outcome Based Education (OBE) knowledge level and skill set of the students 

should be enhanced. Teachers should take a major responsibility for the proper implementation of 

OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as 

follows: 

 Within reasonable constraint, they should manoeuvre time to the best advantage of all 

students. 

 They should assess the students only upon certain defined criterion without considering 

any other potential ineligibility to discriminate them. 

 They should try to grow the learning abilities of the students to a certain level before they 

leave the institute. 

 They should try to ensure that all the students are equipped with the quality knowledge as 

well as competence after they finish their education. 

 They should always encourage the students to develop their ultimate performance 

capabilities. 

 They should facilitate and encourage group work and team work to consolidate newer 

approach. 

 They should follow Blooms taxonomy in every part of the assessment. 

Bloom’s Taxonomy 
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Guidelines for Students 

 

Students should take equal responsibility for implementing the OBE. Some of the 

responsibilities (not limited to) for the students in OBE system are as follows: 

 Students should be well aware of each Unit Outcome (UO) before the start of a unit 

in each and every course. 

 Students should be well aware of each Course Outcome (CO) before the start of the 

course. 

 Students should be well aware of each Programme Outcome (PO) before the start 

of the programme. 

 Students should think critically and reasonably with proper reflection and action. 

 Learning of the students should be connected and integrated with practical and real-

life consequences. 

 Students should be well aware of their competency at every level of OBE. 
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Abbreviations and Symbols 
 

List of Abbreviations 

 

General Terms 

Abbreviations Full form 

SI System International 

MKS Meter kilogram second 

CGS Centimeter gram second 

 

List of Symbols 

Symbol Description 

 A, a Area  

a acceleration 

b width  

B centre of buoyancy 

c Celerity of pressure wave (acoustic velocity) 

C.P centre of pressure 

Cc coefficient of contraction  

CD coefficient of drag 

CG, G  centre of gravity 

CL coefficient of lift  

CV coefficient of velocity 

D (d) Diameter  

dp Change in pressure 

dv Change in volume 

E specific energy 

Eu Euler number 

f friction factor (Darcy) for pipe flow 

F force, thrust 
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Fe elastic force 

Fg buoyant force 

Fi Inertia force 

Fp Pressure force 

Fr Froude number 

Fs Viscus force  

Fs  surface tension force  

g gravitational acceleration 

g  Acceleration due to gravity 

h head, height or depth, pressure head 

H total head (energy) 

hf  frictional head losses 

hp horsepower = 0.746 kW 

I moment of inertia 

IXY product of inertia 

J joule 

J  joule  

K bulk modulus of elasticity, 

K.E. kinetic energy 

l mixing length 

L length 

Le equivalent length 

M Mass, metacentre 

MG metacentric height  

N  Speed, Newton  

Ny Mach number 

P pressure, Power  

Pa pascal 

PE potential energy 

PE  pressure energy 

q unit flow, unit discharge  

Q Discharge, rate of flow 
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Re Reynold's number  

rpm  rotational speed 

S Specific gravity, relative density  

T Time, torque  

V velocity, volume  

Vs Specific volume  

W  weight , watt  

We Weber number  

α (alpha) angle, kinetic energy correction factor 

β (beta)  angle, momentum correction factor 

γ (gamma)  specific (or unit) weight 
 

shear stress  

δ (delta)  boundary layer thickness 

ε (epsilon)   surface roughness 

η (eta)   eddy viscosity 

θ Momentum thickness  

θ (theta)  any angle 

μ (mue)  absolute viscosity 

ν (nu) kinematic viscosity 

π (pi)  dimensionless parameter 

ρ (rho)    mass density 

σ (sigma)  surface tension, intensity of tensile stress 

τ (tau)   shear stress 

φ (phi)   speed factor, velocity potential, ratio 

ψ (psi)   stream function 

ω (omega)   angular velocity 

 

 

angular deformation  

 

 

Displacement thickness 
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UNIT SPECIFICS 

Through this unit we have discussed the following aspects: 

 Introduction of fluid mechanics, Liquids and Gases, Units of measurement 

 Properties of fluids, Mass, Mass Density, Specific Weight, Specific Volume, Specific 

Gravity  

 Viscosity, Kinematic and dynamic viscosity, Classification of fluids  

 Compressibility & Bulk modulus of elasticity 

 Cohesion and Adhesion, Surface Tension, Capillarity 

 Vapor pressure (Boiling point, Cavitation) 

This is followed by large number of solved examples. The students are encouraged to solve the 

objective questions, long answer questions and numerical problems to judge ones 

understanding. The practical on measurement of viscosity is included followed by a list of 

references for additional reading.    

 

RATIONALE 

This unit introduces basic properties of fluids which are necessarily to be understood before 

learning the mechanics of fluids. To understand what happens to the fluid under the action 

of forces either at rest or in motion one must first understand the internal structure of the 

fluid, its classification, response to forces and behaviour with changes in physical 

parameters like temperature and pressure.   

 
 

P1 

P PROPERTIES OF FLUIDS 
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PRE-REQUISITES 

Mathematics: Derivatives (Class XII)  

Physics: Mechanics (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

(At the end of this unit, students will understand.) 

U1-O1: Difference between liquids and gases as fluids 

U1-O2:  Units of measurement 

U1-O3:  Properties of fluids 

U1-O4: Classification of fluids 

 

Unit-1 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1-WeakCorrelation; 2-Mediumcorrelation;3-StrongCorrelation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U1-O1 - 3 - - - - 

U1-O2 - 3 - - - - 

U1-O3 - 3 - - - - 

U1-O4 - 3 - - - - 

 

1.1 Introduction: 

Matter in the universe exists in three states, the solids, liquids and gases. This classification 

is based on spacing of different molecules of the matter and the response of the matter 

to the stress. The solids exhibit rigidity of form owing to the closeness of molecules 

in them. Their form/shape remains same in normal temperature and pressure 

situations. On the other hand, the liquids and gases show a very less rigidity of form 

i.e., they take the shape of the container. This is due to the larger distance between 

their molecules. The gases have more freedom of movement due to greater distance 

between their molecules than the distance between molecules of liquids. When 

subjected to a shearing force solid tend to deform which is resisted by the internal 

resistance (shear stress). If the force is removed solids regain their original shape 
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and size owing to their resilience. If the force exceeds certain limit the solids deform 

permanently. On the other hand, the liquids and gases deform continuously under the 

action of shear, however small it may be and start flowing. Owing to this behaviour 

of ‘flowing’, the liquids and gases are termed as fluids. Thus, fluid can be defined as 

a substance which deforms continuously when subjected to a tangential or shear 

stress (force), however small the stress (force) may be.  

Mechanics is a branch of science which deals with study of action of forces on bodies in a 

state of rest or in motion. When rules of mechanics are applied to fluids, it is termed 

as 'Fluid Mechanics'. When fluid is at rest it is called ‘fluid statics’ while when the 

fluid is in motion it is termed as ‘fluid dynamics. The fluid dynamics can be studied 

either by applying the forces responsible for the motion (fluid dynamics) or without 

applying these forces (fluid kinematics) on the similar lines of solid mechanics. To 

understand fluid mechanics, it is first necessary to study the properties of fluids and 

their interrelationships which are discussed in the present unit. 

Fluid Mechanics has a wide range of applications in almost all hardcore engineering 

branches like Civil, Mechanical, Chemical and Electrical Engineering. The 

applications include design of water supply schemes, design of hydraulic structures, 

design of hydraulic machines, design of chemical industries, power generation, 

design of lubricating systems, design of aeroplanes, submarines, design of ships, the 

list is unending. 

 

1.2 Liquids and Gases: 

As discussed earlier the fluids are of two types-liquids and gases. These two phases have 

many similarities and differences. The comparison between the liquids and gases in 

respect of their properties is given in the following table 1.2.1 
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Table 1.2.1: Difference between liquids and gases 

Sr. 

No. 

 

Liquids Gases  

1 Do not offer resistance to shear  Do not offer resistance to shear  

2 Occupy the definite volume in the 

container  

Occupy the entire volume of the 

container  

3 Incompressible compared to gases  Highly compressible  

4 Exhibit free surface as molecules 

are kept together due to relatively 

higher attractive forces. 

Do not have a free surface as 

molecules travel away from each 

other due to less attractive forces.   5 Liquids can easily change their 

phase from liquid to gas state  

Gases do not convert from gas to 

liquid state easily (except water 

vapour)   

1.3 Units of Measurement: 

 

The standards used for measurement of physical quantities like length, mass, volume, 

acceleration etc. are called as units. In fluid mechanics units of measurement are 

based on Newton's second law viz.  

F = ma 

 

where F is force, m is mass and a is the acceleration in the direction of motion. 

In absolute system the primary unit is mass where as in gravitational system force is 

the primary unit. 

Since, 1960, the 'System International d units' is followed (SI system) internationally to 

measure various physical quantities. The primary or basic units are given in Table 

1.3.1. Frequently used derived units are listed in Table 1.3.2. 
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Table1.3.1: Basic or fundamental units 

Quantity Units Symbol 

Length  Meter  M 

Mass Kilogram  Kg 

Time  Second S 

Electric current Amphere A 

Luminance  Candela  Ed 

Temperature  Celsius  C 

Thermodynamic Temperature  Kelvin  K 

Table 1.3.2: Derived units 

Quantity Unit Symbol 

Force Newton N 

Pressure Pascal Pa (N/ m2) 

Stress Pascal Pa (N/ m2) 

Work/energy Joule J (N-m) 

Power Watt W (N m/s) 

 

1.4 Properties of Fluid: 

To study behaviour of fluids under the action of forces following properties are significant. 

 

1.4.1 Mass: 

The quantity of matter present in the system is expressed by mass. Mass is an indication of 

the amount of effort required to start or stop the motion, as effort required is directly 

proportional to mass. 
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Unit of measurement: kg 

1.4.2 Mass Density: 

It is a measure of compactness of the matter present in a fluid. The mass density is 

expressed as mass per unit volume of the fluid denoted by symbol ‘ρ’ (Rho). Thus, 

more mass density means more matter present per unit volume. 

ρ =
Mass

Volume 
 

Unit of measurement: kg/m3 

The mass density depends upon the temperature and pressure as volume is a function of 

Equation should be centrally placed, it is right justified at present temperature and 

function. The standard value of mass density of water at 200 C and 1 atmospheric 

pressure is 998 kg/m3 and that of air is 1.205 kg/m3. 

 

1.4.3 Specific Weight: 

It is weight of the fluid per unit volume. It is denoted by symbol gamma (γ). 

γ =
Weight

Volume 
=

mass  x  gravitational acceleration

Volume 
 

i.e.                 

γ =
W

V 
=

m  x  g

V 
=  ρ . g 

m  x  g

V 
=

kg . m/s2

m3
=

N

m3
 

Unit of measurement:  N /m3 

Specific weight of water at 200 C is 9810 N/m3 and that of air is 11.81 N/m3. The specific 

weight is the product of mass density and gravitational acceleration (γ = ρ.g) 
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1.4.4 Specific Volume: 

It is inverse of specific weight i.e., it is the volume of fluid per unit weight. It is denoted by 

symbol ‘Vs.’ 

𝑉𝑠 =
1

𝛾
=

Volume 

Weight
 

Specific volume is used in problems involving gas flows. 

Unit of measurement: m3/N 

1.4.5 Specific Gravity: 

It is the ratio of specific weight of fluid to the specific weight of standard fluid at standard 

conditions. For liquids, water at 40C temperature and 101.325 kN/m2 pressure is used 

as a standard fluid. For gases carbon dioxide or pure hydrogen at standard 

temperature or pressure is used as a standard fluid. It is denoted by symbol 'S'. 

Specific gravity ′S′ =
Specific weight of fluid 

Specific weight of standard fluid
 

Thus, specific gravity of water will be l. Specific gravity of Mercury is 13.6. If instead 

of specific weight, mass density is used to find ratio, then the resulting term is known 

as relative density (R.D.) 

∴   𝑅. 𝐷.  =  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  =  
𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 

𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑓𝑙𝑢𝑖𝑑 
 

Both specific gravity and relative density are dimensionless and possess no ‘unit’. 

 

1.4.6 Viscosity:  

Consider a case, when water is dropped on floor and oil is dropped on floor. It can be 

observed that water flows easily and quickly than oil. This is due to the influence of 

a property called viscosity. It can be easily understood from the above example that 

the resistance to flow in oil is greater than that of water. Viscosity is the measure of 

this resistance to flow. 
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Viscosity is the property of fluid by virtue of which it offers resistance to movement of one 

layer of the fluid over the other. 

Viscosity of a fluid is mainly due to intermolecular cohesion and molecular momentum. 

While the former is dominant in liquids the latter is dominant in gases. The increase 

in temperature results in reduction in intermolecular cohesion due to increased 

spacing between liquid molecules leading to reduction in the viscosity. However, in 

gases the intermolecular momentum increases with temperature, thereby increasing 

viscosity with temperature. 

Consider two parallel plates separated by a distance Y apart. The space between the plates 

is filled with fluid. The upper plate is moving with velocity 'U' due to application of 

force F. (Refer Fig. 1.l). The lower plate is stationary. 

 

 

Fig. 1.1 Viscosity of fluid  

Fluid particles in contact with the plate have same velocity as that of the plate which is 

termed as the ‘No slip condition’. Thus, the velocity of fluid particles varies from 

zero at the stationary plate to ‘U’ at the moving plate.  

 

Consider fluid layers at a distance ‘y’ and ‘y + dy’ from the stationary plate. The velocity 

of the flow at these levels is ‘u’ and ‘u + du’ respectively setting up a velocity gradient 

of  
du

dy
. This happens due to the shear resistance offered by both the plates to the 
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relative motion between them. According Newton’s law of viscosity the shear stress 

between two straight parallel lines of non-turbulent flow is proportional to the rate of 

change of velocity with respect to y (velocity gradient). 

τ  α  
du

dy
                       (1.1) 

∴     τ  =   μ  
du

dy
                 (1.2) 

Where τ is the shear stress, 
du

dy 
 is the velocity gradient and μ (mue), the constant of 

proportionality, is termed as coefficient of dynamic viscosity. The law stated by 

equation (1.2), is known as Newton’s law of viscosity. The force acting on the plate 

can be expressed as,  

 

𝐹 =  τ . A       where A is area of the plate     (1.3) 

                                     ∴ F  =   μ  
du

dy
 𝐴                                  (1.4) 

Rearranging the terms of Equation (l .2) 

μ  = 
τ

du dy⁄
                                   (1.5) 

where 
du

dy
 can be also considered as angular deformation.  

The coefficient of dynamic viscosity can therefore be defined as the shear stress required 

to produce a unit angular deformation. 

Unit of viscosity μ is N-s /m2 or Pa-s or kg/ms. 

In C.G.S, system unit of viscosity is poise i.e. dyne-s / cm2 

1 poise = 0.1 Ns/m2 

1 centipoise = 
1

100
 poise = 0.01 poise 

The ratio of dynamic viscosity ‘μ’ to mass density 'p' is termed as coefficient of kinematic 

viscosity ‘ν’ (nue). 
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ν =  
μ

ρ
                          (1.6) 

Unit of measurement: m2 /s 

In C.G.S.  system stokes i.e. cm2/s is used to measure kinematic viscosity 

1 stokes = 10-4 m2 /s 

1 centistoke = 
1

100
stokes 

 

The dynamic viscosity depends on the temperature on account of the density which in turn 

depends upon the temperature. However, the kinematics viscosity is independent of 

the temperature as it does not involve the density as seen in equation 1.6. When fluids 

are at rest there is no relative movement between lateral layers, as a result there is no 

shear stress. Therefore, viscosity is not important in study of fluids at rest. 

The fluids which possess viscosity are called real fluids. For example, milk, blood, oil, 

water etc. The fluids which do not possess viscosity are Ideal fluids. As the name 

indicates these fluids are Ideal and therefore such fluids do not exist in reality. Only 

if viscosity is very less then effect of viscosity can be neglected and the flow can be 

considered as inviscid flow. The property is viscosity can be further used to classify 

the fluids.  

 

1.4.6.1. Classification of Fluids: 

Depending upon the property of viscosity and Newton's law of viscosity the fluids can be 

classified as under- 

 

Newtonian fluids: 

These are the fluids which obey Newton's law of viscosity which means the constant of 

proportionality μ (coefficient of dynamic viscosity) remains constant. Relationship 

between shear stress and angular deformation is a straight line. 

Example: air, water, kerosene, glycerine etc. 

Non-Newtonian fluids:  
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These fluids do not obey Newton's law of viscosity. Non-Newtonian fluids are further 

classified depending upon the yield stress. 

Those non-Newtonian fluid which does not possess a yield stress are governed by the 

following non-linear relationship between the shear stress and angular deformation.  

τ  =   μ  (
du

dy
)

n

         (1.7) 

If n < 1, the fluids are called 'pseudoplastics'. Liquids such as milk, blood, paper pulp 

behave as pseudoplastics. 

If n > 1, the fluids are called 'Dilatants'. At low shear stress they behave as fluids but at 

high values of shear they behave as solids. Concentrated sugar solution, butter are 

examples of dilatants. 

Some non-Newtonian fluids possess a definite yield stress beyond which the shear stress 

varies linearly with angular deformation i.e. 

τ  =  constant + μ  (
du

dy
)         (1.8) 

 

Fig. 1.2 Classification of fluids   
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These fluids are called as ideal plastics or Bingham plastics. Sewage sludge, tooth 

paste, oil paints, drilling mud are examples of ideal plastics. 

Those fluids which possess a definite yield stress while relationship between shear 

stress and angular deformation is nonlinear are called as Thixotropic fluids. 

τ  =  constant + μ  (
𝑑𝑢

𝑑𝑦
)
𝑛

               (1.9) 

 

Printer’s ink and lipsticks fall under this category. 

The diagrammatic representation of classification of fluids is shown in Fig.1.2 where 

angular deformation (shear strain) is plotted on the X-axis and shear stress is 

plotted on the Y-axis. Thus, X-axis also represents the ideal fluids having zero 

shear stress and Y-axis also represents elastic solids having no angular 

deformation.  

 

1.4.7 Compressibility: 

It is the measure of elasticity in fluids. Fluids are compressed under pressure due to 

change in their mass density i.e. more mass can be accommodated in the unit 

volume. When the pressure is removed the fluid regains its original volume. 

The change in the pressure is directly proportional to the ratio of change in 

volume per original volume and there is decrease in volume with increase in 

pressure which is why change in volume is negative (-dV). 

𝑑𝑝  𝛼 −
𝑑𝑉

𝑉
 

𝑑𝑝 = 𝐾 ( −
𝑑𝑉

𝑉
) 

∴       𝐾 =  −
𝑑𝑝

(𝑑𝑉 𝑉⁄ )
                        (1.10) 

where the constant of proportionality K is known as bulk modulus of elasticity. Thus, 

if the change in the volume is less, less is the compressibility (dV/V) while 

the bulk modulus of elasticity K is more and vice versa. The compressibility 
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is therefore expressed as inverse of bulk modulus. Higher the bulk modulus 

less is the compressibility of fluids. 

The liquids are considered to be incompressible owing to negligible change in the 

mass density at a given temperature under the action of pressure. 

On the other hand, gases are treated as highly compressible. 

At normal temperature and pressure 

K water = 2.07 x 106 kPa 

                                                 K air =101.3 kPa 

                                                 K ms= 2.07 x 108kPa 

These values show that air is 20,000 times compressible than water and water is 100 

times compressible than solid (Mild Steel)). Hence, in problems like water 

hammer, water is considered as compressible however for majority of the 

fluid mechanics problems water and other liquids are treated as 

incompressible 

The property of compressibility plays a very important role in aerodynamics.  

 

1.4.8 Cohesion and Adhesion: 

Cohesion: 

Molecular attraction between molecules of similar types (of same liquid) is termed 

as cohesion. 

Adhesion: 

Molecular attraction between dissimilar type of molecules is called as adhesion. For 

example: water molecules and our body. 

A liquid may have both cohesion and adhesion or only cohesion without adhesion 

(Mercury). These properties of cohesion and adhesion lead towards two 

important phenomena namely surface tension and capillarity. 
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1.4.8.1 Surface Tension: 

Consider a molecule 'x' (Refer Fig.1.3) well below the free water surface and another 

molecule 'y' near the free water surface. 

            
Fig. 1.3 Intermolecular forces near liquid surface 

 

The molecule 'x' will be stable as it will be attracted equally by cohesive forces of 

neighbouring water molecules from all the directions. However, 'y' will 

always experience resultant unbalanced downward force (F) acting 

perpendicular to the surface as it will not experience the cohesive force of 

water molecules from top due to interface of water and air. 

As a result, the surface will be pulled down showing a curvature. This in turn develops 

a tension (F) in the surface (as shown in figure. This property of liquid to exert 

tension is called as surface tension. 

Surface tension is a result of pressure difference created at the interface of two fluids, 

due to cohesive forces of different magnitude acting on the molecules near 

the free surface. The surface tension coefficient (σ), therefore is defined as 

the force per unit length required to hold that surface together at that line.  

Coefficient of surface tension  𝜎 = 
𝐹

𝐿
    (1.11) 

∴   unit = N/m 

The surface tension depends on temperature, pressure and the substance it is in 

contact with. 

𝜎𝑤𝑎𝑡𝑒𝑟  at 200° C = 0.0736 N/m 
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𝜎𝑤𝑎𝑡𝑒𝑟  at 1000° C = 0.0589 N/m 

Once the surface becomes curved, the existence of normal force requires an equal 

and opposite force to maintain the static equilibrium. The raindrop, soap 

bubble, jet of liquid thus develops an excess pressure inside, thereby creating 

a pressure difference to balance surface tension 

 

(i) Pressure intensity inside a droplet: 

Consider a spherical droplet of diameter 'd'. Let the excess pressure developed inside 

droplet is P. Figure.1.4 shows the free body diagram of one half of droplet. 

The forces acting are (i) Surface tension acting on the circumference. (σ), (ii) 

Excess pressure 'P' inside the bubble acting on area. 

Surface tension force = σ x π x d. 

Force due to excess pressure = p x 
𝜋

4
 x d2 

For equilibrium,          σ x π x d = p x 
𝜋

4
 x d2 

∴  p =  
4𝜎

d
      (1.12) 

Thus, pressure intensity inside a droplet varies inversely with the diameter. 

 

Fig. 1.4 Forces on droplet of water  
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(ii) Pressure intensity inside a soap bubble: 

 
Unlike droplet, soap bubble has two surfaces in contact with air, one inside and one outside 

because of the small thickness. Fig.1.5  shows the free body diagram of half of soap 

bubble. Thickness of soap bubble is δd. 

 

Force due to excess pressure = 𝑝 .
𝜋

4
(𝑑 − 𝛿. 𝑑)2 

                                              = 𝑝 .
𝜋

4
𝑑2  (neglecting δd term as it is very small)  

 
Fig. 1.5 Forces on bubble  

Forces due to surface tension = 𝜎 . 𝜋 . 𝑑 +  𝜎 . 𝜋 .  (𝑑 −  𝛿𝑑)   =  2 𝜎𝜋𝑑  

(neglecting 𝛿𝑑)  

For equilibrium,                 𝑝 .
𝜋

4
𝑑2  = 2 𝜎𝜋𝑑 

∴  p =  
8𝜎

d
                              (1.13) 

Thus, excess pressure inside the soap bubble is twice as that of the pressure 

intensity inside the droplet. 

(iii) Pressure intensity inside a liquid jet: 

The liquid jet can be considered as a cylinder. Figure 1.6 shows the free body diagram of 

one half of the jet. 
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Fig. 1.6 Forces on jet liquid 

Force due to excess pressure = p x d x l 

Force due to surface tension = σ x 2 x l 

For equilibrium,       p x d x l  =  σ x 2 x l 

∴  p =  
2 𝜎

d
             (1.14) 

1.4.8.2 Capillarity: 

One of the important applications of cohesion and adhesion is capillary rise or capillarity 

depression in small diameter tubes and interstices of porous material. This can be 

seen by a simple experiment. Immerse a small diameter tube (< 6 mm) vertically 

inside a pool of a liquid. The liquid level inside the tube will either rise or fall 

compared to general liquid level in the pool. This rise or fall of liquid level inside the 

tube is known as capillary rise or fall. If adhesive forces predominate, as in case of 

water, the liquid will wet the glass surface and the liquid level will rise making the 

liquid surface in the tube (meniscus) concave upwards (Figure:1.7 (a)). 
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Fig. 1.7 Capillarity rise and depression 

 

In such a situation the angle made by surface tension with the vertical, θ (theta) is less than 

900.If cohesive forces predominate (mercury) the liquid level inside the tube 

(meniscus)will become convex upwards. In this situation, the angle ‘θ’ is greater than 

900. (Figure:1.7 (b)). 

Let 'h' be the capillary rise or fall in a tube of diameter 'd'. Under equilibrium the weight of 

liquid column will be balanced by vertical component of surface tension force ‘σ cos 

θ’. 

weight of liquid column = Volume x specific weight =[
𝜋

4
d2 h] 𝛾 

where ‘𝛾’ is specific weight of liquid.  

Surface tension force = (π .d ).σ cos θ 

[
𝜋

4
d2 h] 𝛾 = (π .d ) σ cos θ 

∴  h =  
4 𝜎 cos 𝜃

𝛾 d
                (1.15) 

For pure water in contact with clean glass and air, θ = 0 

∴  h =  
4 𝜎

𝛾𝑤   d
=

𝜎

𝛾𝑤  r
 

For Mercury and glass, θ = 1400 
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In the above derivation it is assumed that meniscus or curved liquid surface is section of a 

sphere with radius less than 2.5 mm with liquid and tube surfaces extremely clean. 

Therefore actual 'h' is generally less than calculated value.  

For glass tubes having diameter more than 6 mm, effect of capillarity is negligible due to 

gravity forces become more appreciable and meniscus becoming less spherical in 

shape. Therefore, for pressure measurement the glass tubes are of diameter more than 

6 mm.  

 

1.4.9 Vapour Pressure:  

All liquids tend to evaporate when exposed to atmosphere. 

Consider a closed container partly filled with a liquid and maintained at a constant 

temperature. The molecules at the free surface escape into the space above the free 

surface. 

Some of the molecules come back and some do not. After a while a stage is reached when 

the number of molecules on liquid surface remains constant due to the equal rate of 

molecules entering and leaving the liquid. The partial pressure exerted by these 

vapour molecules on water surface is termed as vapour pressure or saturated vapour 

pressure. The pressure exerted by other gases on the liquid surface along with the 

vapour pressure is the total pressure acting on the liquid. Vapour pressure depends 

upon temperature i.e. vapour pressure increase with temperature and vice-versa. 

When the pressure above the liquid is equal to or less than the vapour pressure liquid 

starts boiling. The atmospheric pressure on water is 105Pa and vapour pressure on 

free water surface is approximately 105Pa at 1000C, as a result water starts boiling at 

1000 C. 

Thus, boiling point of water can be decreased by increasing the vapour pressure. This 

underlines the working principle of a pressure cooker. 

It is also established that higher the vapour pressure more volatile is the liquid. For 

example, petrol has a vapour pressure of 30400 Pa at 200C whereas Mercury has 0.16 

Pa. Therefore, Mercury is used as a manometric liquid and not petrol. Due to 

vaporization of liquids pockets of dissolved gases and vapours are formed which are 
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carried away by the flowing liquid in the high-pressure region where they collapse 

giving rise to high impact pressure.  

This phenomenon is known as cavitation which is disastrous due to its destructive nature 

as material from adjoining structures is eroded. Therefore, every attempt is made in 

design of hydraulic structures to maintain total pressure over the liquids well above 

the vapour pressure. 

 

QR CODES FOR SUPPORTING VIDEO LINKS  

                                                                                              

(1)                                          (2)                                          (3)                                             (4) 

 

 

1.5 Solved Problems: 

Ex.1.1 

 

Eight litres of liquid of specific gravity 0.8 is mixed with ten litre liquid of 

specific gravity 1.3. If the bulk of the combined liquid shrinks by one percent on 

mixing, determine the specific gravity, the volume and the weight of the mixture.  

 

Solution: 

Specific weight of 1stliquid = 0.8 x 9810 = 7848 N/m3 

Volume of 1stliquid = 8 lit = 0.008 m3 

 Weight of 1st liquid = 7848 x 0.008 = 62.784 N 

Specific weight of 2nd liquid = 1.3 x 9810 = 12753 N /m3  

Volume of 2ndliquid = 10 lit = 0.01 m3 

Weight of 2ndliquid = 12753  x 0.01 = 127.53 N 

Reduction in the volume of mixture = 
1

100
(0.008 + 0.01)  =  1.8 x10−4m3 



FLUID MECHANICS 

21 

 

Volume of mixture = (0.008 + 0.01)  −  1.8 x10−4 =  0.01782 m3 

 

Weight of mixture =  62.784  + 127.53 = 190.314 N  

 

Specific weight of mixture = 
190.314

0.01782
 =  10679.8 N / m3 

 

Specific gravity of mixture = 
10679.8

9810
 = 1.088 

  

 

Ex.1.2 

 

Shear stress at a point is 0.6 Pa where velocity gradient is 1.5/s. If kinematic 

viscosity of the flowing liquid is 4.65 stokes determine relative density of the 

liquid 

 

Solution: 

τ =  μ
du

dy
∴    0.6  =  μ   x 1.5  , ∴  μ =   0.4 Pa. s  

ν =  
μ

ρ
 ,    ∴ ρ = 0.4 / (4.65 x 10-4) =  860.22 kg/ m3 

∴  Relative density =  
ρ

ρwater
= 
860.22

1000
 =  0.86 

 

 

 

Ex.1.3 

 
A Newtonian fluid of kinematic viscosity 2.528 stokes flows over a flat horizontal 

plate of surface area 0.8 m2. Velocity at y meters from plate is given as, 

 u = 2y —2y3  m/s. 

 If shear force acting on the plate is 0.352 N, find specific weight and specific 

gravity of liquid.  
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Solution: 

As,   u = 2y —2y3,     Velocity gradient = 
du

dy
 = 2 − 6y2 

∴  At the start of plate ( y =  0),
du

dy
=  2  

Also, τ =  
F

A
,    F =  τ . A = μ 

du

dy
 . A = ν. ρ.

du

dy
 . A  

∴  0.352 =  (2.528  x10−4) x ρ x 2 x 0.8 

∴  ρ =  870.253 kg/ m3 

Specific Weight = γ =  ρ g =  870.253 x 9.81 =  8531.18  N/ m3 

Specific Gravity = S = 
8531.18

9810
 = 0.87 

 
 

Ex.1.4 

 

A piston of 50 mm diameter moves within a cylinder of 50.1 mm bore. Determine 

percent decrease in the force necessary to move the piston when lubricating oil 

in the gap of piston and cylinder warms up from 40°C to 1100 0C. Use the 

following viscosity values.  

 

Temperature 0 C. 40 60 80 100 120 

Viscosity Pa-s 0.0053 0.0038 0.003 0.0029 0.0020 

 

Solution: 

Plot the graph of Viscosity versus Temperature as below.  
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Fig. Ex. 1.4 Graph of Viscosity versus Temperature 

 

From the above graph, the required values of viscosity can be achieved, 

∴ μ at 1100C =  0.0023  

Force required to move the piston at 400C = F1 

∴  F1 =  μ
du

dy
 . A =  0.0053 .

du

dy
 . A 

Force required to move the piston at 1000C = F2 

∴  F2 =  μ
du

dy
 . A =  0.0023 .

du

dy
 . A 

As , (
du

dy
 . A) remains same in both the above forces, percentage change 

(decrease) in the force = 
F1 − F2

F1
 x 100 = 

0.0053 − 0.0023

0.0053
 x 100 = 56.6% 

 

 

 

Ex.1.5 

 
There are two parallel plates 0.6 mm apart with the gap is filled by an oil of 

viscosity 1.5 Ns-m2. The upper plate is moving with 3 m/s to the right while the 
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lower plate is moving with 3 m/s to the left. Determine the shear stress on both 

the plates if the velocity varies linearly from one plate to another.  

 
Fig. Ex. 1.5  

Solution: 

Velocity varies from “-3 m/s” (left) to “3 m/s” (right)  

∴  Total variation in velocity is 6 m/s. Then as per Newton’s law of viscosity,  

τ =  μ
du

dy
 =  1.5 x 6 / (0.6 x 10-3) =  15000 N/m2 

 

Ex.1.6 

 

A square metal plate of 1.5 m side and 1.5 mm thick weighs 50 N. It is to be lifted 

through a vertical gap of 25 mm of infinite extent. The oil in the gap has a specific 

gravity of 0.95 and viscosity of 2.5 pascal. If the metal plate is to be lifted at a 

constant speed of 0.1 m/s, determine the force and power required. 

 

Solution: 
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Fig. Ex. 1.6 

Let us assume that the plate is placed centrally. 

Submerged weight of Plate = WS = Weight of plate — Weight of liquid displaced 

by plate. 

WS = 50 — (Volume of liquid displaced x specific weight of liquid) 

      = 50 – (1.5 x 1.5 x 0.0015 x 0.95 x 9810) = 18.55 N . 

Shear force on left hand side of the plate = FL 

 

FL  =  τ . A =  μ 
du

dy
 . A =  2.5 x 0.1 / ((12.5-0.75) x 10-3) x 1.5 x 1.5  =

 47.87 N 

By symmetry shear force on right hand side of the plate will be same as left hand 

side.    ∴ FR  =  47.87 N 
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Therefore, Total force required to lift the plate 

F = 18.55 + 47.87 + 47.87 =114.29 N. 

 

 

Ex.1.7 

 
A space of 2.5 cm width, between two large plane surfaces is filled with 

glycerine. Determine the force required to drag a very thin plate of surface area 

0.75 m2 between the surfaces at a speed of 0.5 m/s. 

(i) If the plate remains equidistant from the two surfaces. 

(ii)    If it is at a distance of 1 cm from one of the surfaces. 

 Take dynamic viscosity = 0.705 Ns/ m2. 

 

Solution: 

(i) If the plate remains equidistant from the two surfaces. 

 

Fig. Ex. 1.7 (i) 

τ =  μ 
du

dy
 =  0.705  x0.5/(1.25  x  10-2 ) =  28.2 N/m2 

 

F =  τ . A  =  28.2  x 0.75 =  21.15 N  

Total drag = 2 x 21.15 = 42.30 N  1.25 cm 
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(ii)       If it is at a distance of 1 cm from one of the surfaces. 

 

Fig. Ex. 1.7 (ii) 

τl  =  μ 
du

dy
 =  0.705  x0.5 / (1 x 10-2 ) =  35.25 N/m2 

Fl  =  τ . A  =  35.25  x 0.75 =  26.44 N  

τu  =  μ 
du

dy
   =  0.705x 0.5 / (1.5 x 10-2 ) =  23.5

N

m2 

Fu  =  τ . A  =  23.5 x 0.75 =  17.625 N 

Total drag = Fl + Fu = 26.44 + 17.625 = 44.065  

 

 

Ex.1.8 

 
Through a narrow gap of large extent, a thin plate is pulled with constant speed. 

Liquids of velocities μ and 1.25 μ are filled in the gap below and above 

respectively. Assume the gap and plate are horizontal. Find distance of plate from 

lower surface of gap such that shear force either side of plate is the same, in terms 

of h.  

Solution:  

 

 Let ‘y’ be the distance of the plate from lower surface and the plate moves with 

constant speed u  
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Shear force on lower side of the plate,  Fl  =  τ . A 

Fl  =  μ
du

dy
 . A =  μ x 

u

y
. A  

 
Fig. Ex. 1.8  

Shear force on lower side of the plate,  F2  =  τ . A 

F2  =  μ
du

dy
 . A =  1.25 μ x [

u

(h − y)
]. A  

But , F1 =F2 

∴  μ x 
u

y
. A =  1.25 μ x [

u

(h − y)
]. A 

∴  h − y =  1.25 y 

                                                            h = 2.25y  

y =  
h

2.25
 m =  0.44 h    from lower surface  

 

 

Ex.1.9 

 

Through a very narrow gap of thickness 'h' a thin flat plate of very large extent is 

being pulled at a constant velocity V. On one side of the plate lies oil of viscosity 

μ and on the other side is oil of viscosity kμ. Calculate the position of the plate 

so that the drag force on it is minimum. 
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Fig. Ex. 1.9  

Solution: 

Let ‘y’ be the distance of thin flat plate from the top.  

Shear stress on top of the plate = τ1 =  kμ x
V

y
 

Shear stress on top of the plate = τ2 =  μ x 
V

h−y
 

 Total Drag force acting F on the plate = A (τ1 + τ2)= V A μ (
k

y
 +  

1

h−y
) 

For minimum drag, 
dF

dy
=  0 

∴  − 
k

y2
 +  

1

(h − y)2 
 =  0 

∴
y2

(h − y)2 
= k, ∴

y

h − y
= √k, 

∴ y = (h − y)√k         -----this is the position of the plate from the top. 

 

Ex.1.10 

 

A rectangular plate of 2 m2 area requires a force of 4 N to maintain a speed of 

0.25 cm/sec while sliding over a fixed plate. The gap between the fixed and the 
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moving plate is 0.5 mm and filled with a fluid of specific gravity 0.8. Determine 

the dynamic and kinematic viscosity of the fluid in poise and stokes respectively.  

Solution: 

 

(1) For dynamic viscosity  

 

Shear stress = τ =   
F

A 
 =  

4

2 
= 2 N/m2 

Also, τ =  μ 
du

dy  
 ,   ∴   2  =  μ 

du

dy  
 =  μ ((0.25-0) x 10-2) / (0.5 x 10-3) 

∴ μ =  0.4 Ns /m2 

1 poise = 0.1 Ns /m2,  ∴  μ =  4 poise  

 

(2) For kinematic Viscosity ,   ν =
𝜇

𝜌
 

Specific gravity = Relative density = 
ρliquid

ρwater 
 

∴ ρliquid =  0.8 x 1000 =  800 

∴  ν =  
0.4

800
 =  5 x10−4  m2/s  

1 stokes = 1 x 10-4  m2/s,       ν =  5 stokes  

 

 

 

Ex.1.11 

 

A glass plate of 30 cm2 rest on another plate with a film of oil 0.05 cm between 

them.  A weight of half a kilogram is kept on the top plate. If the top plate starts 

sliding with a velocity of 1.5 cm/sec when both the plates are tilted at an angle 

20° with the horizontal what is the viscosity of the liquid? 

 

Solution: 
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Fig. Ex. 1.11 

 

The viscous shear force will be balanced by component of weight responsible for 

motion.  

Therefore, Viscous shear force = Weight component 

F = 0.5 x 9.81 x sin 20 

∴  F =  τ x A =  0.5 x 9.81 x sin 20 =  1.677 N  

Also, F =  μ
du

dy 
 A =  1.677 , ∴   μ  x

1.5 x 10−2

0.05 x 10−2
 x 30 x 10−4  =  1.677 

∴ μ = 18.64     N-s /m2 

 

x.1.12 

 
A large plate moves with speed of VO over a stationary plate on oil. If the velocity 

profile is that of a parabola, with the oil at the plates having the same velocity as 

that of the plates, determine the shear stress on the moving plate from the oil. If 

a linear profile is assumed, what will be the shear stress on the upper plate?  

 

Solution: 



FLUID MECHANICS 

32 

 

 
Fig. Ex. 1.12 

 

Consider the parabolic velocity profile has vertex at the moving plate. 

Then the velocity profile can be given by,  

u = ay2 + by + c,  ------------------------(1) 

    where a, b, and c are constants.  

(a) at y = 0, u= 0  

(b) at y = y, u = V0 m/s  

(c) at y = y,  
du

dy 
 =  0 

Then, substituting (a) in equation (1) ,   c  = 0 

           substituting (b) in equation (1) ,   V0  = ay2 + by   ----------(2) 

           substituting (c) in equation (1)  ,   
du

dy 
 =  2ay +  b =  0  ------(3)  

∴ shear stress = τ = μ
du

dy
 = μ (2ay + b)  

if the variation is linear, 

i. e   u =  ay + b  − − − − − −−− − (4) 

(d) at y = 0,   u= 0  

(e) at y = y,   u = V0  m/s  

substituting in equation (4),  
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b = 0    and      u = ay  

V0 = ay   and thus,    
du

dy 
 =  a 

∴  shear stress =  τ =  μa  

 

 

 

Ex.1.13 

 
A shaft 6.0 cm in diameter is being pushed axially through a bearing sleeve of 

diameter 6.02 cm and 40 cm long. The clearance, assumed uniform is filled with 

oil whose properties are kinematic viscosityν = 0.003 m2 / s and specific gravity 

(g) = 0.88. Estimate the force required to pull the shaft at steady velocity of 0.4 

m/s. 

 

Fig. Ex. 1.13  

 

 

Solution: 

Shear Stress = τ = μ
du

dy
 

μ =  ν x ρ =  0.003 x 0.88 x 1000 =  2.64 Ns/ m2     

 𝜌𝑓𝑙𝑢𝑖𝑑 = 𝑔 𝑥 𝜌𝑤𝑎𝑡𝑒𝑟 

τ =  2.64 x 
0.4

 0.01 x 10−2
 =  10560 N / m2 
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F = τ x A=10560 x π x 0.06 x 0.4 

(shear force acts on the circumference of shaft πDL) 

F = 796.21 N 

 

 

 

Ex.1.14 

 
Lateral stability of a long shaft 150 mm in diameter is obtained by means of 250 

mm stationary bearing having an internal diameter of 150.25 mm. If the space 

between the bearing and shaft is filled with lubricant having viscosity 0.245 N-s 

/ m2, what power will be required to overcome the viscous resistance when the 

shaft is rotated at 180 rpm. 

 

Solution: 

 

 
Fig. Ex. 1.14  

 

Tangential velocity of shaft = V = 
πDN

60
 

∴  V =  
π  x 0.150 x 180

60
 =  1.41 m/s  

As, du = V-0 = 1.41 m/s  and  

dy = change in distance in vertical plane = 
150.25−150

2
 = 0.125 mm 



FLUID MECHANICS 

35 

 

∴ τ =  0.245 x
1.41

 0.125 x 10−3
 = 2763.6 N/ m2 

Shear force acting on the shaft  

F = 2763.6 x π x D x L = 2763.6 x π x 0.15 x 0.25 = 325.58 N  

Torque = T = F x  
D

2
 = 325.58 x 

0.15

2
 = 24.42 N  

Power lost = 
2πN T

60
 =
2π x 180 x 24.42 

60
 = 460.27 watt.  

 

 

 

Ex.1.15 

 
A flywheel of 50 kg mass, radius of gyration 20 cm is mounted at the middle of 

a shaft 3 cm in dimeter. The shaft is supported between two bearings, each 6 cm 

long. The clearance between the shaft and bearing of 0.05 mm is filled with an 

oil of viscosity (μ) 0.2 poise. Calculate the angular retardation of the shaft 

flywheel system due to frictional effects at a nominal speed of 1200 rpm.  

 

Solution: 

 

 
Fig. Ex. 1.15  
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shear stress = τ = μ
du

dy
 = 0.2 x 0.1 x 

u

y
 

u =  
πDN

60
 = 

π x 0.03 x 1200

60
  =1.885 m/s  

τ  = 0.2 x 0.1 x 
1.885

0.05 x 10−3
 =  753.98 N/m2 

shear force acting on shaft  

F = τ  x A = 753.98  x π x d x L  = 753.98 x 3.14 x 3 x 10−2x6 x 10−2 

F = 4.26 N 

Torque = T = F x r = 4.26 x 15 x 10-3 = 0.064 Nm  

 But T = I x α    (α is the retardation)  

And I = m k2  = 50 x (0.2)2 = 2 kg-m2 

∴    0.064 =  2 x α   (assume α is in radian / sec2) 

∴  α = 0.032 rad/ sec2 

 

 

 

Ex.1.16 

 
At a depth of 9 km in the ocean the pressure is 9.5 x 104 kN/m2. The specific 

weight of the ocean water at the surface is 10.2 kN/m3 and its average bulk 

modulus is 2.4 x 106 kN/m2. Determine (1) The change in specific volumeand 

(2) The specific volume at 9 km depth and (3) The specific weight at 9 km depth  

Solution: 

Specific volume at surface = Vs = 
1

γ
 =  

1

10.2 x 103
 = 9.804 x10-5 m3/ N 

K = − 
dp

(
dV

V
)
 

2.4 x 106 x 103 = 
9.5 x 104 x103

dV
 x 9.804 x10-5 

∴   dV =  − 3.81 x 10-6 (decrease)  
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Specific volume at 9 km depth = 9.804 x 10-5  - 3.881 x 10-6 = 9.416 x 10-5  m3 

/N  

 

Specific weight at 9 km depth = 
1

9.416x 10−5
 = 10620.302 N/m3 

 

 

Ex.1.17 

 
A pressure vessel has an internal volume of 0.5 m3 at atmospheric pressure. It is 

desired to test the vessel at 3000 bar by pumping water into it. The estimated 

variation in the change of empty volume of the container due to pressurization to 

3000 bar is 0.6 %. Calculate mass of water to be  pumped into the vessel to attain 

the desired pressure level, given the bulk modulus of water as 2000 MPa. 

 

Solution:  

 

Change in volume inside the container due to addition of fluid = dV1 

dV1  = −  
VdP

K
 =  

0.5  x (3000 − 1) x 105

2000 x 106
 =  0.075 m3 (decrease)  

Change in volume of container due to change in dimensions = 

dV2 =
0.6

100
 x 0.5 =  0.003 m3(decrease) 

Total volume of water accommodated = V = 0.075 + 0.003 = 0.078 m3 

Mass of water pumped in = 1000 x 0.078 = 78 kg . 

 

 

Ex.1.18 

 
If bulk modulus of water is 2.2 x 109 Pa, what pressure is required to reduce the 

volume of water by 6%. 

Solution: 
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K = − 
dp

(
dV

V
)
  ,  (

dV

V
)  =  

6

100
 

∴   2.2 x 109  =  
dp

(
6

100
)
 ,   ∴  dp =  132 x 106 Pa =  132 MPa 

 

 

Ex.1.19 

 
Determine the diameter of a droplet of water in mm if the pressure inside is to be 

greater than that of outside by 130 N / m2. Surface tension of water σ = 7.26 x 

10-2 N/m.  

Solution: 

p =  
4σ

d
 , ∴  130 =  

4 x 7.26 x 10−2

d
 

∴   diameter of the droplet =  d =  2.23 x 10−3 m =  2.23 mm 

 

Ex.1.20 

 
Determine the pressure inside soap bubble of 25 mm diameter if the tension in 

the film is 0.5 N/m. 

 

Solution: 

p =  
8σ

d
=  

8 x 0.5

25 x 10−3
  =  160 N/m2 

 
 

Ex.1.21 

 
Calculate the capillarity rise or fall in a glass tube of 4 mm diameter when 

immersed in (a) water and(b) mercury. 

The temperature of the liquid is 2000C and the surface tension of water and 

mercury at 200C in contact with air is 0.0075 kg/m and 0.05 kg/m respectively.  

The contact angle for water and mercury may be taken as 00 and 

1300respectively.  Derive any equations used. 
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Solution: 

hwater = 
4σcosθ

γd
 =  

4 x 0.0075 x 9.81 x cos 0

9810 x 4 x 10−3
 =  7.5 x 10−3 m  

∴ Capillary rise of water = 6.495 mm 

hmercury = 
4 x 0.05 x 9.81 x cos 130

13.6 x 9810 x 4 x 10−3
 =  − 2.36  x 10−3 m  

∴ Capillary rise of mercury = 2.36 mm 

 

Ex.1.22 

 
The diameters of two glass limbs of a differential U tube manometer were found 

to be 5 mm and 8 mm respectively. In an experiment the differential pressure 

readings of 50, 100, 250, 400 and 500 mm were indicated by the manometer. 

Determine the percentage error caused by the capillary effect. Surface tension of 

water σ = 0.0736 N/m and angle of contact θ=0° 

Solution:  As,  

hwater =
4σcosθ

γd
=
4σ

γd
− − − − − (θ = 0     for water) 

hwater =
4 x 0.0736

9810 x 0.005
=  6 x 10−3 m =  6 mm 

Therefore, new readings will be 44, 94, 244, 394 and 494 respectively. 

∴ percentage error, 

for 50 mm  , = 
100 x 6 

50 
 =  12 % 

for 100 mm  , = 6 % 

for 250 mm  , = 2.4 % 

for  400 mm  , = 1.5 % 

for 500 mm  , = 1.2 % 
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Ex.1.23 

 
A capillary tube of 0.5 mm bore stands vertically in a vessel containing a liquid 

of specific gravity 0.8 and surface tension 30 dynes/cm. The angle of contact of 

the liquid with the tube is zero. Find rise of liquid in the tube. 

Solution: σ =  30 dyne / cm  =  30 x 10−5 x 100 =  30 x 10−3 N/m 

 Capillary rise = h =  
4σcosθ

γd
 =

4 x 30 x cos 0 x 10−3

0.8 x 9810 x 0.5 x 10−3
 =  0.03058 m =

 30.58 mm   

UNIT SUMMARY 

The unit gave information of properties of fluids which is essential to understand the future 

topics in fluid mechanics. The difference between liquids and gases, classification of 

fluids and units of measurements were also discussed. As discussed in the 

“Introduction” the next unit is devoted to fluid statics. 

1.6 Exercise  

 

1.6.1 Objective Questions:  

1. Which among the following is a Newtonian fluid? 

(a) Slurry     (b) paste   (c)gel  (d) benzene 

Ans: d     

 

2. Mass of 6 m3 of water at 200 C and 1 atm., pressure is 6000 Kg and viscosity under 

similar condition is 1 centipoise then kinematic viscosity of water is  

a) 10-3 m2/s b) 10-4 m2/s   c) 10-5 m2/s   d) 10-6 m2/s 

 Ans: d   

 

3. Volume of sample of water is reduced by 1 percent when pressure is increased by 

22 MPa. The bulk modulus of elasticity of the sample in MPa is   

a) 2.2  b) 220     c) 2200   d) 0.22  

Ans: c 

 

4. Newton’s law of viscosity  
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(a) Defines the fluid property called viscosity.  

(b) Can be applied only if velocity profile is linear 

(c)  Applies only at the interface between a solid and fluid 

 (d) Is inconsistent with the no-slip condition 

            Ans: a  

 

5. The gauge pressure inside 2 mm diameter raindrop, taking surface tension of water 

-air interface as 0.07 N/ m is  

a) 0.14 N/m2                     b) 140 N/m2             c) 70 N/m2                  d) 280 N/m2 

Ans: b 

 

6. The gauge pressure inside a droplet of water of certain diameter is 70 N/m2. The 

gauge pressure inside a droplet of twice the diameter under similar conditions is  

a) 35  N/m2                     b) 140 N/m2                c) 17.5  N/m2            d) 280 N/m2 

Ans: a 

  

7. Toothpaste is 

(a) Bingham Plastic  

(b) Pseudo Plastic 

(c) Newtonian Fluid 

(d) Dilatants 

           Ans: a  

 

8. The capillary rise in 1.5 mm tube immersed in liquid is 12mm. The capillary rise 

in 2 mm diameter tube immersed in the same liquid will be  

a) 9 mm                     b) 16 mm                     c) 20 mm               d) 24 mm                       

Ans: a 

 

9. The viscosity of most fluids 

(a) Decreases with decrease in temperature. 

(b) Increases with decrease in temperature 

(c) Decreases with increase in temperature 
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(d) Increases with increase in temperature. 

             Ans : c    

 

10. The mass density of water on earth (g = 9.81 m/ s2) is 1000 Kg/ m3. Its mass density 

on the moon where the gravitational acceleration is 1/6th that of the earth , will be  

a) 166.67 Kg / m3       b) 1000 Kg / m3      c) 6000 Kg / m3          d) none of these                      

Ans: b 

 

11. The mass of an object is 10 kg. The gravitational acceleration at a location is 5 m/s2. 

The specific weight is 

(a) 2 N   (b) 15 N   (c) 5 N   (d) 50 N 

Ans: d  

 

12. For an ideal fluid flow Reynolds number is 

(a) Infinite,   

(b) Zero 

(c) 2100 

(d) One 

Ans : a     

 

13. The dynamic viscosity is 1.2 × 10–4 Ns/m2. The density is 600 kg/m3. The kinematic 

viscosity in m2/s is 

(a) 72 × 10–3   (b) 20 × 10–8   (c) 7.2 × 103   (d) 70 × 106 

Ans: b 

 

14. The velocity gradient is 1000/s. The viscosity is 1.2 × 10–4 Ns/m2. The shear stress 

is 

(a) 1.2 × 10–1 N/m (b) 1.2 × 10–7 N/m2 (c) 1.2 × 102 N/m2 (d) 1.2 × 10–10 N/m2 

Ans: a  

 

15. If the specific weight of water is taken as 9.81 KN/m3 and the specific gravity of 

mercury is 13.56, then  the density of water will be  
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(a)1000kg/m3   (b) 1080 kg/m3   (c) 981 kg/m3           (d) 9810 kg/m3  

Ans: a  

 

16. The effect of Cavitations is due to: 

(a) High velocity 

(b) Low barometric pressure 

(c) High pressure      

(d) Low pressure 

    Ans : c    

1.6.2 Theory Questions:  

1. Define fluid. Distinguish between ideal fluid and real fluid? Give one example 

of each.  

2. Define following properties with their SI units: Specific weight, mass density, 

specific gravity, specific volume, bulk modulus, Capillarity, surface tension 

3. Explain why the following statements are right or wrong with detail reasoning 

.  

(a) Ideal fluid can sustain a shearing stress when in motion.  

(b) Fluids cannot sustain shearing stress when at rest. 

(c)  

4. Draw the stress strain curve for the following fluids and discuss the behaviour 

of each fluid under external shear force 

(a) Newtonian fluid,  

(b) Pseudoplastic fluid,  

(c) Dilatant fluid,  

(d) Bingham fluid,  

(e) Plastic,  

(f) Non-Newtonian fluid. 

5. Explain the difference between dynamic viscosity and kinematic viscosity of 

a fluid.  

6. Explain the term vapour pressure and discuss its relation with the cavitation. 

7. Define capillarity and prove that It is given by ℎ =  
4𝜎

𝛾𝑙  𝑑
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8. Explain why viscosity of liquids decreases with rise in temperature while gases 

increases with rise in temperature.  

9. What is kinematic viscosity? Why is it so called? Give it's units and 

dimensions, 

10. State and explain Newton's law of viscosity. 

11. What is cohesion and adhesion in fluids?  

12. What is capillarity? What is it due to? Derive an expression for the capillary 

rise 

13. Derive an expression between pressure 'P' inside a free jet of liquid and surface 

tension 'σ'. 

14.  Derive expression for pressure P' inside the soap bubble, droplet and surface 

tension  

15. 'σ'. 

16. Distinguish between gases and liquids. 

17. Distinguish between Newtonian and Non-Newtonian fluids. 

18. Distinguish between Kinematic and dynamic viscosity. 

19. Explain compressibility in fluid flow.  

20. Discuss why water shows capillary rise and mercury shows capillary 

depression 

21. Explain the terms: Vapour pressure, Bulk Modulus  

22. Explain the two applications of the following properties -one advantageous 

and other disadvantageous: Vapour Pressure, surface tension, Capillarity 

 

1.6.3 Problems:  

1. Three liters of liquid 23.7 N. Calculate its mass density, specific wight, specific 

gravity.  

(Ans: 805 kg/m3, 7.9 KN/m3, 1.242 x 10-3 m3/Kg) 

2. A plate 0.05mm distant apart from a fixed plate moves at 1.2m/s and requires 

a shear stress of 2.2 N/m2 to maintain its viscosity. Find the viscosity of the 

fluid between the plates.  

(Ans: 9.16 x 10-5 N-s/ m2) 
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3. An oil of kinematic viscosity having 1.25 x10-4 m2/s and a specific gravity of 

0.80. What is its dynamic viscosity in Kg/m-sec?  

(Ans: 0.10 Kg/m-sec) 

4. The space between two parallel pates kept 3 mm apart is filled with an oil of 

dynamic viscosity 0.2 poise. Determine the shear tresses on the fixed plate, if 

the upper one is moving with a velocity of 90 m/min. 

(Ans: 10 N/m2) 

5. What is the pressure within a 1 mm diameter spherical droplet of water relative 

to it’s outside atmospheric pressure? Assume surface tension for pure water to 

be 0.073 N/m.  

(Ans: 292 N/m2) 

6. A 20 mm diameter soap bubble has an internal pressure of 27.576 N/ m2greater 

than the outside atmospheric pressure. Determine the surface tension of that 

soap air double is in (N/m).  

(Ans:0.0689 N/m) 

7. A small circular jet of water of 2 mm diameter issues from an opening. What 

is the Pressure difference between inside and outside of the jet?  

(Ans: 73.5 N/m2) 

8. In the Fig., if the fluid is glycerine at 20°C and the width between plates is 6 

mm, what shear stress (in Pa) is required to move the upper plate at Velocity 

of 5.5 m/s? Note that glycerine viscosity =1.5 N- s/m2. 

(Ans: 1380 Pa) 

9. The specific weight of water at ordinary pressure and temperature is 9.81 

kN/m3. The Specific gravity of mercury is 13.56. Compute the density of 

water and the specific weight and density of mercury.  

(Ans:1000kg/m3 ,133.0 kN/m3, 1356 kg/m3 ) 

10. A space 16 mm wide between two large plane surfaces is filled with SAE 30 

Western lubricating oil at 35°C . What force F is required to drag a very thin 

plate of 0.4 m2 area  
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11. Between the surfaces at a speed v 0.25 m/s . (a) if the plate is equally spaced 

between The two surfaces, and (b) if t 5 mm?  

(Ans:7.25 N, 8.436 N) 
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PRACTICAL: REDWOOD VISCOMETER 

Objective:   

1) To determine kinematic viscosity of a given liquid at a given temperature. 

 2) To study variation of kinematic viscosity with temperature. 

Apparatus:  

Redwood viscometer, oil (whose viscosity is to be measured), water, stopwatch, 

Thermometer 

 

  

 

 

 

 

 

 

 

 

Figure: Red Wood Viscometer 

Theory:  

Viscosity is the property of fluid by virtue of which it offers resistance to the movement of 

one layer of fluid over the adjacent layer. Measurement of viscosity of Newtonian 

fluid can be done by using either Newton’s law of viscosity or Hagen - Poiseuille 

equation or by Stokes’s law. Redwood viscometer is an instrument which works on 

the basis of Hagen-Poiseuille’s equation. It consists of a vertical cylinder provided 

with a small pipe orifice a at the centre of its base. The cylinder is surrounded by a 
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water bath which can be electrically heated. The cylinder is filled with the liquid, the 

viscosity of which is to be determined and time required to pass 50 cc of that liquid 

at desired temperature is measured which in turn is used to calculate the viscosity. 

Hagen-Poiseuille equation for a steady laminar through circular pipe can be written as  

Q = (∆pπ D4)/128 μ L          -------------------------(1) 

Put, Q=Discharge = Volume /time = V / t 

D=Diameter of tube  

∆p= pressure drop in tube =ρgh 

μ=dynamic viscosity 

 ρ= density of fluid   

g = gravitational acceleration  

h= head under which liquid flows through a tube 

ν=kinematic viscosity 

Hence equation (1) is modified as  

  μ/ρ= ν = [( π hgD4)/(128 LV)] ----------------------(2) 

All quantities in equation (2) can be measured in redwood viscometer to determine 

kinematic viscosity. In equation 2 though the head is varying during test, its variation 

is over same range for each test, since constant volume of liquid is allowed to flow 

for each test. Let ‘ t’  be the time in seconds required for flow of constant  volume of 

liquid then all terms on RHS of equation (2) may be considered as constant and 

grouped to provide a constant to particular viscometer, then equation (2 ) can be 

modified as 

ν= c1t                                                              (3) 

Equation (3) shows that kinematic viscosity varies directly with time. As the capillary rise 

is quite short, steady laminar flow condition will usually not exist in the capillary 

pipe provided in the viscometer. Thus, a correction factor will have to be incorporated 

in equation (3) in order to compensate terms of Hagen-Poiseuille equation in the 

analysis to obtain the correct value of ν of the liquid. The correction is (C2/t). Then, 

equation (3) becomes, 
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ν=C1 t - (C2 / t) (4) 

where t = time in seconds required to pass 50 cc of oil 

Procedure: 

1) Instrument is levelled with the help of foot screws and leveling tube in order 

to ensure uniform head of liquid over orifice 

2) Close the orifice opening  

3) The water bath is filled 

4) Liquid (oil) whose viscosity is to be measured is filled up to the index mark 

5) The steady temperature in liquid and water bath is measured 

6) Orifice valve is opened when temperature of liquid and water bath is same and 

time required to collect 50cc of oil is noted 

7) Above procedure is repeated for different temperatures by heating water bath 

 

For I.S.I marked viscometers (values can be different for different equipment) 

C1  = 0.0026 

C2  = 1.175 

 

Observations: 

 

Sr. No. Temperature in 0C (T) Time in seconds (t) 
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Sample calculation: For observation No.:  

Kinematic viscosity in m2/s,  = C1 t – (C2/t)  = 

Tabulated Calculations: 

 

Sr. No. Temperature in  0C (T) Kinematic Viscosity ()in m2/s 

   

   

   

   

   

   

   

 

Graph: Plot the graph between ‘Kinematic viscosity’ on Y axis and ‘temperature’ on X 

axis and study the variation in Kinematic viscosity with respect to change in 

temperature.  

 

Conclusion: Kinematic viscosity of a given liquid at room temp (0c) is () m2/s.  

Kinematic viscosity of a given liquid decreases with increase in temperature of fluid. 
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UNIT SPECIFICS 

Through this unit we have discussed the following aspects: 

 Introduction of fluid statics, pressure at a point, variation of pressure in fluid statics. 

 Measurement of pressure, various pressure measuring devices. 

 Hydrostatic forces on surfaces 

 Total pressure on horizontal, vertical, inclined, curved surfaces.  

This is followed by large number of solved examples. The students are encouraged to solve the 

objective questions, long answer questions and numerical problems to judge ones 

understanding. A demonstration kind of practical (study experiment) on pressure measuring 

devices is included at the end followed by a list of references for additional reading.    

RATIONALE 

This unit introduces fluid statics considering basic concept of pressure, variation of pressure in 

fluid statics. To understood measurement of pressure in fluid statics, one must know various 

pressure measuring devices and the process of measurement of pressure using these devices 

and hence introduction of these devices is included here in this unit. Knowing the concept of 

pressure and its measurement, hydrostatic forces on surfaces, total pressure on horizontal 

as well as vertical, inclined and curved surfaces can be determined.   

PRE-REQUISITES 

Mathematics: Derivatives (Class XII) 

Physics: Mechanics (Class XII) 

Properties of fluids  

 

2 FLUID STATICS 
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UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

(At the end of this unit, students will understand...) 

U2-O1: Fluid statics, pressure at a point, variation of pressure in fluid statics. 

U2-O2:  Measurement of pressure, various pressure measuring devices 

         U2-O3:  Hydrostatic forces on surfaces 

         U2-O4: Total pressure on horizontal, vertical, inclined, curved surfaces.  

 

Unit-2 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U2-O1 2 2 - - - - 

U2-O2 2  - - - - 

U2-O3 2  - - - - 

U2-O4 2  - - - - 

 

 

2.1  Introduction: 

Fluid static deals with study of action of forces on fluids at rest. When fluids are at rest, 

there is no relative motion between adjacent layers of fluid and thus no shear stress. 

The only forces which act on fluid at rest are the external pressure forces and the 

self-weight. 

This chapter describes in detail fluid pressure, its measurement and hydro-static forces 

due to pressure acting on plain and curved surfaces 

 
 

2.2  Pressure at the Point: 

If an infinitesimally small area is considered inside a large fluid mass, the surrounding 

fluid exerts a force on that area. This force will always be normal to that area if the 

fluid is in static condition. The limiting ratio of this force with area is termed as 

‘Intensity of pressure’ i.e.  
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                                                        P = lim
𝑑𝐴→0

𝑑𝐹

𝑑𝐴
                                                   (2.1) 

 

However, the pressure is assumed to act uniformly all over the area. (This is similar to 

the concept of uniform normal stress distribution on solids) 

 

∴                                                                      P = 
𝐹

𝐴
                                                     (2.2) 

 

Where F is total force acting on Area A. It can also be seen that pressure is inversely 

proportional to the area. It means more pressure will act on less area keeping the force 

constant 

Unit of pressure is Pascal (Pa) or kilo Pascal (kPa) or bar. 

                                                     1 Pa = 1 N/m2 

                                                     1 kPa = 103 N/m2 

                                                     1 bar = 105 N/m2 

 

2.3  Pascal’s Law: 

In case of stationary fluid in equilibrium, the pressure at a point acts equally in all the 

directions. This is Pascal’s law of pressure. 

Consider an infinitesimal fluid particle of dimensions 𝛿x, 𝛿y, 𝛿z along X, Y, Z directions 

respectively with 𝛿s as the length of slopping side (Refer figure 2.1).  

Let Px, Py be the intensities of pressure along X and Y directions and Ps be the intensity 

normal to the slopping side. The free body diagram is shown in Fig, 2.1. As the 

element is in equilibrium, sum of forces in all directions must be zero. 
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Fig. 2.1 Free body diagram of fluid element at rest 
 

∴                                                                       ∑ Fx = 0 

∴                                   Px 𝜕y 𝜕z – Ps cos α 𝛿s 𝛿z = 0 

               But                     𝛿s cos α = 𝛿y 

∴                                                  Px 𝛿y 𝛿z = 0 

∴                                                  Px = Ps                                                              (2.3) 

Similarly,                                               ∑ Fy = 0 

 

∴                         Py 𝛿x 𝛿z – Ps sin α 𝛿s 𝛿z – 
1

2
 γ 𝛿x 𝛿y 𝛿z = 0 

 

where 
1

2
 𝛾 𝛿x 𝛿y 𝛿z is the weight of fluid element which will be neglected being of higher 

order than the other 2 terms. Also, 𝛿s sin α = 𝛿x 

∴                                            Py x 𝛿z = Ps 𝛿x 𝛿z = 0 

∴                                                         Py = Ps                                                     (2.4) 

From Equations (2.3) and (2.4), 

                                                                   Px = Py = Ps 
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This proves that intensity of pressure, at a point, is equal in all directions. This principle is 

used to develop large forces by application of very small forces in equipment like 

hydraulic ram, hydraulic lift, etc. 

 

2.4  Variation of Pressure in Static Fluid: 

As mentioned earlier the only forces acting on fluid at rest are pressure force and gravity 

force. The gravity force expressed as weight of the fluid is constant and acts through 

the centre of gravity.  

The pressure is same at a point in all directions as per Pascal’s law. The variation of 

pressure with respect of height or depth of fluid mass can be found out using 

principles of static equilibrium. 

Consider as elementary mass of static fluid in the form of a parallelepiped of dimensions 

𝛿x, 𝛿y, 𝛿z as shown in Fig. 2.2. The forces acting on fluid mass are the weight of 

fluid element and pressure forces on all the six faces. Let ‘p’ be the pressure at the 

centroid ‘o’ of the element. The intensity of pressure of left face of the element be 

[p − (
𝛿𝑝

𝛿𝑥
) .

𝛿𝑥

2  
]  and on the right face be [p + (

𝛿𝑝

𝛿𝑥
) .

𝛿𝑥 

2  
] .  

(
𝛿𝑝

𝛿𝑥
  indicates variation of pressure in ‘x’  direction,which is a for a length of 

𝛿𝑥

2
) 

Fig. 2.2 Forces on static fluid element 



FLUID MECHANICS 

56  

∴ The force acting on left face = [𝑃 − (
𝜕𝑃

𝜕𝑋
) .

𝜕𝑋

2
] . 𝛿y 𝛿z   and  

    the force acting on right face = [𝑝 + (
𝜕𝑝

𝜕𝑥
) .

𝜕𝑋

2
] 𝛿y 𝛿z 

 

Similarly forces acting on remaining 4 faces are calculated and shown in Fig. 2.2. Using 

equations of static equilibrium. 

∑𝐹𝑥 = 0 

                                              [ 𝑝 − (
𝜕𝑝

𝜕𝑥
)
𝜕𝑥

2
 ]𝛿y 𝛿z – [ 𝑝 + (

𝜕𝑝

𝜕𝑥
)
𝜕𝑥

2
 ] 𝛿y 𝛿z = 0 

 ∴                                             (
𝜕𝑝

𝜕𝑥
) 𝛿x 𝛿y 𝛿z = 0 

∴                                                                            
𝜕𝑝

𝜕𝑥
 = 0 (as 𝛿x 𝛿y 𝛿z ≠ 0)                                                           (2.5) 

Similarly in ‘y’ direction 

∑𝐹𝑦 = 0 

                      [ 𝑝 − (
𝜕𝑝

𝜕𝑦
)
𝜕𝑦

2
 ]𝛿x 𝛿z – [ 𝑝 + (

𝜕𝑝

𝜕𝑦
)
𝜕𝑦

2
 ] 𝛿x 𝛿z = 0 

∴                                                                       
𝜕𝑝

𝜕𝑦
 = 0                                                                        (2.6) 

 

Equations (2.5) and (2.6) indicate that the pressure does not vary in ‘x’ and ‘y’ direction. 

This confirms the already proved Pascal’s law (section 2.3). 

 

In ‘z’ direction. 

  [𝑝 − 
𝜕𝑝

𝜕𝑧
 .  
𝜕𝑧

2
] 𝛿x . 𝛿y – [𝑝 + 

𝜕𝑝

𝜕𝑧
 .  
𝜕𝑧

2
] 𝛿x . 𝛿y - 𝛾 𝛿x 𝛿y 𝛿z = 0 

∴                                                              
𝜕𝑝

𝜕𝑧
 = -γ 
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i.e.                                  
𝜕𝑝

𝜕𝑧
 = -γ (as 

𝜕𝑝

𝜕𝑥
= 

𝜕𝑝

𝜕𝑦
= 0. p ⇒ f(z) only                                                       (2.7) 

Equation (2.6) proves that pressure varies in vertical direction. For incompressible fluids, 

specific weight ‘γ’ is constant. Therefore Equation (2.7) can be integrated between two 

points. 

  

∫ 𝑑𝑝

𝑝2

𝑝1

= −𝛾 ∫ 𝑑𝑧

𝑧2

𝑧1

 

∴                                                 p2 – p1 = −𝛾 (z2 – z1) 

∴                                          
𝑝2

𝛶
 + z2 = 

𝑝1

𝛶
 + z1                                                      (2.8) 

The term 
𝑃

𝛾
+ 𝑧 is known as the piezometric head. Thus for incompressible fluids 

piezometric head is constant. 

 

Consider free surface of liquid in figure 2.3 along which pressure is constant and equal to 

the atmospheric pressure Pa. The free surface is at ‘H’ above the datum. At a point 

‘p’ located ‘h’ below free surface or ‘z’ above datum (i.e. z + h = H) integrating 

Equation (2.8) 

Fig. 2.3 Pressure at a point 

 

                                  p = -𝛾z +c 

                              at z = H,  p = pa 

H

(H-Z)

Z

h

Z

Free liquid surface
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∴    pa = 𝛾H + c 

∴    c = pa - 𝛾H 

∴    p = -𝛾z + pa - 𝛾H 

∴    p = pa + 𝛾 (H – z) 

∴    p = pa + 𝛾h 

 

In most of the problems pressure above atmospheric pressure is required. 

∴                     p = 𝛾h                                                                                 (2.9)                                       

 

Equation (2.9) is known as ‘Law of Hydrostatics’. Equation (2.9) can also be written as,   

h = 
𝑝

𝛾
 

Thus pressure can also expressed as equivalent pressure head ‘h’ of the liquid. In simple 

terms it can be said that due to pressure ‘p’ at a point, there is a rise ‘h’ of liquid or 

the rise ‘h’ of liquid is balancing the pressure ‘p’. This concept of equivalent pressure 

head will be made explained more in the section on Piezometers and manometers. 

Equation (3.8) also indicates that pressure varies linearly with the depth of flow below 

liquid surface or height of free liquid surface above the point and is independent of 

shape and size of the container. Figure 2.4 illustrates this point, wherein the rise of 

liquid in all containers is ‘h’ showing a pressure p = 𝛾h at the centre of the pipe 

irrespective of their shapes 

Fig. 2.4 Pressure independent of size and shape 

 

h
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Consider a column of water ‘hw’ indicating pressure p = 𝛾w hw 

If the same pressure is measured with kerosene of specific gravity 0.8, the rise of kerosene 

column will be more than water. On the other hand, if an oil of specific gravity 1.6 is 

used to measure the same pressure, the rise of oil column will be less than that of 

water. This can explained as follow: 

Refer figure 2.5 with rise of water column hw = 1 m. 

As pressure is same. 

 P = γw hw = γk hk = γo ho 

 hw =  
γk
γw
 hk =  

γo
γw

 ho         where ‘k stans for kerosene and ‘o’ stands for oil.  

 hw = Sk hk = So ho  (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =  
γfluid
γwater

) 

 1 = 0.8 hk = 1.6 ho 

 hk = 1.25 m and  ho = 0.625 ‘m’ 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Equivalent liquid columns 
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Thus lighter liquid will show higher rise than heavier liquids. 

 

In general 

                   hwater = Sfluid 𝗑 hfluid                                             (2.10) 

 

This concept of equivalent liquid column is very useful in pressure measuring devices like 

manometers. Equation (2.10) helps to express pressures measured by any fluid in 

terms of a common fluid say ‘water’. 

2.5 Measurement of Pressure: 

Pressure is measured with respect to some datum. The datum can be local atmospheric 

pressure or absolute zero pressure (complete vacuum). The atmospheric pressure 

considered as a reference is 760 mm of Mercury i.e., 10336 mm of water or 101.33 

kN/m2. When the fluid pressure is measured with respect to atmospheric pressure as 

datum then it is known as gauge pressure. If the pressure is above atmospheric 

pressure, then it is called positive pressure. If the pressure is below atmospheric 

pressure, then it is called negative pressure or vacuum pressure. The pressure 

measured with respect to absolute zero or complete vacuum as datum is called 

absolute pressure. Thus, absolute pressure will always be positive. The atmospheric 

pressure is therefore one atmosphere absolute or zero gauge. 

For positive pressure (above atmospheric pressure). 

Absolute pressure = Atmospheric pressure + Gauge pressure 

For negative pressure (below atmospheric pressure). 

Absolute pressure = Atmospheric pressure – Vacuum pressure 

Figure 2.6 depicts the gauge pressure and absolute pressure measurement. 

 

 

 

 

 

 

 

 



FLUID MECHANICS 

61  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Absolute and gauge pressure 

 

2.6 Pressure Measuring Devices: 
 

Pressure measuring devices are of two types: 

1. Manometer  2. Mechanical gauge. 

 

In this era of advanced equipment pressure transducers are also used to measure pressure 

very accurately. However, the scope of present article is limited to first two types 

only. 

 

2.6.1 Manometer: 

Manometers measures the fluid pressure by balancing it against a column of liquid in static 

equilibrium. These are generally glass tubes or tubes of any transparent material of 

diameter more than 6 mm, to avoid capillary effect as explained in unit 1. The liquid 

used to balance the fluid pressure is called as Manometric fluid. The manometric fluid 

should be immiscible with the fluid of which pressure is measured. Also the 

manometric fluid should have low vapour pressure, otherwise it will evaporate very 

quickly. Standard manometric liquids therefore are mercury, water, air, carbon-tetra-

chloride. The choice of manometric liquid depends upon the magnitude of pressure, 

type of manometer, desired accuracy. Manometers are classified into i) Simple 

manometers ii) Differential manometers. Simple manometers measure pressure at a 



FLUID MECHANICS 

62  

point, with one end connected to the point and other end open to atmosphere. Simple 

manometers are further sub-divided into piezometers, U-tube manometers. 

Differential manometers measure pressure difference between two points either in 

the same pipe or different pipes at same or different level. Both ends of differential 

manometers are connected to the points, of which pressure difference is required. 

 

2.6.1.1 Simple Manometer: 

(a) Piezometer: 

  

It consists of a glass tube, one end of which is open to atmosphere while the other end is 

connected to the point, the pressure at which is to be measured. The piezometer can 

be used to measure positive pressure or negative pressure as shown in figure 2.7. Due 

to pressure at the point, the liquid level rises or falls in the piezometer till the 

equilibrium is reached. If h is the rise in liquid level in the piezometer above the 

centre of pipe carrying liquid, M then pressure P at point M. 

P = 𝛾. H 

where 𝛾 is specific weight of the liquid flowing through pipe. 

Similarly, the negative pressure 

p = - 𝛾. h 

The piezometer cannot be used for high pressures as well as gas pressure cannot be 

measured. 

 Fig. 2.7 Piezometer 

-ve pressure

h

+ M
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(b)  U-tube Manometer: 

 

A tube bent in the shape of English letter ‘U’ is used to measure pressure at a 

point. One end of manometer is open to the atmosphere while the other end is connected 

to the point at which pressure is measured (Generally, centre of circular pipe). The rise or 

fall of manometric liquid with respect to point M gives the positive or negative pressure. 

For small pressures, same liquid which is flowing in the pipe can be used as manometric 

liquid. However, for large pressures heavier liquid like mercury is used as ‘Manometric 

Liquid’. Fig. 2.8(a) shows arrangement of simple U tube manometer for measurement of 

positive pressure using the same liquid as in pipe. 

                          Small +ve pressure                                      Small -ve pressure 

                Pressure at M = s.h. m of water                  Pressure at M = -s.h. m of water 

                                       (a)                                                                           (b) 

Fig. 2.8 Simple ‘U’ tube manometers with same liquid in pipe and manometer 
 

Pressure at M = h meter of manometric liquid of specific weight 𝛾.  

                    = S . h meter of water column where S is specific gravity of manometric liquid.  

 

Pressure at M = S . h meter of water column.                                                              (2.11) 

          

Fig. 2.8 (b) shows negative pressure measurement using U tube manometer using the same 

liquid as in pipe. 

 Pressure at M = -S . h meter of water column.                                                            (2.12) 

M

h

Liquid of specific gravity 's'
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hM = S2h2 – S1h1 m of water (+ve pressure)    hN = -S2h2 – S1h1 m of water (-ve pressure) 

                                (a)                    (b) 

Fig. 2.9 Simple U tube manometer with manometric fluid different than that of pipe 

Figures 2.9 (a) and 2.9 (b) show positive and negative pressure measurement using a 

manometric liquid different than the one which is flowing in pipe.  

 

Pressure at      M = S2 h2 – S1 h1 meter of water column                                                         (2.13)  

            

Pressure at      N = –S2 h2 – S1 h1 meter of water column                                                      (2.14) 

 

where S1 is specific gravity of liquid flowing in the pipe and S2 is specific gravity of 

manometric liquid. 

 

2.6.1.2   Differential Manometer: 
 

Figure 2.10 shows a differential manometer connected to measure pressure difference 

between 2 points M and N in pipes at different levels. 

Let hm and hn be the pressure heads at 2 points m and n respectively in terms of water 

column. Then 1,  

                                hm + S1 h1 + S1 h2 + S1 h – S2 h – S1 h2 = hn 

∴                     hm – hn = h(S2 – S1) – S1 h1 meter of water column.                               (2.15) 

If the points M and N are at same level, then h1 = 0 
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It may be noted that the above derived formulae for differential manometers are based on 

a simple procedure outlined below. There is no need to remember any formula. It can 

be derived as and when required very easily. 

Fig. 2.10 Differential manometer 

Procedure: 

1.  Draw a neat sketch of the system showing different liquid levels with their specific 

gravities. 

2.  In case of simple U tube manometer, start from open end (atmospheric pressure 

end) and in case of differential manometer, start from any end. Then go from level 

to level till the other end is reached. For decrease in the elevation, add the pressure 

head. For increase in the elevation, subtract the pressure head.  

3.  Express all heads in terms of equivalent water head.  

 For small pressure difference, an inverted U tube manometer with a lighter 

manometric liquid like air, carbon tetrachloride is used. A large deflection in the 

manometer is observed due to lighter manometric liquids. Figure 2.11 shows an 

inverted U tube manometer. 

 

  hm – S1 h1 – S1 h2 – S1 h + S2 h + S1 h2 = hn 
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∴             hm – hn = h (S1 – S2) + S1 h1 meter of water column                                          (2.16) 

 

Fig. 2.11 inverted U-tube manometer 

 

2.6.1.3 Sensitive Manometers: 
 

While measuring deflections in simple or differential manometers many times readings 

cannot be measured accurately as the meniscus lies in between two millimetre 

marking and least count of the scale is 1 mm. In order to measure such deflections 

correctly sensitive manometers are used. 

 

(a) Inclined tube manometer: 

The deflection in the limb can be enlarged by making the mercury limb inclined at certain 

angle ‘θ’ with horizontal and pressure head can be measured accurately. 
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Fig. 2.12 shows an inclined tube manometer 

                                                Ɩ = 
h

sinθ
  , as  sin θ < Ɩ,  Ɩ > h                                         (2.17) 

 

(b) Single tube manometer or well type manometer: 

Fig. 2.13 Single tube manometer 

In this type of manometer, a large reservoir, whose area is about 100 times of the area of 

the tube is introduced in one of the limbs of the manometer. Due to large area, the 

deflection in this limb is negligible as compared to the other limb of smaller area, 

through the volume of liquid displaced is same (direct application of Pascal’s law) 
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As a result, only one reading of pressure head in smaller area limb is considered enough 

for pressure measurement, thus making manometer a quick instrument. However, by 

considering the small deflection in large reservoir, pressure measurement can be done 

more accurately. Figure 2.13 shows such a single tube manometer. 

 

By neglecting the deflection in large reservoir 

                                                       0 + S2 h2 – h1 S1 = hm                                            (2.18) 

 

If a small deflection of ∆h is considered in large reservoir  

 

            0 + S2 h2 + S2 ∆h – S1 ∆h – S1 h1 = hm 

 

∴                       hm = S2 h2 + (S2 – S1) ∆h – S1 h1                                                                    (2.19) 

 

However      A . ∆h = a.h2        (volume displaced by fluids is same) 

 

∴                       hm = S2 h2 + (S2 – S1) x 
𝑎

𝐴
 h2 – S1 h1 

∴                       hm =  [S2 + (S2 – S1) 
𝑎

𝐴
] h2 – S1 h1 meter of water column          (2.20) 

 

(c) Micromanometer: 

 

By introducing large reservoirs in both the limbs of the manometer, the reading are 

magnified and the accuracy is increased. This type of manometer which is used to 

measure pressure difference between two points with greater accuracy is called 

micromanometer.  

Consider a micromanometer with two manometric fluids of specific gravity S2 and S3 as 

shown in figure 2.14. 
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 Fig. 2.14 Micromanometer 

 

Initial level of heavier manometric liquid (S3) is OO, while that of lighter liquid (S2) is XX. 

The portion above XX is occupied by liquid (S1) whose pressure is to be measured. 

 

Let ‘A’ be the area of reservoir and ‘a’ be the area of tube. 

                           
𝐴

𝑎
  = 100 

Volume displaced in tank = Volume displaced in tube 

∴                                               A ∆h  =  a. 
ℎ

2
 

∴                        ∆h  =  
𝑎

𝐴

ℎ

2
 

 

∴                     2 ∆h  =  
𝑎

𝐴
  h 

(Fall of ∆h in left limb reservoir and rise of ∆h in right limb reservoir will cause fall of  
ℎ

2
   

in left tube and rise of  
ℎ

2
  in right tube) 
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hA + S1 h1 + S1 ∆h + (h2 - ∆h) S2 + S2 
ℎ

2
 – S3 h – (h2 - 

ℎ

2
 ) S2 – S2 ∆h – S1 ( h1 - ∆h ) = hB 

hA + S1 (2 ∆ h) – S2 (2 ∆ h) + S2h – S3h +hB 

hA – hB = S3 h – S2 h + (S2 – S1) x 
𝑎

𝐴
 h 

hA – hB = h {𝑆3  −  𝑆2  (1 − 
𝑎

𝐴
 ) − 𝑆1  

𝑎

𝐴
}  meter of water column                          (2.21) 

 

2.6.2 Mechanical Gauges: 

Mechanical gauges are compact, robust and simple devices used to measure pressure 

at a point by using elastic property of the metal. Bourdon’s pressure gauge is widely 

used gauge of this type, though its accuracy is questionable due to its larger least count. 

The Bourdon’s gauge comprises of a metallic tube of elliptic cross-section bent in the 

form of a question mark. The free end of the tube is closed while the fixed end is in 

contact with the pressure tapping. When fluid enters the tube from pressure tapping, 

the closed end moves due to change in the cross-section of the tube from elliptical to 

circular. The movement of the closed end is transferred to the rack and pinion 

arrangement ‘R’ through a link ‘L’ which ultimately moves the pointer on the calibrated 

dial D (Refer figure 2.15). This arrangement can measure positive or negative pressure.  

 

 

 

 

 

 

 

 

 

Fig. 2.15 Bourdon gauge 

Fig. 2.15 Bourdon gauge 
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The pointer will move clockwise for positive pressure and anticlockwise for negative 

pressure. Different material of tube can be used for different pressure range. The 

gauge used to measure negative pressure is known as vacuum gauge. The calibration 

is generally made in kg/cm2 or ‘mm’ of Hg.  

 

 

2.6.2.1   Difference Between Mechanical Gauges and Manometers 
 

Sr. No. Mechanical gauge Manometer 

1. Strong, portable, easy to handle. Bulky, delicate and cannot be 

handled easily. 

2. Suitable for high pressure. Can measure small pressures. 

3. Accurate at the centre of range. Mostly accurate throughout the 

range.  

4. Sensitivity cannot be adjusted. Sensitivity can be increased. 

5. Best for quick readings which may not 

be very accurate. 

Best for accurate readings which 

may take some time to read. 

 

 

2.7   Hydrostatic Forces on Surfaces 
 

When a fluid comes in contact with any surface either plane or curved, it exerts a 

force on it. Obviously, this force is due to the pressure acting on the surface, which varies 

with depth of flow as explained in earlier sections. The total force acting on surface in 

contact of fluid is therefore termed as total pressure. When the fluid is at rest tangential 

forces (shear) are absent. As a result of which the total pressure acts normal to the surface 

on which it acts. Any force is described by three parameters, magnitude, direction and point 

of application. The magnitude of hydrostatic force or total pressure is governed by law of 

hydrostatics and direction is normal as explained previously. The point of application of 

the total pressure on the surface in contact is termed as centre of pressure. As explained 

earlier the pressure force varies with depth, the resultant of all such forces at different levels 

is the total pressure. The point of application i.e centre of pressure is found out using 

Varignon’s theorem of moments which states that ‘sum of moments of all the forces about 

a point is same as moment of the resultant about the same point’. In case of centre of 

pressure ‘resultant moment’ is total pressure and ‘all the forces’ are forces due to pressure 
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at different levels. Thus, the concept of total pressure passing through centre of pressure is 

analogous with concept of weight of the body passing through centre of gravity. 

 

2.8   Total Pressure of a Horizontal Plane Surface 
 

Figure 2.16 shows a horizontal plane surface of area A is submerged in water at a depth 

‘h’ below free water surface. The pressure intensity at all the points on this surface is 

constant as all points are at same depth below free water surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.16 Horizontal plane surface submerged in fluid 

∴ p = 𝛾 h,  where p is intensity of pressure and 𝛾 is specific weight of water. 

                       Total pressure = Pressure intensity 𝑥 area 

∴ P = (𝛾 h) 𝗑 A                                                                                                     (2.22) 

It is also evident that this force will pass through centroid of area in the vertically 

downward direction. 

 

 

2.9    Total Pressure on a vertical Plane Surface 

 
Figure 2.17 shows a vertical plane surface of area A completely submerged in water. 
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Fig. 2.17 Vertical plane surface submerged in fluid 

 

 The centroid of plane surface is at a distance of 𝑋̅ from free water surface OO.  

 Pressure intensity varies over the plane surface (along the depth below the free 

water surface), therefore a rectangular strip of very small thickness ‘d𝑥’ is 

considered at a distance ‘𝑥’ from free water surface on which pressure intensity can 

be assumed to be constant. 

 The width of strip is ‘b’. 

       ∴ Pressure intensity over strip of thickness dx = γ𝑥 

 

              ∴ Total pressure on strip = Pressure intensity 𝗑 area of strip 

 

                  dp = (γ𝑥) (bd𝑥) 

 

              ∴ Total pressure on entire plane surface   P = ∫dp = γ ∫𝑥 . (bd𝑥) 

 

 ∫𝑥 . (bd𝑥)  =  Sum of moments of areas of all elemental strips about 

       free water surface OO. 

  =  Moment of the resultant area (total area) about free water surface. 
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   =   A 𝑥̅ (Varignon’s theorem) 

∴         P  =   γ A𝑥̅                                                                                                      (2.23) 

Where P is total pressure, γ is specific weight of water, ‘A’ is area of plane surface and 𝑥̅ 

is distance of the centroid of plane lamina from free water surface. 

 

2.9.1 Centre of Pressure  

For vertical plane surface the intensity of pressure increases with depth. Let ℎ̅ be the centre 

of pressure through which the total pressure P acts.  

Moment of total pressure about OO = P ℎ̅  (refer figure 2.17) 

Moment of total pressure acting on strip of thickness dx about OO = (γ 𝑥) (bd𝑥) 𝑥  

∴ Sum of moments of forces acting on all such strips about OO = γ ∫ 𝑥2 (bd𝑥) 

Using Varignon’s theorem of moment 

 

                             γ ∫ 𝑥2 (bd𝑥) = P ℎ̅ 

 

                                ∫ 𝑥2 (bd𝑥)  =  sum of second moment of areas about OO 

                                                 =  moment of inertia Io of plane surface about OO 

∴                                   P ℎ̅ = γ Io 

∴                                      ℎ̅ = 
γ Io

𝑃
 

∴                                     ℎ̅  = 
γ Io

γ 𝐴𝑥̅2
 = 

Io

𝐴𝑥̅2
                                                               (2.24) 

Using parallel axis theorem  

                                              𝐼𝑜 = 𝐼𝐺 +𝐴𝑥̅
2
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i.e. moment of inertia about an is equal to sum of moment of inertia about a centroidal 

parallel axis in the same plane (IG) and product of area and square of the distance between 

the two parallel axes (𝐴𝑥̅2) 

∴                                       ℎ̅ =  
𝐼𝐺+𝐴𝑥̅2

𝐴𝑥̅
 

∴                                   ℎ̅ = 𝑥̅ + 
𝐼𝐺

𝐴𝑥̅
                                                                                             (2.25) 

As 
𝐼𝐺

𝐴𝑥̅
> 0, ℎ̅ > 𝑥̅ i.e. centre of pressure (ℎ̅) will always lie below centre of gravity (𝑥̅). 

For greater depths, centre of pressure approaches centre of gravity as 𝑥̅ is large and 
𝐼𝐺

𝑥̅
  

becomes small. 

 
2.10 Total Pressure on Inclined Plane Surface 
 

Fig. 2.18 Total pressure on inclined plane surface 

Figure 2.18 shows an inclined plane surface of area A completely submerged in water. The 

angle of inclination of the place surface with the free liquid surface is θ. The plane of 

lamina when extended meets an axis ‘OO’ passing through O and perpendicular to 

the plane of paper. 

Let 𝑥̅ be the distance of centroid of plane surface vertically below free liquid surface. 𝑦̅ be 
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the inclined distance of centroid from OO along the inclined plane = 
𝑥̅

sin 𝜃
 

Let ℎ̅ be the depth of centre of pressure vertically below free liquid surface and yp be the 

inclined distance of centre of pressure from OO = 
ℎ̅

sin 𝜃
 

Consider a strip of area dA at a distance 𝑥 vertically from free water surface. 

                           The intensity of pressure on strip = 𝛾 𝑥. 

∴                   Total pressure on strip dp = γ 𝑥 (dA) 

∴                            dp = γ y sin θ. dA 

∴                   Total pressure on entire plane surface = γ sin θ ∫ y dA 

                           ∫ y dA  =  sum of First moment of areas about OO 

                                       =  moment of entire area A about OO  

                                       = A 𝑦̅ 

∴                                    P  =  γ sin θ A 𝑦̅ 

∴                                    P  = γ A 𝑥̅  (∵ 𝑥̅ = 𝑦̅ sin θ) 

Thus, the total pressure acting on inclined plane surface is same as total pressure on vertical 

surface or total pressure on inclined plane surface is independent of angle of 

inclination θ. 

 

2.10.1 Centre of Pressure  

 Moment of total pressure acting on strip about OO = γ y sin θ dA . y 

∴                      Moment of all such strips about OO = γ sin θ ∫y2 dA. 

                       ∫ y2 dA  =  sum of second moment of areas about OO. 

                                     =  Moment of inertia of the plane surface about OO i.e. Iₒ. 
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Using Varignon’s theorem, 

   P . yp  = γ sin θ Iₒ 

         Iₒ  =  IG + A 𝑦̅
2 

               yp  = 
𝛾 𝑠𝑖𝑛𝜃 (𝐼𝐺+𝐴𝑦̅

2
)

𝛾 𝐴 𝑦̅ 𝑠𝑖𝑛𝜃 
 = 𝑦̅ + 

𝐼𝐺

𝐴 𝑦̅
 

            ℎ̅ = 𝑥̅ + 
𝐼𝐺 𝑠𝑖𝑛

2𝜃

𝐴 𝑥̅
   (∵ 𝑦𝑝 =

ℎ̅

𝑠𝑖𝑛𝜃
  𝑎𝑛𝑑 𝑦̅ =  

𝑥̅

𝑠𝑖𝑛𝜃
)                                 (2.26)  

 

 
2.11 Total Pressure on Curved Surface  

 

Figure 2.19 shows a completely submerged curved surface under water. In case of 

curved surface, the total pressure is a vector sum of horizontal and vertical components PH 

and PV respectively as the elementary forces do not form a parallel force system as in plane 

surfaces. Consider an elementary area dA situated at a depth h below free water surface. 

the elementary area is magnified in Fig. 3.11.2. 

 

                (a)            (b) 

Fig. 2.19 Total pressure on curved surface 
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Fig. 2.20 Elementary area dA 

Total pressure on curved surface  

Total pressure acting on elementary area dA = dp = 𝛾 h dA = p dA acting normal to dA. 

∴     Total pressure  P  = ∫ 𝛾 h dA 

               Component of dp in horizontal direction = dpH = dp sinθ = p . dA sinθ. 

And vertical component of  dp = dpV = dp cos θ = p dA . cos θ 

               Total horizontal force  PH =  𝛾 ∫ h dA sin θ 

               Where dA sin θ is the projection of elementary area dA on a vertical plane. 

∴ PH = ∫ γ h dA sinθ = total pressure on projected area of the curved surface on vertical  

                      plane PH will act at centre of pressure.                                                  (2.27) 

           dA cos θ = horizontal projection of elementary area dA. 

∴   PV = ∫ γ h dA cosθ = Weight of the liquid lying above curved surface in Area                                                        

                                       ABCDEFA 

 

θ

θ

dA cosθ

dFy = dp cosθ

dA sinθ

dFx

dFx = dp sinθ

Area dA

dp = γ.h dA
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Thus, the vertical component of total pressure is the weight of liquid lying in the portion 

extending above curved surface up to free surface and acting through centroid of area 

ABCDEFA. PV will act in vertically downward direction if supported liquid is real 

otherwise it will act vertically upwards. 

 

 The total pressure  P =                                            

                                               =  tan-1                                                                                    (2.28) 

Point of application of total pressure P on curved surface may be determined by extending 

the line of action of force P to meet the surface. 

 

 

2.12 Solved Examples 
 

Ex.2.1: 

 
Mercury barometer reads 720 mm at top of a mountain. Calculate height of 

mountain if atmospheric pressure at the bottom of mountain is 109 kPa.  

Assume density of air 1.26 kg/m3 constant If the plate remains equidistant 

from the two surfaces. 

 

Solution: 

                          Pressure at top P = 𝛾 h 

                              = 13.6 𝗑 9.81 𝗑 0.72 

                      = 96.06 
𝑘𝑁

𝑚2
  or kPa 

               Pressure at bottom = 109  kPa 

          ∴               Difference = 12.94   kPa 

                             P = 𝛾h (for air) 

                 12.94 𝗑 103 = 1.26 𝗑 9.81 𝗑 h 

                                  h = 1046.87 m 

PV

PH
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 ∴                height of mountain = 1046.87 m 

 

 

  

 

Ex. 2.3 : What depth of oil, sp. Gravity 0.8 will produce a pressure of 120 kN/m2 ? 

What would be corresponding depth of water? 

 

Solution : 

      P = 𝛾 h 

 

 ∴            120 𝗑 103 =  0.8 𝗑 9810 𝗑 h 

 

 ∴                     hoil   =  15.29 ‘m’ of oil  

 

Ex. 2.2 : Mass density (kg/m3) of a liquid varies as p = (1000 + 0.008 h) where ‘h’ is 

depth (m) below free surface of liquid. Determine depth at which gauge 

pressure would be 100 kPa.   

 

Solution : 

                         p = 1000 + 0.008 h 

 ∴                     𝛾 = 9810 + 0.07848 h 

                      
𝑑𝑝

𝑑ℎ
 = 𝛾    

    

 ∴             ∫ P1 − P2
ℎ2

ℎ1
 = ∫ ydh

ℎ2

ℎ1
  = ∫ (9810 + 0.07848 h) dh  

       P2   =  0 since gauge pressure is asked, pressure on  

               Surface  = 0 (atmp) 

 ∴                   100 x 103 =  9810 h + 0.03924 h2        where h = h2 – h1 

            ∴                 h2 + 250000 h – 2548420 = 0 

                    H  =  10.193 m 
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                             H𝜔 =  Soil 𝗑 hoil 

           =  0.8 𝗑 15.29  

           =  12.23 ‘n’ of water 

               (Alternatively h𝜔 = 
𝑃

ℎ𝜔
 = 
120 𝑥 10

9810
 = 12.23 ‘m’  of water)  

 

 

Ex. 2.4 : A bourdon tube is connected to a tank in which the pressure is 276 kPa above 

atmospheric at the gauge connection. If the pressure in the tank remains 

unchanged but the gauge is placed in a chamber where the air pressure is 

reduced to a vacuum of 635 mm of mercury. What gauge reading will be 

expected? (The gauge connection is not shifted)    

 

Solution: 

  
276

9.81
 = 28.134 m of water 

Pressure reduced to 635 mm of Hg 

             =  0.635 𝗑 13.6 

  =  8.363 of water 

 Total pressure  =  28.134 = 19.498 m of water 

 Gauge reading =  19.498 x 9.81 = 191.275 kPa 

 

Ex. 2.5 : Two pressure tanks are built one inside the other. A bourdon gauge M 

connected to the inner tank reads 20 kPa. Another bourdon gauge ‘N’ 

connected to the outer tank reads 35 kPa. An aneroid barometer reads 750 

mm of Hg. Calculate the absolute pressure recorded at M and N in mm of 

mercury.                                                                                    

 

Solution: 

               Pressure recorded by M = 35,000 + 20,000 = 55,000 N/m2 
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                Pressure recorded at M = 
55,000

9810 𝑥 13.6 
 = 0.412 m mercury 

Absolute pressure recorded by M = 
750

1000
 + 0.412 

          =  1.162 m of mercury 

          = 116.22 cm of mercury 

                Pressure recorded by N = 35,000 N/m2 

                Pressure recorded by N = 
35,000

9810 𝑥 13.6
 = 0.262 m mercury 

  Absolute pressure recorded at N = 
750

1000
 + 0.262 = 1.012 m of Hg 

          = 101.2 cm of Hg. 

 

 

Ex. 2.6 : A U-tube manometer Fig. Ex. 2.6 measures the pressure difference between 

points A and B on a liquid of density 𝜌1. The U-tube contains mercury of 

density 𝜌2. Calculate the difference of pressure if a = 1.5, b = 0.75 m and h = 

0.5 m if the liquid in A and B is water and 𝜌2 = 13.6 𝜌1.  
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Fig. Ex. 2.6 

 

Solution : 

 HA + 1.5 – 13.6 𝗑 0.5 – 0.25 = HB 

 HA – HB = 5.55 ‘m’ of water column. 

 

 

Ex. 2.7 : Determine PA – PB as shown in Fig. Ex. 2.7 

                                                    Fig. Ex. 2.7 

 

Solution :  
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                         sin 30 =  
ℎ

0.03
      

 ∴     h  = 0.03 sin 30 

Pressure due to air column will be negligible, as Relative density of air is very 

small.  

 HA – 0.03 x 0.7 sin 300 = HB 

                        ∴     HA – HB = 0.0105 ‘m’ of water column. 

 ∴      PA – PB   = 0.0105 𝗑 9810 = 103.005 N/m2 

 

 

Ex. 2.8 : Calculate intensity of pressure at points A, B, C and D as shown in Fig. Ex. 

2.8. 

Fig. Ex. 2.8 

Solution :  

1. Starting from free water surface and moving towards point A. 

                    HA = -2 ‘m’ of water column. 

                 ∴   PA = -19.62 kN/m2  (PA = γW HA) 

2. Starting from free water surface and moving towards B. 

                            HB = 2 ‘m’ of water column 

                         = 19.62 kN/m2 
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3. Pressure at    B = Pressure at C = 19.62 

(weight of air is negligible) 

4. HC + 6.5 x 0.9 = 2 + 5.85 = 7.85 ‘m’ of water column 

                        = 77 kN/m2 

 

 

Ex. 2.9 : The diameter of two limbs A and B of a U-tube manometer are 16 mm and 4 

mm respectively. A is filled with a liquid of specific gravity of 1.25 and B 

with another liquid of specific gravity 0.8. The two liquids do not mix. 

Determine the pressure to be applied to the surface of the heavier liquid in 

order to raise the level in the other limb by 10 mm.                                                                                                                                           

Solution :  

Pressure applied on left limb (S = 1.25) is same as pressure on right limb  

(S = 0.8) 

 ∴    p = 𝛾1h1 = 𝛾2h2 

 

Let the level of liquid of specific gravity 1.25 decreases by h1 m i.e. pressure 

head  

Fig. Ex. 2.9 

 

of 1.25 m of liquid of specific gravity 1.25. 

 

Due to this liquid level in the other limb rises by 10 mm, above original level 

and by h2m above new level of liquid in the first limb (s = 1.25). As pressure 

applied on first limb is balanced by adjustment of liquid level in the second 

limb. 
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        P  =  𝛾1h1  =  𝛾2h2 

but,                       h2  =  h1 + 0.01  

         1.25 𝗑 9.81 𝗑 h1  =  0.8 𝗑 9.81 (h1 + 0.01) 

                 ∴        h1  =  
0.008

0.45
  =  0.0177 ‘m’ of liquid of specific gravity 

1.25 

                 ∴ p  =  𝛾1 h1  = 1.25 𝗑 9.81 𝗑 0.0177  =  0.218 kN/m2 

 

  

Ex. 2.10 : A closed rectangular tank of cross sectional area 1m 𝗑 0.6 m has 1 m height. 

It contains water upto depth of 0.6 m and remaining space above contains 

air under such a pressure that total load on the bottom of tank is 9.532 kN. 

Determine pressure of air.                                                 

 

Solution :  

Fig. Ex. 2.10 

 

   Ptotal =  Pa + Pw 

 

          Pbottom  =  
9.532

1 𝗑 0.6
  = 15.89 kN/m2 

 

              Pw  =  0.6 𝗑 9.81 = 5.886 kN/m2 

 

              Pair  =  10.004 kN/m2 
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Ex. 2.11 : A vessel of 5 cm2 cross sectional area and 1.5 m height is filled with water 

upto a height of 1 m and remaining with oil of specific gravity 0.8. The 

vessel is open to atmosphere. Calculate the gauge and absolute pressure on 

the base of vessel in terms of water head, oil head and N/m2 given the 

atmosphere as 1.013 bar. Also calculate net force exerted at the base of 

vessel.   

                                                                                      

Solution :  

   Pbase =  Poil + Pwater = 0.5 𝗑 0.8 𝗑 9.81 + 1 

𝗑 9.81 

            =  13.734 kN/m2 (gauge) 

                      Atmosphere   =  1.013 bar = 1.013 𝗑 105 N/m2 

             =   101.3 kN/m2 

                  ∴      Total force  =  101.3 + 13.734 

             =  115.034 kN/m2 (absolute) 

                  ∴     Total force  =  115034 N/m2  (absolute) 

In terms of water head, (convert oil head to water head) 

            Hw  =  sw hw + soil hoil 

            =  1 𝗑 1 + 0.5 𝗑 0.8 

            =  1.4 ‘m’ of water column 

In terms of oil head (convert water head to oil head) 

 ∴      𝛾
w hw  = soil hoil 

 ∴      hoil 𝗑 soil  =  hw  ∴  hoil = 
1

0.8
 = 1.25 



FLUID MECHANICS 

88  

             ∴     Total head,   hoil  =  
ℎ𝑤
𝑆𝑜

  + hoil 

                ∴         hoil  =  1.25 + 0.5 = 1.75 ‘m’ of oil (gauge). 

 

 

Ex. 2.12 : A square plate of diagonal 1.5 m is immersed in water with its diagonal 

vertical and upper corner 0.5 m below the free surface of water. Calculate 

the depth of C.P. on the plate from free surface of water and hydrostatic 

force resulting on the plate in kN.                                    

 

Solution :  

 

Fig. Ex. 2.12 

 

 Side of square = 
1.5

√2
  = 1.06 m 

                                       Area = 1.125m2 

                                             P = 9.81 𝗑 1.125 𝗑 1.25 = 13.800 kN 

                                             ℎ̅ = 𝑥̅ + 
𝐼𝐺 𝑠𝑖𝑛

2𝜃

𝐴 𝑥̅
 

                                                  = 1025 + 

1.5 × 0.753

12
 ×1

1.125 ×1.25
             (∵ 𝜃 = 900) 

                                               ℎ̅ = 1.325 m 
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Ex. 2.13 : A triangular plate of 1 m base of 1.5 m latitude is immersed in water. The 

plane of plate is inclined at 300 with free water surface and base is parallel 

to and at a depth of 2 m from water surface. Find T.P. and C.P. 

 

Solution : 

Fig. Ex. 2.13 
 

   T.P. = 𝛾 A 𝑥̅ 

                                  = 9.81 𝗑 
1

2
 𝗑 1 𝗑 1.5 𝗑 1.75 

                                  = 12.88 kN 

                           C.P. = 𝑥̅ + 
𝐼𝐺 𝑠𝑖𝑛

2𝜃

𝐴 𝑥̅
 

                                   = 1.75 + 

1 × 1.53

36
 × 0.52

1

2
 ×1.5 ×1.5

 

                          = 1.77 m 
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Ex. 2.14 : A circular plate 1.2 m diameter is placed vertically in water so that the 

centre of plate is 2 m below free surface. Determine the total pressure on 

the plate and depth of C.P. 

 

Solution : 

 

Fig. Ex. 2.14 

 

                                  p = 9.81 𝗑 
л

4
 𝗑 1.22 𝗑 2 = 22.19 kN 

                                  ℎ̅ = 2 + 

𝜋

64
 × 1.24

𝜋

4
 × 1.22 ×2

  = 2.045 ‘m’ 

 

 

 

Ex. 2.15 : A plate 4 m long and 2 m wide has a circular hole of 1 m diameter at its 

centre. The plate is completely immersed in water making an angle of 450 

with free surface. Determine the hydrostatic load on one face of plate and 

C.P.  

 

Solution :  

 P1 = Total pressure with hole = γ A ℎ̅           (ℎ̅ = 2 sin45 = 1.41m) 

 

                       = 9.81 𝗑 8 𝗑1.41  

                       = 110.66 
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  Centre of pressure h1 = 1.41 + 

2 × 43 

12
 × 

1

2

8 ×1.41
  

                                            = 1.88 m 

                   (a)                                                                 (b) 

Fig. Ex. 2.15 

                 P2 =  Total pressure on hole 

                      = 9.81 𝗑 
л

4
 𝗑 1 𝗑 1.41 = 10.86 

  Centre of pressure h2 = 1.41 + 

𝜋

64
 × 14 × 

1

2
 

𝜋

4
 ×1 ×1.41

 = 1.47 m 

                              ∴        P = P1 – P2 = 110.66 – 10.86 

                                           = 99.8 kN  acting at ℎ̅ from free water surface 

(Distance of centre of pressure along the plate are shown in Fig. Ex. 

2.15(b)) 

         Taking moments about ‘O’ 
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               110.66 𝗑 
1.88

0.707
 ‒ 10.86 𝗑  

1.47

0.707
 = 99.8 𝗑 

ℎ̅

0.707
  

        Centre of pressure ℎ̅ = 1.92 ‘m’ 

 

 

Ex. 2.16: The bottom of a 1 m diameter cylindrical tank is of the shape of an inverted 

hemispherical bowl. If the depth of water at the centre is 3 m, find the 

resultant pressure on the bottom of the tank. 

 

Solution :  

 

Fig. Ex. 2.16 

 

Total pressure on half of cylinder will be resultant of vertical and horizontal 

component. But for entire cylinder, horizontal components will cancel and 

vertical components i.e. weight of water columns will add. 

 

 ∴ Total pressure =  weight of water acting on bottom of cylinder 

 

 ∴ Total pressure =  γ 𝗑 volume 

   =   9.81 𝗑 [л 𝗑 r2 𝗑 h - 
2

3
 л r3] 
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   =  9.81 𝗑 [л 𝗑 0.52 𝗑 3.5 - 
2

3
 𝗑 л 𝗑 0.53] 

  =  24.39 kN/m2 

 

 

Ex. 2.17: A 1 m wide and 1.5 m deep rectangular plane surface lies in water in such a 

way that its plane makes an angle of 300 with the free water surface. 

Determine the total pressure and position of centre of pressure when the 

upper edge is 0.75 m below the free water surface. 

 

Solution : 

  
Fig. Ex. 2.17 

           p = 𝛾 A 𝑥̅ 

                         = 9.81 𝗑 1 𝗑 1.5 𝗑 1 

                             = 14.715 kN/m2 

                         ℎ̅  = 𝑥̅ + 
𝐼𝐺 𝑠𝑖𝑛

2𝜃

𝐴 𝑥̅
 

                          = 1 + 

1 × 1.53

36
 × 0.52

1 ×1.5 ×1
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Ex. 2.18: A circular plate of 4 m diameter is immerged in water such that its greatest 

and least depth below free surface of water is 5 m and 2 m respectively.  

Determine total pressure on one side of plate and position of centre of 

pressure. 

 

Solution : 

 

                 p = γ A 𝑋̅ = 9.81 𝗑 
𝜋

4
 𝗑 16 𝗑 3.5 

                               = 431.47 kN 

                           ℎ̅  = 𝑥̅ + 
𝐼𝐺𝑠𝑖𝑛

2𝜃

𝐴 𝑥̅
  = 3.5 +  

𝜋

64
 × 44 × 0.561 
𝜋

4
 ×16 ×3.5

 

                               = 3.66 ‘m’ 

   

 

Ex. 2.19: A tank contains water upto a height of 0.5 m above the base. An immiscible 

liquid of specific gravity 0.85 is filled on the top of water upto 1 m height. 

                 ℎ̅  = 1.046825 m 
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Calculate : 

 (i)  Total pressure on one side of the tank. 

 (ii) The position of centre of pressure for one side of the tank, 2 m wide. 

 

Solution : 

Fig. Ex. 2.19 

 As the liquids of different specific gravity are used, pressure, diagram 

will be used. 

  

Intensity at 1 ‘m’ =  p = 𝛾1h1 = 0.85 𝗑 9.81 𝗑 1 

     =  8.3385 kN/m2 

Intensity at 0.5 m =  9.81 𝗑 0.5 = 4.905 kN/m2 

P1  =  Pressure force exerted by prism abc 

     =  
1

2
 𝗑 8.3385 𝗑 1 𝗑 2 = 8.3385 

P1 acts through C.G. of pressure prism 

                     ∴    ℎ̅1 =  
2

3 
  𝗑 1 from ‘A’ 
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 P2 =  Area (BCEF) 𝗑 2 = 8.3385 𝗑 0.5 𝗑 2 

      =  8.3385 at 1.25 ‘m’ from A 

P3  =  
1

2
 𝗑 4.905 𝗑 0.5 𝗑 2 

      =  2.4525 at  [ 1 + 
2

3
 𝗑 0.5]  = 1.335 from A 

       ∴   Total force = 8.3385 + 8.3385 + 2.4525 

      =  19.1295  acting at ℎ̅ from ‘A’ 

To find position of P take moments about A 

P ℎ̅  =  P1 ℎ̅1 + P2 ℎ̅2 + P3 ℎ̅3 

               19.1295 ℎ̅ =  8.3385 𝗑 
2

3
 +8.3385 𝘹 1.25 + 2.4525 𝘹 1.335 

ℎ̅  =  1 ‘m’ below ‘A’ 

   

 

Ex. 2.20: A tank contains water upto a height of 1 m above the base. An immiscible 

liquid of specific gravity 0.8 is filled on the top of water upto a height of 0.5 

m. Calculate the total pressure on one side of tank and locate position of 

centre of pressure for one side of the tank which is 2 m wide. Also plot 

pressure diagram. 

 

Solution :  
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Fig. Ex. 2.20 

 

‘Intensity at 1 m    =  P1 = γ1 h1 = 9.81 𝗑 0.8 𝗑 0.5 = 3.924 kN/m2  

 Intensity at 1.5 m  =  P2 = 9.81 𝗑 1 = 9.81 

Pressure force P1  =  ∆ abc = 
1

2 
  𝗑 3.924 𝗑 0.5 x 2 

        =  1.962 acting at  
2

3
 𝗑 0.5 = 0.355 m from a 

Pressure force P2    =  ∆ ced =  
1

2 
 𝗑 9.81 𝗑 1 𝗑 2 

         =  9.81 actng at 0.5 + 
2

3
 𝗑 1 = 1.17 m from a 

Pressure force P3  =   bcef = 3.924 𝗑 1 𝗑 2 

        =  7.848 acting at 0.5 + 0.5 = 1 m from a 

 ∴  Total force       =  1.962 + 9.81 + 7.848 

        =  19.62 kN acting at ℎ̅ from a 

 Taking moments about ‘a’ 

             19.62 𝗑 ℎ̅  =  1.962 𝗑 0.335 + 9.81 𝗑 1.17 + 7.848 𝗑 1 

     ℎ̅ =  1.0185 m 
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UNIT SUMMARY 

 Pressure always acts perpendicular to the surface. 

 Pascal’s law with derivation. 

 Hydrostatics law p = 𝛾h 

 Piezometric head = 
𝑃

𝛾
 + z  

 Equivalent water column hwater  = Sfluid 𝗑 hfluid 

 When pressure is measured above atmospheric pressure, it is called gauge pressure or 

positive pressure. 

 When pressure is measured below atmospheric pressure it is called vacuum pressure or 

negative pressure. 

 Absolute pressure is always positive as it is measured above absolute zero. 

 Simple and differential ‘U’ tube manometer. 

 Inverted ‘u’ tube manometer and micromanometer. 

 Total pressure on a vertical plane surface (Derivation) 

                                             p = 𝛾 A 𝑋̅ 

 and centre of pressure ℎ̅ = 𝑥̅ + 
𝐼𝐺

𝐴 𝑥̅
 

 Total pressure on an inclined plane surface (Derivation) 

                                           p = 𝛾 A 𝑥̅ 

 and centre of pressure ℎ̅ = 𝑋̅ + 
𝐼𝐺 𝑠𝑖𝑛

2 𝜃

𝐴 𝑥̅
 

 Total pressure on an curved surface p = √ 𝑃𝐻
2 + 𝑃𝑉

2 α = tan-1 
𝑃𝑉

𝑃𝐻
 (Derivation) 
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2.13 Exercise  
 

2.13.1: Objective Questions:  

1. The normal stress in a fluid will be constant in all directions at a point only if… 

(a) It is incompressible 

(b) It has uniform viscosity 

(c) It has zero viscosity 

(d) It is at rest. 

Ans: (d)  

          The atmospheric pressure with rise in altitude decreases… 

(a) Linearly 

(b) first slowly and then steeply 

(c) first steeply and then gradually 

(d) unpredictable. 

Ans: (b)  

2. Mercury is often used in barometer because… 

(a) It is the best liquid 

(b) The height of barometer will be less 

(c) Its vapour pressure is so low that it may be neglected 

(d) Both (b) and (c). 

Ans: (d)  

3. A pressure of 25 m of head of water is equal to… 

(a) 25 kN/m2 

(b) 245.25 kN/m2 

(c) 2500 kN/m2 

(d) 2.5kN/m2 
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Ans: (b) 

4. Barometer is used to measure… 

(a) Pressure in pipes, channels etc 

(b) Atmospheric pressure 

(c) Very low pressure 

(d) Difference of pressure between two points. 

Ans: (b) 

5. Which of the following manometer has highest sensitivity? 

(a) U-tube with water 

(b) inclined U-tube 

(c) U-tube with mercury 

(d) micro-manometer with water. 

Ans: (d) 

6. Along the free surface in a liquid, pressure ________ 

(a) Increases  

(b) Decreases 

(c) Remains constant  

(d) Not from above three options 

Ans: (c) 

7.   In a differential manometer a head of 0.6 m of fluid A in limb 1 is found to balance 

a head of 0.3 m of fluid B in limb 2. The ratio of specific gravities of A to B is 

(a) 2   (b) 0.5            (c) cannot be determined             (d) 0.18 

Ans: (b) 

8.    The specific weight of a fluid is 20,000 N/m3. The pressure (above atmosphere) 

in a tank bottom containing the fluid to a height of 0.2 m is 
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(a) 40,000 N/m2          (b) 2000 N/m2       (c) 4000 N/m2       (d) 20,000 N/m2 

    Ans:  (c) 

  10.   Manometers are suitable for ________ pressure measurement. 

(a) Low      (b) High              (c) Medium                    (d) Extreme high  

    Ans:  (a) 

11.   If the density varies linearly with height the pressure will vary ________ with 

height. 

(a)Linearly       (b) in proportion      (c) inversely          (d) Exponentially   

    Ans:  (d) 

12.  In micromanometer, the density difference between the filler fluid and the 

manometer fluid should be ________ 

(a)small     (b) High                (c) Medium               (d) Extreme high 

    Ans:  (a) 

13.   The pressure on the base of a liquid column will depend upon the shape of the 

column. 

(a) Correct  (b) Incorrect  

    Ans:  (b) 

14.   For low pressure measurement a manometric fluid with low density will be 

better. 

(a) Correct  (b) Incorrect  

    Ans:  (a) 

 15.   The vacuum gauge reading will increase as the absolute pressure decreases. 

(a) Correct (b) Incorrect  
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    Ans:  (a) 

 2.13.2: Theory Questions:  

Q.1 What is Pascal’s law? Derive it.   

Q.2  What is meant by equivalent head?      

Q.3 With the help of a neat sketch show that if a differential manometer is used to 

measure the pressure difference between two points, the deflection takes into 

account datum head of points also.      

Q.4 Write short note micro manometer. 

Q. 5 Explain with neat sketch the working of single column manometer. 

Q. 6 Write a note of Bourdon’s gauge. 

Q. 7 What is meant by centre of pressure? 

Q. 8 Derive an expression for the vertical distance between the centre of gravity and 

centre of pressure of a plane immersed surface. 

 
 ℎ̅=𝑥̅  𝐼𝐺

𝐴 𝑥̅
            

Q. 9  Derive the expressions for forces and their point of applications on curved surfaces. 

Q. 10  What is a pressure diagram? What are its uses and limitations?  

Q. 11  Derive expression for total pressure and centre of pressure on an inclined plane 

surface. 

Q. 16  Derive an expression for the total pressure acting on plane surface kept in liquid at 

angle ‘θ’ with the free liquid surface. Also determine the location of centre of 

pressure. 

Q. 20  Define total pressure and centre of pressure. 

Q. 21  Derive the expression for determining the centre of pressure for an inclined 

triangular plane immersed in water. 
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Q. 22 A triangular plate of 1 m base and 1.5 m altitude is immersed in water. The plane 

of the plate is inclined at 300 with free water surface and the base is parallel to and 

at a depth of 2 m from water surface. Find the total pressure on the plate and the 

position of the centre of pressure.   

 

2.13.3: Unsolved Problems:  

1. In a U tube differential manometer three different liquids are there as shown in the 

figure. Water is marked with dotted lines, mercury in silver/grey and oil is marked 

with slanting lines. Assuming that the gage pressure is p kPa 1 10 kPa, Find the 

height “d” of the mercury on the unconstrained side. 

i. (Ans: 0.075 m ) 
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2. A closed tank contains 1.5 m of SAE 30 oil, 1 m of water, 20 cm of mercury, and 

an air space on top, all at 20°C. If Pbottom = 60 kPa, what is the pressure in the air 

space? 

(Hint: Apply the hydrostatic formula down through the three layers of fluid)  

(Ans: pair ≈ 10500 Pa ) 

 

3. In the given figure, the tank contains water and immiscible oil at 20°C. What is “h” 

in centimetres if the density of the oil is 898 kg/m3? 

(Ans: h = 8 cm ) 

 

 

4. In the given figure, water (20°C) and gasoline are open to the atmosphere and are 

  at the same elevation. What is the height h in the third liquid? 

(Ans: h = 1.52 m) 
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5.  In the given figure, both fluids are at 20°C. If surface tension effects are negligible, 

what is the density of the oil, in kg/m3? 

(Ans: h = 1.52 m) 

 

5. A manometer is used to measure the pressure in a tank. The fluid used has a specific 

gravity of 0.85, and the manometer column height is 55 cm, as shown in Fig. 3–12. 

If the local atmospheric pressure is 96 kPa, determine the absolute pressure within 

the tank. 

(Ans: P = 100 kPa) 

 

6. The water in a tank is pressurized by air, and the pressure is measured by a 

multifluid manometer as shown in Figure below. The tank is located on a mountain 

at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the 

air pressure in the tank if h1 = 0.1 m, h2 = 0.2 m, and h3 = 0.35 m. Take the densities 

of water, oil, and mercury to be 1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, 

respectively. 

(Ans: P1 = 130 kPa) 
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PRACTICAL: STUDY OF PRESSURE MEASURING DEVICES  

 

Objective:   

Study of pressure measuring devices 

Theory:  

Normal stress on any plane through a fluid element at rest is equal to a unique value called 

the fluid pressure P. It is expressed in N/m2 or Pascal as pressure intensity or in terms 

of pressure head as ‘m’. It can be measured by devices like piezometer, manometer, 

mechanical gauge or pressure transducer. 

Manometer: 

Manometer is a device used to measure the fluid pressure by balancing pressure against 

the     column of liquid in static equilibrium. The different types of manometers are listed 

below. 

1. Simple Manometer 

 Piezometer 

 Simple U tube manometer  

 Well type U tube manometer 

 2. Differential Manometers  

 Inverted U tube manometer  

 Upright U tube Manometer  

 Micromanometer 

 

1. Simple Manometer:  

This measures pressure at a point. 
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a) Piezometer: Piezometer is simple device for measuring pressures of liquids. It 

consists of a glass tube in which the liquid can rise freely without overflowing. The 

height of the liquid in the tube above a given datum gives the value of the piezometric 

head directly. Piezometers measure the pressure above the local atmospheric pressure. 

It fails to measure vacuum. 

 

b) Simple U Tube Manometer: A ‘U’ tube manometer consists of two tubes joined at 

one end to form a U – shaped tube. A ‘U’ tube manometer can be used to measure 

pressure in any fluid; liquid and gas. Pressure above and below atmospheric can be 

measured with it. U- tube may used upright , inclined or inverted. Normally the one end 

of manometer is connected to the gauge point and other is open to the atmosphere. The 

pressure in the pipe is measured by recording the difference in the level of manometric 

liquid in two limbs. 

 

c) Well Type U Tube Manometer:  In the two limb U -tube manometer it is necessary 

to read the levels of manometric liquid in both tubes to find difference in the levels. In 

well type manometer a well or basin or reservoir of large cross sectional area is provided 

on one limb. The fluctuation in the level of the well are very small as compared to the 

fluctuation in the other limb hence any change in levels of well may be neglected. 

Fluctuations in the levels of the well may acts as a reference level for other limb. The 

limb of small cross section area may be upright or inclined depending upon accuracy 

required. The well side limb is connected to the gauge point and neglecting the change 

in the level of liquid in the well, the change in the level of liquid in the other limb is 

noted, which is pressure head at the gauge point. 

 

       2 Differential Manometer: 

These manometers are used to measure pressure difference between two points. 

 

A) Upright U Tube Differential Manometer: It consists of U-tube connected to the 

points between which pressure difference is to be measured. A heavier manometric 

liquid occupies lower part of U -tube. These are suitable to measure heavy pressure 

difference. 
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B) Inverted U Tube Manometer: It consists of inverted u-tube to which an air valve 

is provided at the top of U -tube. A lighter manometric fluid; liquid or gas occupies 

upper part of U-tube. These are suitable for the measurement of small pressure 

difference in liquids. 

 

C) Macro Manometer: For measurement of very small pressure difference or pressure 

measurement with very high precision, micro manometer is used. It consists of u-

tube provided with two transparent basin or well of wide section at the top of two 

limbs. The manometer contains two manometric liquids of different specific gravity 

and immiscible with each other as well as with the fluid for which the pressure 

difference is to be measured. 

 

 

2. BOURDON PRESSURE GAUGE: 
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      The pressure responsive element in the gauge is a tube of steel or bronze, which is of 

elliptical cross section and curved in the form of a circular arch. The tube is closed at 

its outer end of the tube through which the fluid enters is rigidly fixed to frame. When 

gauge is connected to the gauge point, fluid enters the tube which increases internal 

pressure making elliptical section circular thus causing tube to straighten out slightly. 

This outward movement is indicated as pressure on a circular dial through an 

arrangement of link pinion and indicator. The dial gauge is so calibrated that it reads 

zero when the pressure inside the tube equals the local atmospheric pressure. When 

a vacuum gauge is connected to partial vacuum, the tube tends to close there by 

moving the pointed in anticlockwise direction, indicating the negative or vacuum 

pressure. 

                             hM = S2h2 - h1S1                                 hN = -S2h2 - S1h1 

     hM-hN = h(S2-S1) m of water column       hM-hN = h(S2-S1) + h1S1 m of water column 
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                        l = 
𝒉

𝐬𝐢𝐧𝛉
                                           hM = S2h2-S1h1 

 

hA - hB  = h {S3 − S2  (1 − 
a

A
) − S1  (

a

A
)} 
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Exercise: 

1) Recognize the type of simple manometer and measure the pressure head at a point. 

 Type of Simple manometer:  

 Pressure at point M =  

 Type of Simple manometer:  

 Pressure at point N =  

 

      2) Recognize the type of differential manometer and measure the pressure 

difference between points  

 Type of Differential manometer:   

 Pressure difference hM - hN =   

 

3) Measure the pressure / vacuum using both the types of mechanical gauges  

 

 4) Name of Gauge:  

 Pressure at M : 

 Name of Gauge :  

 Pressure at N :               mm of Hg =  
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 Pressure Difference =  

 

 Conclusion: Student should write the conclusion by his own based upon the above study. 

 

QR CODES FOR SUPPORTING VIDEO LINKS  

 

                                                                                                                                
(1)                                   (2)                                       (3)                                      (4) 
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UNIT SPECIFICS 

Through this unit we have discussed the following aspects: 

 Concept of buoyancy and Archimedes Principle 

 Principle of flotation 

 Stability of submerged and floating bodies 

 Concept of metacentre and its analytical determination 

 Experimental determination of metacentre 

This is followed by large number of solved examples. The students are encouraged to solve the 

objective questions, long answer questions and numerical problems to judge ones 

understanding. A list of references for additional reading is provided at the end. 

 

RATIONALE 

This unit introduces concept of buoyancy which is important is stability analysis of floating and 

submerged bodies. The metacentre and its role in stability of floating and submerged bodies 

gives basic information to Civil Engineering students who are further interested in studying 

Naval Architecture and Ocean Engineering 

PRE-REQUISITES 

Mathematics: Derivatives (Class XII) 

Physics: Mechanics (Class XII) 

 

3            BUOYANCY AND FLOTATION 

C  
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Fluid Mechanics: Unit I and II 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

(At the end of this unit, students will understand..) 

U3-O1: Concept of buoyancy and Archimedes Principle 

U3-O2:  Stability of floating and submerged bodies 

U3-O3:  Procedure to determine metacentre analytically and experimentally 

 

Unit-3 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U3-O1 3 - 1 - - - 

U3-O2 3 - 1 - - - 

U3-O3 3 - - - - - 

            
 3.1 Buoyancy: 

When a body is immersed partially or fully in a fluid it is acted upon by a vertical force in 

the upward direction opposite to the self-weight of the body. This force by virtue of 

which the body ‘buoys’ or ‘floats’ is called the buoyant force and its point of 

application is known as the ‘centre of buoyancy’.  

 It is very clear that if the buoyant force is less than weight of the body, the body will sink 

otherwise it will float. This is the reason why some solids float and some sink in a 

liquid. 

 The wave height measuring instrument ‘wave rider buoy’ works on the principle of 

buoyancy.  Buoyancy plays a major role in design on ships, submarines, torpedoes. 

The buoyant force can be calculated either by using laws of hydrostatics or by using 

the Archimedes Principle. 

3.2 Archimedes Principle: 

When a body is immersed partially or fully it is lifted up or buoyed up by a force equal to 

the weight of the fluid displaced by the body. 



FLUID MECHANICS 

116  

Consider a body submerged in a fluid of constant mass density as shown in figure 3.1. The 

body is divided into elementary cylinders like ‘AB’ of area dA as shown in figure 3.1 

Fig. 3.1 Archimedes principle 

Vertically upward force acting on cylinder = Pb . dA – Pa . dA 

∴              Total vertically upward force   F = ∫(Pb – Pa) dA 

                   But                                Pb – Pa  =  γ (hb – ha) = γ h 

∴                                                                F =  ∫ γ h dA = γ ∫ h dA 

∴                                                                 F = γ V                                                            (3.1) 

where V is the volume of fluid displaced by the body and γ V is the weight of the fluid 

displaced by the body. Thus, buoyant force is equal to weight of the fluid displaced 

by the body. 

If a horizontal cylinder AC is considered, then as A and C are at the same level         

                                                                  Pa = Pc                                                                                                       (3.2)     

                               Horizontal force on cylinder = (Pa – Pc) dA = 0 
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Thus, a buoyant force has only vertical component. It is also evident that as the buoyant 

force is equal to weight of the fluid displaced by the body, it will pass through centre 

of gravity of displaced fluid. The point of application of buoyant force is known as 

centre of buoyancy 

Thus, a buoyant force is equal to weight of the fluid displaced by the body acting in 

vertically upward direction and passing through centre of gravity of displaced fluid. 

3.3 Principle of Floatation: 

Consider a body of weight ‘W’ completely immersed in a liquid (figure 3.2). 

   (a)                                            (b) 

Fig. 3.2 (a) Principle of floatation 

 

Whether the body will sink or float in the liquid will depend upon weight of the body and 

buoyant force F i.e specific gravity of the body and specific gravity of the liquid 

(because specific weight can be determined if specific gravity is known). It is obvious 

that weight of the body ‘W’ and buoyant force F should lie along same line to avoid 

rotation. 

Consider specific gravity of body is greater than that of liquid. We know, 

                 Weight of fluid displaced by body = Buoyant force F 

           ∴                                Buoyant force F < Weight of the body W and body will sink. 

If specific gravity of body is same as that of liquid and the entire body is submerged, the 

centre of buoyancy B which is centroid of displaced volume of fluid and centre of 

gravity G will coincide as shown in figure 3.2 and body will remain stable anywhere 

in the liquid. 
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If specific gravity of body is less than that of liquid weight of the fluid displaced by the 

body i.e. buoyant force will be greater than that of weight of fluid and hence body 

will start rising. The rise will continue till weight of the body and buoyant force attain 

an equilibrium. That is weight of fluid displaced by body is equal to weight of body. 

As displaced volume of fluid will be reduced to reduce the weight of fluid displaced 

by the body to attain equilibrium ‘B’ will be shifted downwards and body will float. 

Thus, in floating condition 

Weight of the body = Weight of fluid displaced by the body = Buoyant force 

This is known as principle of floatation. 

3.4 Stability of Submerged Bodies: 

Stability is the tendency of a submerged body to regain its original position when disturbed 

slightly. If the submerged body is displaced vertically upwards or downwards and if 

it is gaining its original position back it is said to be stable. 

However, if a small angular displacement is given to the body, it will be either in stable 

equilibrium, unstable equilibrium or neutral equilibrium. 

The word equilibrium suggests that weight of the body is balanced by the buoyant force. 

However due to angular displacement a rotational effect will lead the body to be in stable, 

unstable or neutral equilibrium conditions. 

3.4.1 Stable Equilibrium: 

A body of weight ‘w’ is completely submerged in a fluid and centre of gravity ‘G’ lies 

below centre of buoyance B (figure 3.3 a), If a small angular displacement is given 

to the body in anticlockwise direction, a restoring clockwise couple will be formed 

due to change in the alignment of G and B. As a result, the body will regain its original 

position. This is known as stable equilibrium. 
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             (a) Stable equilibrium          (b) Unstable equilibrium            (c) Neutral equilibrium 

Fig. 3.3 Types of equilibrium 

3.4.2 Unstable Equilibrium: 

If the centre of buoyancy ‘B’ lies below the centre of gravity ‘G’ as shown in figure 3.3 b, 

the small angular displacement in the anticlockwise direction will be enhanced due 

to additional anticlockwise moment caused by B and G. As a result, body will never 

regain its original position and will continue to tilt further. This is unstable 

equilibrium. 

 

3.4.3 Neutral Equilibrium: 

If both G and B coincide, any angular displacement does not shift the position of G and B, 

as a result body is in neutral equilibrium (figure 3.3c). 

 

3.5 Stability of Floating Bodies: 

As discussed in section 3.4 the submerged body is in unstable equilibrium if B is below G. 

However, the floating body may remain in stable equilibrium even though B is below 

G. This is due to an additional parameter called ‘metacentre’ expressed as 

‘metacentric height’. The position of metacentre plays an important role in stability 

of floating bodies. 

 

3.5.1 Metacentre and Metacentric Height : 

Consider a body floating upright in equilibrium as shown in figure 3.4. The forces acting 

are weight of the body and buoyant force which are equal and collinear. Due to small 
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angular displacement (angle of heel) θ, centre of buoyance shifts from B to B1 due to 

change in volume displaced by fluid (figure 3.4) while the centre of gravity remains 

unchanged at G as the weight of the body does not change, 

If the axis of body passing through B and G is extended it meets the vertical line drawn 

through new centre of buoyancy B1. The point of intersection of the line passing 

through axis of body and vertical through new centre of buoyancy is called as 

metacentre M. 

The distance between metacentre M and Centre of gravity G is known as metacentric 

height.  

                         (a)                                                                     (b) 

Fig. 3.4 Metacentric height 

 

 

3.5.2 Stable Equilibrium: 

Consider a body floating in a liquid such that its centre of gravity G is above centre of 

buoyancy B as shown in figure 3.5. 
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Fig. 3.5 Stable equilibrium (M above G) 

If a small angular displacement is given to the body in clockwise direction B will shift B1 

and G will remain in its position. M is the meta centre which lies of above G. The 

self-weight W and buoyant force F form a restoring couple of magnitude W x GM 

sin θ in anticlockwise direction due to which body regains its original position. 

Thus, if M is above G i.e., GM is positive the floating body is in stable equilibrium. 

3.5.3 Unstable Equilibrium: 

If the body is floating in such a way that after a small angle of heel, the meta centre lies 

below centre of gravity, the weight of body W and buoyant force F form the couple 

in the same sense as that of angular displacement, tilting the body further and the 

body never comes back to its original position (figure 3.6). 

Thus, if M lies below G i.e., GM is negative, the floating body will be in a state of unstable 

equilibrium. This is the reason why ships are designed in such a way that the engine 

room, machine room is always on the ground floor in addition to ballast so that ‘G’ 

will always remain below M. 
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Fig. 3.6 Unstable equilibrium (M below G) 

 

3.5.4 Neutral Equilibrium : 

If M and G coincide i.e. GM = 0 the floating body remains in neutral equilibrium. 

3.6 Analytical Determination of Metacentric Height : 

Figure 3.7 shows plan, section and tilted view of a ship. The centre of gravity is ‘G’ and 

centre of buoyancy is B. Due to small angular displacement ‘θ’, centre of buoyancy 

shifts from B to B1, due to change in immersed portion of ship from abcd to a1 b1 c1 

d1. 

                                     (a)                                 (b)                              (c) 

Fig. 3.7 Analytical determination of metacentric height 
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The anticlockwise moment caused due to shifting of centre of buoyancy from B to B1 about 

axis of ship  

= F . B B1 = F . BM . tan θ = F . BM . θ (tan θ ⋍θ for small θ)                                                       (3.3) 

As weight of the ship will remain same and portion a O a1 (coming out immersion) is same 

as b O b1.  

Fig. 3.8 Elementary prism 

Consider 2 small elementary prisms of thickness dx at distance ‘x’ from longitudinal axis 

of ship (figure 3.8). 

Volume of elementary prism = (x θ) 𝗑 dx 𝗑 L 

where ‘xθ’ is inclined side of prism and L is length of prism. 

Weight of liquid in prism = 𝛾 (x θ) dx L. 

∴ Moment of weight of liquid in both prisms about longitudinal axis  

                                   OO = 2𝛾 (x θ) dx L x. 

∴  For the entire wedges, moment  

                                     M = 2𝛾 θ ∫ x2 (L dx) 

                                 L dx = dA i.e. area of strip at water line. 

∴         ∫ x2 . L dx  = Second moment of area of the prism about OO. 

∴    2 ∫ x2 . L dx = Moment of inertia of ship at liquid surface about longitudinal axis            

                   OO = I 

∴                    M = 𝛾 θ I                                                                                                     (3.4) 

 For equilibrium equating (3.3) and (3.4)  

                           F . BM . θ = 𝛾 θ I 
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∴                                  BM  =  
𝛾𝐼

𝐹
  =  

𝛾𝐼

𝛾𝑉
    

∴                                    BM = 
𝐼

𝑉
                                                                                       (3.5)   

 where ‘V’ the volume of liquid displaced by the body. 

Fig. 3.9 The stable and unstable equilibrium due to relative positions of M and G 

 OB =  
𝑑

2
  = depth of immersion                         OB  =  

𝑑

2
  = depth of immersion 

 BG =  OG – OB                            BG = OG – OB 

 GM =  BM – BG = positive                               GM = BM – BG = negative 

 i.e. BM > BG              i.e. BM < BG 

Thus if BM > BG, GM is positive and body will float in stable equilibrium and vice-versa. 

3.7 Experimental Determination of Metacentric Height : 

A small jockey weight ‘m’ is initially kept at the centre of deck of the ship of weight W. 

When the jockey weight is displaced by distance ‘x’, ship tilts and C.G. and centre of 

buoyancy are shifted to new position G1, and B1 respectively (as the jockey weight 

changes its position the CG also changes it position from G to G1 unlike the previous 

cases). The small angular displacement (angle of heel, θ) is measured with the help 

of plumb bob moving over graduated scale. The distance ‘y’ moved by plumb bob of 

length ‘I’ over the graduated scale yields the angle of heel as, 
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Fig. 3.10 Experimental Determination of Metacentre 

                                                           tan θ = 
𝑦

𝐼
                                                               (3.6) 

 Disturbing moment causing by moving the jockey weight = m . x 

     Restoring moment induced by shifting W from G to G1 = W . GM . sin θ 

                                                                                               =  W . GM . tan θ  (θ is small) 

 For equilibrium, 

W . GM . tan θ  = m . x 

  GM = 
m .  x

W tan θ
 = 
m .  x

𝑤 .  
𝑦

𝑙

 

Thus, metacentre can be determined experimentally.  

To elaborate buoyancy in most practical approach to civil engineering students, few 

practical as well as industrial applications are discussed below,  

3.8 Industrial (practical) applications of Buoyancy: 

Buoyancy and flotation have many practical applications ranging from sports mechanics 

to shipping industry to instrumentation. It is a well-known fact that all sports related 

to swimming such as swimming, diving, water polo require knowledge about 

buoyancy and flotation which is present naturally in fish. It also comes handy for 
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surfers in sea water wherein the buoyant force is more owing to higher density of sea 

water than fresh water.  

The naval architecture, ship building, marine engineering which involve design and 

operation of commercial vessels, war ships, frigates, submarines require knowledge 

of buoyancy and floatation to both designers and pilots and sea men. One must 

understand why the ballast is filled when a submarine wants to dive deep in sea and 

why it is released when it wants to surface. Similarly, one must understand that the 

engine room is situated in the lower part of the ship so that the metacentre would 

never fall below the centre of gravity for stability of the ship. One can say that the 

shipping industry is served the most by the Archimedes Principle.  

Let us not forget the aviation industry where though lighter compared to water, ‘air’ is a 

fluid and the laws of buoyancy must be obeyed by balloons, air planes, helicopters 

which comes naturally to ‘birds’.  

The instruments such as wave rider buoy which measures the wave height or hygrometer 

(used in measurement of density) or lactometer (used for measurement of purity of 

milk called as “degree”). The inverter which is a source of uninterrupted power 

supply for domestic as well as industrial use has “the distilled water” the level of 

which can easily be understood by using a “float” kind of indicator. The rain gauges 

having a floating mechanism installed in it were very common before the advent of 

automatic rain gauges and digital measurements. The principle of buoyancy was used 

for design of automatic gates by Bharatranta M. Vishwesaraiya for while designing 

Bhatghar dam in Pune district of Maharashtra commissioned in 1927 are still 

operative. All the above examples prove that the phenomenon of buoyancy and 

floatation must be understood thoroughly who are in any kind of business related to 

“fluids”. 
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3.9 Solved Examples: 
 

Ex. 3.1 : A cube of sides ‘a’ floats in water. Compute ranges of specific gravity of 

cube material so that cube will float with axis vertical. Will the range change 

for other liquids? Justify. 

Solution : 

 Weight of liquid displaced = weight of body 

                        Volume x 𝛾  = S 𝛾 a3 

 ∴             Volume of liquid = S a3 

∴      depth of immersion h  =  
𝑆 𝑎3

𝑎2
 

                                         h  = Sa 

                                      OG  = 
𝑑

2
  =  

𝑎

2
 

                                      OB  = 
𝑆𝑎

2
  

                     ∴               BG = 
𝑎

2
 (1 – S) 

                                      BM = 
𝐼

𝑉
 = 

𝑎4

12 𝑆 𝑎3 
 = 

𝑎

12 𝑆
 

For stable equilibrium 

                BM  >  BG 

               
𝑎

12 𝑆
  >  

𝑎

2
  (1– S) 

                                                     
1

6
  > S (1 – S) 

                            S2 – S + 
1

6
  > 0 

         (S – 0.789) (S – 0.211) > 0 

 ∴                    S > 0.789 or S < 0.211 
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Ex. 3.2: A cylindrical buoy is 2 m in diameter and 2.5 m long and weights 22 kN. 

The specific weight of sea water is 10.25 kN/m3 show that buoy does not 

float with its axis vertical  

Solution: 

                  Weight of liquid displaced  =  Weight of solid 

Volume of liquid displaced x specific weight  =  22 

  ∴            Volume of liquid displaced  =  
22

10.25
 = 2.15 m3 

∴                        depth of immersion  =  
2.15

𝐴𝑟𝑒𝑎
 =    

2.15
л

4
 𝗑 4

  = 0.68 ‘m’ 

Fig. Ex. 3.2 

∴                                      OB  =  0.34 m 

                             OG  =  1.25 m 

                             BG  =  1.25 – 0.34 = 0.91 

                             BM  =  
𝐼

𝑉
  =  

л

64 
 𝗑 24

2.15
  = 0.36 

                             BM  <  BG  ∴  GM is negative 

∴  buoy does not float with axis vertical. 
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Ex. 3.3: Find the percent volume of an ice berg above the water surface if it floats 

in sea water. Assume density of sea water 1010 kg/m3 and density of ice 

berg 920 kg/m3.     

Solution : 

                                                  γ  =  ρ g  

          Weight of water displaced  = Weight of ice berg 

 ∴       Volume of water displaced 𝗑 Sp. Wt. of water  

                                                       = Vol. of ice berg 𝗑 Sp. Wt. of ice berg 

 ∴       Volume of water displaced 𝗑 ρW 𝗑 g  

                                                       = Vol. of ice berg 𝗑 ρice 𝗑 g 

           Volume of water displaced = Volume of ice berg 𝗑 
920

1010
             

 ∴        Volume of water displaced = 0.9109 volume of ice berg 

                              Aice 𝗑 h = 0.9109 𝗑 Aice 𝗑 H           

                                    (water surface area and ice area will be 

same) 

 ∴                                                 h  =  0.91 H 

Fig. Ex. 3.3 

 ∴  8.91% by volume of an ice berg above water surface. 

 

 

Ex. 3.4 : A wooden cylinder of specific gravity 0.66 is required to float in oil of 

specific gravity 0.88. If diameter of cylinder is D and length L, calculate 

the limiting ratio between L and D for cylinder to float in stable equilibrium 

vertically. 
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Solution : 

                   Weight of oil displaced = Weight of cone   

              (
𝜋

4
 D2 𝗑 h) 𝗑 0.88 𝛾W  =  (

𝜋

4
 D2 𝗑 L) 𝗑 0.66 𝛾W  

 Fig. Ex. 3.4 

                        OG  =  
𝐿

2
 

                        OB  =  
0.75

2
 L 

                      BG  =  0.125 L 

                        BM  =  
𝐼

𝑉
  =  

л

64 
 𝗑 𝐷4

л

4
  𝗑 𝐷2 𝗑 0.75 𝐿

  = 
𝐷2

12 𝐿
 

For stable equilibrium 

                         BM  =  BG 

                        
𝐷2

12 𝐿
  =  

𝐿

8
  

          ∴               
𝐷

𝐿
  = 1.225 
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Ex. 3.5 : A rectangular block 50 cm long, 25 cm wide and 18 cm deep is floating in 

a liquid. The shortest axis of block is vertical and the depth of immersion 

is 15 cm. Calculate the metacentric height and comment on stability of the 

block. What will happen if longest axis is vertical? 

Solution:  

Fig. Ex. 3.5 

               OG  =  0.09             OB = 0.075              BG  =  0.015 

                            BM  =  
𝐼

𝑉
  =  

0.5 𝗑 (0.25)3

12 𝗑 0.25 𝗑 0.5 𝗑 0.15
   =  0.035 

                            GM  =  0.0197 m 

                                    =  1.97 cm    ∴ stable 

If longer axis vertical  

               OG  =  0.25             OB = 0.075               BG  =  0.175 

                             BM  =  
0.18 𝗑 0.253

12 𝗑 0.25 𝗑 0.15 𝗑 0.18
 = 0.035 

                             GM  =  0.035 – 0.175 =  – 0.14 unstable 
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Ex. 3.6 : A wooden block 50 cm long, 25 cm wide and 18 cm deep has its shorter 

axis vertical with the depth of immersion 15 cm. Calculate the position of 

metacentre and comment on the stability of the block. 

Solution : 

 Fig. Ex. 3.6 

                                            d  =  0.15 m 

                   OB  =  0.075 m                                  OG  =  0.09 m 

                             BG  =  0.09 – 0.075 = 0.015 m 

                                  I  =  
0.50 𝑥 0.253

12
  = 6.51 x 10-4 

                             BM  =  
𝐼

𝑉
  =  

6.51 𝑥 10−4 

0.5 𝑥 0.25 𝑥 0.15
  =  0.0347 

                             GM = BM – BG = 0.0197 positive 

 ∴  block is stable 

 

 

Ex. 3.7: 
A cylinder of 20 cm in diameter has a metal base of 3 cm thick whose 

specific gravity in 8. The upper part of the cylinder is made of a material 
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whose specific gravity is 0.5. Find the maximum height of the composite 

cylinder for stable equilibrium in the water. 

Solution: 

Fig. Ex. 3.7 

Distance of centre of gravity of combined solid cylinder from base : 

 OG  =  
𝑤1𝑦1+ 𝑤2𝑦2

𝑤1+ 𝑤2
 

 OG  = 

л

4
  𝗑 𝐷2  𝗑 ℎ 𝗑 0.5 𝗑 9810 𝗑 (3+  

ℎ

2
)+ 

л

4
  𝗑  𝐷2 𝗑 0.03 𝗑 8 𝗑 9810 𝗑 0.015

л

4
 𝗑  𝐷2 𝗑 ℎ 𝗑 0.5 𝗑 9810+  

л

4
  𝗑 𝐷2 𝗑 0.03 𝗑 8 𝗑 9810

 

 OG  =  
0.5 ℎ (3+ 

ℎ

2
) + 3.60 𝗑 10−3

0.5 ℎ + 0.24
  

Let ‘d’ be depth of immersion : 

            Weight of cylinder  =  Weight of water displaced 

л

4
 𝗑 (0.2)2 𝗑 h 𝗑 0.5 𝗑 9810  

                                 = 
л

4
 𝗑 (0.2)2 𝗑 d 𝗑 9810 + 

л

4
 𝗑 (0.2)2 𝗑 0.03 𝗑 8 𝗑 9810 
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                    0.5 h + 0.24  =  d  

                                  OB  =  
𝑑

2
  =  0.25 h + 0.12 

∴           BG  =  OG – OB  =  
1.5 ℎ + 0.25 ℎ2+ 3.6 𝗑 10−3 

0.5 ℎ + 0.24
 – 0.25 h  – 0.12 

                                  BM  =  
𝐼

𝑉
 

                                       I  =  
л

4
 𝗑 D4 = 

л

4
 𝗑 (0.2)4      

                          
л

4
 𝗑 D2 𝗑 d = 

л

4
 𝗑 (0.2)2 𝗑 (0.5 h + 0.24) 

∴                                     
𝐼

𝑉
  =  

л

4
  𝗑 (0.2)4

л

4
 𝗑 (0.2)2 𝗑 (0.5 ℎ + 0.24)

 = 
0.04

0.5 ℎ + 0.24
 

For stable equilibrium : 

                                      M  =  BG 

                        
0.04

0.5 ℎ+0.24
 =  
1.5 ℎ + 0.25 ℎ2 + 0.0036

0.5 ℎ + 0.24
  –  0.25 h  –  0.12 

∴     0.04 = 1.5 h + 0.25 h2 + 0.0036 – 0.125 h2 – 0.06 h – 0.06 h – 0.0288 

∴             0.125 h2 + 1.38 h – 0.0652 = 0  

∴             h  =  
−1.38 + √(1.38)2+4 𝗑 0.125 𝗑 0.0652

2 𝗑 0.125
  =  0.047 m 

∴     Height of cylinder = 4.7 + 3 = 7.7 cm 

 

 

Ex. 3.8: 
A cylindrical buoy is 2 m in diameter and 2.5 m long and weights 21.6 kN. 

The density of sea water is 10055 N/m3. Show that the buoy does not float 

with its axis vertical. What minimum pull should be applied to a chain 

attached to the centre of the base to keep it vertical? 
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Solution : 

Fig. Ex. 3.8 

Volume of liquid displaced : 

V = 
W

specific weight of liquid
 

                                        =  
21.6

10.055
  =  2.148 m3 

Depth of immersion : 

                                     d  =  
Volume

Area in plan
 

                                         =  
2.148
л

4
 𝗑 𝐷2

  =  
2.148
л

4
  𝗑 22

 

                                         =  0.683 m 

∴                               OB  =  
𝑑

2
 = 0.341 m, OG = 1.25 m 

     Now,                     BG = OG – OB = 1.25 – 0.341 = 0.909 m 

      Now,                   BM  =  
𝐼

𝑉
  =  

л

64
 𝗑 

24

2.148
 = 0.3656 m 

      As                         BM <  BG,       M is below CG. 

      i.e.  GM is negative. 

 ∴ The cylinder will not float with its axis vertical. 

 

II)   Additional weight : 
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Let an additional pull of ‘T’ kN be applied at the base to keep the buoy 

vertical: 

 ∴  Total weight causing displacement W᾿ = W + T 

                   Volume of water displaced V᾿ = 
𝑊+𝑇

10.055
 

                               Depth of immersion d’ = 
V᾿

𝐴𝑟𝑒𝑎 𝑖𝑛 𝑝𝑙𝑎𝑛
 = 

𝑊+𝑇

10.055
𝜋

4
 𝗑 22

            

                                                            OB᾿ = 
𝑑

2
 = 

𝑊+𝑇

31.58 𝘹 2
 = 
𝑊+𝑇

63.17
 

As the additional weight is increased, the combined specific gravity G᾿ 

starts moving towards new metacentre M᾿ and finally they both coincide 

and the cylinder treats in neutral equilibrium. 

Combined weight (W + T) and buoyant force (W + T) acting upwards is 

shown in Fig. Ex. 3.42(a). 

Fig. Ex. 3.8 

                                 W . OG  =  (W + T) OG᾿ 

 ∴                                    OG᾿ =  
𝑊.𝑂𝐺

𝑊+𝑇
  =  

𝑊 𝗑 1.25

𝑊+𝑇
 

                                        B᾿G᾿ =  OG᾿ - OB᾿ 

                                =  
1.25 𝑊

𝑊+𝑇
 – 
𝑊+𝑇

63.17
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                                       B᾿M᾿  =  
𝐼᾿

𝑉᾿
 =  

л

64
 𝗑 24 𝗑 

10.055

𝑊+𝑇
 = 
7.897

𝑊+𝑇
 

 For neutral equilibrium 

                                       B᾿M᾿  =  B’ G’ 

                             
7.897

𝑊+𝑇
  =  

1.25 𝑊

𝑊+𝑇
  –  

𝑊+𝑇

63.17
 

 ∴                               
7.897

𝑊+𝑇
  =  

27

𝑊+𝑇
  –  

𝑊+𝑇

63.17
 

 ∴                            
7.897

𝑊+𝑇
  =  

1705.59 − (𝑊+𝑇)2

63.17 (𝑊+𝑇)
              

 ∴                               498.85 = 170.59  –  (W + T)2 

 ∴                                  (W + T)2  = 1206.73 

 ∴                                      W + T  = 34.738 

 ∴                                               T = 34.738  –  21.6 

 ∴                                               T = 13.13 kN 

 

 

Ex. 3.9 : A solid cone made of a material of 0.8 specific gravity floats in water with 

its apex downwards. Determine the least open angle if the cone is in stable 

equilibrium. 
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Solution : 

 Fig. Ex. 3.9 

                  Weight of cone = 0.8 𝗑 9810 𝗑 
1

3
 𝗑 лR2 H 

 Let ‘h’ be depth of immersion. 

                                         r  =  
𝑑

2
 = h tan θ 

                  and                R  =  H tan θ 

Weight of liquid displaced  =  Specific weight of liquid 𝗑 Volume of liquid  

                                                                                              displaced.  

                                              =  9810 𝗑 
1

3
 𝗑 л2 𝗑  h 

                                             =  9810 𝗑 
1

3
 𝗑 л 𝗑 h3 tan2 θ 

                   Weight of solid  =  Weight of liquid displaced 

            0.8 𝗑 9810 𝗑 
1

3
 лR2 H =  9810 𝗑 

1

3
 𝗑 л 𝗑 h3 tan2θ 

∴                     0.8 𝗑 H3 tan2θ = h3 tan2θ 
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∴                                       (
𝐻

ℎ
)

3
  = 

1

0.8
  where ‘h’ is depth of immersion. 

                             OB =  
3ℎ

4
            OG = 

3𝐻

4
  

∴                                      BG = OG – OB 

∴                                      BG =  
3

4
 (H – h) 

                                        BM  =  
𝐼

𝑉
 

                                             I  =  
л

64
 d4  

(Moment of inertia of circular section in plane about water surface.  

Diameter of cone at water surface = d) 

       Volume of cone in water  =  
1

3
 л r2 h 

                                                =  
1

3
 л 𝗑 h2 tan2 θ 𝗑 h = 

1

3
 лh3 tan2θ 

∴                                      BM  =  

л

64
 𝑑4

1

3
 л ℎ3𝑡𝑎𝑛2𝜃

  =  

л

64
 𝗑 16 𝗑 𝑟4

1

3
 лℎ3𝑡𝑎𝑛2𝜃

 

∴                                      BM  =  

1

4
 𝗑  ℎ4  𝑡𝑎𝑛4 𝜃

1

3
  𝗑  ℎ3 𝑡𝑎𝑛2 𝜃

 

                                         BM  =  
3

4
 h tan2 θ 

For stable equilibrium      BM  =  BG : 

∴                                 
3

4
 h (tan2θ)  =  

3

4
 (H – h) 

∴                                        h tan2θ  =  H – h 
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∴                              h (1 + tan2θ)  =  H 

∴                                1 + tan2θ  =  
𝐻

ℎ
  

∴                                     1 + tan2θ  = √
1

0.8

3
 

∴                                       tan2θ  =  0.0772 

∴                                              tan θ =  0.27788 

∴                                                    θ  =  15.520 

∴                  apex angle of cone  =  2θ  = 31.05 

 

 

Ex. 3.10 : An equilateral triangular prism having axis 0.8 m long and sides of base 

0.5 m floats in water with axis hz and has specific gravity of material 0.8. 

Calculate water force exerted on vertical and inclined faces of the prism. 

Also calculate CP in each case w.r.f. water surface.    

Solution : 

Fig. Ex. 3.10 

 Weight of liquid displaced  =  Weight of body 

       Volume of liquid 𝗑 9.81 =  
1

2
 𝗑 0.5 𝗑 0.433 𝗑 0.8 𝗑 0.8 𝗑 9.81 

                  Volume of liquid =  0.06928  =  
1

2
 𝗑 h 𝗑 

2ℎ

√3
 𝗑 0.8 
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                                               =  
0.06928

1

2
 𝗑 ℎ 𝗑 

2ℎ 

√3 
 𝗑 0.8

 

Width of prism at the level of immersion = 0.45 m (using similar triangles) 

Total pressure on vertical face. 

                                         PI   =  9.81 𝗑 
1

2
 𝗑 0.39 𝗑 0.45 𝗑 0.13 = 0.11 kN 

 Centre of pressure            ℎ̅1
  =  0.13 + 

0.45 𝗑 0.393

36
1

2
  𝗑 0.39  𝗑 0.45  𝗑 0.13

 

                                           ℎ̅1
  =  0.195 ‘m’ from top 

               Inclination of prism  =  600 

∴                                     sin2θ  =  0.75 

 Total pressure on inclined face, 

                                          P2   =  9.81 𝗑 A 𝗑 𝑥̅  =  9.81 𝗑 0.447 𝗑 0.8 𝗑 
0.39

2
 

                                          P2   =  0.68 kN 

 Centre of pressure              ℎ̅2 =  0.195 + 

(0.8 𝗑 0.447)3

12
 𝗑 0.75

0.8 𝗑 0.447 𝗑 0.195
   

                                            ℎ̅2  = 0.259 ‘m’ from top. 

 

  

 

Ex. 3.11: A weight 100 𝗑 103 N is moved through a distance of 6 m across the deck 

of a vessel of 10 𝗑 106 N is moved through a distance of 6 m across the 

deck of a vessel of 10 𝗑 106N displacement floating in water. This makes a 

pendulum of 2.5 m swing through a distance 12.5 cm horizontally. 

Calculate metacentric height of the vessel.                                                                              

 

Solution: 
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                                  tan θ  =  
12.5

250
  =  0.05 

Fig. Ex. 3.11 

                                   G.M.  =  
𝑚 .  𝑥

𝑤 tan𝜃
  =  

100 𝗑 103 𝗑 6

10 𝗑 106 𝗑 0.05
 

 where                              m  =  jockey weight 

                                         x   =  displacement of jockey 

                                        w   =  weight of ship 

                                 G.M.  =  Metacentric height 

                                    G.M. =  1.2 m 

 

 

 

 

Ex. 3.12 : A wooden cylinder of diameter ‘d’ and length ‘2d’ floats in water with its 

axis vertical. Is the equilibrium stable? Take specific gravity of wood = 

0.6. 

 Solution : 

Fig. Ex. 3.12 
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Let ‘h’ be depth of immersion 

      Weight of liquid displaced = weight of the solid 

∴ Volume of liquid displaced 𝗑 specific weight of liquid = weight of the 

solid 

∴           (
л

4
 𝑑2 𝗑 ℎ) 𝗑 9.81 = 

л

4
 𝗑 d2 𝗑 2d 𝗑 0.6 𝗑 9.81 

∴                                       h  =  1.2 d 

                                      OG  = d 

                                      OB  =  
ℎ

2
  = 0.6 d 

                                       BG  =  OG – OB  =  0.4 d 

                                       BM  =  
𝐼

𝑉
  =  

л

64
 𝗑 𝑑3

л

4
 𝗑 𝑑2 𝗑 1.2 𝑑

  =  
л

64
 d3 𝗑 

4

л𝑑3 𝗑 1.2
  

                                       BM  =  0.052 

                                       BM < BG 

i.e. GM is negative 

∴  equilibrium is unstable. 

 

 

Ex. 3.13 : A cube of side ‘b’ floats with one of the its axes vertical in the liquid of 

specific gravity SL. If the specific gravity of the cube material is SC, find 

ratio of SL / SC for the metal centric height to be zero. 

Solution : 

Fig. Ex. 3.13 
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Let ‘h’ be depth of immersion. 

Weight of liquid displaced = weight of solid 

                                               b 𝗑 b 𝗑 h 𝗑 SL 𝗑 𝛾W = b 𝗑 b 𝗑 b 𝗑 SC 𝗑 𝛾W 

∴                              h = b 
𝑆𝐶
𝑆𝐿

  

i.e.                            h = b . 𝑥 (𝑥 =
𝑆𝐶
𝑆𝐿
) 

                              OB = 
𝑏𝑥

2
 

                              OG = 
𝑏

2
  

                              BG = OG – OB = 
𝑏

2
 (1 – 𝑥) 

                              BM = 
𝐼

𝑉
 = 

𝑏4

12

𝑏 𝗑 𝑏 𝗑 ℎ
 = 

𝑏2

12ℎ
 

∴                            BM = 
𝑏2

12 𝗑 𝑏 .  𝑥
 = 

𝑏

12𝑥
 

For metacentric height to be zero 

                               GM = 0 = BM – BG 

∴                             BM = BG 

∴                                
𝑏

12
 = 
𝑏

2
 (1 – 𝑥) 

∴                                     
1

6𝑥
 = 1 – 𝑥 

∴                6𝑥 2 – 6𝑥 + 1 = 0 

∴                                  𝑥  = 
𝑆𝐶

𝑆𝐿
 = 0.211  or  0.789 

∴  range of values for  
𝑆𝑆
𝑆𝐶

  = 4.74 to 1.27 
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UNIT SUMMARY 

3.10  Exercise : 

3.10.1  Objective Questions:  

1.   When a body floats in water the buoyancy force equals _____ 

(a) The weight of volume of water displaced  

(b) The weight of volume of water which is not displaced  

(c) The weight of volume of total water in which the body floats  

(d) None of the above   

    Ans: a  

2.   Buoyant force is   ---                         

(a) Resultant of up thrust and gravity forces acting on the body 

(b) Resultant force on the body due to the fluid surrounding it 

(c) Resultant of static weight of body and dynamic thrust of fluid’ 

(d) Equal to the volume of liquid displaced by the body      

    Ans: d 

3.   The horizontal force on a curved surface immersed in a liquid is equal to the force on- 

(a) The vertical projected area, 

(b) The horizontal projected area  

(c) Curved surface  

(d) None of the above  

        Ans: b 

4.   The hydrostatic force on a submerged plane surface depends on the __ of the 

centroid 

(a) Depth,  
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(b) Width, 

(c) Length  

(d) None of the above 

        Ans: a  

5.   The line of action of the buoyancy force acts through the: 

(a)   Centre of gravity of any submerged body 

(b)   Centroid of the volume of any floating body 

(c)   Centroid of the volume of displaced volume of fluid  

(d)    None of them 

        Ans: c  

6.   A basketball floats in a bathtub of water. The ball has a mass of 0.5 kg and a diameter 

of 22 cm. What is the buoyant force? 

(a) 3.7 N 

(b) 2.4 N 

(c) 1.8 N 

(d) 4.9 N      

Ans: d 

7.   For stable equilibrium of floating bodies of gravity has to be…..  

(a) Always below the centre of buoyancy 

(b) Always above the centre of buoyancy 

(c) Always above the meta centre. 

(d) Always below the meta centre.      

Ans: d 

8.   If B is the buoyancy, G is the centre of gravity and M is the metacenter of a floating 

body, the body will be in stable equilibrium if. 
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(a) m coincides with G      

(b) m is below B 

(c) B coincides G 

(d) None of them 

Ans: a 

9.   A 2 kg block of wood is floating in water. What is the magnitude of the buoyant 

force acting on the block? 

(a)   19.6 N      

(b)   20.5 N 

(c)   21.7 N 

(d)  18.8 N 

Ans: a 

10.  Which is correct in case of Buoyancy? 

(a) The upward force a fluid exerts on an object. 

(b) The amount of fluid displaced is equal to the buoyant force pushing up on 

the object. 

(c) If the weight of the fluid displaced is not greater than the object, the object 

will sink. 

(d) All      

Ans: d 

11.  When a ship leaves a river and enters the sea 

(a) It will rise a little  

(b) It will sink a little 

(c) There will be no change in the draft.  

(d) It will depend on the type of the ship. 

Ans: a 
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12.  When a block of ice floating in water in a container begins to melt the water level 

in the container 

(a) will rise 

(b) will fall 

(c) will remains constant 

(d) will depend on the shape of the ice block. 

Ans: b 

13.  An object with specific gravity 4 weighs 100N in air. When it is fully immersed in 

water its weight will be 

(a) 25 N 

(b) 75 N 

(c) 50 N  

(d) None of the above. 

Ans: b 

14.   A solid with a specific weight 9020 N/m3 floats in a fluid with a specific weight 

10250 N/m3. The percentage of volume submerged will be 

(a) 90% 

(b) 92% 

(c) 88%  

(d) 78%. 

Ans: c 

15.  An object weighs 50 N in water. Its volume is 15.3 l. Its weight when fully immersed 

in oil of specific gravity 0.8 will be 

(a) 40 N  

(b) 62.5 N 

(c) 80 N 
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(d) 65 N. 

Ans: c 

16. When a small tilt is given to a body floating in stable equilibrium it will ____. 

(a) not return to the original position 

(b) return to the original position 

(c) achieve the new position 

(d) None of the above  

Ans: b 

 

3.10.2  Theory Questions:  

 

Q. 1  What is the principle of floatation? 

 

Q. 2  Explain stability criterions for a totally submerged body with sketches.  

 

Q. 3   Explain the term ‘meta-centre’ of a floating body. Derive an expression for the 

distance between the meta-centre and the centre of buoyancy of a floating body. 

      

 

Q. 4  Define metacentric height for a floating body and prove that it is given by – 

                             GM = 
𝐼𝑦𝑦

𝑉𝑑
 = BG 

      Vd is the volume of liquid displaced by the floating body and BG is the distance 

between the centre of gravity and centre of buoyancy.   

 

Q. 5  Derive an expression for the total pressure acting on plane surface kept in liquid at 

angle ‘θ’ with the free liquid surface. Also determine the location of centre of 

pressure.                   

 

Q. 6  A rectangular block 50 cm long 25 cm wide and 18 cm deep is floating in a liquid 

the shortest axis of the block is vertical and depth of immersion is 15 cm. Calculate 

metacentric height and comment on the stability of the block. What will happen if 

the longest axis is vertical instead of the shortest axis?   
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Q. 7  Prove that the centre of pressure of a plane surface is always below the centre of 

gravity. What is the limiting position of the centre of pressure and when does it 

occur?                 

 

Q. 8  Define total pressure and centre of pressure.          

 

Q. 9  Derive the expression for determining the centre  of pressure for an inclined 

triangular plane immersed in water.       

 

3.10.3 Problems:   

1.   A cylindrical buoy is 2 m in diameter and 2.5 m long and weights 22 kN. The specific 

weight of sea water is 10.25 kN/m3. Show that buoy does not float with its axis vertical.    

Ans :  BG  =  0.9085 m, BM  =  0.366 m, GM is negative, The cylinder will not float 

with its axis vertical. 

 

2.   A solid cube of sides 0.5 m each is made of a material of relative density 0.5. The cube 

floats in a liquid of relative density 0.95 with two of its faces horizontal. Examine its 

stability.                 

Ans: GM  =  -0.03922 m , Negative sign means meta-centre (m) is below the centre 

of gravity (G). Thus cube is in unstable equilibrium. 

 

3.   A solid cylinder of 200 mm diameter and 800 mm length has its base 20 mm thick and 

of specific gravity 6. The remaining part of the cylinder is of specific gravity 0.6. 

Ans: GM  =  -0.03014 m,  metacentric height is negative. It means that metacentre 

is below the C.G.  (G). Thus the cylinder is in unstable equilibrium and so it cannot 

float vertically in water. 

       

4.   A frog in a hemispherical pod finds that he just floats without sinking into a sea of 

blue-green ooze with density 1.35 g/cm3. If the pod has radius 6 cm and negligible 

mass, what is the mass of the frog? 

 Ans: 610 gm.  
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5.   A rectangular boat made out of concrete with a mass of 3000 kg floats on a freshwater 

lake (ρ=1000 kg/m3). If the bottom area of the boat is 6 m2, how much of the boat is 

submerged?   

  Ans: 0.5 m  

 

6.   The rock weighs 2.25 newtons when suspended in air. What will be the Buoyant 

force In water, if weighs 1.8 newtons? 

  Ans: 0.45  

 

QR CODES OF SUPPORTING VIDEO LINKS  

                                                                   

(1)                                            (2)                                               (3) 
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UNIT SPECIFICS   

Through this unit we have discussed the following aspects: 

 Fluid flow classification 

 Streamlines, path lines, streak lines and stream tubes followed by derivation of continuity 

equation. 

 Introduction to velocity and acceleration of fluid particles 

 Rotational and irrotational motion 

 Concept of velocity potential, stream function and flow net.  

This is followed by large number of solved examples. The students are encouraged to 

solve the objective questions, long answer questions and numerical problems to judge ones 

understanding.  

RATIONALE  

This unit presents kinematical method to determine position, velocity and 

acceleration of fluid particle at certain time.  This is done by using the concept of 

velocity potential, stream function and flow net. For this one should know the flow 

classification and flow visualization which is introduced in the initial articles of the 

unit followed by deriving the continuity equation 

 

 

4 FLUID KINEMATICS  
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PRE-REQUISITES  

Mathematics: Derivatives (Class XII) 

Physics: Mechanics (Class XII) 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 

U4-O1: Fluid flow classification 

U4-O2:  Streamlines, path lines, streak lines, stream tubes 

U4-O3:  Continuity equation 

U4-O4: Rotational and irrotational motion 

U4-O5:  velocity potential, stream function, flow net 

 

Unit-4 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U4-O1 - - 3 - - - 

U4-O2 3 - - - - - 

U4-O3 3 - - - - - 

U4-O4 3 - - - - - 

U4-O5 3 - - 2 - - 

 

4.1 Introduction: 

 Kinematics deals with space-time relationship problems of fluids without referring to the 

forces responsible for this motion. kinematics is solely concerned with the effects of 

motion on displacement, time, velocity, acceleration or any other quantity derivable 

from displacement and time (and not the force). Before undertaking the study of 

forces responsible for motion of fluids, let us first understand the space-time 

relationship problems. 
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4.2 Methods Describing Fluid Motion:  

There are two important and commonly known methods of describing fluid motion. In ‘Lagrangian 

method’ motion of a single fluid particle is studied with respect to the path traced by that 

fluid particle, its velocity, acceleration etc. over a period of time. In the ‘Eulerian method’ 

the motion of fluid particle is observed in a space called ‘control volume’ to study the 

velocity, acceleration and position of fluid particles over a period of time. It is usually easier 

to use the Eulerian approach to describe a flow both in experimental or analytical 

investigations. A control volume is defined as a volume fixed with respect to co-ordinate 

system in fluid flow. There are however certain instances in which the Lagrangian method is 

more convenient. For example, in fluid machinery such as turbines and pumps Lagrangian 

method is useful as the fluid particles gain or lose energy while moving along their flow 

paths. Sometimes a coupled Eulerian -Lagrangian technique is adopted to analyze some 

special problems. In this course we will be using Eulerian technique to study the motion of 

fluid kinematically. For this it is first necessary to classify the fluid flow with respect to space 

and time 

 

4.3 Fluid Flow Classification: 

The fluid flow may be classified as : 

i)  Steady and unsteady flow 

ii)  Uniform and non-uniform flow 

iii)  Laminar and turbulent flow 

iv)  Compressible and incompressible flow 

v)  Rotational and irrotational flow 

vi)  One,two and three dimensional flow 

 

4.3.1 Steady and Unsteady Flow: 

Steady flow is defined as the flow in which the fluid properties like velocity, pressure, density etc. 

at a point do not change with respect to time. Thus mathematically, 

              (
∂𝑉

∂𝑡
)
𝑥0,𝑦0,𝑧0

  = 0, (
∂𝑝

∂𝑡
)
𝑥0,𝑦0,𝑧0

 = 0, (
∂𝜌

∂𝑡
)
𝑥0,𝑦0,𝑧0

 = 0                                  (4.1) 

Here ( 𝑥0, 𝑦0, 𝑧0 ) is a fixed point in the fluid. 
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Unsteady flow is defined as the type of flow in which the velocity, pressure or density etc. 

at a given point changes with respect to time. Thus, 

                  (
∂p

∂t
)
x0,y0,z0

  ≠ 0, (
∂p

∂t
)
x0,y0,z0

 ≠ 0 etc.                                                 (4.2) 

However, it must be remembered that as velocity is a vector quantity, the change in its 

magnitude or direction can make the flow steady. 

4.3.2 Uniform and Non-uniform Flow: 

Uniform flow is defined as the type of flow in which the fluid characteristics such as 

velocity, discharge, depth of flow at any given time do not change with respect to 

space. Mathematically, 

                                          (
∂V

∂S
)
t= constant 

 = 0                                                       (4.3) 

Where ∂𝑉 is change in velocity and ∂𝑆 is length of flow in the direction ' 𝑆 '. 

Non-uniform flow is the flow in which the fluid characteristics at any given time 

change with respect to space. Thus, 

                                          (
∂V

∂S
)
t= constant 

 ≠ 0                                                       (4.4) 

 

4.3.3 Laminar and Turbulent Flow: 

Laminar flow is defined as the flow in which the fluid particles move along well-defined 

paths or in well-defined layers; one layer sliding over the other. This type of flow is 

also called as stream-line flow or viscous flow. The fluid particles do not move from 

one layer to other thus moving in orderly manner like marching of solders in army. 

On the other hand, turbulent flow is characterized by rapid and continuous 

fluctuations in the velocity components. The fluid particles continuously move from 

one layer to other and there is no order in their motion like people coming out of 

cinema theatre.  

Whether the flow is laminar or turbulent can be determined by a non-dimensional number 

𝑅𝑒 =
𝑉𝐷

𝑣
 called as Reynolds Number where V is mean velocity of flow, D is 
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characteristic dimension (diameter in case of flow through circular pipe) and ν is the 

coefficient of kinematic viscosity of fluid. It is established that if the Reynolds 

Number is less than 2000 the flow is said to be laminar while the flow is turbulent for 

Reynolds Number greater than 4000. If the Reynolds Number lies between 2000 to 

4000 the flow is in transition state which is very unstable. It may be noted for flow to 

be classified as Laminar or turbulent the characteristics of flow as explained are 

important rather than merely the Reynolds number. It has been shown that for 

Reynolds number greater than 2000 the flow can still exhibit the properties of the 

laminar flow 

 

4.3.4 Compressible and Incompressible Flow: 

Compressible flow is the type of flow in which mass density of the fluid changes because 

of the application of external pressure. Incompressible flow can be defined as the 

flow in which mass density of the fluid does not change appreciably because of the 

application of external pressure. As explained in Unit 1 as in case of the liquids the 

flow is generally incompressible owing to the incompressible nature of liquids 

compared to gases. 

 

4.3.5 Rotational and Irrotational Flow: 

Rotational flow can be defined as the flow in which fluid particles, rotate about their mass 

center while flowing along stream lines. 

In case of irrotational flows, fluid particles do not rotate about their mass center. A well-

known example of irrotational motion is of carriages of the Big (Ferris) wheel in a 

fair ground. In that big wheel, although each carriage follows a circular path as the 

wheel revolves, it does not rotate with respect to the earth center, the passenger 

remains upright and continue to face same direction. Figure 4.1(a) and 4.1(b) 

represent the irrotational and rotational flow respectively.  
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                            Fig.4.1 (a) Irrotational Flow          Fig.4.1 (b) Rotational Flow  

4.3.6 One, Two and Three-Dimensional Flow: 

One dimensional flow can be defined as the flow in which flow parameter such as velocity 

is a function of time and one-space co-ordinate-only. The variation of velocities in other 

two mutually perpendicular directions is negligible. Mathematically, 

                                                𝑢= 𝑓(𝑥), 𝑣 = 0 and 𝑤 = 0                                                  (4.5) 

Here, u, v, w are velocity components in x, y and z directions respectively. 

In case of two-dimensional flow velocity is a function of time and two rectangular space co-

ordinates while in case of three-dimensional flow velocity is a function of time and 

three mutually perpendicular directions. 

𝑢= 𝑓(𝑥, y); 𝑣 = 𝑓(𝑥, y) and 𝑤 = 0 

𝑢= 𝑓(𝑥, y, z); 𝑣 = 𝑓(𝑥, y, z), 𝑤 = 𝑓(𝑥, y, z)                              (4.6) 

                      Fig.4.2 (a) 1-D Flow                                    Fig.4.2 (b) 2-D Flow 

 

Fig.4.2 (c) 3-D Flow∆ 
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4.4 Streamlines, Path Lines, Streak Lines and Stream Tubes: 

Streamline is an imaginary curve drawn in space such that tangent to it any point gives the 

direction of velocity at that point. The series of stream lines drawn in this manner 

will represent the flow pattern at that instant. If the flow is unsteady, the streamline 

pattern 

                                               (a)                                (b) 

Fig.4.3 Stream line flow 

Consider a two-dimensional flow (figure 4.3b). At any point along a stream line, u and v 

are the components of tangential velocity V along x and y directions respectively.  

The slope of the stream line at that point is dy/dx.  

mathematically, 

                                               

𝑑𝑦

𝑑𝑥
=

𝑣

𝑢

𝑢𝑑𝑦 − 𝑣𝑑𝑥 = 0
}                                                (4.7) 

Equation (4.7) is the differential equation of a stream line. If the velocity components are 

known as functions of space co-ordinates, equation (4.1) can be integrated to give the 

velocity of the fluid at that instant kinematically without referring to the force 

responsible for the motion.  

Path line is the line of motion traced by an individual fluid particle in a finite time. 

The path line is defined by integration of the relation between velocity and 

displacement in the equation, 

                            𝑑𝑥 = 𝑢𝑑𝑡,       𝑑𝑦 = 𝑣𝑑𝑡,       𝑑𝑧 = 𝑤𝑑𝑡                                      (4.8) 
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                Fig.4.4 Streamline & pathline for                                       Fig. 4.5 Stream tube  

                     unsteady non uniform flow  

For steady flow, the particle velocity at any point in the flow field will not depend on time 

and all particles that pass through this point will follow the same trajectories. Thus 

path lines are identical to stream lines for steady flow (refer figure 4.5) 

A streak line is the locus of particles which have passed through a fixed point. In other 

words, a streak line is an instantaneous locus of all fluid particles that have passed 

through a given point, i.e .streak lines give the spread of the fluid particles in the 

space. In experimental work, streak lines are obtained by injecting dye or smoke into 

the flowing fluid. The resulting-colored lines are the streak lines. 

For steady flow path lines, stream lines and streak lines coincide with each other. 

Stream tube can be defined as a group of stream lines. The bound surface of the stream 

tube is made up of several stream lines. The property of stream line makes the concept 

of stream tube very useful. Since at any point along the stream-line the velocity is 

tangential to the stream line; the component of velocity at right angles to the stream 

line is always zero. Therefore, there is no flow across the stream line. As the surface 

of stream tube is made up of numerous stream lines, one can conclude that there is 

no flow across the surface of a stream tube.  

It may be understood that the streamline, path line, streak line, stream tube are imaginary 

and do not exist physically in any flow. 
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4.5 Principle of Conservation of Mass: 

There are three basic principles for analyzing the problems in mechanics of solids.  

These are: 

i)  Principle of conservation of mass 

ii)  Principle of conservation of energy 

iii)  Principle of conservation of momentum. 

 

The modified forms of above principles in fluid mechanics are the Continuity equation, 

Energy equation and Momentum equation respectively. Out of these three are 

continuity equation is derived here. The other two will be dealt with in Fluid 

Dynamics. 

 

4.5.1 Continuity Equation in Cartesian Co-ordinates: 

Fig.4.6 Continuity Equation -Elementary parallelopiped 

Continuity equation expresses the fact that mass can neither be created nor be destroyed. 

In fluid mechanics mass is always expressed as mass per time for obvious reasons. 

The mass is the product of volume and density. Volume per time is called as discharge 

(Q=V/A, defined later) making the product of density and discharge as mass per time. 

(mass= ρ Q). The discharge in turn will be calculated as product of velocity and area 
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(Q = v A explained later). The conservation of mass thus takes the form of continuity 

of discharge in fluid mechanics 

Consider an elementary parallelopiped with sides 𝜕𝑥, 𝜕𝑦 and 𝜕𝑧 respectively. Refer figure 

4.6.  

Let P(𝑥, 𝑦, 𝑧) be the centre of parallelopiped and let 𝑢, 𝑣 and 𝑤 represent velocities in 𝑥, 𝑦, 

𝑧 directions respectively at point P. Let 𝜌 represents the mass density of the fluid. 

Then the mass of fluid passing through area (δyδz) through point P is (𝜌𝑢𝛿𝑦𝛿𝑧). Let 

us assume that (𝜌𝑢) varies along x axis as u is velocity component along x axis. 

The mass flowing through face PQRS per unit time will be 

                                  =  {𝜌𝑢 −
∂

∂𝑥
(𝜌𝑢)

𝛿𝑥

2
}δyδz                                             (4.9) 

Here it is to be understood that the mass (ρuδyδz) is varying (decreasing) along x axis for 

a distance equal to half the length  

(
∂

∂𝑥
 (ρuδyδz) ∙ 

𝛿𝑥

2
) 

on the left hand side of point P while on the right hand side it increases. Therefore, the 

mass flowing out through face P´Q´R´S´ per unit time will be 

                                = 𝜌𝑢𝛿𝑦𝛿𝑧 +
∂

∂𝑥
(𝜌𝑢𝛿𝑦𝛿𝑧) ⋅

𝛿𝑥

2
 

                                       =  {𝜌𝑢 +
∂

∂𝑥
(𝜌𝑢)

𝛿𝑥

2
} δyδz                                     (4.10) 

The net inflow of mass through faces PQRS and P´Q´R´S´ is obtained by subtracting 

Equation (4.3) from Equation (4.4) i.e.  

= {(𝜌𝑢) −
∂

∂𝑥
(𝜌𝑢)

𝛿𝑥

2
− (𝜌𝑢) −

∂

∂𝑥
(𝜌𝑢)

𝛿𝑥

2
} 𝛿𝑦𝛿𝑧 

                                 = ⎼ 
∂

∂𝑥
 (𝜌𝑢) 𝛿𝑥𝛿𝑦𝛿𝑧                                                                     (4.11) 
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Similarly, the net mass inflow through other two pairs of faces can be written as: 

                                = −
∂

∂𝑦
(𝜌𝑣)𝛿𝑥𝛿𝑦𝛿𝑧 

                             = ⎼ 
∂

∂𝑧
 (𝜌𝑤) 𝛿𝑥𝛿𝑦𝛿𝑧                                                           (4.12)                                  

Therefore, net mass inflow in the parallelopiped is summation of Equations (4.11) and 

(4.12).  

                 Mass of fluid in parallelopiped  = ρ δx δy δz                                          (4.13) 

Rate of change of mass in the parallelepiped = 
∂

∂𝑡
 (ρ δx δy δz)                               (4.14) 

Obviously, the net mass inflow into the parallelopiped through all the faces must be equal 

to the rate of change of mass of the parallelopiped. Thus, 

       
∂(𝜌𝛿𝑥𝛿𝑦𝛿𝑧)

∂𝑡
 = {−

∂(𝜌𝑢)

∂𝑥
−
∂(𝜌𝑣)

∂𝑦
−
∂(𝜌𝑤)

∂𝑧
} 𝛿𝑥𝛿𝑦𝛿𝑧                              (4.15) 

Dividing both sides of Equation (4.15) by volume of parallelepiped 𝛿𝑥𝛿𝑦𝛿𝑧 

                                     
∂𝜌

∂𝑡
 + 
∂𝜌𝑢

∂𝑥
 + 
∂𝜌𝑣

∂𝑦
 + 
∂𝜌𝑤

∂𝑧
 = 0                                             (4.16) 

This is the continuity equation for three-dimensional flow steady, unsteady, uniform, non-

uniform as well as compressible and incompressible flow in cartesian coordinates 

For steady flow                
∂𝜌

∂t
 = 0                                                                                  (4.17) 

Therefore, continuity equation for steady flow is, 

                                      
∂(𝜌𝑢)

∂𝑥
 + 
∂(𝜌𝑣)

∂𝑦
 + 
∂(𝜌𝑤)

∂𝑧
  = 0                                          (4.18)                          

For incompressible fluids 𝜌 is constant. Therefore, continuity equation for steady-

incompressible flow will be 
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∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 + 
∂𝑤

∂𝑧
 = 0                                                            (4.19) 

For two dimensional flow, 

                                            
∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 = 0                                                                      (4.20) 

4.5.2 Continuity Equation Based on Stream Tube Concept: 

Consider an elementary tubular shaped control volume of fluid along a stream tube. Refer 

Fig. 4.7. 

Fig.4.7 Flow through a stream tube  

The flow takes place through the ends of the element and not through the surface of the 

control volume (refer stream-tube). Let A, V and 𝜌 be the area of cross section, velocity 

and mass density of fluid at the central section of the element respectively, and A, V 

and 𝜌 are function of s only. 

Rate of inflow of mass in the element through RQ  

                                         = 𝜌AV ⎼ 
∂(𝜌AV)

∂s
 . 
𝛿𝑠

2
                                                             (4.21) 

Rate of fluid flowing out of the element through 𝑅′𝑄′                       

                                         = 𝜌AV + 
∂(𝜌AV)

∂s
 . 
𝛿𝑠

2
                                                        (4.22)   

Therefore,  
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net rate of increase of mass in the control volume 

                                             = ⎼ 
∂

∂𝑠
 (𝜌AV) . 𝛿𝑠                                                            (4.23) 

Net mass of fluid which can be accommodated in the control volume  

                                          = 𝜌A𝛿s                                                                              (4.24) 

Therefore, rate of change of mass in the control volume per unit time  

                                          = 
∂

∂𝑡
 (𝜌.A𝛿s)                                                                     (4.25) 

By conservation of mass principal, equating equations (4.24) and (4.25), 

                     
∂

∂𝑡
(𝜌A𝛿s) = ⎼ 

∂

∂𝑠
 (𝜌A𝑉) ⋅ 𝛿s                                                         (4.26) 

simplifying we get,         

                         
∂𝜌𝐴

∂𝑡
 + 

∂

∂𝑠
 (𝜌A𝑉) = 0                                                                      (4.27) 

This is the most general form of continuity equation for one dimensional flow and is based 

on stream tube concept applicable to steady, unsteady, uniform, non-uniform as well 

as compressible and incompressible flows. 

For steady flow, variation of parameters of flow with respect to time are zero. 

                                ∴ 
∂𝜌𝐴

∂𝑡
 = 0                                                                                (4.28) 

∴ Equation (4.21) can be written as, 

                       
∂

∂𝑠
 (𝜌A𝑉) = 0 or 𝜌A𝑉 = Constant                                               (4.29) 

or for different cross-sections of stream tube 

                                ⍴1 A1V1 = ⍴2 A2V2 = ⍴3 A3V3 = ⍴nAnVn                                             (4.30) 

This is the continuity equation for steady flow in one dimension applicable to compressible 

as well as incompressible flow. For incompressible fluid 𝜌 is constant. 

Therefore, continuity equation for steady, one-dimensional flow of an incompressible fluid 

can be written as, 
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∂

∂s
(AV) =  0 

∴ AV = Constant 

                                                                   or  A1V1 = A2V2 = A3V3                                                   (4.31) 

The product AV represents the volume of fluid passing the control volume per second and 

is called as discharge and is denoted by Q. 

Q = AV is discharge having dimensions [L3T-J]. 

 

4.6 Velocity and Acceleration of Fluid Particles: 

Velocity is always tangential to the path of the fluid particle and is a function of space and 

time. V = 𝑓(𝑥, 𝑦, 𝑧, 𝑡). It can be resolved in three components 𝑢, 𝑣, 𝑤 along three 

coordinates axes X,Y,Z axes respectively. It is defined as the distance traveled per 

time V = ds/dt where ds is distance travelled by fluid in time dt. 

The general expression for acceleration can be obtained by taking total differentials of 

expressions for 𝑢, 𝑣 and 𝑤. Since 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡), one can write the expression for 

total change in 𝑢 as,  

                          = 
∂u

∂𝑥
 𝑑𝑥 + 

∂u

∂y
 𝑑𝑦 + 

∂u

∂z
 𝑑𝑧 + 

∂u 

∂t
 𝑑𝑡                                              (4.32) 

However,               𝑑𝑥 = 𝑢𝑑𝑡,  𝑑𝑦 = 𝑣𝑑𝑡, 𝑑𝑧 = 𝑤𝑑𝑡    

                          ∴ 𝑑𝑢 = 𝑢 
∂u

∂𝑥
 𝑑𝑡 + 𝑣 

∂u

∂y
 𝑑𝑡 + 𝑤 

∂u

∂z
 𝑑𝑡 + 

∂u 

∂t
 𝑑𝑡                               (4.33) 

              ∴ 𝑎𝑥 = 
∂u 

∂t
 = 𝑢 

∂u

∂𝑥
 𝑑𝑡 + 𝑣 

∂u

∂y
 𝑑𝑡 + 𝑤 

∂u

∂z
 𝑑𝑡 + 

∂u 

∂t
 𝑑𝑡                               (4.34) 

 Here, 𝑎𝑥 is the Total acceleration in 𝑥 direction. Similarly the expression obtained for 𝑎𝑦  

and 𝑎𝑧. 

           ∴ 𝑎𝑦 = 
𝑑𝑣

𝑑𝑡
 = 𝑢 

∂𝑣

∂𝑥
 𝑑𝑡 + 𝑣 

𝑑𝑣

∂y
 𝑑𝑡 + 𝑤 

𝑑𝑣

∂z
 𝑑𝑡 + 

𝑑𝑣 

∂t
 𝑑𝑡                                (4.34) 
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           ∴ 𝑎𝑦 = 
𝑑𝑣

𝑑𝑡
 = 𝑢 

∂𝑣

∂𝑥
 𝑑𝑡 + 𝑣 

𝑑𝑣

∂y
 𝑑𝑡 + 𝑤 

𝑑𝑣

∂z
 𝑑𝑡 + 

𝑑𝑣 

∂t
 𝑑𝑡                                       (4.35) 

The first three terms in Equations (4.33), (4.34) and (4.35) are called as convective 

acceleration while last term represents local acceleration. The above equations can 

be reduced to 2 - D or 1 - D form as the flow case may be. 

4.7 Rotational and Irrotational Motion: 

During course of movement in the direction of flow, a fluid particle may undergo any one 

or combination of following types of motion 

(i)  Linear translation or pure translation 

(ii)  Linear deformation 

(iii)  Angular deformation 

(iv)  Rotation 

Linear translation is defined as the movement of a fluid element in such a way that it moves 

bodily from one position to another position and the two axes ab and 𝑐𝑑 represented 

in new positions by a′b′ and c′d′ are parallel as shown in figure 4.8 (a).  

 

                                          (a)      (b)  

Fig.4.8 (a) and (b) Rotational and irrotational motion 

Linear deformation is defined as the deformation of a fluid element in linear direction when 

the element moves. The axes of the element in the deformed position and undeformed 

position are parallel but their lengths change as shown in figure 4.8 (b). 
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  Angular deformation or shear deformation is defined as the average change in the angle 

contained by two adjacent sides. Let Δ𝜃1 and Δ𝜃2 is the change in angle between two 

adjacent sides of a fluid element as shown in figure 4.9(a), then, angular deformation 

or  

                                             (a)            (b)  

Fig.4.9 (a and b) Rotational motion 

                                       shear strain rate =
1

2
[Δ𝜃1 + Δ𝜃2]                                              (4.36) 

                 Δ𝜃1 = 
∂𝑣

∂𝑥
 ⋅ 
Δ𝑥

Δ𝑥
 = 
∂𝑣

∂𝑥
  and  Δ𝜃2 = 

∂u

∂𝑦
 ⋅  
Δ𝑦

Δ𝑦
  = 

∂u

∂𝑦
                                  (4.37) 

Angular deformation =
1

2
[Δ𝜃1 + Δ𝜃2] 

                                                  or shear strain rate = 
1

2
 [
∂𝑣

∂𝑥
 + 
∂u

∂y
]                                   (4.38) 

Rotation is defined as the movement of a fluid element in such a way that both of its 

horizontal as well as vertical axes rotate in the same direction as shown in figure 4.9 

(b). It is equal to 
1

2
(
∂𝑣

∂𝑥
−
∂u

∂y
) for a two-dimensional element in 𝑥-𝑦 plane. The 

rotational components are 

                                                          

𝜔𝑥 =
1

2
(
∂𝑣

∂𝑥
−
∂𝑢

∂𝑦
)

𝜔𝑦 =
1

2
(
∂𝜔

∂𝑦
−
∂𝑣

∂𝑧
)

𝜔𝑧 =
1

2
(
∂𝑢

∂𝑧
−
∂𝜔

∂𝑥
)}
 
 

 
 

                                             (4.39) 
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Vorticity is defined as the value twice of the rotation and hence it is given as 2𝜔. 

 

4.8 Velocity Potential Function and Stream Function: 

4.8.1 Velocity Potential Function 𝜙: 

It is defined as a scalar function of space and time such that its negative derivative with 

respect to any direction gives the fluid velocity in that direction. It is defined by 

𝜙(𝑃𝘩𝑖). Mathematically, velocity potential 𝜙 = 𝑓(𝑥, 𝑦, 𝑧) for a steady, 3-D flow is 

defined as, 

                                                                        

𝑢 = −
∂𝜙

∂𝑥

𝑣 = −
∂𝜙

∂𝑦

𝑤 = −
∂𝜙

∂𝑧}
 
 

 
 

                                                  (4.40) 

Hereu, v, w are components of velocity in 𝑥, 𝑦 and 𝑧 directions respectively. The negative 

sign signifies that the flow takes place in the direction of decreasing velocity 

potential.  

For a 2-D continuity equation, 

∂u

∂𝑥
  + 

𝑑𝑣

∂y
 = 0 

Substituting the values of 𝑢 and 𝑣 from Equation (4.40) 

∂

∂𝑥
(−

∂𝜙

∂𝑥
) + 

∂

∂𝑦
(−

∂𝜙

∂𝑦
) = 0       

                                           
∂2𝜙

∂𝑥2
  + 

∂2𝜙

∂𝑦2
 = 0                                             (4.41) 

Equation (4.41) is called as Laplace equation thus Δ2 𝜙 = 0 

Thus, any value of 𝜙 that satisfies Laplace's equation will correspond to some case of fluid 

flow. Similarly substituting of 𝑢 and 𝑣 in expressions of rotational component. 
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                                                               𝜔𝑥 = 
1

2
 (
∂v

∂𝑥
 ⎼ 
∂u

∂y
)                                     (4.42) 

        𝜔𝑦 = 
1

2
 (
∂u

∂𝑧
 ⎼ 
∂ω

∂y
) 

We get, 

𝜔𝑥 = 
1

2
 [
∂

∂𝑥
(−

∂𝜙

∂𝑥
) ⎼ 

∂

∂y
(−

∂𝜙

∂𝑥
)] = 

1

2
 [−

∂2𝜙

∂𝑥 ∂y
 + 

∂
2
𝜙

∂y∂𝑥
 ]                              (4.43) 

𝜔𝑥 = 
1

2
 [
∂

∂z
(−

∂𝜙

∂𝑥
) ⎼ 

∂

∂𝑥
(−

∂𝜙

∂z
)] = 

1

2
 [−

∂2𝜙

∂z∂𝑥
 + 

∂2𝜙

∂𝑥 ∂z
 ]                             (4.43) 

If 𝜙 is a continuous function then, 

                             
∂2𝜙

∂𝑥 ∂y
 = 

∂2𝜙

∂y∂𝑥
 ; 
∂2𝜙

∂z∂𝑥
 = 

∂2𝜙

∂𝑥 ∂z
                                           (4.44) 

∴   ω𝑥 = ω𝑦 = 0 

Thus, if the rotational components are zero then that flow is called as irrotational flow. 

Hence the properties of a potential functions are as follows: 

(i) If velocity potential (𝜙) exist, the flow is irrotational. (ii) If velocity potential (𝜙) 

satisfies the Laplace’s equation, it represents the possible case of steady 

incompressible irrotational flow. 

 

4.8.2 Stream Function 𝜓: 

It is defined as the scalar function of space and time, such that its partial derivative with 

respect to any direction gives the velocity component at right angles to that direction 

(in anticlockwise sense). It is denoted by 𝜓 (Psi) and is defined only for two-

dimensional flow. Mathematically, for steady flow 𝜓 = 𝑓(𝜓𝑥,𝑦)  is defined as, 
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∂𝜓

∂𝑥
= 𝑣

∂𝜓

∂𝑦
= −𝑢

}                                                   (4.45) 

The continuity equation for 2-D flow is 

                                                       
∂u

∂𝑥
 + 
∂v

∂y
 = 0                                                   (4.46) 

Substituting the values of 𝑢 and 𝑣 from the Equation (4.35) we get, 

∂

∂𝑥
(−

∂𝜓

∂𝑦
) + 

∂

∂𝑦
(
∂𝜓

∂𝑥
) = 0       

                                     Or    ⎼ 
∂2𝜓

∂𝑥 ∂𝑦
  + 

∂2𝜓

∂𝑥 ∂𝑦
 = 0                                         (4.47) 

Hence existence of 𝜓 also means a possible case of fluid flow. The flow may be rotational 

or irrotational. The rotational component ωZ is given by, 

ωZ = 
1

2
(
∂v

∂𝑥
 ⎼ 
∂u

∂y
) 

Substituting the values of 𝑢 and 𝑣 from the Equation (4.33) in the above equation 

ωZ = 
1

2
 [
∂

∂𝑥
(
∂𝜓

∂𝑥
) ⎼ 

∂

∂y
(−

∂𝜓

∂y
)] 

                                                  = 
1

2
 [
∂2𝜓

∂𝑥2
 + 
∂2𝜓

∂y2
]                                                  (4.48)                                                        

For an irrotational flow 𝜔𝑧 = 0. 

thus Δ2 𝜓 = 0, which is Laplace’s equation for 𝜓. 

The properties of stream function 𝜓 are as follows: 
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(i) If stream function (𝜓) exists, it is a possible case of fluid flow which may be rotational 

or irrotational. 

(ii) If stream function (𝜓) satisfies the Laplace equation, it is a possible case of irrotational 

flow. 

4.8.3 Equipotential Lines: 

A line along which the velocity potential 𝜙 is constant, is called as equipotential line. 

For equipotential line 𝜙=constant.  

                                                                          ∴ d𝜙 = 0                                                       (4.49) 

But 𝜙 = 𝑓(𝑥, 𝑦) for steady flow 

∴ d𝜙 = 
∂𝜙

∂𝑥
 d𝑥 + 

∂𝜙

∂𝑦
 d𝑦 

                                                                      = ⎼𝑢d𝑥 ⎼ 𝑣d𝑦         {∵
∂𝜙

∂x
= −u

∂𝜙

∂y
= −v}  

                                                    d𝜙 = ⎼ (𝑢d𝑥 + 𝑣d𝑦)                                        (4.50) 

For equipotential line d𝜙 = 0 

∴ ⎼ (𝑢d𝑥 + 𝑣d𝑦) = 0  or  𝑢d𝑥 + 𝑣d𝑦  = 0 

                                                
𝑑𝑦

𝑑𝑥
 = ⎼ 

𝑢

𝑣
                                                  (4.51) 

Equation 4.51 is the equation of equipotential line wherein dy/dx is the slope of 

equipotential line. 

 

4.8.4 Line of Constant Stream Function: 

The line along which the value of stream function is constant is called as streamline. 

i.e. 𝜓 = constant 

∴ d𝜓 = 0 

                             d𝜓 = 
∂𝜓

∂𝑥
 d𝑥 + 

∂𝜓

∂𝑦
 d𝑦  as  𝜓 = 𝑓(𝑥,𝑦)                                    (4.52) 
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                      = 𝑣d𝑥 – 𝑢d𝑦          ∵ 
∂𝜓

∂𝑥
 = 𝑣;  

∂𝜓

∂𝑦
 = ⎼ 𝑢 

For a line of constant stream function 

d𝜓 = 0  or  𝑣d𝑥 – 𝑢d𝑦 = 0  

∴      
∂𝑦

∂𝑥
 = 
𝑣

𝑢
                                                                     (4.53) 

Equation 4.53 is equation of a streamline wherein 
∂𝑦

∂𝑥
 represents slope of the line for which 

stream function is constant.  

From Equations (4.51) and (4.53) it is clear that the product of the slope of the equipotential 

line and the slope of the streamline at the point of intersection is equal to −1. Thus 

the equipotential lines are orthogonal to streamlines at all points of intersection. 

Considering the definitions and velocity potential and stream function and equations 4.39 

and 4.42 

𝑢 = −
∂𝜙

∂𝑥

𝑣 = −
∂𝜙

∂𝑦

𝑤 = −
∂𝜙

∂𝑧}
 
 

 
 

  and   

∂𝜓

∂𝑥
= 𝑣

∂𝜓

∂𝑦
= −𝑢

 

It can be proved that  

∂𝜙

∂𝑥
 = 
∂𝜓

∂𝑦
 

                                                   ⎼ 
∂𝜙

∂𝑦
 = 
∂𝜓

∂𝑥
                                              (4.54) 

Equations 4.54 are known as Cauchy-Riemann equations 
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4.9 Flow net: 

A grid obtained by drawing a series of streamlines and equipotential lines is known as flow 

net. Obtaining a flow pattern or flow net for steady two-dimensional irrotational flow 

involves solution of Laplace equation with given boundary conditions. 

For any potential flow field, a flow net can be drawn that consists of family of streamlines 

and equipotential lines. The flow net is useful in visualizing flow patterns and can be 

used to obtain graphical solution by sketching the streamlines and equipotential lines 

and adjusting the lines until the lines are approximately orthogonal at all points where 

they intersect. Figure 4.10 shows a network of mutually perpendicular streamlines 

and equipotential lines. 

 The streamlines which show the direction of flow at any point are so spaced that there is 

an equal rate of flow dq discharging through each tube. The discharge dq is equal to 

the change in 𝜓 from one streamline to the next. The equipotential lines are then 

drawn everywhere normal to the streamlines. 

Fig. 4.10 Flow net within a closed conduct 

The spacing of the equipotential line is selected in such a way that the change in velocity 

potential from one equipotential line to the next is constant. Furthermore, the 

changes in both sets of lines are made equal. In other words, 𝑑𝜓 = 𝑑𝜙. Therefore, 

they form approximate squares. 
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These are some specific characteristics of flow net: 

(i)  Flow nets can be drawn for irrotational flows. 

(ii)  The streamlines intersect equipotential lines including fixed boundaries normally. 

(iii)  There is only one possible pattern of flow net for a given set of boundary 

conditions if correctly prepared will represent this pattern. 

 

4.9.1 Methods of Drawing Flow Net: 

There are following methods of drawing the methods: 

(i)  Graphical method 

(ii)  Numerical method 

(iii) Electrical analogy method. 

Graphical method is comparatively simple and may be used to determine the flow pattern 

for any given set of boundary conditions. 

Numerical methods are based upon the calculus of finite differences used to determine 

patterns of flow in cases in which, because of the complexity of their boundary forms 

cannot be solved by ordinary analytical methods. The electrical analogy method is a 

general-purpose method where the use of analogy between flow of "electricity and 

flow of fluids” is used. 

4.9.1.1 Electrical Analogy: 

The flow of an electric current in a two-dimensional conductor is analogous to irrotational 

flow. The electric potential is analogous to velocity potential. The homogeneous 

conductor is analogous to homogenous fluid. 

Fig.4.11 shows a simple arrangement for an electrical analogy study. 
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Fig.4.11 A simple arrangement for an electrical analogy study 

The fixed boundaries of a hydraulic model are replaced by conductors and non-

conductors. Conductors are fixed in the direction of flow. The container thus 

formed is filled with an electrolyte such as salt-water. Electric potential difference 

is developed between the two conductors. With the help of probe of null indicator 

of voltmeter, the points having equal potential are found out. The points having 

equal potential if joined with smooth curves will indicate equipotential lines. 

Once equipotential lines are fixed stream lines can be drawn graphically. Set of 

equipotential lines and stream lines give the flow net. 

 

4.9.2 Uses of Flow Net: 

i. Flow net may be used for all irrotational flows with geometrically similar 

conditions. 

ii. Once the flow is drawn, the spacing between the adjacent streamlines is determined 

and the application of the continuity equation gives the velocity of flow at any point, 

if the velocity of flow at any reference point is known. 

iii. The flow net analysis assists in the determination of the efficient boundary shapes 

for which the flow does not separate from the boundary surface. 

iv. The flow cases where viscosity effects are comparatively unimportant, the flow net 

analysis can be effectively used. 
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4.10 Solved Examples:  

Ex. 4.1: In a fluid, the velocity field is given by 

𝑉 = (3𝑥 + 2y)𝑖 + (2z + 3𝑥2)j + 2t - 3z)𝑘 

Determine: 

(i)  The velocity components 𝑢, 𝑣, 𝑤 at any point in the flow field. 

(ii)  Magnitude of velocity at point (1,1,1) 

(iii)  Magnitude of velocity at 𝑡 = 2 and at point (2,2,1). 

Also classify the velocity field as steady or unsteady, uniform or non-

uniform and one, two or three dimensional. 

Solution : 

𝑢 = 3𝑥 + 2𝑦𝑣 = 2𝑧 + 3𝑥2 ,       𝑤 = 2𝑡 ⎼ 3𝑧,          at (1,1,1) 

                                                    𝑢 = 3 + 2 = 5 

                                                    𝑣 = 2 + 3 = 5 

                                                    𝑤 = 2𝑡 - 3 

∴ |V| = √u2 + v2 +w2 

                                                    = √25 + 25 + (2𝑡 − 3)2 

                                                    = √50 + 4𝑡2 − 12𝑡 + 9 

                                      |V|(1,1,1) = √4t2 − 12t + 59 

at 𝑡 = 2 and 𝑥 = 2, 𝑦 = 2, 𝑧 = 1 

                                                    𝑢 = 6 + 4 = 10 

                                                    𝑣 = 2 + 12 = 14 

                                                    𝑤 = 1 

                                              ∴  |V| = √u2 + v2 +w2 

                                                         = √100 + 156 + 1 = √297 
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                                                         = 18.89 units 

As V depends on t the flow is unsteady. 

The velocity changes in 𝑥 direction at given 𝑡. Therefore, flow is non-

uniform and 𝑉 depends on 𝑥, 𝑦, 𝑧. Therefore, it is three dimensional. 

 

 

Ex. 4.2: In a three-dimensional fluid flow two velocity components 𝑢' and 𝑣 are 𝑢' = 

2𝑥2 and 𝑣= 2𝑥𝑦𝑧. Find the third component 𝑤 such that the continuity 

equation is satisfied. 

Sol Solution: 

3D continuity equation for steady flow is, 

                                      
∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 + 
∂𝑤

∂𝑧
 = 0 

                                                 4𝑥 + 2𝑥𝑧 + 
∂𝑤

∂𝑧
 = 0 

                                        
∂𝑤

∂𝑧
 = ⎼ (4𝑥 + 2𝑥𝑧) 

        Integrate Equation (1) w.r.t. to 𝑧, 

                                   𝑤 = ⎼ [4𝑥𝑧 + 𝑥𝑧2] + C                where, C =𝑓(𝑥,𝑦) 

 
 

Ex. 4.3: In a two-dimensional fluid motion stream function is given by 𝜓 = 𝑥2 - 𝑦2 . 

1 Determine the velocity and its direction at (21, 2). 

2 Sketch the stream lines and show the direction of flow. 

Solution: 

∂𝜓

∂𝑥
= 𝑣,                           

∂𝜓

∂𝑦
= −𝑢 

                            2𝑥 = 𝑣,                          ⎼2y = ⎼𝑢 
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                                𝑣 = 42 units                   𝑢 = 4 units 

               |𝑉| =  √𝑣2 + 𝑢2 = √1780 = 42.19 units 

                                           𝜃 = tan⎼1 
𝑣

u
 = tan⎼1 

42

4
 

Equation 𝜓 = 𝑥2 - 𝑦2 represents a hyperbola. 

The table gives values of 𝑥 and 𝑦 for some fixed values of 𝜓. 

𝜓 𝑦 𝑥 = ±√𝑦2 + 𝜓 

1 0 ±1 

 1 ±√2 

2 0 ±√5 

 1 ±√2 

 2 ±√6 

 

Thus stream lines can be represented as,  

Fig. Ex. 4.3. 
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Ex. 4.4: A flow has a potential function 𝜙 given by 𝜙 = (𝑥3 - 3𝑥𝑦2). Derive the 

corresponding stream function 𝜓 and evaluate magnitude and direction of 

velocity at any arbitrary point 𝑥, 𝑦. 

Solution. : 

𝜙 = (𝑥3 - 3𝑥𝑦2) 

                                           
∂𝜙

∂𝑥
 = 3𝑥2 ⎼ 3𝑦2 = 3(𝑥2 ⎼ 𝑦2) = ⎼𝑢 

                                        
∂𝜙

∂𝑦
 = 6𝑥𝑦 = ⎼𝑣 

but 
∂𝜓

∂𝑥
 = 𝑣 from definition of 𝜓  

                                     
∂𝜓

∂𝑥
 = 6𝑥𝑦  

Integrating, with respect to 𝑥 

         𝜓 = 6𝑦 
 𝑥2

2
 + 𝑓(𝑦) 

                 = 3𝑥2 𝑦 + 𝑓'(𝑦) 

∴  
∂𝜓

∂𝑦
 = 3𝑥2 + 𝑓'(𝑦) 

but 
∂𝜓

∂y
  = -𝑢 by definition which is equal to 

∂𝜙

∂x
  

                                                       ∴  
∂𝜓

∂𝑦
 = -𝑢  = 3(𝑥2 - 𝑦2) 

                                                                    = 3(𝑥2 - 𝑦2) 

Comparing Equation (1) and Equation (2) 

                                                  𝑓'(𝑦) = -3𝑦2 
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Integrating 

                                                   𝑓(𝑦) = -𝑦3  + 𝑐 

                                                ∴ 𝜓 = 3𝑥2𝑦 - 𝑦3  + 𝑐 

                                             ⟹ 𝜓 = 𝑦(3𝑥2 - 𝑦2 )+ 𝑐 

as passing through origin, ∴ c = 0. 

                                                    𝜓 = 𝑦(3𝑥2 - 𝑦2 ) 

                                                       𝑢 = 3(𝑦2 - 𝑥2) 

                                                       𝑣 = 6𝑥𝑦 

       = √9(𝑦2 − 𝑥2)2 + 36𝑥2𝑦2 

         = √9𝑥4 + 9𝑦4 − 18𝑥2𝑦2 + 36𝑥2𝑦2 

         = √9𝑥4 + 9𝑦4 + 18𝑥2𝑦2 

         = 3√𝑥4 + 𝑦2 + 2𝑥2𝑦2 

         = 3(𝑥2 + 𝑦2) 

Direction = 𝜃 = tan⎼1[
6𝑥𝑦

3(𝑦2−𝑥2)
] 

                      = tan⎼1[
2𝑥𝑦

𝑦2−𝑥2
] 

 

 

Ex. 4.5: A flow field is characterized by the stream function 𝜓 = 3𝑥2𝑦 - 𝑦3. Check 

whether this is a possible case of fluid flow. Is this flow irrotational? If not, 

calculate the velocity. Show that the magnitude of velocity at any point in 

the flow field depends only on its distance from the origin.  

Solution. : 

To find out velocity components, 
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𝑢 = ⎼ 
∂𝜓

∂𝑦
                   𝑣 = 

∂𝜓

∂𝑥
 

                                        𝑢 = ⎼ 3𝑥2 + 3𝑦2       𝑣 = 6𝑥𝑦     

To check whether the flow is continuous,  

∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 = 0 

⎼6𝑥 + 6𝑥 = 0 

∴ The flow is continuous. 

To decide whether flow is irrotational. 

𝜔𝑧 = 
∂𝑣

∂𝑥
 ⎼ 
∂𝑢

∂𝑦
 

∴ 𝜔𝑧 =  
1

2
 (6𝑦 ⎼ 6 𝑦) = 0 

∴  The flow is irrotational. 

For Magnitude of velocity, 

                            |𝑉| = √𝑢2 + 𝑣2 

= √+9(𝑥2 − 𝑦2)2 + 36𝑥2𝑦2 

                                = √9𝑥4 − 18𝑥2𝑦2 + 9𝑦4 + 36𝑥2𝑦2 

                                = √9𝑥4 + 18𝑥2𝑦2 + 9𝑦4 

                         |𝑉|  = 3(𝑥2 + 𝑦2) 

It proves that magnitude of velocity depends on distance from origin. 

 

Ex. 4.6 : In a two dimensional fluid motion the stream function is given by 𝜓 = 4𝑥𝑦.  

1 Sketch the stream lines. 

2 Determine the potential function and sketch equipotential lines. 
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3 Determine the velocity at point (3,1). 

4 Determine the convective acceleration at point (3,1). 

 Solution. : 

∂𝜓

∂𝑦
  = ⎼ 𝑢              

∂𝜓

∂𝑥
 = 𝑣 

𝑣 = 4𝑦                   𝑢 = ⎼4𝑥 

For Velocity at (3,1) 

       𝑢 = ⎼12                𝑣 = 4 

                                 |𝑉−| = √𝑢2 + 𝑣2 = √144 + 16 = 12.64 

                              tan 𝜃 = ⎼ 
4

12
 

                                  𝜃 = ⎼tan⎼1(0.33) = 18∘26′ 

                            
 ∂𝜙

∂𝑥
 = ⎼𝑢 = 4𝑥 

Integrating w.r.t. 𝑥 

𝜙  = 2𝑥2 + 𝑓(𝑦) 

                                          ∴    
∂𝜙

∂y
 = 𝑓᾿(𝑦) 

But                                        
∂𝜙

∂y
 = ⎼𝑣                          which is ⎼4y 

                                     ∴    𝑓᾿(𝑦) = ⎼4y 

𝑓(𝑦) = ⎼2y2 + c 

Substituting value of 𝑓(𝑦) in Equation (1) 

                                                 𝜙 = 2𝑥2 ⎼ 2𝑦2 + c 
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                                                 𝜙 = 2(𝑥2 ⎼ 𝑦2)+ c 

 

Fig. Ex.4.6 

𝑎𝑥 = 𝑢 
∂𝑢

∂𝑥
 + 𝑣 

∂𝑢

∂𝑦
 = (⎼4𝑥)( ⎼4) + 4𝑦(0) = +16𝑥 

𝑎𝑦 = 𝑢 
∂𝑣

∂𝑥
 + 𝑣 

∂𝑣

∂𝑦
 = (⎼4𝑥)(0) + (4𝑦)(4) = 16𝑦 

For point (3,1)      (a𝑥, a𝑦) = (48, 16)      ∴ |𝑎| = 50.59  

 

 

Ex. 4.7 : The stream function for two dimensional flow is given by 𝜓 = 2𝑥𝑦 in the 

range of values of 𝑥 and 𝑦 between 0 to 5. Plot stream lines passing through 

the points (1,1), (1,2), (2,2). The drawing need not be to the scale. Determine 

the velocity in magnitude and direction at (1,2). 

Solution : 

                𝑢 = ⎼ 
∂𝜓

∂𝑦
 = ⎼2𝑥; 𝑣 = 

∂𝜓

∂𝑥
 = 2𝑦 

            ∴ |V| for (1,2) = √u2 + 𝑣2 = √4 + 16 = √20 = 4.472 units 
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tan 𝜃 = 
𝑣

u
 = ⎼2  ∴ tan⎼1(⎼2) = ⎼63.43 (In second quadrant)  

                        = 116.5660 

 

Now,   𝑥 1 2 3 4 5 1 

y 1 2 3 4 5 2 

𝜓 2 8 18 32 50 4 

 

             Fig. Ex. 4.7 Sketch of stream lines 

 

 

Ex. 4.8 : For an incompressible flow represented by 𝜓 = 𝑥2 - 𝑦2, calculate the total   

acceleration vector and show that it is proportional to the radius vector. 

Solution : 

𝑢 = −
∂𝜓

∂𝑦
= 2y;  𝑣 =

∂𝜓

∂𝑥
= 2𝑥 
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∂𝑢

∂𝑥
 = 0;   

∂𝑢

∂𝑦
 = 2;  

∂𝑣

∂𝑥
 = 2;  

∂𝑣

∂𝑦
 = 0 

                                     𝑎 = √𝑎𝑥
2 + 𝑎𝑦

2   where 

                                     𝑎𝑥 = 𝑢 
∂𝑢

∂𝑥
 + 𝑣 

∂𝑢

∂𝑦
 and 𝑎𝑦 = 𝑢 

∂𝑣

∂𝑥
 + 𝑣 

∂𝑣

∂𝑦
 

                              ∴    𝑎𝑥 = 0 + 2𝑥 (2) = 4𝑥 

                                     𝑎𝑦 = 2(2𝑦) + 0 = 4𝑦 

and 

                               ∴    𝑎  = √𝑎𝑥
2 + 𝑎𝑦

2  = 4 √𝑥2 + 𝑦2 

                                      𝑎  = 4√𝑥2 + 𝑦2 = 4r 

Since acceleration a = 4r, it is proportional to radius r. 

 

 

Ex. 4.9: If 𝜙 = 3𝑥𝑦, find 𝑥 and 𝑦 components of velocity at (1,3) and (3,3). Determine the 

discharge passing between stream lines passing through these points. 

Solution : 

𝑢 = 
∂𝜙

∂𝑥
 ;             𝑣 = ⎼ 

∂𝜙

∂y
 

∴                                      𝑢 = ⎼3𝑦;           𝑣 = ⎼3𝑥 

Velocity component for (1,3) 

             = (𝑢, 𝑣)1,3  = (9, ⎼3) 



FLUID MECHANICS 

186  

Velocity component for (3,3)  

                                                  = (𝑢, 𝑣)3,3 = (-9, -9) 

Total derivative 𝜓 can be written as, 

                                              d𝜓 = 
∂𝜓

∂𝑥
 d𝑥 +  

∂𝜓

∂𝑦
 d𝑦  

but                                              
∂𝜓

∂𝑥
 = 𝑣;        

∂𝜓

∂𝑥
= ⎼𝑢 

                 ∴ 𝑑𝜓 = 𝑣𝑑𝑥 − 𝑢𝑑𝑦 = −3𝑥𝑑𝑥 + 3𝑦𝑑𝑦 

Integrating, 

        𝜓 = ⎼ 
3𝑥2

2
 + 
3𝑦2

2
 + c 

Where c is constant of integration. 

Discharge between the stream lines through (1,3) and (3,3). 

          𝜓(1,3)  ⎼  𝜓(3,3) = (⎼ 
3
2

  + 
27

2
)  ⎼  (⎼ 

27

2
  + 

27

2
) = 12 units 

 

 

Ex. 4.10: Velocity components of a flow are given by 𝑢 = -𝑥, 𝑣 = 2𝑦, 𝑤 = 5 - 𝑧. 

Derive the equation of stream line passing through point (2,1,1). 

Solution : 

𝑑𝑥

𝑢
 = 
𝑑𝑦

𝑣
 = 
𝑑𝑧

𝑤
 

𝑑𝑥

−𝑥
 = 
𝑑𝑦

2𝑦
 = 

𝑑𝑧

5−𝑧
 

          
𝑑𝑥

−𝑥
 = 
𝑑𝑦

2𝑦
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Integrate 

⎼ log 𝑥 = 
1

2
 log 𝑦 + 𝐶1 

          ⎼ [log 𝑥
1

1
 +  

1
2
 log y] = c1 

                 ⎼ log 𝑥√𝑦  = c2     ∴ 𝑥√𝑦  = c3 

at (2,1,1)                          c3 = 2 

                                         ∴    𝑥√𝑦  = c 

Now 

                                          ⎼ 
𝑑𝑥

𝑥
  = 

𝑑𝑧

5−𝑧
 

                                            ⎼log 𝑥 = ⎼ log (5 ⎼ 𝑧) + c4 

                                               log (
5−𝑧

𝑥
) = c5 

                                         ∴     (
5−𝑧

𝑥
) = c6 

at (2,1,1)                                 (
5−𝑧

𝑥
) = 2 

                                            ∴     𝑥√𝑦  = (
5−𝑧

𝑥
) = 2 

 

 

Ex. 4.11: Determine the stream function if velocity components of a 2-D 

incompressible fluid flow are given by 

𝑢 = 
𝑦3

3
 + 2𝑥 ⎼ 𝑥2𝑦 and 𝑣 = 𝑥𝑦2 ⎼ 2𝑦  ⎼ 

𝑥3

3
 

Solutions : 



FLUID MECHANICS 

188  

                                     𝑢 = 
𝑦3

3
 + 2𝑥 ⎼ 𝑥2𝑦 = ⎼ 

∂𝜓

∂𝑦
               by definition. 

∴ Integrating w.r.t. 𝑦 

                                      𝜓 = ⎼ 
𝑦4

12
  ⎼ 2𝑥𝑦 + 

𝑥2𝑦2

2
 + 𝑓(𝑥) 

Differentiating w.r.t. 𝑥 

                                     
∂𝜓

∂𝑦
  = ⎼ 2𝑦 + 𝑥2𝑦 + 𝑓´(𝑥) 

But                               
∂𝜓

∂𝑥
 = 𝑉 

                             ∴      
∂𝜓

∂𝑥
 = 𝑥2𝑦 ⎼ 2𝑦 ⎼ 

𝑥2

3
             (∴ by given data) 

Comparing Equation (1) and (2) 

                 ⎼ 2𝑦 + 𝑥2𝑦 + 𝑓´(𝑥) = 𝑥2𝑦 ⎼ 2𝑦 ⎼ 
𝑥2

3
 

          ∴    𝑓´(𝑥) = ⎼ 
𝑥2

3
 

          ∴    𝑓(𝑥) = ⎼ 
𝑥3

9
 + c 

Substituting value of 𝑓(𝑥) 

                             𝜓 = ⎼ 
𝑦4

12
  + 

𝑥2𝑦2

2
 ⎼ 2𝑥𝑦 ⎼ 

𝑥3

9
 + c 

 

Ex. 4.12 : A uniform steady incompressible flow field has a horizontal component of 

velocity 4 m/s and a vertical component of velocity 3 m/s. Determine 

expressions for velocity potential and stream function. Sketch the lines of 

velocity potential and stream function. 
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Solution : 

∂𝜙

∂𝑥
  = ⎼𝑢 = ⎼4 

Integrating w.r.t. 𝑥      𝜙 = ⎼4𝑥 + 𝑓(𝑦) 

 Differentiating w.r.t. 𝑦             
∂𝜙

∂𝑥
  = 𝑓´(𝑦) 

But by definition                     
∂𝜙

∂𝑦
 = ⎼𝑣    

                        
∂𝜙

∂𝑦
 = ⎼3 

Comparing values of 
∂𝜙

∂𝑦
 from steps 2 and 3. 

     𝑓´(𝑦) = ⎼3 

     ∴   𝑓(𝑦) = ⎼3𝑦 + c 

                               ∴   𝜙 = ⎼4𝑥 ⎼3𝑦 + c 

Now                          
∂𝜓

∂𝑥
 = 𝑣 = 3 

Integrating w.r.t. 𝑥    𝜓 = 3𝑥 + 𝑓(𝑦) 

Differentiating w.r.t. y,         
∂𝜓

∂𝑦
 = 𝑓´(𝑦)               

But                          
∂𝜓

∂𝑦
 = ⎼𝑢 = ⎼4          by definition. 

                                                     𝑓´(𝑦) = ⎼4 

                 ∴    𝑓(𝑦) = ⎼4𝑦 + c 

                                       ∴    𝜓 = 3𝑥 ⎼4𝑦 + c 
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𝜙 = ⎼4𝑥 ⎼3𝑦 + c is a straight line passing through (0,0) and slope 

⎼ 
4

3
 𝜓 = 3𝑥 ⎼4𝑦 + c is also a straight line passing through (0,0) and slope 

3

4
 

 

Fig. Ex.4.12 

 

 

Ex. 4.13: Determine whether following specified flows are rotational or otherwise. 

Determine the expression for velocity potential in case of irrotational flow. 

(i) 𝑢 = 𝑦,                     𝑣 = ⎼ 
3

2
 𝑥 

(ii)  𝑢 = 𝑥𝑦2              𝑣 = 𝑥2𝑦 

Solution: 

(i)                                  
∂𝑣

∂𝑥
  = ⎼ 

3

2
 ,         

∂𝑢

∂𝑦
  = 1,                

∂𝑣

∂𝑥
 ≠ 
∂𝑢

∂𝑦
 

                                   ∴  𝜔𝑧 ≠ 0       ∴ Flow is rotational 

              
∂𝑣

∂𝑥
 = 2𝑥𝑦,            

∂𝑢

∂𝑦
  = 2𝑥𝑦,           

∂𝑣

∂𝑥
 ≠ 
∂𝑢

∂𝑦
 

                                   ∴  𝜔𝑧 = 0       ∴ Flow is irrotational 

For (ii) to find out 𝜙; by definition. 
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∂𝜙

∂𝑥
 = ⎼ 𝑢 = ⎼ 𝑥𝑦2 

Integrating w.r.t. 𝑥  

𝜙 =  
−𝑥2𝑦2

2
 + 𝑓(𝑦) 

Differentiating w.r.t. y 

∂𝜙

∂𝑥
 = ⎼ 𝑥2𝑦 + 𝑓´(𝑦) 

But                 
∂𝜙

∂𝑦
 = ⎼ 𝑣                                               by definition. 

               ∴     
∂𝜙

∂𝑦
 = ⎼ 𝑥2𝑦 

 Comparing two values of   
∂𝜙

∂𝑦
  

                                     -𝑥2𝑦 + 𝑓'(𝑦) = -𝑥2𝑦 

𝑓'(𝑦) = 0 

𝑓(𝑦) = constant 

                            ∴        𝜙 = −
𝑥2𝑦2

2
 + c 

  

Ex. 4.14:   The velocity vector in a fluid flow is given by 

𝑉 = (4𝑥3)𝑖 - (10𝑥2𝑦)𝑗 + (2𝑡)𝑘 

Obtain expression for velocity vector and acceleration vector at a point 

(2,1,3) at time 𝑡 = 1sec. Also calculate the value of velocity and 

acceleration at the given point. 

Solution : 
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𝑢 = 4𝑥3,        𝑣 = -10𝑥2𝑦,        𝑤 = 2𝑡 

at point (2,1,3)         |V| = √32 − 40 + 2 = 51.26 units 

𝑎𝑥 = 𝑢 
∂𝑢

∂𝑥
 + 𝑣 

∂𝑢

∂𝑦
 + 𝑤 

∂𝑢

∂𝑧
 + 
∂𝑢

∂𝑡
 

∂𝑢

∂𝑥
 =12𝑥2,   

∂𝑢

∂𝑦
 = 
∂𝑤

∂𝑧
 = 0 

𝑎𝑥 = (32) (48) + (-40) (0) + 2(0) + 0 

a𝑥 = 1536 units 

𝑎𝑦 = 𝑢 
∂𝑣

∂𝑥
 + 𝑣 

∂𝑣

∂𝑦
 + 𝑤 

∂𝑣

∂𝑧
 + 
∂𝑣

∂𝑡
 

∂𝑣

∂𝑥
  = -20𝑥𝑦,  

∂𝑣

∂𝑦
  = - 10𝑥2,  

∂𝑤

∂𝑧
 = 0 

                                 32 𝗑 (-40) + (-40)(-40) + 0 = 0 

                                     𝑎𝑦 = 320 units 

                                 𝑎z = 𝑢 
∂𝑤

∂𝑥
 +𝑣 

∂𝑤

∂𝑦
 +𝑤 

∂𝑤

∂𝑧
  + 

∂𝑤

∂𝑡
 

                                  
∂𝑤

∂𝑡
 = 2,      

∂𝑤

∂𝑥
 = 
∂𝑤

∂𝑦
 = 
∂𝑤

∂𝑧
 = 0 

                                  𝑎z = 2 units 

                                       𝑎a = 1536𝑖 + 320𝑗 + 2𝑘 

                                  |𝑎| = √15362 + 3202 + 22 = 1568.98 units 

 
 

Ex. 4.15: A fluid has following flow field. 

(1) C = 
5𝑥3

𝑖
 – (15𝑥2𝑦)𝑗 + T km/s  
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Obtain expressions for velocity and acceleration vector at a point (1,2,3) at 

time 

T = 1 sec. Also calculate the value of velocity and acceleration at a given 

point. 

Solution :  

                                    𝑢 = 5𝑥3,   𝑣 = -15𝑥2𝑦,   𝑤 = 𝑇 

∂𝑢

∂𝑥
 = 15𝑥2,        

∂𝑢

∂𝑦
 = 0 = 

∂𝑢

∂𝑧
  = 

∂𝑢

∂𝑡
 = 0 

                        
∂𝑣

∂𝑥
  = ⎼30𝑥𝑦,     

∂𝑣

∂𝑦
 = 15𝑥2,     

∂𝑣

∂𝑧
 = 0,     

∂𝑣

∂𝑡
 = 0 

                        
∂𝑤

∂𝑥
 = 
∂𝑤

∂𝑦
 = 
∂𝑤

∂𝑧
 = 0,   

∂𝑤

∂𝑡
 = 1 

at (1,2,3),   𝑢 = 5,   𝑣 = -30,   𝑤 = 1 

                      ∴    |𝑉| = √25 + 900 + 1 

                               = 30.43 units m/s 

                          𝑎𝑥 = 𝑢 
∂𝑢

∂𝑥
  + 𝑣 

∂𝑢

∂𝑦
  + 𝑤 

∂𝑢

∂𝑦
 + 
∂𝑢

∂𝑡
  

                               = 5(15) 

                          𝑎𝑥 = 75   

                              𝑎𝑦 = 𝑢 
∂𝑣

∂𝑥
 + 𝑣 

∂𝑣

∂𝑦
 + 𝑤 

∂𝑣

∂𝑧
 + 𝑤 

∂𝑣

∂𝑧
 + 
∂𝑣

∂𝑡
 

                               = 5(-60) + (-30)(-15) + 0 + 0 

                               = 150 

                              𝑎z = 𝑢 
∂𝑤

∂𝑥
 +𝑣 

∂𝑤

∂𝑦
 +𝑤 

∂𝑤

∂𝑧
  + 

∂𝑤

∂𝑡
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                                = 1 

                  |a| = √752 + 1502 + 12 

                                 = 167.71 𝑚/𝑠2 

 

UNIT SUMMARY 

Unit is summarized in the following points : 

 

1 If the fluid characteristics like velocity, pressure density etc. do not change at a 

point with respect to time, the fluid flow is called as steady flow. If they change 

with respect to time, the fluid flow is called as unsteady flow. 

(
∂v

∂t
)
x0,y0,z0

= 0for steady flow. (
∂v

∂t
)
x0,y0,z0

≠ 0 for unsteady flow 

2 If the velocity in a fluid flow does not change with respect to space, the flow is said 

to be uniform flow otherwise non- uniform flow. 

(
∂𝑉

∂𝑆
)
𝑡=𝑡1

= 0for uniform flow. (
∂𝑉

∂𝑆
)
𝑡=𝑡1

≠ 0 for non-uniform flow 

3 If Reynolds number in a pipe is less than 2000 the flow is said to be laminar, if it 

is more than 4000 the flow is turbulent. 

4 Differential equation of a stream line is 𝑢d𝑦 - 𝑣d𝑥 = 0. 

5 For steady flow, path lines, stream lines and streak lines coincide with each other. 

6 Continuity equation in differential form is, 
∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 = 0 for a two dimensional flow. 

7 Continuity equation can also be written as 𝑄 = 𝐴1𝑉1 = 𝐴2𝑉2 = constant. 

8 The components of acceleration in 𝑥, 𝑦, and 𝑧 directions are 

𝑎𝑥 = 𝑢 
∂𝑢

∂𝑥
 + 𝑣 

∂𝑢

∂𝑦
 + 𝑤 

∂𝑢

∂𝑧
 + 
∂𝑢

∂𝑡
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        𝑎𝑦 = 𝑢 
∂𝑣

∂𝑥
 + 𝑣 

∂𝑣

∂𝑦
 + 𝑤 

∂𝑣

∂𝑧
 + 
∂𝑣

∂𝑡
 

        𝑎𝑧 = 𝑢 
∂𝑤

∂𝑥
 + 𝑣 

∂𝑤

∂𝑦
 + 𝑤 

∂𝑤

∂𝑧
 + 
∂𝑤

∂𝑡
 

9 The tangential and normal components of acceleration are : 

𝑎𝑠 = 𝑉𝑠 
∂𝑉𝑠

∂𝑠
 + 
∂𝑉𝑠

∂𝑡
 

a𝑛 = 
∂𝑉𝑛

∂𝑡
 + 
𝑉𝑠
2

𝑅
 

10 Angular deformation or shear strain rate is given by, 

Shear strain rate = 
1

2
 (
∂𝑣

∂𝑥
 + 
∂u

∂y
)  

11 Rotational components of a fluid particle are : 

𝜔𝑥 = 
1

2
 (
∂𝑣

∂𝑥
 ⎼ 
∂u

∂y
) ;     𝜔𝑦 = 

1

2
 (
∂w

∂y
 ⎼ 
∂𝑣

∂z
) ;      𝜔𝑧 = 

1

2
 (
∂𝑣

∂𝑥
 ⎼ 
∂u

∂y
) 

12 The components of velocity in 𝑥, 𝑦 and 𝑧 directions in terms of velocity potential 

(𝜙) are 

𝑢 = ⎼ 
∂𝜙
∂𝑥

,     𝑣 = ⎼ 
∂ϕ
∂y

 ,     𝑤 = ⎼ 
∂𝜙

∂z
 

13 The stream function (𝜓) is defined only for two-dimensional flow. The velocity 

components in x and y directions in terms of stream function are 𝑢 = ⎼ 
∂ψ

∂y
 and         

𝑣 = 
∂ψ

∂𝑥
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4.11: Exercise  

4.11.1: Objective Questions: 

1.  A flow in which each fluid particles have definite paths and their paths do not cross 

     each other, is called 

(a) Steady flow 

(b) Uniform flow 

(c) Streamline flow 

(d) Turbulent flow 

      Ans: (c) 

2.  Laminar flow usually occurs at ______ velocity. 

(a) low  

(b) high 

(c) very high 

(d) sometimes high and sometimes low 

 Ans: (a) 

 3. The continuity equation is the result of application of the following law to the flow  

     field 

 (a)  First law of thermodynamics  

 (b)  Conservation of energy 

 (c)  Newton’s second law of motion  

 (d)  Conservation of mass. 

 Ans: (d) 

 

4.   A path line describes  

(a)  The velocity direction at all points on the line 

(b)  The path followed by particles in a flow 

(c)  The path over a period of times of a single particle that has passed out at a point  

(d)  The instantaneous position of all particles that have passed a point. 

Ans: (c) 
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5.    The stream function is  

(a)  constant along an equipotential line 

(b)  along a stream line 

(c)  defined only in irrotational flow 

(d)  defined only for incompressible flow. 

Ans: (b) 

 

6.     A potential function 

(a)   is constant along a stream line 

(b)   is definable if a stream function is available for the flow 

(c)   describes the flow if it is rotational 

(d)   describes the flow if it is irrotational. 

Ans: (d) 

 

7. A flow is defined by u = 2 (1 + t), v = 3(1 + t) where t is the time.  

The velocity at t = 2  is, 

  (a)  6   (b)  9 

(c)  10.82   (d)  6.7. 

Ans: (c) 

 

8.  For every potential function a stream function should exist. 

      (a) Correct   (b) Incorrect  

Ans: (a) 

 

9.  Stream function can exist only for irrotational flow. 

     (a) Correct   (b) Incorrect  

Ans: (b) 



FLUID MECHANICS 

198  

10.  The stream lines and equipotential lines for a flow field are 

(a) Parallel to each other  

(b) Orthogonal to each other  

(c) Inclined with each other 

(d) Parabolic  

Ans: (b) 

 

11.  The condition to satisfied by irrotational flow is  

(a)  𝑢 = 
𝜕∅

𝜕𝑦
  𝑣 = - 

𝜕∅

𝜕𝑦
                u = ∂ø/∂y v = – ∂ø/∂y  

(b)  u = – ∂ø/∂𝑥, = – ∂ø/∂y 

(c)  ∂v/∂x = ∂u/∂y  

(d)  ø = øA + øB. 

Ans: (b) 

 

12.   The flow through an expanding pipe at a constant rate is called as  

(a)   Steady uniform flow  

(b)   Unsteady uniform flow  

(c)   Steady non uniform flow 

(d)   Unsteady non uniform flow  

Ans: (c) 

 

13. For a flow the velocity vector is expressed as V = 3xi -3yj, then the equation of the 

streamline passing through the point (1,1) is  

(a)   xy = 1 

(b)   x2y = 1 

(c)   x2y2 = 1 

(d) xy2 = 1 

Ans: (a) 
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14.   Flow of liquid under pressure through long pipe lines of varying diameter is  

(a)  Steady flow  

(b)  Unsteady flow  

(c)  Uniform flow  

(d)  Non uniform flow  

       Ans:  (d) 

 

15.    Flow of liquid through a tapering pipe at varying rate is  

(a)  Steady uniform flow  

(b)  Unsteady uniform  flow  

(c)  Steady non uniform flow  

(d)  Unsteady non uniform flow  

Ans: (d) 

 

4.11.2: Theory Questions : 

Q.1   Explain Eularian method of representing fluid motion. 

Q.2   What do you understand by Kinematics of fluid flow ? 

Q.3  Which are the methods of analysis of fluid flow ? 

Q.4  What is the difference between Lagrangian and Eulerian methods of studying a 

fluid flow ? 

Q.5  Define : (i) Path line, (ii) Stream line, (iii) Stream tube and (iv) Streak line. What 

is the special feature of concept of stream tube? 

Q.6  Derive equation for stream line, 𝑢𝑑𝑦 − 𝑣𝑑𝑥 = 0, for a plane flow in 𝑥 - y plane. 

Q.7  Describe the types of flow bringing out their characteristics. 

Q.8 Define the following terms :      

 (i)  Discharge 

 (ii)  Mean velocity 

 (iii)  Stream line 

 (iv)  Unsteady flow. 
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Q.9   How are the flows classified? Give their governing conditions. 

Q.10   Define : 

 (i)    Steady flow and Unsteady flow 

 (ii)   Uniform and non-uniform flow 

  What combinations of above flows are possible? Give one example of each 

such combination. 

Q.11   Distinguish between Rotational and Irrotational flow. 

Q.12   Define 1 - D, 2 - D and 3 - D flows and give one example of each. 

Q.13   Prove that in a two dimensional flow field, rotation of the element is given by the 

expression. 

𝜔 = 
1

2
 (
∂𝑣

∂𝑥
 ⎼ 
∂𝑢

∂𝑦
) 

Q.14   Prove that potential flow is also irrotational flow. 

Q.15   Derive general form of continuity equation for two dimensional flow. 

Q.16   Derive continuity equation 
∂𝑢

∂𝑥
 + 
∂𝑣

∂𝑦
 + 
∂w

∂z
 = 0 with usual notations. 

Q.17   Derive the continuity equation in one dimensional flow. 

Q.18  Explain the concept of stream function and velocity potential. Establish the 

condition that the lines of constant stream function and velocity potential are 

mutually perpendicular. 

Q.19   What is a flow net? What are its uses? What are the methods of drawing a flow 

net? 

Q.20   Explain electrical analogy method of drawing a flow net. 

Q.21   Distinguish clearly between Laminar flow and Turbulent flow. 

Q.22   Classify the following flows as steady, unsteady, uniform and non-uniform. 

 (i)     Constant discharge through converging pipe under constant temperature. 
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 (ii)   Flow of oil in Redwood Viscometer experiment. 

 (iii)   Flow of constant discharge in a long rectangular passage of constant width 

of wind tunnel. 

 (iv)   Constant discharge along a long bend. 

Q.23   What do you understand by : 

 (i)    Total acceleration, 

 (ii)   Local acceleration and 

 (iii)   Convective acceleration  

(May 2000, 3 Marks) 

 Expression (4.23), (4.24) and (4.25) represent the three components of total 

acceleration. The terms 
∂u

∂t
,  
∂v

∂t
,  
∂w

∂t
 represent local acceleration and remaining 

terms represent convective acceleration. 

Q.24  Show that stream lines and equipotential lines are orthogonal to each other. 

Q.25  A stream function is given by 𝜓 = 3𝑥𝑦  

Determine : 

(i)     Whether flow is possible 

(ii)    Whether flow is rotational or irrotational 

(iii)    The potential function 𝜙  

(iv)    Acceleration component at (1,1). 

Q.26  Prove that in a two dimensional flow field rotation of the element is given by the 

expression. 

Q.27   Derive three dimensional continuity equation. 

Q.28   Differentiate between rotational and irrotational flow. 

  

4.11.3: Problems:   

1. State whether the flow of liquid given by u = 4𝑥 and v = -4y is  

             (i) continuous        (ii) irrotational  
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(Ans: the flow is continuous as well as irrotational) 

2. For the above mentioned flow (u = 4𝑥 and v = -4y), determine the stream function if 

the flow is possible.  

(Ans: the flow is possible. 𝜓 = -2𝑥2 -2y2 +C) 

3. Determine whether the following specified flows are rotational or otherwise. 

Determine velocity potential (1) u = y, v = (- 
3

2
 )𝑥    (2) u = 𝑥y2 , v = 𝑥2y 

(Ans:  (1) the flow is rotational, Velocity potential does not exist,  

            (2) the flow is irrotational and ∅ =
−𝑥2𝑦2

2
+ 𝐶 ) 

4.  Velocity vector in a 2-D flow field is given by 𝑉‾  = 𝑥2𝑦𝑖 - 𝑥𝑦2𝑗 check whether flow is 

possible. Also find whether the flow is irrotational. If so find magnitude of rotation at 

a point (1,1). 

(Ans : Flow is possible and rotational.  𝑤𝑧 = -1 unit) 

5. For a two-dimensional potential flow, velocity potential 𝜙 = 𝑥(2𝑦 -1) find (b) whether 

flow is possible and expression for stream function. 

(Ans : flow is continuous, 𝜓 = - 𝑥 2 + y2 -y +c)  

 

 

QR CODES FOR SUPPORTING VIDEO LINKS  

                                   
(1)                     (2)                      (3)                      (4)                     (5) 

 

REFERENCES AND SUGGESTED READINGS are same as earlier unit  
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UNIT SPECIFICS 

Through this unit we have discussed the following aspects: 

 Forces acting on fluid in motion 

 Euler’s equation, Bernoulli’s equation and Momentum equation 

 Working of Venturimeter, orifice meter and pitot tube and use of these 

equipment to measure discharge and velocity 

 Forces exerted by fluid flow on pipe bend 

 Experimental determination of coefficient of discharge of Venturimeter and 

orifice meter 

This is followed by large number of solved examples. The students are encouraged to 

solve the objective questions, long answer questions and numerical problems to 

judge ones understanding. The practical on determination of coefficient of 

discharge of Venturimeter and orifice meter is included followed by a list of 

references for additional reading.    

RATIONALE 

This unit introduces concept of fluid dynamics in which forces responsible for motion 

are considered for analysis. The Euler’s equation followed by Bernoulli’s are then 

derived which form the working principle of many discharge and velocity 

equipment. Working of the Venturimeter, Orificemeter and pitot tube is therefore 

discussed followed by applying Bernoulli’s equation to this equipment. The 

momentum equation needs to be discussed when one is studying fluid dynamics 

owing to its many applications in fluid dynamics 

   

5 FLUID DYNAMICS  
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PRE-REQUISITES 

Mathematics: Derivatives (Class XII) 

Physics: Mechanics (Class XII) 

Fluid Mechanics: Unit I and II 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

(At the end of this unit, students will understand..) 

U5-O1: Forces acting on fluid in motion 

U5-O2:  Euler’s equation 

U5-O3:  Bernoulli’s equation 

U5-04: Momentum equation 

U5-05 Working of Venturimeter, orifice meter and pitot tube 

U5-06 Experimental procedure to determine coefficient of discharge of 

Venturimeter and  

           orifice meter 

 

Unit-5 Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1-WeakCorrelation;2-Mediumcorrelation;3-StrongCorrelation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U5-O1 3 - - - - - 

U5-O2 3 2 - - - - 

U5-O3 3 2 - - - - 

U5-O4 3 2 - 3 - - 

U5-O5 3 - - 3 - - 

U5-O6 3 - - - - - 

 

5.1 Introduction: 

In kinematics the space-time relationships of the fluid motion have been discussed 

without considering the ‘forces’ responsible for the motion. In the present 

unit the forces responsible for fluid motion are considered to determine the 
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resulting accelerations and the energy change involved in the flow 

phenomenon. This aspect of fluid motion is known as the Dynamics of fluid 

flow. Similar to the mechanics of solids, the mechanics of fluids is governed 

by Newton's second law of motion which states that Force = Mass × 

Acceleration. The fluid is assumed to be incompressible and non-viscous. 

5.2 Surface and Body Forces: 

According to Newton's second law of motion, the net force Fx acting on a fluid 

element in the X direction is equal to mass 𝑚 of the fluid element multiplied 

by the acceleration ax in the x-direction. Thus, 

                    𝐹𝑥 = 𝑚. 𝑎𝑥                             (5.1) 

In the fluid flow various forces influence the fluid motion namely force due to 

gravity (Fg), pressure (Fp), viscosity (Fv), surface tension (Fs) compressibility 

(Fe) and turbulence (Ft). Out of these some are body forces and some are 

surface forces. By body forces we mean the forces which act on the body like 

weight of the body, pressure acting on the body. While the forces which are 

acting along the body surface like shear forces or surface tension are termed 

as surface forces. It is to be understood that all the forces may not act on the 

fluid at the same time as well as all are not equally dominant as discussed in 

the next section. 

5.3 Equations of Motion : 

Thus, as mentioned in the earlier section, in Equation (5.1) the net force along X 

axis, 

           𝐹𝑥  = (𝐹𝑔)𝑥 + (𝐹𝑃)𝑥 + (𝐹𝑣)𝑥 + (𝐹𝑠)𝑥 + (𝐹𝑒)𝑥 + (𝐹𝑡)𝑥                      (5.2) 

In case of incompressible fluids, the force due to compressibility, 𝐹e is negligible, 

then the resulting force is, 

                         𝐹𝑥  = (𝐹𝑔)𝑥 + (𝐹𝑃)𝑥 + (𝐹𝑣)𝑥 + (𝐹𝑡)𝑥                           (5.3) 

and equation of motions are called Reynold's equation of motion. 



FLUID MECHANICS 

206  

For flow where force due to turbulence Ft is negligible, the resulting equations of 

motion are known as Navier-Stokes Equation 

                                 𝐹𝑥  = (𝐹𝑔)𝑥 + (𝐹𝑃)𝑥 + (𝐹𝑣)𝑥                                   (5.4) 

If the flow is assumed to be ideal, viscous force Fv is zero and equation of motion 

are known as Euler's equation of motion which will have the force due to 

gravity and pressure acting on the fluid 

                                    𝐹𝑥  = (𝐹𝑔)𝑥 + (𝐹𝑃)𝑥                                          (5.5) 

Considering the first course on Fluid Mechanics, the present text deals with Euler’s 

equation of motion only and thus other equations are out of scope of the 

present syllabus. 

5.4 Euler's Equation of Motion: 

The forces acting on fluid in motion due to gravity and pressure are taken into 

consideration. This is derived by considering the motion of a fluid element 

along a streamline. 

In figure 5.1, a stream tube of fluid of length ds and area dA is isolated as a free 

body from the moving fluid. The external forces are due to the pressure acting 

on the tube and gravitational force (weight of the stream tube). 

                                                        (a)                                         (b) 

Fig. 5.1 
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The length ds is so small that curvature of the streamlines over this distance may 

be neglected. The external forces which act on the chosen fluid element 

causing the acceleration of flow are as follows: 

1 The resultant force due to pressure acting on the end surfaces in the direction of 

flow is, 

                                     p dA ‒ (𝑝 +
∂𝑝

∂𝑠
𝑑𝑠) dA = ‒ 

∂𝑝

∂𝑠
 ds dA                                          (5.6) 

2 The component of gravity force of the fluid element in the direction of motion 

is, 

                             ‒𝜌 g dA ds sin𝜃 = ‒𝜌 g dA ds 
dz

ds
        (refer Fig 5.1b)                   (5.7) 

The resultant external force acting on the free body in the direction of flow is sum 

of the pressure force and gravitational force  

                                         ∑  Fs = ‒ 
∂𝑝

 ∂s 
 ds dA ‒ 𝜌 g dA ds 

𝑑𝑧

𝑑𝑠
                                         (5.8) 

The sum of these forces is equal to mass multiplied by acceleration (Newton’s 

second law of motion). 

                                                        mass = m 𝜌 dA ds 

                                               as = 
∂V

∂t
  = 

∂S

∂𝑡
 · 
∂V

∂s
  = V 

∂V

∂s
                              

∴                                                 m as = 𝜌 dA ds · V 
∂V

∂s
                                      (5.9) 

According to Newton's law of motion, using Equations (5.8) and (5.9) 

                                 ‒ 
∂𝑝

 ∂s 
 ds dA ‒ 𝜌 g dA ds 

𝑑𝑧

𝑑𝑠
  = 𝜌 dA ds V 

∂V

∂s
                     (5.10) 

or  

Dividing by dA ds  

                                                        ‒ 
1

𝜌
 
∂𝑝

 ∂s 
 ‒ g 

𝑑𝑧

𝑑𝑠
 = V 

∂V

∂s
                                  (5.11) 
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or                                                       
1

𝜌
 
∂𝑝

 ∂s 
 + g 

𝑑𝑧

𝑑𝑠
 + V 

∂V

∂s
  = 0                                     (5.12) 

The equation (5.12) is known as Euler’s equation of motion which is written in 

differential form. The same can be written in a common form as –  

                                                 
𝜕𝑝

𝜌
 + g dz + V dv = 0                                                 (5.13) 

5.5 Bernoulli's Equation:  

 Integration of Euler's Equation Along a Streamline for Steady Flow: 

The Equation (5.13) cannot he integrated completely with respect to distance ‘s’ 

unless mass density of fluid ‘ρ’ is either constant or a known function of 

pressure ‘p’. For fluid of constant density (incompressible), the result of 

integration is,  

                                   
𝑃

𝜌
 + 
𝑉2

2
 + g z = constant                                                 (5.14) 

This is known as Energy equation or Bernoulli's equation.  The Bernoulli's equation 

relates pressure changes to velocity and elevation changes along a streamline. 

However, it gives correct results only when applied to a flow situation where 

the following assumptions made are reasonable. 

1 Only pressure and gravity forces are to be considered. 

2 Flow is along the streamline. 

3 Flow is steady. 

4 Flow is with negligible viscosity. 

5 Flow is ideal. 

6 Fluid is incompressible. 

7 Velocity is uniform over the section. 

Alternatively, 

                                         
𝑃

𝜌𝑔
 + 
𝑉2

2𝑔
 + z = constant = say H                                         (5.15) 
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In the Equation (5.15 each term has dimensions of energy per unit weight; such as 

Nm/N or more simply as ‘m’, indicating a scalar quantity. It is thus 

convenient to refer to each term as a ‘head’.  Therefore, H is called the total 

energy head, and is the sum of pressure, velocity and potential heads. The 

statement of Bernoulli's theorem cab be stated as for steady flow of an 

incompressible frictionless fluid total energy at any point remains constant. 

Fig. 5.2 Total energy heads 

Figure (5.2) depicts the relationship among the types of energy. It is to be noted 

that because of the assumption that no energy is lost or added, the total head 

remains constant and height of each head term varies as predicted by 

Bernoulli's equation. 

The Equation (5.15) can be applied for a single streamline. The sum of the three 

terms is constant along any streamline, but the value of the constant may be 

different for different streamlines in a given stream. If the equation is 

integrated along the streamline between any two points indicated by suffixes 

1 and 2. 

                          
𝑝1

𝜌𝑔
 + 
𝑣1
2

2𝑔
 + Z1 =  

𝑝2

𝜌𝑔
 + 
𝑣2
2

2𝑔
 + Z2                                   (5.16) 
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5.5.1 Limitations on Bernoulli's Equation: 

Although Bernoulli's equation is applicable to a large number of practical 

problems, there are several limitations that must be understood in order to 

apply it properly. 

1 There can be no energy lost due to friction. 

2 There can be no heat transferred into or out of the fluid. 

3 The equation is only applicable for flow of incompressible fluids. 

4 There can be no mechanical devices between the two sections of interest 

which would add or remove energy from the system, since the equation 

states that the total energy in the fluid is constant. 

5.5.2 Modification to Bernoulli's Equation: 

It is evident that in the flow of a real fluid, there will be losses of energy due to 

friction, separation and formation of eddies etc. Therefore, the total head will 

not be constant but decreases in the direction of flow as a result of energy 

dissipation. The modification can be made by considering that the total head 

at section 1 is equal to total head at section 2 further downstream, plus the 

losses between the two sections. Thus, 

                                   
𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1  =  

𝑃2

𝜌g
 + 
𝑉2
2

2g
 + Z2  + losses                                   (5.17) 

In which the losses are also ‘Nm/N’ or in ‘m’ head of the fluid concerned. A further 

modification can be made to take into account an addition or subtraction of 

energy between the two sections. 

Pumps, which convert mechanical energy into hydraulic energy and turbines which 

perform the reverse function are typical examples of this type of energy. 

                                      
𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1 + HP =  

𝑃2

𝜌g
 + 
𝑉2
2

2g
 + Z2                                      (5.18) 

Where Hp is the head supplied by the device. Similarly, 

                                      
𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1 ‒ HT =  

𝑃2

𝜌g
 + 
𝑉2
2

2g
 + Z2                                      (5.19) 
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Where HT is the head extracted by the device. 

The term velocity head in the energy equation considers the velocity to be uniform 

over a cross-section of the conduit which is seldom true in real fluids. In any 

cross-section, velocities of particles will be different and therefore it is 

necessary to integrate the kinetic energies of all portions of the stream to 

obtain its total value. 

If ‘v’ is the local velocity through an elementary area da (which is at right angles 

to v) the mass flow per unit time will be (v da) and the kinetic energy of that 

mass will be (ρ v da) v2/2 

The total kinetic energy across the entire cross- section 

                                              A = ∫  
𝐴

ρ𝑣3

2
 da = 

𝜌

2
∫  
𝐴

v3
da                             (5.20) 

If the exact velocity profile over a cross section is known, the true kinetic energy 

can be determined by using Equation (5.20). 

It is convenient to use average velocity V and an energy correction factor ‘α’; hence 

the kinetic energy at a section can be written as α (𝜌/2)AV3. 

Thus the value of the energy correction factor 𝛼 can be obtained as 

𝜌

2
 ∫  
𝐴

V3 da = α 
𝜌

2
 AV3 

Solving for 𝛼 one gets,  

                                                α = 
1

𝐴
 ∫  
𝐴
(
𝑣

𝑉
)
3

da                                          (5.21) 

In which v is the local velocity over the area da and V is the average velocity over 

the cross sectional area A. 

The value of ‘α’ depends on the velocity variation across the area which in turn 

depends on effects of the viscous shear. Hence ‘α’ is a measure of effects of 

the viscous shear on a flow pattern. While applying the energy equation 

between two sections, one must see whether the velocities at the two sections 

are uniform or nonuniform. 
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If the velocity varies over the cross section, the kinetic energy term needs 

correction and therefore the energy equation takes the form in which 𝛼1 and 

𝛼2 are the energy correction factors at sections 1 and 2 respectively. 

                                         
𝑝1

𝛾
 + Z1 + 

𝛼1𝑣1
2

2g
  = 
𝑝2

𝛾
 + Z2 + 

𝛼2𝑣2
2

2g
                                      (5.22) 

The value of ‘α’ is greater than unity. The greater the variation in the velocity over 

a cross section, the greater will be the value of ‘α’. For laminar flow in circular 

pipes, in which the velocity profile is parabolic, the energy correction factor 

a has a value of 2.0. For turbulent flow, the value of a varies between 1.01 to 

1.15, the nomual values being between 1.03 and 1.06. Most fluid flow 

problems are in the turbulent range of flow for which the value of ‘α’ is 

slightly greater than unity. Assuming ‘α’ to be unity will not, therefore, result 

in any appreciable error. 

For the compressible fluids the Bernoulli's equation takes a different form because 

of the fact that the mass density does not remain constant but varies with the 

pressure. The details of this modifications can be referred in Streeter and 

Wylie. 

5.5.3 The Physical Significance of Bernoulli's Equation: 

The physical significance of Bernoulli's equations can be easily understood by 

referring to figure 5.3. In Fig. 5.3 (a), the total head or total energy is a 

constant for flow without friction and is represented by the total head or total 

energy line as a horizontal line at a constant distance from the datum plane. 

With friction this is not true and the total head line in figure 5.3 (b) is seemed to 

line to be dropping the right. It will be noticed that when the velocity in the 

tube increases, the sum of the potential and pressure head must decrease and 

that for a decreased velocity, the sum of the potential and pressure heads 

increases. 
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                                   (a)                                                              (b) 

Fig. 5.3 Head variation in a tube 

5.6 Momentum Equation: 

The momentum equation is based upon Newton's second law of motion applied to 

the entire flow system. It provides a simple means of relating the hydrostatic 

force and the boundary force to the change of momentum flux that is, the 

momentum which has passed a point during a unit time interval. The force 

and resulting acceleration are analyzed from the overall viewpoint of the 

change which occurs, rather than the viewpoint details of the flow processes 

and internal mechanics. There are number of problems which can be solved 

with the help of momentum equation such as forces on a pipe bend, the forces 

of a jet of water impinging on a wall or on the ground and jet propulsion. 

5.6.1 Impulse-Momentum Equation: 

The momentum of a particle is defined as the product of its mass m and its velocity 

V. 

Momentum = 𝑚𝑉 

The particles of a fluid stream will possess momentum and wherever the velocity 

of the stream is changed in magnitude or direction, there will be a 

corresponding change in the momentum of the fluid particles. 

In accordance with Newton's second law, a force is required to produce this change 

which will be proportional to the rate at which the change of momentum 

occurs. 
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∴ The rate of change of momentum is proportional to the impressed force and takes 

place in the direction of that force. 

Mathematically, 

F = 
𝑑

𝑑𝑡
 (mV) 

                                                       F · dt = d (mV)                                                              (5.23) 

                                                      F · dt = m · dV 

where F · dt is impulse and m · dV is change of momentum. 

Equation (5.23) can be written as, 

      Force = mass ⨯ acceleration 

or                                                         F = m (
V2−V1

t
) 

                                        F = 
𝑚

𝑡
 (V2 ‒ V1)                                             (5.24) 

 m 

𝑡
 is known as mass flow rate. 

                                                   
 mass 

 time 
 = Density ⨯ 

 Volurne 

 time 
 

                     
 mass 

 time 
 = Density ⨯ Volume rate of flow 

                                                      
 mass 

 time 
 = Density ⨯ Discharge = 𝜌 Q 

substituting this value in Equation (5.24) 

                                                      F = 𝜌 Q (V2 ‒ V1)                                                   (5.25) 

The above equation is termed as momentum equation which shows reaction offered 

by the surface by virtue of change in momentum.  
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5.6.2 Momentum Equation for Two Dimensional Flow along a 

Stream Tube: 

It is assumed that fluid is incompressible, the velocity changes uniformly and pipe 

material is non-elastic. 

Fig. 5.4 shows a two dimensional problem in which V1 makes an angle α1 with 𝑥-

axis while V2 makes an angle a2. 

Fig. 5.4 Momentum equation for two dimensional flow 

Since both momentum and force are vector quantities, they can be resolved into 

two components.  

Thus Fx and Fy are the components of the resultant force on the element of fluid 

ABCD. 

 Fx = Rate of change of momentum of fluid in x direction 

                                = 𝜌 Q (V2 cos α2 ‒ V1cos α1) 

                                      = 𝜌 Q (𝑉𝑥2  ‒ 𝑉𝑥1)                                                                                  (5.26) 

Similarly   

      Fy = Rate of change of momentum of fluid in y direction  

                                        = 𝜌 Q (𝑉𝑦2 − 𝑉𝑦1)                                                  (5.27) 

The resultant force is given by, 
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                                  FR = √𝐹𝑥
2 + 𝐹𝑦

2                                      (5.28) 

Direction of resultant force with the horizontal, 

                              tan 𝜃 = 
Fy

Fx
                                                                                        (5.29) 

The momentum theorem is used especially for solving problems related to forces 

on bends, elbows etc. in a pipeline, forces on stationary and moving plates or 

vanes in hydraulic machines, jet propulsion, propellers, in finding out loss of 

head due transitions in cross sectional areas, in finding out loss of energy in 

hydraulic jump in open channels. 

5.6.3 Momentum Correction Factor β: 

Momentum theorem sated above is based on the assumption that the velocity of 

flow is uniform across the cross section. However, in actual practice the 

velocity is not uniform: across the cross section. Thus, the momentum of fluid 

at a section of the passage found out on the basis of average velocity of flow 

at a section is much different from the actual momentum of a fluid passing 

through the section. This is due to the variation of velocity across the section 

of the passage. This necessitated introduction of a correction factor namely 

the momentum correction factor β. The Concept of momentum correction 

factor is similar to energy correction factor.  

Fig. 5.5 Momentum correction factor (𝛽) 
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Momentum of fluid passing the cross-section per second based on variation of 

velocity. 

= ∫  
𝐴
𝜌(𝑣 ⋅ 𝑑𝐴) ⋅ 𝑣 = ∫  

𝐴
𝜌𝑣2𝑑𝐴 

Momentum of fluid passing the section with area 'A' per second based on average 

velocity        

‘V’ = 𝜌 AV2
 

Ratio of these two momentums is called as momentum correction factor and is 

denoted by ‘β’ (beeta). 

∴                                              β =  

 [Momentum per second calculated taking 

 into account actual velocity variation] 

 [Momentum per second calculated 

 on the basis of average velocity] 

  

∴                                              β =  
∫  
𝐴
𝜌𝑣2dA

𝜌𝐴v2
 

                                      β = 
1

𝐴
 ∫  (

𝑣

𝑉
)
2

𝐴

dA                                                              (5.30) 

For Laminar flow through circular pipe β = 1.33. Since for turbulent flow velocity 

distribution is more or less uniform β for turbulent flow is 1.01 to 1.05. In 

general, α > β > 1 

5.7 Fluid Flow Measurements: 

Bernoulli's equation is one of the important tools for solving many problems in 

fluid mechanics. It is applied either singly or in combination with the equation 

of continuity depending upon the results desired.  

While applying this equation, the assumptions and limitations discussed earlier 

should be carefully borne in mind. 

Applications of Bernoulli's theorem can be broadly classified in two categories; 

(1)  Flow through closed conduits 
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(2)  Flows with free surface. 

Such a classification of problems does not necessarily change the method of 

application of Bernoulli's theorem. 

There are various devices for measuring the fluid flow which work on the principle 

of Bernoulli’s equation, the discussions on which is beyond the scope of this 

book. Keeping in view the first course in fluid mechanics Venturimeter, 

Orifice meter are presented here followed by discussion on pitot tube which 

is based on Bernoulli’s principle and used to measure velocity of flow.  

5.8 Venturimeter: 

 Venturimeter is a device used for measuring the rate of flow of a fluid flowing 

through a closed conduit. It consists of five parts as shown in figure 5.6 

 i) Inlet section: 

 It is a starting portion of Venturimeter having same diameter as that of a pipe. 

There is a pressure ring provided with a pressure tapping for measurement of 

pressure head at the inlet section. 

 ii) Converging cone: 

 It is a conical section converging in the direction of flow which reduces the 

area of flow. The angle between the converging walls of the upstream cone is 

about 20∘. 

iii)  Throat: 

 It is small tubular portion with uniform cross-section. The diameter of the 

throat section ranges between 1/3rd to 3/4th of the diameter of inlet. It is 

generally 
1

2
 of the diameter of inlet. Length of the throut section is equal to its 

diameter. A pressure ring with pressure tapping is provided at the throat. 

iv)  Diverging cone: 

 It is a conical tube which diverges gradually in the direction of the flow 

increasing the area of flow. The angle between diverging walls of this 

downstream cone is about 6∘. The angle of this cone is much smaller than 

converging cone so that the length of the diverging cone increases. This 

increased dimension provides sufficient length for the flow to diverge. This 

avoids eddy formation and in tum the energy losses. 
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v)  Outlet section:  

 It is the end portion of Venturimeter and has the same diameter as that of the 

pipe. 

 

Fig. 5.6 Typical Venturimeter 

The size of the venturimeter is expressed in terms of inlet diameter to throat 

diameter. This ratio called as throat ratio should be such that pressure at throat 

section does not become negative. To increase the accuracy of discharge 

measurement the throat diameter is reduced. But this causes velocity to 

increase at throat, correspondingly a large pressure difference is established 

between inlet and throat. But on the other hand pressure may become very 

low at the throat nearing the vapour pressure of the fluid flowing through the 

pipe. In such cases boiling occurs, vapour bubbles form and they collapse as 

the fluid moves into a region of higher pressure. This pressure can produce 

dynamic effects that cause very large pressure transients in the vicinity of 

bubbles. Pressures as large as 690 Mpa are believed to occur. At this point 

the liquid gives out dissolved air and begins to vaporize and continuity of 

flow breaks. This phenomenon is called ‘cavitation’ and is not desirable. It is 

always avoided by keeping the throat diameter sufficiently in the range 

mentioned above. 
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5.8.1 Expression for Discharge Measurement Through     

         Venturimeter: 

Let 𝑎1 and 𝑎2 be the cross-sectional areas at inlet section and throet section 

respectively, Refer figure 5.7. Let P1, P2 and V1,  V2 be pressures and velocities 

at sections 1 and 2 respectively. Considering the flow is incompressible, if 

the losses in venturimeter are neglected, applying the Bernoulli's equation 

between sections 1 and 2. 

 

  

Fig. 5.7 Pressure variation along venturimeter 

𝑃1

ρ g 
 + 
𝑉1
2

2g
  + Z1 = 

𝑃2

𝜌 g
 + 
𝑉2
2

2g
 + Z2 

 

Since pipe is horizontal Z1 = Z2   

∴                                                            
𝑃1

ρ g 
 + 
𝑉1
2

2g
  = 

𝑃2

𝜌 g
 + 
𝑉2
2

2g
 

or                                                
𝑃1−𝑃2

𝜌g
 = 
𝑉2
2−𝑉1

2

2g
 = h                                    (5.31) 

where 
𝑃1−𝑃2

𝜌g
 = h = Difference in piezometric heads at sections 1 and 2 . 
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Applying equation of continuity between sections 1 and 2. 

           Q = a1V1 = a2V2 

or                                                            V1  = (
𝑎2

𝑎1
) V2                         (5.32) 

Substituting the value of V1 in Equation 5.31 

                                    
𝑉2
2 ‒(

𝑎2
𝑎1
)
2
𝑉2
2

2g
 = h 

∴                                          
𝑉2
2

2 g
[1 −

𝑎2
2

𝑎1
2] = h 

∴                                                  
𝑉2
2

2 g
 [
𝑎1 
2− 𝑎2

2

𝑎1
2 ] = h 

∴                                                             𝑉2
2 = 

𝑎1
2(2gℎ)

𝑎1
2− 𝑎2

2                                               (5.33) 

∴                                                        𝑉2 = 
𝑎1√2gℎ

√𝑎1
2− 𝑎1

2
 

Since losses are not considered the velocity 𝑉2 in Equation (5.33) gives theoretical 

value. 

∴  Theoretical discharge                      Qth = a2V2  

∴                                                                       Qth = 
𝑎1𝑎2√2gℎ

√𝑎1
2− 𝑎1

2
                                         (5.34) 

The Equation 5.34 is often written as, 

                                                   Qth = k √ℎ                                                 (5.35) 



FLUID MECHANICS 

222  

Where                                                                        k =  
𝑎1𝑎2√2g

√𝑎1
2−𝑎2

2
                                               (5.36) 

k is called as Venturimeter constant and is dependent upon the geometry of the 

Venturimeter. When a real fluid flows through a Venturimeter it is apparent 

that losses due friction will occur between the inlet and throat section. It will 

result in a pressure difference between the inlet and throat section which will 

be somewhat greater than that expected from an ideal fluid and used in the 

above equation. 

As a result, a coefficient is introduced which will relates actual discharge with 

theoretical discharge. It is called as coefficient of discharge Cd 

                                          Cd = 
 Actusl discharge 

 Theoretical discharge 
 = 
𝑄act 

𝑄th 
                      (5.37) 

Therefore,   

                                         Qact = Cd · Qth ‒ Cd 
𝑎1𝑎2√2gℎ

√𝑎1
2−𝑎2

2
                      (5.38) 

It is to be noted that ‘h’ is the difference of piezometric head of the fluid in the 

meter. The Cd also accounts for effects of non-uniformity of velocity over 

sections 1 and 2. Although Cd varies somewhat with flow rate, viscosity of 

fluid and surface roughness, a value of about 0.98 is usual with fluids of low 

viscosity. 

5.8.2 Vertical 𝑰 Inclined Venturimeter: 

A Venturimeter can also be used for measuring the flow rate through a pipe which 

is held in either vertical or in an inclined position. A Venturimeter connected 

to an inclined pipe is shown in figure 5.8 
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Fig. 5.8 Inclined Venturimeter 

Applying Bernoulli's theorem between section 1 and section 2 for no loss of energy. 

We get, 

                                         
𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝜌g
 + 
𝑣2
2

2g
 + Z2 

∴                                            
𝑣2
2−𝑉1

2

2 g
 = (

𝑃1

𝑃g
+ 𝑧1) ‒ (

𝑃2

𝑃g
+ 𝑧2) 

∴                                                                    
V2
2−V1

2

2 g
 = h                                                                   (5.39)                                         

The same expression which we obtained in equation (5.30), except the difference 

of elevation is included in equation (5.31). In figure 5.8 U-tube manometer is 

used.  The value of h is calculated with the help of a fomula 

                                       h = 𝑥 (
𝑆𝑚

𝑆
− 1) Here Sm > S                                (5.40)                

If inverted U-tube manometer is used  
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                                      h = 𝑥 (1 −
𝑆𝑚

𝑆
) Here S > Sm                                 (5.41) 

where 𝑥 is the manometric deflection Sm is the specific gravity of manometric 

liquid. S is the specific gravity of flowing liquid. 

5.9     Orifice Meter: 

The Venturimeter is undoubtedly the best instrument for measuring flow in pipes 

as it causes very little energy loss considering the coefficient of discharge is 

more than 0.9. Another device which is simpler than Venturimeter is Orifice 

meter or Orifice plate. A simple orifice meter consists essentially of a circular 

plate in which is machined a concentric hole of diameter ‘d’ as shown in 

figure 5.9 installed in a pipe of diameter D. 

 

Fig. 5.9 Orificemeter   

It is to be observed that the section at which the stream lines come closest together 

is not at the Orifice plate but at a section approximately at a distance equal to 

half of the diameter of the plate (d/2) downstream from it. This minimum 

cross-section of the stream tube is known as vena contracta. Pressure tappings 

are made at sections 1and 2; wherein section 1 is at a distance of pipe diameter 

D from the orifice and section 2 is at vena contracta. The pressure at point 2 
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is minimum and velocity maximum, as the area of vena contracta is 

minimum. 

Downstream of section 2 the flow lines break down into a highly turbulent area 

wherein the flow regains its original diameter. The area of vena contracta 𝑎𝑐 

is less than area of orifice a. 

Applying Bernoulli's theorem to sections 1 ‒ 1 and 2 ‒ 2, we get, 

              
𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝜌g
 + 
𝑣2
2

2g
 + Z2    [where Z1 = Z2] 

∴                                       
V2
2−V1

2

2 g
 ‒ 
P1−P2

ρg
 = h                                                                (5.42) 

 where ℎ is the pressure head difference between sections 1 ‒ 1 and 2 ‒ 2 in terms of liquid 

flowing through the pipe and can be determined using a piezometers or U-tube manometer. 

 By continuity equation we can write, 

                                                  aV1 = acV2                                                           (5.43) 

 where A is area of pipe and ac is area of jet at vena contracta.  

                                                                   
𝑎𝑐

𝑎
 = Cc                                                                                            (5.44) 

 where a is area of orifice and Cc is called as coefficient of contraction for the orifice. 

                                                  ac = a · Cc 

 ∴                                                                   aV1 = a · Cc · V2                                                                           (5.45) 

 ∴                                               V1 = Cc · 
𝑎

𝐴
 · V2 

 Substituting value of V1 in Equation 5.34 

                         𝑣2
2

 ‒ 𝐶𝑐
2 (

𝑎

𝐴
)
2
𝑣2
2

  = 2gh 
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                              V2 = √
2gℎ

1−𝐶𝑐
2(
𝑎

𝐴
)
2                                                    (5.46) 

This is the theoretical velocity at vena contracta since losses have not been taken 

into account. To account for losses, coefficient of velocity Cv is introduced. 

                                        Cc  = 
 actual velocity 

 theoretical velocity 
                                                  (5.47) 

∴                             V2 actual = Cv · V2 theoretical 

                            V2 actual = Cv √
2gℎ

1−𝑐𝑐
2(
𝑎

𝐴
)
2                                                (5.48) 

Actual discharge                 Q = Ce · a · V2  

∴                                              Q = 
𝐶𝑐𝐶𝑣

√1−𝐶𝑐
2(
𝑎

𝐴
)
2

 · a · √2gℎ                                    (5.49) 

But                                     Cc · Cv = Cd                                                                (5.50) 

∴                                                Q = 
𝐶𝑑

√1−𝐶𝑐
2(
𝑎

𝐴
)
2

 · a · √2gℎ                         (5.51) 

Defining, coefficient of orifice meter        

                                                       C =  
1

√1−𝐶𝑐
2(
𝑎

𝐴
)
2

                                               (5.52) 

∴   The equation can be written as, 

                                                         Q = Cd · C · a√2gh                             (5.53) 
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In general, for high values of discharge the coefficient of discharge is 

approximately 0.62 to 0.65 indicating that losses are fairly high. This 

endorses the earlier stamen that Venturimeter is a better equipment as far as 

accuracy is concerned in that it has coefficient of discharge greater than 0.9 

meaning losses are less. 

5.10 Pitot Tube: 

The velocity at a point or a number of points throughout a section in a fluid stream 

is often needed in order to establish the velocity profile. This velocity profile 

may be used to obtain the average velocity throughout the section from an 

integration of the velocity profile in order to determine the flow rate in the 

fundamental studies of boundary layers or wakes. A point velocity is almost 

impossible to measure since any sensing device occupies a finite region. 

However if the area of the flow occupied by the sensing device is very small 

compared with the total area of the flow stream the measured velocity can be 

considered to be a point velocity. 

A useful concept associated with Bernoulli's equation deals with the dynamic and 

stagnation pressures. 

The Bernoulli's equation cam also be written in the form, 

                               P + 
1

2
 𝜌V2 + 𝜌gz = constant                                        (5.54) 

The first term, 𝑃 is the actual thermodynamic pressure of the fluid as it flows. To 

mensure its value one can move along with the fluid thus being static relative 

the moving fluid. Henoe it is normally termed as static pressure. The third 

term in the equation (5.46) ρgz is termed as hydrostatic pressure. It represents 

a pressure due to potential energy, by virtue of its elevation. The second term 

in the equation (5.46) 
1

2
 𝜌V2 is termed as dynamic pressure. 

 Refer figure 5.10. The point 2 is called as stagnation point as velocity of fluid at 

that point is zero. 
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Fig. 5.10 Measurement of static and stagnation pressure 

 Applying Bernoulli's equation between points (1) and (2). 

P1 + 
𝜌𝑉1

2

2
 = P2 + 

𝜌𝑉2
2

2
 (Z1 = Z2) 

At point 2,                                              V2 = 0 

∴                                                               P2 = P1 + 
ρv1

2

2
                                                    (5.55) 

Hence pressure at stagnation point (2) is greater than the static pressure at point (1) 

by an amount 
𝜌𝑉1

2

2
 , the dynamic pressure which is also evident from 

Bernoulli’s equation.  

 

The Equation (5.47) can be written as 

Stagnation pressure = Static pressure + Dynamic pressure 

If the elevation effects are neglected, the stagnation pressure is the largest pressure 

obtainable along a stream line. It represents the conversion of all the kinetic 

energy into a pressure rise. This principle is used in construction of pitot tube 

(Fig. 5.11). Pitot tube provides one of the most accurate means of measuring 

the velocity of fluid flow.  For an open stream of liquid only single tube is 

necessary as shown in figure 5.11. Applying Bernoulli's equation we get, 
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                                                 V1 = √2gh                                                    (5.56) 

If the stream velocity at a point in a pipe is to be measured the same equation is 

obtained 

 (a) in open channel             (b) in a pipe          (c) in a pipe connected to a 

manometer 

Fig. 5.11 Pitot tube 

In practice, it is difficult to measure the height ‘h’ above the surface of the moving 

liquid. The tubes in 5.11 (b) may be connected to a differential U-tube 

manometer as shown in figure 5.11(c) to result in a more convenient system. 

The ‘h’ is obtained very easily as in case of Venturimeter. 

∴                                                     

ℎ  = 𝑥 (
𝑆𝑚

𝑆
− 1)

 𝑉  = √2gx (
s

s
− 1)

                                  (5.57) 

5.10.1 Pitot Static Tube: 

Sometimes, both static pressure measuring tube and the stagnation pressure 

measuring tube are combined in one device called pitot static tube as shown 

in figure 5.12 (a) and (b). 
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               (a) Pitot static tube                     (b) Prandtl’s-Pitot tube 

Fig. 5.12 Pitot static tube 

It consists of a small, cylindrical tube surrounded by a closed outer tube with 

annular space in between them. The opening at the inner tube records 

stagnation pressure while the outer tube with holes drilled on it measures the 

static pressure. The pressure head difference can be measured by connecting 

the outlets from the pitot-static tube to the ends of a U-tube differential 

manometer. Figure 5.12 (b) shows some specific dimensions as suggested by 

Prandtl, which is known as Prandtl's-Pitot tube. 

The foregoing sections presented determination of position, velocity and 

acceleration of fluid particle at a particular time ‘t’ using the force responsible 

for it by using the Bernoulli’s equation. The modified form of Bernoulli’s 

equation was also presented along with its applications especially for 

discharge and velocity measuring equipment. The momentum equation was 

also derived which is another way of solving the fluid flow problem. 
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5.11 Solved Examples: 

Ex. 5.1 : A reducing bend is placed in A pipeline such that the direction of 

flow of water is turned through 60∘ in the horizontal plane and the 

pipe diameter is reduced from 0.25 m to 0.15 m. The velocity and 

pressure at the entry to the bend are 1.5 m/s and 300 kN/m2 gauge 

respectively. At the exit the pressure is 287.2 KN/m2 gauge. 

i)  Determine the force exerted by the bend on the water. 

ii)  What would be the force of the water on the bend? 

Solution: 

Angle of bead = 𝜃 = 60∘ 

Bend is in horizontal plane i.e. 𝑍1 = 𝑍2 

Fig. Ex. 5.1 

A1V1  =  A2V2 

                                          
𝜋𝑑1

2

4
 ⨯ V1  =  

𝜋𝑑2
2

4
 ⨯ V2 

                             
𝜋×0.252

4
 ⨯ V1  =  

𝜋×0.152

4
 ⨯ V2 

                                       0.0491 V1 = 0.0177 V2 
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∴                                                 V1 = 0.3599 V2 

 But V1 = 1.5 m/sec 

∴                                                          V2 = 4.17 m/sec 

∴                                                    Q = A1V1 ‒ 0.0491 ⨯ 1.5 

                                                          = 0.07365 m3/sec 

The momentum equation in 𝑥-direction is given by equation 

P1 A1 ‒ P2 A2 cos 𝜃 + Fx =  Q (V2 cos 𝜃 ‒ V1) 

300 𝗑 103 𝗑 0.0491 ‒ 287.2 𝗑 103 𝗑 0.0177 cos 600 + Fx  

                                          = 1000 𝗑 0.07365 (4.17 cos 600 – 1.5) 

∴                                   Fx = ‒ 12145.19 N 

Similarly, the momentum equation in y-direction is given by 

equation 

‒ P2 A2 cos 𝜃 + Fy = 𝜌 Q (V2 sin 𝜃 ‒ 0) 

287.2 𝗑 103 𝗑 0.0177 cos 600 + Fy  

                                             = 1000 𝗑 0.07365 (4.17 sin 600 ‒ 0) 

∴                                  2541.72 + Fy = 265.974 

∴                                                           Fy = ‒ 2275.745 

Force exerted by bend on fluid 

                                                      = F = √F𝑥
2 + Fy

2 

                                       = √(−12145.19)2 + (−2275.745)2 

                                             =  12356.56 N 

An equivalent force would be acted on by water on bend. 

 

 

Ex. 5.2 : A 900 bend in a 15 cm diameter pipe carries oil of specific gravity 

0.8 at 110 lit/sec under a pressure of 0.8 m of oil at the entrance. 

Find the force on the bend. 
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Solution:  

Angle of bend = angle through which water get deflected = 𝜃 = 900  

d1 = d2 = 15 cm = 0.15 m 

S0 = 0.8 

Q = 110 lit/sec = 110 𝗑 10‒3 m3/sec = 0.110 m3/sec 

P1 = 0.8 m of oil 

Fig. Ex. 5.2 

 

Assuming the bend is in a horizontal plane i.e. 𝑍1 = 𝑍2 

Using continuity equation 

Q = A1V1 ‒ A2V2 

∴                                                A1 = A2 ⟶ V1 = V2 

∴                                                  Q = 
𝜋𝑑1

2

4
 𝗑 V1 



FLUID MECHANICS 

234  

                                                    0.110 = 
𝜋×0.152

4
 𝗑 V1 

∴                                                  0.110 = 0.0177 V1 

∴                                                         V1 = 6.22 m/sec 

Applying Bernoulli's equation at 1 and 2 : 

                                   
𝑃1

𝛾
 + 
𝑣1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑉2
2

2g
 + Z2 

∴                                                 V1 = V2 Z1 – Z2 

                                                    P1 = P2 

The momentum equation in 𝑥-direction : 

                                       P1 A1 + Fx = 𝜌Q (0 ‒ V1) 

                             0.8 𝗑 0.0177 + Fx = ‒1000 𝗑 0.110 𝗑 6.22 

∴                                                   Fx = ‒684.2 ‒ 0.01416 

                                                          = ‒684.2142 N 

The momentum equation in 𝑦-direction 

                                      ‒P2 A2 + Fy = 𝜌Q (V2 ‒ 0) 

                            ‒0.8 𝗑 0.0177 + Fy = +1000 𝗑 0.110 𝗑 6.22 

∴                                                    Fy = 684.2142 N 

∴                                 Force on fluid = √𝐹𝑥2 + 𝐹𝑦2 

                                                           = 

√(684.2142)2 + (+6842142)2 

                                                           = 967.62 N 

∴       Force exerted on the bend will have the same magnitude but 

opposite direction to F  

 



FLUID MECHANICS 

235  

Ex. 5.3 : The centre line of tapered pipe AB slopes down from A to B at an 

angle of 300 to the horizontal. The distance AB is 5 m and the 

diameter increases uniformly from 100 mm at A to 150 mm at B. 

The pipe carries petrol (S = 0.74) and pressure gauges are installed 

at A and B. Find (a) the flow rate when the reading on the pressure 

gauges are equal, (b) the pressure difference across AB for the same 

flow rale when the direction of taper is reversed. 

Fig. Ex. 5.3 

Solution: 

                          Angle of inclination 𝛼 − 30∘ 

    l(AB) = 5 m 

    Diameter at A = 100 mm  

    Diameter at B = 150 mm  

    Specific gravity (S) = 0.74  

Q = VA aA = VB aB Applying the Bernoulli's equation 

between A and B. 

𝑃𝐴

𝑆𝜌g
 + 
𝑣𝐴
2

2g
 + ZA = 

𝑃𝐵

𝑆𝜌g
 + 
𝑣𝐵
2

2g
 + ZB 

[Here 
PA

S𝜌g
 = 
PB

Sρg
 =  Given] 

                            ZB ‒ ZA ‒ 
𝑣𝐴
2−𝑣𝐵

2

2g
 = 
𝑣𝐵
2

2𝑔
 [
𝑣𝐴
2

𝑣𝐵
2 − 1] 
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                                             l sin α  = 
𝑣𝐵
2

2𝑔
[
𝑎𝐴
2

𝑎𝐵
2 − 1] 

                                          5 sin 300 = 
𝑣𝐵
2

2 g
[(
0.15

0.1
)
4
− 1] 

                                                   2.5 = 
vB
2

2×9.81
 [5.0625 ‒ 1] 

                                                   2.5 = 
vB
2×4.0625

2×9.81
 

                                      vB
2 = 

2.5

0.207
 = 12.0738 

                                                   VB = 3.474 m/s  

                                        Q = aBvB = 
𝜋

4
 (0.15)2 𝗑 3.474 = 0.0614 m3/s  

                                                        = 61.4 liters/s 

                                             QAVA = aBvB 𝗑 3.747 = 0.0614 m3/s 

                                            0.0614 = (0.1)2 𝗑 vB  

∴                                                 vB = 7.82 m/s 

and                                       0.0614 = 
𝜋

4
 (0.15)2 𝗑 vA   

∴                                                                   vA = 3.474 m/s  

Applying the Bernoulli's equation between points A and B. 

                           
pA

Spg
 + 
vA
2

2 g
 + ZA = 

pB

S𝜌g
 + 
vB
2

2 g
 + ZB 

                         
pB−pA

S𝜌g
 = 
vA
2+vB

2

2 g
 + (ZA ‒ ZB) 

                         = 0.615 ‒ 3.11684 ‒ 2.5 = ‒2.5 ‒ 2.5 = ‒5 

or                      PA ‒ PB = 0.74 𝗑 1000 𝗑 9.81 𝗑 5 

                                       = 36297 N/m2 = 36.297 kPa  
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Ex. 5.4: A. Francis turbine has a vertical draft tube. The diameter of the tube 

on the upper side is connected to the outlet of the turbine runner and 

through which water enters is 600 mm and that of the outlet is 900 

mm. The tube is running full with water flowing downwards and it is 

6 m long with 1 m of its bottom length drowned in tail race. The 

frictional loss in the vertical draft tube is K  

(
𝑣1
2−𝑣2

2

2𝑔
) where K is efficiency of conversion 90%. The velocity at 

the entrance to the draft tube is 8 m/s. Find the pressure at the entrance 

of the draft tube. Take datum at the water surface. 

Fig. Ex. 5.4 

Solution: 

Diameter D1 = 600 mm (inlet) 

                         D2 = 900 mm (outlet) 

         Length of tube = 6 m + 1 m in drowned condition. 

          Frictional loss = K(
v1
2−v2

2

2 g
)  

                         V1 = 8 m/s 

a1V1 =  a2V2 

                             
𝜋

4
 (0.6) 2 𝗑 6 = 

𝜋

4
 (0.9)2 𝗑 V2 
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                                                           V2 = 
1.696

0.636
 = 2.66 m/s 

                                                      h𝑓 = k (
𝑣1
2−𝑣2

2

2g
) 

                         0.9 [
(6)2−(2.66)2

2×9.81
] =  0.9 𝗑 1.474 = 1.3268 

Putting Z1 = 5 m, Z2 = ‒1 m (below the datum line). 

Applying Bernoulli's equation between point 1 and 2. 

                         
𝑃1

𝜌g
 + 
𝑣1
2

2 g
 +  Z1  =  

𝑃2

𝜌g
 + 
𝑣2
2

2g
 + Z2 + h1 

                               
𝑃1

𝜌g
 + 

(6)2

2×9.81
 + 5 = 0 + 

(2.66)2

2×9.81
 ‒ 1 + 1.3268 

                                                    
𝑃1

𝜌g
 = 0.36 ‒ 1 ‒ 5 ‒ 1.83486 + 13268 

                                                          = ‒6.148 m of water 

                                                      P1 = ‒60.25 kPa  

                                                           = 60.25 kPa (vacuum) 

 

Ex. 5.5: In a vertical pipe conveying kerosene (s = 0.8), pressure gauges are inserted 

at A and B, where the diameters are 150 mm and 75 mm respectively. The 

point B is 3 m below A and when the rate of flow down the pipe is 20 liters/s. 

The pressure at B is 9 kPa greater than at A. Assuming that the losses in the 

pipe between A and B can be expressed as K𝑣𝜌
2/2g where vA is the velocity 

at A, find the value of 𝑘. 

 



FLUID MECHANICS 

239  

 

Fig. Ex. 5.5 

Solution: 

Specific gravity of kerosene s = 0.8  

DA = 150 mm, DB = 75 mm 

                                 l(AB) = 3 m, B is below A 

                                       Q = 20 lit/sec 

                     Pressure at B = Pressure at A + 9 kPa 

                         pB ‒ pA = 9 kPa 

                     
𝑝𝐵−𝑝𝐴

𝑆𝜌g
  = 

9

0.8×9.81
  

                                           = 1.146 m of kerosene 

From continuity equation: 

                                               Q = aA vA = aB vB  

                                 vA = Q/ aA = 
0.02

𝜋/4(0.15)2
 = 1.13 m/s 

                                 vB = Q/ aB = 
0.02

𝜋/4(0.15)2
 = 4.527 m/s 
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Applying the Bernoulli's equation between points A and B: 

𝑃𝐴

𝑆𝜌g
 + 
𝑣𝐴
2

2g
 + ZA = 

𝑃𝐵

𝑆𝜌g
 + 
𝑣𝐵
2

2g
 + ZA + ZB + k𝑣𝐴

2 /2g 

    
PA−PB

S𝜌g
 + 
vA
2−𝑣B

2

2 g
 + (ZA ‒ ZB) = k(𝑣𝐴

2 /2g) 

                                ‒1.146 + 0.065 ‒ 1.044 + 3 = k(0.065) 

                                                       3.065 ‒ 2.19 = k(0.065) 

                                                                  0.875 = k(0.065) 

∴                                                                       k = 13.46 

 

Ex. 5.6 : Water is pumped at the rate of 300 litres/sec through a 30 cm pipe 

upto a hill wop. On the hill top which has an elevation of 50 m, the 

diameter of pipeline reduces to 20 cm. If the pump maintains a 

pressure of 981 bar at the hill top, what is the pressure at the foot hills 

having zero elevation? What is the power required to pump the 

water? 

Solution: 

                   Discharge Q = 300 lit/sec = 0.3 m3/s  

Diameter D1 = 30 cm = 0.3 m  

Elevation Z2 = 50 m  

Diameter D2 = 20 cm = 0.2 m  

Pressure P2 = 981 bar = 980 𝗑 102 N/m2   

         Discharge Q = 300/1000 = 0.3 m3/5  

Velocity of flow at 30 cm section,                       

V1 =  
0.3

𝜋

4
(0.3)2

 = 4.24 m/s 
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Velocity of flow at 20 cm section,                       

V2 = 
0.3×4

𝜋(0.2)2
 = 9.55 m/s  

Applying. Bernoulli's equation between the pipeline sections at the 

foot hills and at the hill top, neglecting energy losses in between, 

noting that 

                                   1 bar = 100 N/m2, 

               0 + 
𝑝1

𝛾
 + 
(4.24)2

2×9.81
 = 50 + 

981×100

9810
 + 
(9.55)2

2×9.81
  

                                           = 64.65 m of water  

resulting in,                                                 

                                      P1 = 63.734 𝗑 9810 N/m2  

                                           = 625.2 kN/m2  

                                                          = 6252 bar 

    Pressure at the foot hills = 6252 bar 

Power required to pump water to the hill top. 

                                            = 𝛾QH  

                                            = 9810 𝗑 0.3 𝗑 64.65  

                                            = 190265 Nm/s 

                                            = 190265 W  

                                            = 190.265 kW 
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Ex. 5.7: A pipe 20 cm in diameter is connected to a water tank as shown in 

Fig Ex 5.7. A nozzle fitted at the end of the pipe discharges into the 

atmosphere. Calculate the flow rate and the pressure at A, B, C and 

D. Neglect losses. The diameter of the nozzle throat is 5 cm. 

Fig. Ex. 5.7 

Solution: 

Diameter of pipe 20 cm 

Diameter of nozzle throat 5 cm  

Figures shows difference of elevation between AB = 5.75 m, BC = 

1.5 m 

Applying Bernoulli's equation between the water surface in the tank 

and the jet of water issued from the nozzle, taking the nozzle axis as 

the datum, and neglecting losses, 

(5.75 + 1.8) + 0 + 0 = 
𝑉2

2 g
 + 0 + 0 

∴ Velocity of jet,     V = √2 × 9.81 × 7.55  = 12.17 m/s 

The flow rate,         Q = 
𝜋

4
(
5

100
)
2

 𝗑 12.17 = 23.9 liters/sec  

Velocity in the 20 cm pipe 

                                    =  
0.0239×4

𝜋×(0.2)2
  = 0.76 m/s 



FLUID MECHANICS 

243  

The pressures at A, B, C and D may be obtained by applying 

Bernoulli's equation between the water surface in the tank and these 

points. 

i) Pressure at A :     5.75 + 0 + 0 = 
(0.76)2

2×9.81
 + 
𝑃A

𝛾
 

 ∴                                 
𝑃𝐴

𝛾
 = 5.7205 m of water 

∴                               PA = 5.72 𝗑 9810 N/m2 = 56.1 kN/m2 

                                       = 561 bar 

ii) Pressure at B :           0 + 0 + 0 = 0 + 
(0.76)2

2×9.81
 + 
PB

𝛾
  

∴                                                     
𝑃𝐵

𝛾
 = ‒0.0295 m of water 

∴                                                PB = ‒0.0295 𝗑 9810 

                                                        = ‒289.4 N/m2 

 iii) Pressure at C :           0 + 0 + 0 = 1.5 + 
(0.76)2

2×9.81
 + 
Pc

𝛾
  

∴                                                        
𝑃𝑐

𝛾
 = ‒1.529 m of water 

∴                                                 PC = ‒1.5295 𝗑 9810 = ‒15.0 kN/m2 

iv) Pressure at :  5.75 + 1.8 + 0 + 0 = 
(0.76)2

2×9.81
 + 
𝑃d

𝛾
 + 0 

                                                  
𝑃d

𝛾
  = 7.5205 m of water 

                                                         = 7.5205 𝗑 9810 N/m2 

                                                         = 73.8 kN/m
2
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Ex. 5.8 : Water moves steadily through the turbine shown in the Fig. Ex. 5.8 at the rate of 

0.23 m3/s. The pressures at (1) and (2) are 186.4 kN/m2 and ‒19.6 kN/m2 

respectively. Neglecting heat transfer, determine the horsepower delivered to the 

turbine from water. 

Fig. No. 5.8 

Solution: 

            Discharge                  Q = 
0.23 m3

s
 

  Pressures at (1) and (2) = 186.4 kN/m2 and ‒19.6 kN/m2  

  Velocity at the 20 cm section: 

                     ‒ 
0.23×4

𝜋(0.2)2
  = 7.32 m/s 

  Velocity at the 40 cm section 

                                       = 
0.23×4

𝜋×(0.4)2
 = 1.83 m/s 

Energy head available at (1) with reference to horizontal datum 

passing section (2): 

                             = 1.30 + 
186.4×103

9810
 + 
(7.32)2

2×9.81
 = 23.035 Nm/N 

Energy head in the flow at section (2) : 

                                       = 0 ‒ 
19.6×103

9810
 + 
(1.83)2

2×9.81
  = ‒ 2.0 + 0.171 

                                       = ‒ 1.829 Nm/N 
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Energy head utilised by the turbine, 

                                      = 23.025 ‒ (‒ 1.829) 

                                      = 24.864 Nm/N 

Power delivered to turbine: 

                                      = 𝛾Q 𝗑 24.864 = 9810 𝗑 0.23 𝗑 24.864 

                                       = 56 𝗑 103 W = 56 kW 

 

Ex. 5.9: A 1200 bend cum reducer has 300 mm diameter at inlet and 200 mm 

diameter at the outer end. When it carries a flow 0.3 m3/s of water, the 

pressure at that inlet section is 210 kN/m2. Assuming no energy loss 

in the bend determine the force exerted by the water on the bend. The 

bend is in a horizontal plane. 

Fig. Ex. 5.9 

Solution: 

          Angle of bend = 𝜃 = 1200 

  d1 = 300 mm = 0.3 m 

  d2 = 200 mm = 0.2 m 

  Q = 0.3 m3/sec 
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  P1 = 210 kN/m2 = 210 𝗑 103 N/m2 

  Bend is in a horizontal plane i.e. Z1 = Z2  

Using continuity equation:  

Q = A1 V1 = A2 V2 

∴                                         V1 = 
Q

A1
 

                                    = 
Q

𝜋d1
2

4

 = 
0.3

(
𝜋×0.32

4
)
 

and                                     V2 = 

Q

A2

0.07
 = 4.29 m/sec 

                                                = 
Q

𝜋d2
2

4

 = 
0.3

(
𝜋×0.22

4
)
 

                                                = 
0.3

0.03
 = 10 m/sec 

Applying Bernoulli's equation at 1 and 2 : 

                          
𝑃1

𝛾
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑣2
2

2g
 + Z2 

               
210×103

9810
 + 

4.292

2×9.81
 = 

𝑃2

9810
 + 

102

2×9.81
 

                   21.4067 + 0.9380 = 
𝑃2

9810
 + 5.0968 

∴                                         P2 = 169201.899 N/m2 

The momentum equation in 𝑥-direction : 

                P1 A1 + P2 A2 cos 𝜃1 + FX = 𝜌 Q (‒V2 cos 𝜃2 – V1) 

210 𝗑 103 𝗑 0.07 + 169201.899 𝗑 0.03 cos 600 + FX  

                                                       = 1000 𝗑 0.3(‒10 cos 600 ‒ 4.29) 

∴                    14700 + 2538.03 + FX = ‒ 2787 
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∴                                                    FX = ‒ 20025.03 N 

The momentum equation in 𝑦-direction 

                                P2 A2 sin 𝜃1 + Fy = 𝜌 Q (V2 sin 𝜃1 – 0) 

    ‒ 169201.899 𝗑 0.03 𝗑 sin 600 + Fy = 1000 𝗑 0.3 (10 sin 600) 

                                    ‒ 4395.99 + Fy = 6994.07 N 

∴                   Force acting on the fluid = F = √Fx2 + Fy2 

                                                      

                                                       = √(−20025.03)2 + (6994.07)2 

                                                              = 21211.29 N 

The force exerted by the water on the bend will have same magnitude 

but opposite direction to ' 𝐹 '. 

 

Ex.5.10: A pipe of varying section has a sectional area of 3000, 6000 and 1250 

mm2 at point A, B and C situated 16 m, 10 m and 2 m above datum. 

If the beginning of the pipe is connected to a tank which is filled with 

water to a height of 26 m above datum, find the discharge and the 

velocity and pressure heads at A, B and C. neglect all losses. Take 

atmospheric pressure equation to 10 m of water. 
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Fig. Ex. 5.10 

Solution: 

    1) Cross sectional area at A, B, C 3000, 6000, 1250 mm2. 

   2) Datum heads at A, B, C 16 m, 10 m and 2 m. 

   3) Head of water 26 m. 

Applying Bernoulli's equation to point D, A, B and C in turns. 

Applying Bernoulli's equation to D and C: 

                 
𝑃𝐷

𝑃g
 + 
𝑣𝐷
2

2 g
 + ZD = 

𝑃𝐶

𝑃g
 + 
𝑣𝐶
2

2 g
 + 𝑥C 

The point D and C are open to atmospheric, hence gauge pressure is 

zero. 

                              0 + 0 + 26 = 0 + 
𝑣𝐶
2

2g
 + 2 

                                          
𝑣𝐶
2

2g
 = 24 

                                         𝑣𝐶
2

 = 24 𝗑 2 𝗑 9.81 = 470.88 

                                VC = 21.7 m/s 

Therefore,                           Q = aC vC ‒ 
1250

106
 𝗑 21.7 = 0.0271 m3/s 

By continuity equation 

                                 Q = aA vA = aB vB = aC vC 

Therefore, 

vA = 
𝑄

𝑎𝐴
 = 
0.0271×106

3000
 = 9.04 m/s 

vB = 
𝑄

𝑎𝐵
 = 
0.0271×106

6000
 = 4.52 m/s 
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i) Applying Bernoulli's theorem between water surface i.e. at D and 

A 

            
𝑃𝐷

𝜌G
 + 
𝑣D
2

2 g
 + ZD = 

𝑃A

𝜌g
 + 
𝑣𝐴
2

2 g
 + ZA 

                   0 + 0 + 26 = 
𝑃A

𝜌g
 + 
(9.04)

2×9.81
 + 16 

                               
PA

𝜌g
 = 26 ‒ 16 ‒ 4.1652 = + 5.8348 m of water 

                                     = 15.8348 (absolute) m of water 

ii) Applying Bernoulli's theorem between D and B. 

          
𝑃𝐷

𝜌g
 + 
𝑣𝐷
2

2g
 + ZD = 

𝑃𝐵

𝜌g
 + 
𝑣𝐵
2

2g
 + ZB 

                    0 + 0 + 26 = 
𝑃3

𝜌g
 + 
(4.52)2

2×9.81
 + 10 

                        
𝑃B

PB
 = 26 ‒ 10 ‒ 1.0413 = 14.958 m of water gauge 

                                      = 14.958 + 10 = 24.958 mm of water absolute 

 

Ex. 5.11: A 10 cm 𝗑 5 cm horizontal Venturimeter carries 50 lit/sec of water 

and has Cd = 0.97. Find the deflection in a mercury manometer 

connected between entrance and throat, 

Solution: 

d1 = 10 cm = 0.1 m 

d2 = 5 cm = 0.05 m 

                                    Z1 = Z2            ∵ Venturimeter is horizontal 

                                      Q = 50 lit/sec. = 50 𝗑 10‒3 m3/sec 

                                     Cd = 0.97 
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                                             S = 1.0 (Flowing fluid is water) 

                                           Sm = 13.6 (Manometric fluid is mercury) 

Using Bernoulli's equation at entrance and throat: 

                                    
𝑃1

𝑌
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑉2
2

2g
 + Z2 

∴     h = (
𝑃1

𝛾
+ 𝑍1) ‒ (

𝑝2

𝛾
+ 𝑍2) = 

𝑣2
2

2g
 ‒ 
𝑣1
2

2g
 

and                                                  h = 𝑥(
𝑆𝑚

𝑆𝑎
− 1) = 

𝑣2
2

2g
 ‒ 
𝑣1
2

2g
 

Using continuity equation (use of Cd) : 

                                                Qact Qth = Cd 

                                                      Qact = Cd · Qth 

                                                      Qact = Cd · a1 V1 = Cd · a2 V2 

∴                                           50 𝗑 10‒3 = 0.97 𝗑 
𝜋×0.12

4
 𝗑 V1 

                                                             = V1 = 6.56 m/sec 

Similarly                              50 𝗑 10‒3 = 
0.97 × 𝜋0.052

4
 V2  

∴                                                     V2 = 26.25 m/sec 

∴                                     𝑥(
13.6

1.0
− 1) = 

26.253

2×9.81
 ‒ 

6.562

2×9.81
 

∴                                                               𝑥 = 
35.12−2.19

12.6
 = 2.61 m 

∴  Deflection in a mercury manometer is 2.61 m. 
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Ex. 5.12 : A 30 m 𝗑 15 cm venturimeter is fitted in a horizontal pipeline 

carrying ail of specific gravity 0.8. The pressure at the inlet of the 

meter is 14 N/cm2 and at the throat the vacuum pressure is 37 cm of 

mercury. Assuming 5% of the differential head is lost between the 

inlet and throat, determine the rate of flow of oil through the 

pipeline. 

Solution: 

d1 30 cm = 0.3 m,        d2 = 15 cm = 0.15 m 

  S = 0.8,             P1 = 14 N/cm2 = 14 𝗑 104 N/m2 

  
𝑃2

𝛾
 = ‒ 37 cm of mercury, hL = 0.05(

𝑃1

𝛾
−
𝑃2

𝛾
) 

𝑃2

𝛾
 = ‒ 37 cm of mercury 

                                             = ‒0.37 cm of mercury 

                                             = ‒0.37 𝗑 13.6 = ‒ 5.032 m of water 

                                             = 
−5.032

0.8
 = ‒ 6.29 m of oil 

                                         h1 = 0.05 (
𝑃1

𝛾
−
𝑃2

𝛾
) 

                                     = 0.05 (
14×104

9810×0.8
− (−6.29)) 

                                              = ‒0.05 (17.83 + 6.29) 

                                              = 1.206 m 

Horizontal Venturimeter    

∴                                       Z1 = Z2             

Using continuity equation: 

                               a1 V1 = a2 V2 

                      
𝜋𝑑1

2

4
 𝗑 V1 = 

𝜋𝑑2
2

4
 𝗑 V2 

                            0.0707 V1 = 0.01767 V2 
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∴                                      V1 = 0.25 V2 

Using Bernoulli's equation: 

                        
𝑃1

𝛾
 + 
𝑣1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑉2
2

2g
 + Z2 + hL 

       
14×104

0.8×9810
 + 
(0.25𝑉2)

2

2×9.81
 = ‒6.29 + 

𝑉2
2

2×9.81
 + 1.206 

         17.83 + 3.18 𝗑 10‒3 𝑉1
2  = ‒6.29 + 0.05 V2

2 + 1.206 

                                          V2 = 20.79 m/sec 

Rate of flow of oil through the pipeline 

                                            Q = a2V2 = 0.1767 𝗑 20.79 

                                                = 3.67 m3/sec 

 

Ex. 5.13 : A 500 mm diameter vertical Venturimeter discharges water through 

a throat of Q 250 mm diameter. The pressure difference measured 

by a inverted U tube manometer. The vertical distance between inlet 

and throat section is 500 mm. 

Determine 

(a) the difference in pressure between these two sections when the 

discharge through the meter is 600 litres/s and (𝑏) the manometer 

deflection 𝑥 as if the inverted U contains air. Take Cd as unity. 

Solution: 

  d1 = 500 mm = 0.5 m  d2 = 250 mm = 0.25 m 
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  Vertical distance Z1 ‒ Z2 = 500 mm = 0.5 m 

  C4 = 1 

Fig. Ex. 5.13 

       Q = Cd 
𝑎1𝑎2√2gℎ

√𝑎1
2−𝑎2

2
 = Cd 

𝑎1√2gℎ

√(
𝑎1
𝑠2
)
2
−1

 

                      600 𝗑 10‒3 = 
0.19635√2×9.81×ℎ

√16−1
 

                      600 𝗑 10‒3 = 0.22456 √ℎ 

                                    √ℎ = 2.67 

                                    h = 7.1389 

                                    h = 
𝑃1

𝑃𝐸
 = 
𝑃2

𝑃g
 + (Z1 ‒ Z2) 

                            7.1389 = 
𝑃1−𝑃2

𝑃g
 + 0.5 

                            
𝑃1−𝑃2

𝑃g
 = 7.1389 ‒ 0.5 = 6.6389 
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∴                         (P1 ‒ P2) = 𝜌 g 𝗑 6.6389 

                                        = 1000 𝗑 9.81 𝗑 6.6389  

                                        = 65.1278 𝗑 103 N/m2 

                                        = 65.1278 kPa        

                                     h = 𝑥 [1 −
𝑆air 

𝑆water 

] 

                                     h = 𝑥 [1 −
𝜌eir 

𝜌water 
] 

Taking                        Pair  = 1.2 kg/m3 

                                  Pwater = 1000 kg/m3 

Therefore,           7.1389 = 𝑥 [1 −
1.2

1000
] 

                               7.1389 = 𝑥 [0.999] 

                                          𝑥 = 7.146 m 

 

 

Ex. 5.14 : A venturimeter measures the flow of water in a 75 mm diameter 

pipe. The difference of head between the throat and the entrance of 

the meter is measured by a U-tube containing mercury, the mercury 

being in contact with the water. What should be the diameter of the 

throat of the meter in order that the difference in level of the mercury 

be 25 cm? When the quantity of water flowing in the pipe is 650 

lpm. Assume ‘Cd’ of the meter as 0.97. 

Solution: 

             d1 = 75 mm = 0.075 m S0 = 1.0 

   Sm = 13.6    𝑥 = 25 cm ‒ 0.25 m 

   Q = 650 lpm = 
650

60
 lps = 

650

60
 𝗑 10‒3 m3/sec = 0.01083 m3/sec 
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                         Cd = 0.97 

Using continuity equation: 

Q = Cd a1V1 = Cd a2V2 

∴                              0.01083 = 0.97 𝗑 4.4179 𝗑 10‒3 𝗑 V1  

∴                                      V1 = 2.53 m/sec 

Similarly                 0.01083 = 0.97 𝗑 0.7854 𝑑2
2 𝗑 V2  

∴                                      V2 = 
0.0142

𝑑2
2  m/sec 

Using Bernoulli's equation: 

                    
𝑝1

𝛾
 + 
𝑣1
2

2g
 + Z1 = 

𝑝2

𝛾
 + 
𝑉2
2

2g
 + Z2 

∴               h = 𝑥(
𝑆𝑚

𝑆
− 1) = (

𝑃1

𝛾
+ 𝑍1) ‒ (

𝑃2

𝛾
+ 𝑍2) ‒ 

𝑣2
2

2g
 ‒ 
𝑣1
2

2 g
 

∴              𝑥 (
𝑆𝑚

𝑆0
− 1) = 

𝑉2
2

2g
 ‒ 
𝑉1
2

2 g
 

                  0.25 (
13.6

1.0
− 1)  

              = (
0.0142

𝑑2
2 )

2 1

2×9.81
 ‒ (

0.0142

𝑑2
2 )

2 1

2×9.81
 

      3.15 = 
1.0277×10−5

𝑑2
4  ‒ 0.3262 

∴                                     d2 = (
1.0277×10−5

3.15+0.3262
)
1/4

 

                                            = (0.2956 𝗑 10‒5)
¼

 

                                            = 0.041 m = 41 mm 
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Ex. 5.15 : A venturimeter whose inlet and throat diameter are 100 and 40 mm 

respectively is used to measure the flow of petrol (specific gravity = 

0.78) along a pipe. The ends of a U tube containing mercury of 

specific gravity 13.6 are connected to the meter at the inlet and 

throat, and the difference of levels is observed to be 480 mm when 

the discharge is 15.6 litres/s. Determine the theoretical venturihead 

(neglecting friction) and hence deduce the coefficient of the meter. 

Assuming that friction losses are directly proportional to the 

measured venturihead, determine this head in mm of mercury when 

the discharge is halved. 

Solution: 

Data :   d1 = 100 mm = 0.1 m            d2 = 40 mm = 0.04 m 

        Specific gravity of petrol = 0.78  

        Q = 15.6 lit/sec = 15.6 𝗑 10‒3 m3/sec  

                 𝑥 = 480 mm of mercury = 0.480 m 

Neglecting Losses: 

Venturihead = 
𝑝1−𝑝2

𝜌g petrol 
 + (Z1 – Z2) = 

𝑉2
2−𝑣1

2

2 g
 = H 

                           = 𝑥 (
Sm

S
− 1) ‒ 

480

1000
(
13.6

0.78
− 1) ‒ 7.889 m 

∴              
𝑣2
2−𝑣1

2

2g
 = 7.889 

Using continuity equation: 

                                            a1V1 = a2V2 

                                             (0.1)2 V1 =  (0.04)2 V2 

                                               6.25 V1 = V2 

Substituting in step (1) 
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𝑣2
2−

𝑣2
2

(6.25)2

2 g
  = 7.889 

                        
𝑣2
2

2 g
[
38.0625

39.0625
]  = 7.889 

                                      𝑣2
2

  = 158.848 

                                       𝑣2 = 12.6 m/s 

              Q = a2V2 = 
𝜋

4
 (0.04)2 𝗑 12.6  

                  = 0.015838 m3/s ‒ 15.838 litres/s 

             Cd = 
Qactual 

Qtheoretical 
 = 

15.6

15.838
 = 0.9849 

 As per question hf ∝ vesturihend : 

Q = 
15.6

2
 = 7.8 litres/s ‒ 7.8 𝗑 10‒3 m3/s 

 (
𝑃1

𝜌𝑃𝑒𝑡𝑟𝑜𝑙 g 
+ 𝑍1) ‒ (

𝑃2

𝜌𝑃𝑒𝑡𝑟𝑜𝑙 g 
+ 𝑍2) ‒ h𝑓 = 

𝑉2
2−𝑉1

2

2g
 

                                  h ‒ h𝑓 = 
𝑉2
2−𝑉1

2

2g
 

or,          𝑥(
𝑆𝑚

𝑆
− 1) ‒ 𝑥 = 

𝑉2
2−𝑉1

2

2g
 

or,                 𝑥[
13.6

0.78
− 1] ‒ 𝑥 = 

𝑉2
2−𝑉1

2

2g
 

or,                        16.7458 𝑥 ‒ 𝑥 = 
𝑉2
2−𝑉1

2

2g
 

or,                        15.4358 𝑥 ‒ 𝑥 = 
𝑉2
2−𝑉1

2

2g
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Using continuity equation: 

                                                  V1 = 
𝑄

𝑎1
 = 
7.8×10−3

𝜋

4
(0.1)2

 = 0.993 m/s 

                                                  V2 = 6.25 V1 ‒ 6.207 m/s 

 

 

Ex. 5.16 : If in the venturimeter the quantity of water passing through the meter 

will only be proportional to the measured venturihead h show that 

the head lost in friction h1 is, proportional to the head difference hv 

due to increased velocity. 

A venturimeter has a coefficient of discharge of 0.98 and the 

frictional loss in the diverging cone is twice that in the converging 

cone. What will be total head lost in friction in the meter when the 

measured difference head is equivalent to 500 m of water? 

Solution: 

Given : Q ∝ venturihead h, Cd = 0.98  

                             Qact = Cd 
𝑎1√2𝑔ℎ

√(
𝑎1
𝑎2
)
2
−1

                                        ---(1) 

If frictional losses are used 

                              Qact = 

𝑎1√2𝑔(ℎ−ℎ𝑓)

√(
𝑎1
𝑎2
)
2
−1

                                      ---(2) 

                                      = 𝑎1 √
2𝑔ℎ𝑣

(
𝑎1
𝑎2
)
2 − 1    where h ‒ h𝑓 = hv 

Equate Equations (1) and (2) : 
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∴                                Cd = √
ℎ𝑣

ℎ
                                                      ---(3) 

∴                                Cd = √
ℎ𝑣

ℎ𝑣+ℎ𝑡
                                               ---(4) 

If Q is proportional to √h then by step (1) Cd is constant  

Now suppose               k = 
ℎ𝑣

ℎ𝑣+ℎ𝑓
               where 𝑘 is constant. 

∴                                 h𝑓 = 
1−𝑘

𝑘
 h𝑣 

∴  hf ∝ hv proved 

From Equations (3) & (4) 

        hf = h(1 − Cd
2) = Loss of head in converging cone. 

If head loss in diverging cone = 2ℎ𝑓 

                        Total head loss = h𝑓 + 2 h𝑓 ‒ 3 h𝑓 

∴                          3 h(1 − Cd
2) = 3 𝗑 0.5[1 – 0.982] 

                                                 = 0.0594 m of water 

 

 

Ex. 5.17 : (a) Coefficient of discharge for a venturimeter used for measuring 

the discharge of an incompressible fluid was found to be constant 

provided that the rate of flow exceeds a certain value. Show that 

water under these conditions the loss of head in the convergent 

portion of the venturi can be expressed by kQ2 meter where k is a 

constant and Q is the rate of flow in m3/s. 

(b) A venturimeter with 75 mm diameter throat is installed in a 150 

mm diameter pipeline. The pressure at the entrance to the meter is 
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0.7 bar gauge and it is undesirable that the pressure should, at any 

point, fall below 66 kPa absolute. 

Assuming Cd for the meter as 0.96, find the maximum flow for 

which it may be used. Take the relative density of the liquid as 0.75 

and atmospheric pressure 750 mm of mercury. 

(10 Marks) 

Solution: 

 d2 = 75 mm = 0.075 m,                  d1 = 150 mm = 0.150 m 

 P1 = 0.7 bar gauge (if 750 mm of mercury is equal to 1 bar) 

 P1 ‒ 1 + 0.7 = 1.7 bar absolute 

 Relative density of liquid = 0.75, 

 P2 = 56 kPa = 56 𝗑 103 Pa 

Applying the Bernoulli's equation between points 1 and 2: 

𝑃1

𝜌g
 + 
𝑉1
2

2g
 + Z1 = 

𝑝2

𝜌g
 + 
𝑉2
2

2g
 + Z1 + h𝑓  

            (
𝑃1

𝜌g
+ 𝑍1) ‒ (

𝑃2

𝜌g
+ 𝑍2) ‒ h𝑓 = 

𝑣2
2

2g
 ‒ 
𝑣1
2

2g
  

V2 = 
𝑎1√2𝑔(ℎ−ℎf)

√𝑎1
2−𝑎2

2
 

or                                    h ‒ h𝑓 = 
𝑉2
2−𝑉1

2

2g
 g 

                                           Qact = a2V2 = 
𝑎1𝑎2√2g(ℎ−ℎf)

√𝑎1
2−𝑎2

2
 

when head lost due to friction is not included in the equation, the 

equation is known as an ideal equation from which we will get the 

theoretical discharge (Qth). 
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     Qth = 
𝑎1𝑎2√2𝑔

√𝑎1
2−𝑎2

2
 

Using the coefficient of discharge 

Qact = Cd Qth 

                 = Cd 
𝑎1𝑧2√2g

√𝑎1
2−𝑎2

2
 

Equating Equations (2) and (3) 

                                               h ‒ h𝑓 = 𝐶𝑑
2ℎ 

                                                       h = 
ℎ𝑓

1−𝐶𝑑
2 

Substituting this value of h in Equation (3) 

                        Qact = Cd 

𝑎1𝑎2√ℎf(1−𝑐𝑑
2)

√𝑎1
2−𝑎2

2
 

                                              Q = 
𝐶𝑑𝑎1𝑎2√2𝑔ℎ

√(1−𝑐𝑑
2)√𝑎1

2−𝑎2
2

 

Squaring on both the sides 

                                              Q2 = (
𝐶𝑑
2

1−𝐶𝑑
2)

𝑎1
2𝑎2

22𝑔ℎ

(𝑎1
2−𝑎2

2)
 

If Cd is constant then 

h𝑓 = kQ2 proved 

where                                 k = (
1−𝐶𝑑

2

𝐶𝑑
2 ) (

𝑎1
2−𝑎2

2

𝑎1
2𝑎2

22𝑔ℎ
) 
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                  h1 = 
𝑃1

( sp. gr. )ρg
 = 

1.7×105

0.75×1000×9.81
 = 23.1 m absolute 

                  h2 = 
𝑃2

( sp. gr. )ρg
 = 

56×103:

0.75×1000×9.81
 = 7.61 m absolute 

∴                                h1 ‒ h2 = difference in absolute reading 

                                               = 15.49 m 

                                     a1 = 
𝜋

4
 𝗑 (0.15)2 = 0.01767 m2 

and                               (
𝑎1

𝑎2
) = 4 

                      Q = 
𝐶𝑑𝑎√2gℎ

√(
𝑎1
𝑎2
)
2
−1

 = 
0.96×0.01767√2×9.81×15.49

√16−1
 

                                                = 0.07636 m3/s 

 

 

Ex. 5.18 : A 15 cm 𝗑 5 cm venturimeter is provided in a vertical pipe carrying 

crude oil (specific gravity = 0.8). The flow is in upward direction. 

The difference of elevation between the entrance and throat section 

of the venturimeter is 25 cm. The difference in level between the two 

limbs of U-tube mercury manometer recorded is 20 cm. Calculate 

(i) Flow rate of oil (ii) Pressure difference between the entrance and 

the throat section. Take coefficient discharge as 0.95. 

Solution: 

       d1 = 0.15 m,     d2 = 0.05 m,     S = 0.8 

  Sm = 13.6      Z1 ‒ Z2 = 0.25 m,     x = 0.2 m,      Cd = 

0.95 
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Fig. Ex. 5.18 

Piezometric head difference 

h = 
𝑣2
2−𝑣1

2

2g
 = (

𝑃1

𝛾
+ 𝑍1) ‒ (

𝑃2

𝛾
+ 𝑍2) 

                        a1 = 
𝜋

4
 𝗑 (0.15)2 = 0.0177 m2 

                         a2 = 
𝜋

4
 𝗑 (0.05) 2 = 1.963 𝗑 10‒3 m2 

                              h = x (
Sm

s
− 1) = 0.2 (

13.6

0.8
− 1) ‒ 3.2 m 

               0.0177 V1 = 1.963 𝗑 10‒3 V2 

∴                         V1 = 0.11 V2 

                            h1 = 
V2
2−0.11 V2

2

2 g
 

                           V2 = 7.97 m/sec 

By using relation in step 1: 

                          Qact = Cd · a2 V2 

                                 = 0.95 𝗑 1.963 𝗑 10‒3 𝗑 7.97 

                                 = 0.0149 m3/sec 

                              h = (
𝑃1

𝛾
+ 𝑍1) ‒ (

𝑃2

𝛾
+ 𝑍2) 
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∴                  
𝑃1

𝛾
 ‒ 
𝑃2

𝛾
 = h ‒ Z1 + Z2 

                                 = 3.2 ‒ 0 + 0.25 

                                 = 3.45 m of oil 

 

 

Ex. 5.19: A venturimeter with a throat diameter of 10 cm is connected to a 20 

cm diameter main carrying water. The head loss between the inlet 

and the throat diameter main carrying water, The head loss between 

the inlet and the throat is known to be 0.1 
𝑉2
2

2𝑔
 where V2 is the velocity 

at the throat. Estimate the discharge when the inverted differential 

U-tube manometer connected to the inlet and throat records a 

reading of 30 cm. The manomatric fluid has a relative density of 

0.75. What is the coefficient of discharge of the meter? 

Solution: 

         d1 = 0.2 m,   d2 = 0.1 m,   hL = 0.1
𝑣2
2

2 g
 

  x = 0.3 m,   Sm = 0.75,    S = 1.0 

Fig. Ex. 5.19 

By continuity equation: 
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                                      a1V1 = a2V2 

                        
𝜋

4
 𝗑 0.22 𝗑 V1 = 

𝜋

4
 𝗑 0.12 𝗑 V2 

∴                                              V1 = 0.25 V2 

By Bernoulli's theorem: 

                        
𝑃1

𝛾
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑉2
2

2g
 + Z2 + hL  

            (
𝑃1

𝜌g
+ 𝑍1) ‒ (

𝑃2

𝜌g
+ 𝑍2) = 

𝑣2
2−𝑣1

2

2g
 + hL 

                                                    h = 
𝑣2
2−𝑣1

2

2𝑔
 + hL 

                                   𝑥 (1 −
Sm

s2
) = 

V2
2−v1

2

2 g
 + hL 

                          0.3 (1 −
0.75

1.0
) = 

V2
2−v1

2

2 g
 + hL   

                          0.3 (1 −
0.75

1.0
) = 

V2
2

2 g
 ‒ 
(0.25 V2)

2

2 g
 (0.9) 

0.075 = v2
2 (

1−0.5625

2×9.81
) 

                                      V2 = 1.25 m/s 

By continuity equation   Q = a1V1 = a2V2 

∴                                      Q = 
𝜋

4
 𝗑  0.12 𝗑 1.25 

                                                  = 9.81 𝗑 10‒3 m3/s 

                                         hL = 
0.1𝑣2

2

2g
 = 
0.1×1.252

2×9.81
 



FLUID MECHANICS 

266  

                                       = 7.9638 𝗑 10‒3 m 

                                              = 𝑥 (1 −
Sm

s
) = 0.3 (1 −

0.75

1.0
) 

                                              = 0.075 m 

                                           Cd = √
hL−h

h
 

                                                = 0.94 

 

 

Ex. 5.20: Water flows at the rate of 10.5 liters/s through a 150 mm diameter 

pipe in 0 which an orifice meter with a 100 mm diameter orifice is 

fitted. If the pressure drop across the meter is recorded as a 18 mm 

difference in levels of mercury in a U tube manometer, what would 

be the coefficient of discharge Cd?  

Assume value of Cv.  

If the orifice were 125 mm diameter what would be the head loss in 

m of water, for the above values of Q, Cd and Cc? Also calculate the 

pressure drop across the meter recorded in U tube manometer. 

Solution: 

      Q = 10.5 lit/sec = 10.5 𝗑 10‒3 m3/s 

   d1 = 0.15 m,          d2 = 0.10 m,           𝑥 = 18 mm mercury 

h = 𝑥 (
𝑆𝑚

𝑆
− 1) = 

18

1000
(
13.6

1
− 1) 

                                                                = 0.2268 m 

                                  Q = 
𝐶𝑑⋅𝑎√2𝑔ℎ

√1−𝐶𝑒
2(
𝑎

𝐴
)
2
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Assume  

                                 Cv = 0.95 

                                 Cd = Cc · Cv  

∴                                   Cc = 
Cd

0.95
 

∴                     10.5 𝗑 10‒3 = 
Cd×

𝜋

4
(0.15)2√2×9.81×0.2268

√1−(
C𝑑
0.95

)
2
(
0.10

0.15
)
2

 

10.5 𝗑 10‒3 √1 − (
𝐶𝑑

0.95
)
2
(0.444) = Cd 𝗑 (0.0176) √4.445 

                       
√1−(

𝐶𝑑
0.95

)
2
(0.444)

𝐶𝑑
 = 3.53 

                                  
1−0.492𝐶𝑑

2

𝐶𝑑
  = 12.46 

              ?  + 0.492 Cd
2

 + 12.46 Cd ‒ 1 = 0 

∴                                                  Cd = 0.6076 

∴                                                  Cd = 
Cd

0.95
 = 0.6396 

Using values of Cd and Cc with 0.125 mm diameter orifice the 

equation of discharge: 

                              Q = 
𝐶𝑑⋅𝑎√2𝑔ℎ

√1−𝑐𝑒
2(
𝑎

𝐴
)
2
  

10.5 𝗑 10‒3 = 
0.6076+

𝜋

4
×(0.15)2√2×9.81×h

√1−(0.6396)2(
0.125

0.150
)
2
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Solving the above equation: 

                              √ℎ  = 0.2848 

                                  h = 0.081 m 

                                  h = 12.6 𝗑 𝑥 

                                  h = (0.081)12.6 

                                  𝑥 = 6.437 𝗑 10‒3 = 6.437 mm 

 

 

Ex. 5.21 : An orifice meter of orifice diameter 10 cm is inserted in a pipe of 20 

cm (1) diameter. The pressure gauge fitted on upstream and 

downstream give readings of 20 N/cm2 and 10 N/cm2 respectively. 

Cd = 0.6. Find the discharge. 

Solution: 

d1 = 20 cm = 0.2 m,       d2 = 10 cm = 0.1 m  

P1 = 20 N/cm2 = 20 𝗑 104 N/cm
2,   P2 = 10 N/cm

2 = 10 𝗑 106 N/cm
2,         

Cd = 0.6 

a1 = 
𝜋

4
 𝗑 𝑑1

2 = 
𝜋

4
 𝗑  0.22 = 0.0314 m2 

a2 = 
𝜋

4
 𝗑 𝑑2

2 = 
𝜋

4
 𝗑  0.12 = 0.00785 m2 

Q = a1V1 = a2V2 

                                            = 0.0314 V1 = 0.00785 V2 

                                       V1 = 0.25 V2 

By Bernoulli's theorem: 

        
𝑃1

𝛾
 + 
𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 
𝑉2
2

2g
 + Z2 
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20×104

9810
 + 
(0.25 V2)

2

2×9.81
 + 0 = 

10×104

9810
 + 

V2
2

2×9.81
 

                 20.387 + 3.185 𝗑 10‒3 V2
2 = 10.194 + 0.051 V2

2 

                                                      V2 = 14.60 m/sec 

Q = Cd · a2V2 = 0.6 𝗑 0.00785 𝗑 14.60 

                                              = 0.06878 m3/sec 

 

 

Ex. 5.22 : A pitot-static tube is used to measure the velocity of water in a pipe. 

The (5) stagnation pressure head is 6 m and static pressure head is 5 

m. Calculate the velocity of flow assuming the co-efficient of tube 

equal to 0.98. 

Solution: 

      Stagnation pressure head = 6 m,         

      Static pressure head = 5 m  

∴    h = 6 ‒ 5 = 1 m 

Using equation of velocity using pitot tube find velocity. 

V = CV √2gℎ 

                                              = 0.98 √2 × 9.81 × 1 

                                              = 4.34 m/s 

 

Ex. 5.23 : A sub-marine moves horizontally in sea and has its axis 15 m below 

the surface of water. A pitot-tube properly placed just in front of the 

sub-marine and along its axis is connected to the two limbs of a U-

tube containing mercury. The difference of mercury level is found 

to be 170 mm. Find the speed of the sub-marine knowing that the 

specific gravity of mercury is 13.6 and that of sea-water is 1.026 

with respect of fresh water. 
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Solution: 

𝑥 = 170 mm = 0.17 m 

Specific gravity of mercury = 13.6 

Specific gravity of sea-water = 1.026  

h = 𝑥 [
𝑠𝑚

 s
− 1] 

                                            = 0.17 [
13.6

1.026
− 1] 

                                                  = 2.0834 m 

                                         V = √2gh = √2 × 9.81 × 2.0534 

                                            = 6.393 m/s 

 

 

Ex. 5.24: A pitot-tube is inserted in a pipe of 300 mm diameter. The static 

pressure in pipe is 100 mm of mercury (vacuum). The stagnation 

pressure at the centre of the pipe, recorded by the pitot-tube is 0.981 

N/cm2. Calculate the rate of flow of water through pipe, if the mean 

velocity of flow is 0.85 times the central velocity. Take Cv = 0.98. 

Solution: 

  d = 0.3 m                               

   Static pressure = 100 mm of mercury (vacuum) 

            Stagnation pressure = 0.981 N/cm2 

Vmean = 0.85 Vcentral 

                                                 Cv = 0.98 

Static pressure 100 mm of mercury (vacuum) 

                                         = 
−100

1000
 𝗑 13.6 

                                         = ‒ 13.6 m of water 
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                                         = 0.981 N/cm2 

                                         = 0.981 𝗑 104 N/m2 

Stagnation pressure         = 0.981 N/cm2  

Stagnation pressure head = 
0.981×104

1000×9.81
 = 1 m 

∴                        h = Stagnation pressure head ‒ Static pressure head 

                                         = 1 ‒ (‒1.36) 

                                         = 2.36 m of water 

Velocity at centre            = Cv = √2gℎ   

                                        = 0.98 √2 × 9.81 × 2.36 ‒ 6.668 m/s 

Mean velocity                 = 0.85 𝗑 6.668 = 5.667 m/s   

                            Q = a Vmean = 5.6678 𝗑 0.07068 = 0.4006 m3/sec. 

 

 

Ex. 5.25 : An orifice is located in the side of a tank which issues oil of relative 

density (T) 0.85 under a pressure of 0.2 kg/cm2 at a rate of 4.5 l/s. 

The diameter of orifice at vena contracta is 3 cm. Find coefficient of 

velocity 

Solution: 

Pressure 0.2 kg/cm2 = 2000 kg/m2 

          Pressure head = 
P

𝛾
 = 

2000

0.85×1000
 

                             H = 2.353 m  

            Discharge Q = 4.5/s = 4.5 10‒3 m3/sec  

     Diameter at V.C. = 3 cm = 0.03 m 

   Area of jet at V.C. = 
m

4
 𝗑 0.032   
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                                 = 7.068 𝗑 10‒4 m2 

      Velocity at V.C. = Q / ac  

                                 = 
4.5×10−3

7.068×10−4
 = 6.366 m/s 

                            C4 = 
𝑉

√2 𝑔𝐻
 

                                = 
6.366

√2×9.81×2353
 = 0.937 

 

 

Ex. 5.26: A tank has two identical orifices in one of its vertical sides. The 

upper orifice is 3.2 m below the water surface and lower one is 5.5 

m below the water 5 surface. If value of Cv for each orifice is 0.96, 

find the point of intersection of two jets. 

Fig. Ex. 5.26 

Solution: 

            Cv = 0.96  

            Positions of orifices as shown in Fig. Ex. 5.26  

            Let the jets intersect at point B. 

From Fig. Ex. 5.26 
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H1 = 5.5 and H2 = 3.2 

and                                            y1 = y2 + (5.5 ‒ 3.2)  

y1 = y2 + 23 

As both the orifices have same Cy  

C𝑣1 = C𝑣2 

                                           √
x2

4H1y1
 = √

x2

4H2y2
 

                           √
x2

4×5.5×y1
  = √

x2

4×3.2×𝑦2
 

∴                                      
x2

4×5.5×y1
 = 

x2

4×3.2×y2
 

∴                                                    3.2 y1 = 5.5 y2 

But                                                y1 = y2 + 23 

∴                                   3.2 (y2 + 23) = 5.5y2  

∴                                                           y2 = 3.2 

                                                       Cv = √
x2

4H2y2
 

                                                       96 = √
𝑥2

4×5.5×3.2
 

                                                      𝑥 = 8.055 m 

 

 

Ex. 5.27: Compensation water is to be discharged by two circular orifices of 

the same diameter situated at the bottom of a vessel having a 

constant head of 2m. If the demand is 18 𝗑 105 lit/day what diameter 
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will be required for each orifice? Take coefficient of contraction and 

velocity as 0.62 and 0.98 respectively. 

Solution: 

            H = 2m  

          Demand of water 18 𝗑 105 lit/day 

Cc = 0.62,      Cv = 0.98 

                                                       Cd = Cc 𝗑 Cv  

                                                             = 0.98 𝗑 0.62 

Cd = 0.6076 

                                                    Q = 18000000 lit/day 

                                                        = 18000 m3/sec 

                                                        = 
18000

24×60×60
 m3/sec 

                                                   Qact  = 0.2083 m3/sec 

                                                  Cd = 
Qact

Qth
 

∴                                                     Qth = 0.6076 𝗑 0.2083 

                                                       = 0.3428 m3/sec 

                                                Vth = √2gH 

                                                      = √2 × 9.81 × 2 

                                                      = 6.264 m/s 

Theoretical discharge through each orifice  

                                                      = 
0.3428

2
 ‒ 0.1714 m3/sec 

Area of orifice = 
𝑄th 

𝑉th 
 

                                                             = 
0.1714

6.264
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                                                          a = 0.02736 m2 

∴                                                
𝜋

4
 𝗑 d2 = 0.02736 

                                                          d = 0.1866 m 

                                                             = 18.66 cm 

 

 

Ex. 5.28 : Water flows through a uniform diameter pipe of 200 mm. Points A 

and B are at elevations of 6 m and 8 m respectively along the inclined 

pipe. Pressures at A and B are 50 kPa and 20 kPa respectively. If 

rate of flow is 60 lit/sec.  

Determine : 

(1) Direction of flow 

(2) Head loss between these points 

(Dec. 98, 4 Marks) 

Solution: 

  D = 200 mm = 0.2 m        ZA = 6 m  ZB = 8 m 

  PA = 50 kPa    PB = 20 kPa             Q = 60 𝗑 10‒3 m3/sec 

VA = VB ‒ 
𝑄

𝐴
 = 
60×10−3

𝜋/4×0.22
 

                                             = 1.91 m/s 

 Velocity head,               
𝑉𝐴
2

2 g
 = 
𝑉B
2

2 g
 = 
(1.91)2

2×9.81
 

                                              = 0.186 m 

                    Total head at A = 
P

𝛾
 + 
V2

2 g
 + Z 

                                              = 
50

9.81
 + 0.186 + 6 

                                              = 11.283 m of water 
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                         Total head B = 
P

𝛾
 + 
V2

2 g
 + Z 

                                               = 
20

9.81
 + 0.186 + 8 

                                               = 10.225 m 

∴ Water flows from A to B. 

             Head loss = Total energy at A ‒ Total energy at B 

                                      = 1.058 m 

 

 

Ex. 5.29 : A horizontal venturimeter of specification 200 𝗑 100 mm is used to 

measure the discharge of an oil of specific gravity 0.8. A mercury 

manometer is used for the purpose. If the discharge is 100 lit/sec and 

if the coefficient of discharge of meter is 0.98, find the deflection of 

the manometer. 

Solution: 

   D = 200 mm = 0.2 m        d = 100 mm = 0.1 m 

   Specific gravity = 0.8        Q = 100 𝗑 10‒3 m3/sec        Cd = 0.98 

                                         Q = Cd √ℎ  

C = 
𝑎1√2g

√(
𝑑1
𝑑2
)
4
−1

  

              a1 = 
𝜋

4
 (0.2)2 = 0.0314 m2 

                                   (
𝑑1

𝑑2
) = 2 

∴                                       C = 
0.0314√2×9.81

√(2)2−1
 = 0.036 m5/2/sec 

∴                                             Q = C· Cd√ℎ 
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                                        0.1 = 0.98 𝗑 0.036√ℎ 

                                           h = 8.066 m 

But                                      h = (
𝑆𝑚

50
− 1)𝑥 

                                           8.066 = (
13.6

50
− 1)𝑥 

Manometric deflection        𝑥 = 50.4 cm 

 

UNIT SUMMARY 

1 The study of fluid motion with the forces causing the flow is called as 

dynamics of fluid flow, which is analysed by the Newton's second law of 

motion. 

2 Bernoulli's equation is obtained by integrating the Euler's equation of 

motion states: 

  For a steady, ideal flow of an incompressible fluid, the total energy which 

consists of pressure energy, kinetic energy and datum energy at any point 

of the fluid is constant.  

  Mathematically, Bernoulli's equation. 

𝑃1

𝜌g
 + 

𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 

𝑉2
2

2g
 + Z2 

   where  
𝑝

𝜌g
 = Pressure energy per unit weight = Pressure head 

      
V2

2 g
 = Kinetic energy per unit weight = Velocity head Q = C · Cd √ℎ   

            Z  =  Datum energy per unit weight = Datum head 

3.  Bernoulli's equation for real fluids 

𝑃1

𝜌g
 + 

𝑉1
2

2g
 + Z1 = 

𝑃2

𝛾
 + 

𝑉2
2

2g
 + Z2 + hL 

 Where hL = loss of head between section 1 and 2. 
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4.  The kinetic energy correction factor is given by, 

𝛼 =
1

𝐴
∫  (

𝑉

𝑉
)
3

𝑑𝑎 

5 The Bernoulli's equation with the kinetic energy correction factor is, 

𝑃1

𝜌g
 + 

𝛼𝑉1
2

2g
 + Z1 = 

𝑃2

𝜌g
 + 

𝛼𝑉2
2

2g
 + Z2 

6 The momentum equation states that the net force acting on a fluid mass is 

equal to the change in momentum per second in that direction. 

This is given by                         F = 
d

dt
 (mV)  

The impulse momentum equation is given by 

F · dt = d (mV) 

7 The modified form of Impulse momentum equation is, 

   F = 𝜌Q (V1 ‒ V2) 

8 The momentum correction factor 𝛽 is given by, 

  𝛽 =  
1

𝐴
 ∫ (

𝑣

𝑉
)
2

 · dA 

9 The discharge Q, through a venturimeter is given by, 

Q = Cd 
𝑎1𝑎2√2gℎ

√𝑎1
2−𝑎2

2
 

 Where a1 = Area at inlet of venturimeter 

 a2 = Area at throat of venturimeter 

 Cd = Coefficient of discharge  

 H=Difference of pressure head in terms of fluid flowing through venturimeter. 

10.  For measurement of pressure/piezometric head difference if U tube manometer 

is used. 

h = 𝑥 (
𝑆m 

𝑆
− 1)        where Sm > S 

 Where  Sm  is the specific gravity of manometric liquid. 
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     S is the specific gravity of liquid flowing through pipe. 

   𝑥  is the deflection in terms of manometric liquid and 

h = 𝑥 (1 −
𝑆m 

𝑆
)        where Sm < S 

11. Discharge through orificemeter is expressed by 

Q = Cd · C · a√2gh 

 where  Cd  is coefficient of discharge. 

  a is cross sectional area of the orifice. 

  h is the head difference between section of the pipeline and Vena Contracta. 

  C  is constant of venturimeter, can be expressed by, 

1

√1 − 𝐶𝑐2 (
𝑎

𝐴
)
2
 

12. Pitot tube is used to find the velocity of a flowing fluid at any point in a pipe 

or channel. The velocity is given by the relation, 

V = Cv √2gh 

Where   Cv is coefficient of velocity of pitot tube. 

 h - rise of liquid in the liquid representing dynamic pressure head for pipes and 

rise of liquid in the tubes above free surface of liquids for channels. 

13.  The discharge through triangular notch can be expressed as, 

Q = 
8

15
 Cd √2 g tan 

θ

2
 H5/2 

 Where Cd is coefficient of discharge. 

   𝜃 is the angle of notch. 

   H is the head above crest level. 

14.  With consideration of velocity of approach the expression for discharge 

through triangular notch is given by, 

Q = 
8

15
 Cd √2 g tan 

θ

2
 [(H + ha)5/2 ‒ ha5/2] 

 where ha is the additional head introduced due to velocity of approach. 
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ha = 
𝑣𝑎
2

2g
 

 

5.12: Exercise  

 

5.12.1: Objective Questions: 

1. Which forces are neglected to obtain Euler’s equation of motion from 

Newton’s second law of motion? 

a) Viscous force, Gravity force, Turbulence force 

d) Viscous force, Turbulence, Turbulence force, Compressible force 

b) Gravity force, Turbulence force, Compressible force 

c) Body force e force, Body force 

 Ans: (a) 

 

2. Navier-Stoke’s equation can be obtained from Reynolds’s equation by not 

considering which type of force? 

a) Turbulence force   b) Gravity force 

c) Compressible force   d) Viscous force 

 Ans: (a) 

 

3.  Which of the following assumption is incorrect in the derivation of Bernoulli’s 

equation? 

a) The fluid is ideal   b) The flow is steady 

c) The flow is incompressible  d) The flow is rotational 

 Ans: (d) 

 

4.  Cheapest device for measuring fluid flow / discharge rate. 

a) Venturimeter    b) Pitot tube 

c) Orificemeter    d) None of the mentioned 

 Ans: (c) 
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5.  If in a fluid, while applying Newton’s second law of motion, compressibility 

force is neglected then what equation is obtained? 

a) Navier Stoke’s Equation  b) Reynold’s equation of motion 

c) Euler’s Equation of motion  d) Continuity Equation for fluid flow 

 Ans: (b) 

 

6.  A point in a fluid flow where the flow has come to rest is called __________ 

a) Pressure point    b) Initial point 

c) Flow point    d) Stagnation point 

 Ans: (d) 

 

7. Which of the following assumption is true about Bernoulli's equation.. 

a) Flow is steady and irrotational 

b) Flow is incompressible and non viscous 

c) Flow is continuous and homogeneous with uniform velocity. 

d) All of the above 

 Ans: (d) 

 

8. The Bernoulli's is equation is based on.... 

a) Conservation of mass 

b) Conservation of energy 

c) Conservation of both mass and energy 

d) None of the above 

 Ans: (b) 

 

9. Speed of the aeroplane is measured with the pitot tube. 

a) True     b)  False 

 Ans: (a) 

 

10.  The principle of Venturimeter is based on the Bernoulli’s equation. 

a) True     b)  False 

 Ans: (a) 
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11. The pipe fitting with water having velocity 120 m/min and gauge pressure is 

3.5 bar over the pipe is located at 8 m above the datum line. The total head of 

water in ....m. 

a) 44.88m    b)  45.88m 

c)  43.88m     d)  42.88m 

Ans: ( c ) 

 

12. The diverging angle of Venturimeter is less than converging angle. 

a) True     b)  False 

 Ans: (a) 

 

 13.The velocity of liquid at throat is higher than that of inlet in venturimeter. 

a) True     b)  False 

 Ans: (a) 

 

14. The coefficient of discharge for orificemeter is about.... 

a) 0.95     b)  0.98 

c)  0.85     d)  0.63 

 Ans: (d) 

 

15. The coefficient of discharge is equal to... 

a) Cd = cv/cc    b)  Cd = cv – cc 

c)   Cd = cv + cc    d)  Cd = cv × cc 

 Ans: (d) 

 

16. The ratio of throat diameter and pipe diameter for Venturimeter is 

a) 1:1      b)  1:2 

c) 1:3      d)  2:1 

 Ans: (b) 
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17. The Venturimeter consists of which of the following parts. 

a) Converging section    b)  Throat section 

c)   Divergent section    d)  All of the above 

 Ans: (d) 

 

18. The average value of coefficient of discharge for Venturimeter is 0.98 

a) True      b)  False 

 Ans: ( a ) 

 

19.  The pitot tube having coefficient of friction is point 98 and used to measure 

velocity of water. The stagnation pressure recorded 3 m and static pressure is 2 

m what is the velocity?  

a) 4 m/s      b)  5 m/s 

c)   4.34 m/s     d)  5.34 m/s 

 Ans: ( c ) 

 

20. In case of venturimeter the pressure is maximum at midpoint of convergent 

section. 

a) True      b)  False 

 Ans: ( a ) 

 

 

5.12.2: Theory Questions: 

Q. 1  What do you understand by dynamics of fluid flow? How does it differ from 

the kinematics of fluid flow? 

Q. 2  State the different forces considered in studying the equation of motion of 

a fluid. State the conditions under which each is significant. 

Q. 3  Derive Euler's equation of motion for one dimensional flow along 

streamline. State clearly assumptions made and derive Bernoulli's equation. 

Q. 4  Derive Euler's equation along a streamline in the form 
𝑑𝑝

𝜌
 + gdz  + vdv = 0. 
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Q 5   State Bernoulli's theorem. 

Q 6   State Bernoulli's theorem. Explain significance of each term in Bernoulli's 

equation. State the assumptions made clearly. 

Q. 7  Explain how Bernoulli's equation is applied to the real fluid flow problems.  

Q. 8  Explain how Bernoulli’s theorem, applied to two points in flow, is modified 

to account for 

  1. Loss of head 

  2. Installation of pump 

  3. Installation of a device like a turbine. 

  4. Non-uniform velocity variation in the pipe.    

Q. 9.  What is a venturimeter? Derive an expression for the discharge through 

venturimeter. 

Q. 10 Explain the principle of venturimeter with a neat sketch. 

Q. 11  Discuss the relative merits and demerits of venturimeter with orificemeter.  

Q. 12 What is pitot tube? How will you determine the velocity at any point with 

the help of pitot – tube. 

Q. 13  What is the difference between pitot tube and pitot static tube? 

Q. 14  Define an orificemeter. Derive an expression for discharge through 

orificemeter. 

Q. 15  what are Cd, Cc, Cv. Express the relation in them.  

Q. 16   Draw a net sketch of venturimeter and orificemeter and explain their parts 

neatly.   

 

5.12.2: Problems : 

Q. 1  In an experiment on determination of hydraulic co-efficient of sharp-

edged orifice, 2.5 cm of diameter it was found that the jet issuing 

horizontally under a head of 1 m travelled a horizontal distance of 1.6 m 

from vena contrata in a course of vertical drop of 0.7 m from the same 
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point. If a flat plate is held nomal to jet at vena contrata, force 5.6 N 

would be exerted on the plate. Determine Cc′Cv4Dd for orifice. 

 

Q. 2  In -a vertical pipe conveying oil of specific gravity 0.8, two pressure gauges 

have been installed at A and B, where diameters are 16 cm and 8 cm 

respectively. A is 2 m above B. The pressure gauge readings have shown 

that pressure at B is greater than at A by 0.981 N/cm
2
. Neglecting all losses 

calculate flow rate. 

 

Q. 3  Water is flowing through a tapered pipe having diameters 300 mm and 150 

mm at sections 1 and 2 respectively. The discharge through the pipe is 40 

litres/s. Section 1 is 10 m above datum and section 2 is 6 m above datum. 

Find the intensity of pressure at section 2 if that at section 1 is 400 kN/m2.             

(May 2005, 6 Marks) 

 

Q. 4  A venturimeter is used to measure the flow of petrol in a pipeline inclined 

at 350 to horizontal. The specific gravity of petrol is 0.81 and the throat area 

ratio is 4. If the difference in mercury levels in the gauge is 50 mm, calculate 

the flow in m3/s if the pipe diameter is 300 mm. Take venturimeter 

constant as 0.95.  

  

Q. 5  Find the rate of flow of water through a venturimeter fitted in a pipeline of 

diameter 30 cm. The ratio of diameter of throat and inlet to the venturimeter 

is 
1

3
. The prossure at the iniet of the venturimeter is 1.4 bar (gauge) and 

vacuum at the throat is 37.5 cm of mercury. The coefficient of venturi is 

0.98. 
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PRACTICAL: CALIBRATION OF VENTURIMETER 

Objective: To determine the coefficient of venturimeter and calibrate it. 

Apparatus: Venturimeter, differential manometer, measuring tank, stopwatch, 

Theory: Calibration is a comparison between measurements – one of known 

magnitude or correctness made or set with one device and another measurement 

made in as similar a way as possible with a second device. Any instrument 

needs to be calibrated before its actual use. Venturimeter is a device used 

for measurement of discharge in a pipe line and works on the Principle of 

Bernoulli’ theorem. The instrument consists of a short piece of a pipe which 

contracts up to section called as throat and then again enlarge up to the diameter 

as shown in figure. The conical portions joining the inlet and the throat and 

throat and outlet are called as converging cone and diverging cone respectively. 

By contracting the passage of flow at the throat, the velocity of flow and hence 

the velocity head is increased. This increase in the velocity head causes change 

in the pressure head. The pressure difference thus created is measured generally 

by a U-tube manometer (differential) and the discharge through the pipe is 

calculated by the formula. 

Q = KCH1/2 

Where, 
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Q = Discharge 

K = Coefficient of discharge of venturimeter 

H = difference of head in terms of water column between inlet and throat 

C = Constant of venturimeter given by = 
[𝑎1 𝑎2(2g)

0.5]

[𝑎1
2− 𝑎2

2]
0.5

  

Where, 

 a1 = area of inlet which can found out from inlet diameter  

d1 a2 = area of throat which can be found out throat diameterd2 

Actually the coefficient K is never unity and hence it is determined 

experimentally.  

The above formula can be written a  

Procedure: 

1)  Venturimeter is set up on the flow table and connected to the inlet pipe. 

2)  The manometer is then connected to the respective pressure tappings 

making sure that no air bubble is entrapped in the tube. 

3)  The water is allowed to flow through the venturimeter and the pressure 

difference is noted using the differential manometer. 

4)  The discharge is measured using measuring tank. 

5)  Time required to collect water in the measuring tank is noted 

6)  The procedure is repeated for different discharges 

   Observations: 

 1)   Type of manometer : U Tube differential manometer 

 2)   Inlet diameter of venturimeter    = d1= 0.029 m 

 3)   Throat diameter of venturimeter = d2 = 0.0145 m 
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Tabulated Calculations: 

 

Sr. No. 
 

Theoretical 

Discharge 

Qth (m3/s) 

Actual Discharge 

Qact (m3 /s ) 

Coeff. of  

venturimeter 

K 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

Average of K = 

Graph: 

1. The graph between ’ln Qact’ on y-axis and ‘ln H’ on x axis is plotted. 

The slope of graph gives value of index ‘n’. While intercept gives the 

average value of ‘M’. hence modified equation is  Q = MHn 

ln Q = ln M + n ln H 

 The above equation is similar to y = mx + c. Thus law of venturimeter or 

calibration equation is mentioned by taking antilog of ln M. The value of 

K is calculated by M = K C. 

Calibration equation Q = ---------- H (*** Write value of M and n from graph)    

 Coefficient of discharge K = M/C 
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 Table for graph calculations: 

 

Sr. 

No. 

ln Qact ln H Sr. 

No. 

ln Qact ln H 

      

      

      

      

      

 2.  For calibration the graph between Qa on Y-axis and ‘H’ on x axis is plotted. 

The value of Qa is estimated by assuming certain value of H and compared 

with value of Qa obtained from laws of graph as established above. Both values 

must be same  

 Result: 

 Constant of venturimeter = C = Coefficient of venturimeter = K=  

a)    Avg. value from calculation = 

b)    Value from graph = 

 

 Conclusion: 

 1)   Discharge formula = Q = -------    H(*** Write value of M and n from graph) 

   2)    The calibration between actual discharge and differential head can be used for 

measurement of discharge whenever venturimeter is used. 

 Remark: 

 Coefficient of venturimeter normally lies between 0.91 to 0.99 
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PRACTICAL: CALIBRATION OF ORIFICEMETER 

Objective:   To determine the coefficient of orificemeter and calibrate it. 

Apparatus: Orificemeter, differential manometer, measuring tank, stopwatch, 

Theory: Calibration is a comparison between measurements – one of known magnitude or 

correctness made or set with one device and another measurement made in as 

similar a way as possible with a second device. Any instrument needs to be 

calibrated before its actual use. Orificemeter is a device used for measurement of 

discharge in a pipe line and works on the Principle of Bernoulli’ theorem. The 

instrument consists of ‘a’ a thin plate with circular hole in it and held between 

flanges such that the orifice is concentric with the pipe. 

 

By contracting the passage of flow at the orifice, the velocity of flow and hence the velocity 

head is increased. This increase in the velocity head causes change in the pressure 

head. The pressure difference thus created is measured generally by a u-tube 
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manometer (differential) and the discharge through the pipe is calculated by the 

formula. 

Where Cd = coefficient of discharge,  

a1= area of inlet which can be found out from inlet diameter d1,  

a2 = area of orifice which can be found out from orifice diameter d2,         

H = difference of head in terms of water column between inlet and orifice. 

In the above equation put                

                       Q = KCH1/2 

Where, 

Q  =  Discharge 

K = coefficient of discharge of Orifice meter 

C = constant of Orificemeter given by = 
[𝑎1   𝑎2  (2g)

0.5 ]

[𝑎1
2  −𝑎2

2 ]0.5
 

Actually the coefficient K is never unity and hence it is determined experimentally. The 

above formula can be written as 

Q = MHn 

Where M= K C 

The constant M and n can be found out by plotting the result of the experiment on log-log 

scale. Once the M and n values are determined the orificemeter is said to be calibrated 

as discharge can then be easily calculated by measuring the head difference (as 

explained above) only. 

2
1

2
1

2
2

22
1

2
2

2
1





 





 



a
d

Ca

aa

CK d



FLUID MECHANICS 

293 

 

Procedure: 

1) Orificemeter is set up on the flow table and connected to the inlet pipe. 

2) The manometer is then connected to the respective pressure tappings making sure that 

no air bubble is entrapped in the tube. 

3) The water is allowed to flow through the orificemeter and the pressure difference is 

noted  using the differential manometer. 

4)   The discharge is measured using measuring tank.  

5) Time required to collect water in the measuring tank is noted  

6) The procedure is repeated for different discharges 

 

Observations: 

1) Type of manometer :  U Tube differential manometer 

2) Inlet diameter = d1= ------------ m  

3) Diameter of orifice = d2 = ------------ m 

 

Observation table: 

Sr. 

No. 

Head difference 

in terms of 

mercury in m (h) 

Head 

difference in 

terms of water 

in m 

H = h x 12.6 

Discharge measurement 

   Volume of 

water collected 

in m3 

Time ‘t’ in 

secs. 

1     

2     
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3     

4     

5     

 

Sample calculations: For Observation No.  

 Area of inlet  = a1 = 
𝜋

4
 𝑑1
2 = ---------------- m2 

 Area of orifice  = a2 = 
𝜋

4
 𝑑2
2 = ---------------- m2  

 Constant of orificemeter = C =  
[𝑎1   𝑎2  (2g)

0.5 ]

[𝑎1
2  −𝑎2

2 ]0.5
  =           

 Theoretical discharge Qth = CH0.5 =   

 Actual discharge Qact = Volume / time 

 Coefficient of orificemeter = K= Qact / Qth 

 

 

Tabulated Calculations:             

Sr. No. 

 

Theoretical 

Discharge 

Qth (m3/s) 

Actual Discharge 

Qact (m3 /s ) 

Coeff. of 

Orificemeter 

K 

1    

2    

3    

4    

5    
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6    

7    

        Average of K  =  

Graph: 

1) The graph between ’ln Qact’ on y-axis and ‘lnH ’on x axis is plotted. The slope of 

graph gives value of index ‘n’. While intercept gives the average value of ‘M’. 

hence modified equation is Q = MHn 

   ln Q = ln M + n ln H 

 The above equation is similar to y = mx + c.  

 Thus law of orificemeter or calibration equation is mentioned by taking antilog of ln M. 

The value of K is calculated by  M = K C. 

 Calibration equation Q = ----------------- H      (*** Write value of M and n from graph)  

 Coefficient of discharge K = M/C 

 Table for graph calculations: 

Sr. No. ln Qact ln H Sr. No. ln Qact ln H 

       

      

      

      

 

2) For calibration the graph between Qact on Y-axes and ‘H’on x axis is plotted. The 

value of Q is estimated by assuming certain value of H and compared with value of 

Qact obtained from laws of graph as established above. Both values must be same  
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Result: 

Constant of orificemeter = C = 

Coefficient of orificemeter = K = 

a)    Avg.  value from calculation = 

b)   Value from graph =  

Conclusion: 

1)    Discharge formula = Q = ------------ H      (*** Write value of M and n from graph) 

2)    The calibration between actual discharge and differential head can be used for 

measurement of discharge whenever orifice meter is used 

 

Remark: Coefficient of orifice meter normally lies between 0.61 to 0.65 

Coefficient of orifice meter normally lies between 0.61 to 0.65     
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UNIT SPECIFICS 

Through this unit we have discussed the following aspects: 

 Dimensional Analysis 

 Non-dimensional numbers 

This is followed by large number of solved examples. The students are encouraged to solve the 

objective questions, long answer questions and numerical problems to judge ones 

understanding. 

 RATIONALE 

This unit presents Buckingham’s π theorem to perform dimensional analysis which is necessary 

especially when relationship between dependent and independent variables is to be 

established empirically. The six non-dimensional parameters which are important in 

establishing this relationship are then described. 

PRE-REQUISITES 

Mathematics: School level (Class VIII) 

Physics: Dimensions (Class X) 

 

 

 

6 
 

DIMENSIONAL ANALYSIS 

 

 

 

ccc 
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UNIT OUTCOMES  

List of outcomes of this unit is as follows: 

(At the end of this unit, students will understand..) 

U6-O1: Use of Buckingham’s πtheorem for dimensional analysis 

U6-O2:  Non-dimensional parameters in fluid flow 

Unit-6 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1-WeakCorrelation; 2-Mediumcorrelation; 3-StrongCorrelation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U6-O1 - 1 - - 3 - 

U6-O2 - 1 - - 3 - 

 

6.1  Introduction: 

Dimensional analysis is a mathematical tool used to establish a relationship between 

various parameters governing a phenomenon with the help of their dimensions. 

Many fluid flow problems are very complex in nature making it very difficult to 

obtain their analytical solutions. The solutions of such problems are therefore 

based upon combination of physical analysis and experimental studies. The 

effect of different variables on the phenomenon under study and their 

interdependence is observed by experimentation. Dimensional analysis 

reduces the number of experiments by determining an empirical relation 

connecting the parameters and grouping them in various non-dimensional 

forms. Before the dimensional analysis is carried out, the variables controlling 

the phenomenon are identified and expressed in terms of primary dimensions. 

The phenomenon under consideration is then expressed by dimensionally 

homogeneous equations. 

6.2  Dimensions: 

As mentioned earlier, various physical quantities are required to describe a given 

phenomenon. These quantities can be described by a set of  'fundamental or 

primary units'. The primary units are mass, length, time and temperature 
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represented by M, L, T, 𝜃 respectively. All other quantities like area, volume, 

velocity, force, acceleration etc. can be expressed in terms of these 

'Fundamental quantities’ and therefore termed as 'Derived quantities' or 

'Secondary quantities'. The expression for the derived quantity in terms of 

fundamental quantities is called 'Dimension' of the derived quantity. 

Thus, dimension of Velocity = (
 Distance 

 Time 
) is expressed as [LT

‒1
]. Similarly, 

dimensions of acceleration (change in velocity/Time) and Force (mass × 

acceleration) can be expressed as [LT
‒2

] and [MLT
‒2

] respectively. 

It may be noted that the dimensions of any physical quantity are independent of system 

of units i.e. whether the quantities are measured in SI, MKS, CGS or FPS systems. 

Table 6.3.1 presents the dimensions and units (SI system) of various physical 

quantities. 

6.3 Dimensionally Homogeneous Equations: 

It is imperative that for the method of dimensional analysis, the mathematical 

expression describing the phenomenon under study should be dimensionally 

homogeneous. i.e. dimensions of terms on left and right hand side of the 

equation are the same. 

Consider the equation of flow over the weir. 

                                               Q = 
2

3
 Cd . √2 g . L . H3/2

                                                              (6.1) 

Where  Q = Discharge [LT-3 ],  

g = gravitational acceleration [LT-2] ,  

L= Length  [L], H = Head [L],   

2

3
, Cd, √2 is dimensionless quantity 
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Table 6.3.1: Dimensions of Physical quantities 

Sr.  No.  Quantity Symbol 

Dimensions 

MLT 

System 

Unit of 

Measurement 

SI System 

(A) Geometric    

1 
Length (any linear  

quantity) l L m 

2 Area a, A L2 m2 

3 Volume V L3 m3 

4 Slope S - - 

5 Angle α𝜃 - radians or degrees 

(B) Kinematic    

6 Time T, t T sec. 

7 Linear velocity V, u LT-1 m/s 

8 Angular velocity 𝜔 T-1 rad/s 

9 Linear acceleration a LT-2 m/s2 

10 Angular acceleration α T-2 rad/s2 

11 Gravitational acceleration g LT-2 m/s2 

12 Discharge Q L3T-1 m3/S 

13 Discharge per unit width q L2T-1 m2/s (m3/S/m) 

14 Kinematic viscosity υ L2T-1 m2/s 

(C) Dynamic    

15 Mass M, m M kg 
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16 Force F MLT-2 N 

17 Weight W MLT-2 N 

18 
Mass density or specific 

mass ρ ML-3 kg/m3 

19 Specific weight 𝛾 ML-2T-2 N/m3 

20 Specific gravity S - - 

21 Specific volume 
⩝ 

⩝ 

M-1L3 

M-1L2T2 

m3/kg 

m3/N 

22 Pressure P ML-1T-2 N/m2 or Pascal (Pa) 

23 Shear stress τ ML-1T-2 N/m2 

24 Dynamic viscosity μ ML-1T-1 N-s/m2 

25 Surface Tension σ MT-2 N/m 

26 Modulus of elasticity K ML-1T-2 N/m2 

27 Moment M ML2T-2 Nm 

28 

 

Momentum 

Impulse  

M 

I 

MLT-1 

 

kg m / s 

or N / s 

29 Work, Energy W, E ML2T-2 Nm or Joule (J) 

30 Torque T ML2T-2 Nm or Joule 

31 Power P ML2T-3 N-m/s or watt (W) 

32 Mass moment of inertia I ML2 kg ‒ m2 

33 Area moment of inertia I L4 m4 

Note : Friction factor ‘f’, energy correction factor ‘α’, momentum correction factor 

‘β’, efficiency ‘η’ are dimensionless quantities. 
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Substituting dimensions 

Dimensions of L.H.S. = [L3 T-1]  

                     Dimensions of R.H.S. = [LT-2]1/2 [L] . [L]3/2  

∴                               [L3 T-1] = [LT-2]1/2 [L] . [L]3/2 

∴                                   [L3 T-1] = [L3 T-1]  

This equation will hold good as long as all variables are consistent i.e. all variables 

should be substituted in same system of units. Dimensionally non-consistent 

parameters, for e.g. discharge Q in litre/s and g in m/s2, if substituted the 

equation will not remain valid in the given form. This indicates that the 

equation of flow over the weir is dimensionally homogeneous.  

However, there are several equations which are dimensionally non-homogeneous. 

For example, a steady uniform flow in an open channel with cement lining can 

be expressed (in MKS units) as, 

                                                              U = 90√𝑅𝑆                                                           6.2) 

Where  U = Velocity of flow [LT-1]  

             R= Hydraulic Radius [L] 

             S= Channel slope (no dimension) 

∴                          [LT-1]  ≠  [L1/2] 

This indicates that the above equation is dimensionally non-homogeneous. 

Consequently, it is implied that '90' has the dimensions of  
[L1/2] 

T
  i.e. m1/2/s in 

MKS units. Thus in FPS units, this equation will be expressed as U = 163√RS.  

(∵ 1 m = 3.281 ft) 

6.4   Dimensional Analysis: 

It is a systematic arrangement of variables, governing the phenomenon, with the help 

of dimensions. The dimensional analysis is useful in deriving equations in 

terms of non-dimensional parameters like Froude Number; Reynold's number, 

Mach Number etc. Due to grouping of variables to form dimensional 
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parameters, number of variables are reduced making the experimentation more 

economical and less time consuming. One of the method used for dimensional 

analysis is Buckingham 𝜋 Theorem. 

6.4.1  Buckingham 𝝅 Theorem: 

If there are ‘n’ variables which govern a certain phenomenon and if these variables 

contain ’m’ primary dimensions then the variable quantities can be expressed 

in terms of an equation containing ‘n-m’ dimensionless parameters.  

The dimensionless groups are termed as π terms. Consider X1, X2, …. Xn  as variables 

involved in a problem. Therefore some functional relationships among them 

can be stated as F (X1, ... Xn) = 0 or constant. 

If these ‘n’ variables contain ‘m’ primary dimensions then according to Buckingham 

π theorem, there exists ‘n-m’ terms which are related by a functional relation,  

                                      𝑓(𝜋1, 𝜋2, … 𝜋n‒m) = 0 or constant                                        (6.3) 

The π terms are formed by considering the ‘m’ quantities out of X quantities 

cumulatively containing all ‘m’ dimensions as repeating variables. 

If  X1, X2, X3 be the repeating variables containing all ‘m’ dimensions collectively 

then π terms are formed as :                           

𝜋1 = X1
𝑥1 ⋅ 𝑋2

𝑦1 ⋅ 𝑋3
𝑧1 ⋅ 𝑋4 

𝜋2 = X1
𝑥2 ⋅ 𝑋2

𝑦2 ⋅ 𝑋3
𝑧2 ⋅ 𝑋5                                                        (6.4) 

         ⦙ 

          𝜋n‒m = 𝑋1
𝑥𝑛−𝑚 ⋅ 𝑋2

𝑦𝑛−𝑚 ⋅ 𝑋3
𝑧𝑛−𝑚 ⋅ 𝑋𝑛−𝑚 

Where X4, X5, … Xn-m are non-repeating variables involved in a problem. After 

substituting dimensions of all X quantities, equations are formed by equating 

exponents of 𝜋 terms (M, L, T) to zero. The solutions of these equations yield 

exponents X1, X2, X3 etc. 
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6.4.2 Steps for Application of Buckingham 𝜋 Theorem: 

1 Make a list of all ‘n’ variables involved in the given problem and write the 

functional relationship. 

2 Identify the dependent variables (Generally the variable on L.H.S. of the 

equation asked to derive). 

3 Write down dimensions of all ‘n’ variables and find out number of m 

primary dimensions involved. Number of π terms = n - m 

4 Choose ‘m’ number of repeating variables (i.e. number of repeating variables 

= number of primary dimensions involved in the given problem).  

Guidelines: 

1 None of the repeating variables should be dimensionless. 

2 No two of the repeating variables should have the same dimensions i.e. they should 

not form a dimensionless parameter among themselves. 

3 Repeating variables should contain all ‘m’ dimensions collectively. 

4 Dependent variables should not be selected as repeating variables. 

5 Generally, the first repeating variable should be from those variables which 

describe 'Geometry of flow, e.g. length, diameter, height, breadth etc. 

6 Second repeating variable should be from those variables which describe 'flow 

property' i.e. velocity, acceleration, force, power etc. 

7 The third variable should be from those variables which describe ‘fluid property’, 

e.g. viscosity, mass density, surface tension etc. 

       Note: Generally, mass density 𝜌, velocity 𝑣 and length 𝑙 are taken as repeating 

variables for fluid mechanics problems. Generally, the first term on R.H.S, of the 

given problem indicates repeating variables e.g. prove that R = 𝜌L2v2𝜙 (Re, M). 

Here 𝜌, v, L are the repeating variables) 

8 Raise the repeating variables to unknown powers and combine them with other 

variables one after the other to form dimensionless groups. 
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9 Equate exponents of 𝜋 term (M, L, T) to zero. Express the final expression in terms 

of all ‘n‒m’ dimensionless groups operations with π term: 

 i)   A dimensionless variable is a π term itself. e.g. 𝜃0, efficiency 𝜂. 

 ii)   Ratio of two variables with same dimensions forms a π term by observation 

e.g. L/D, H/D  

 iii)  Any 𝜋 term can be multiplied or divided by any numerical number or by any 

other π term 3π1, π2/5, π1/π2, π3/π4. 

iv)  A π term can be raised to any power. e.g. 𝜋1
2, 𝜋1

−2, 𝜋1
3/2

. 

            The above steps can be understood better by solving a numerical problem as given 

below.  

 

Ex. 1.  Drag on a body depends upon its characteristic length l, speed v, mass density 

ρ, viscosity µ and gravitational acceleration g. Obtain an expression for drag F 

in terms of dimensionless parameters using Buckingham's 𝜋 theorem. 

Solution : 

                                   𝑓(F, 𝑙, v, 𝜌, 𝜇, g) = 0 or constant 

                        Number of variables = 6 

Dimensions         

                        F          𝑙          v             𝜌           𝜇               g 

               [MLT‒2]  [L]  [LT‒1]  [ML‒3]  [ML‒1T‒1]  [LT‒2] 

Number of ' 𝑚 ' primary dimensions involved = 3  

∴                            Number of π terms = 6 ‒ 3 = 3  

∴                                    𝑓1(𝜋1, 𝜋2, 𝜋3) = 0 or constant. 

Selecting 𝜌, 𝑣, 𝑙 as repeating variables, 

                                          𝜋1 = 𝜌
𝑥1𝑣𝑦1 𝑙𝑧1 F                  

                            [M0 L0 T0] = [ML−3]x1[LT−1]y1[ L]z1[ML T−2]   
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                                                          (equating powers of M, L and T respectively) 

                                              0 = 𝑥1 + 1,        0 = ‒3𝑥1 + y1 + z1 + 1,         0 = ‒ y1 ‒ 2 

∴                                                𝑥1 = ‒1,            y1 = ‒2,                                 z1 = ‒2 

∴                                            𝜋1 = 𝜌‒1𝑣‒2 𝑙 ‒2  F = 
F

𝜌v2𝜌2
 

                                                     𝜋2 = 𝜌
𝑥2𝑣 y2 𝑙𝑧2  𝜇

   

                                      [M0 L0 T0] = [ML−3]x2[LT−1]y2[ L]z2[ML−1 T−1] 

∴                                              0 = 𝑥2 + 1,          0 = ‒3𝑥2 + y2 + z2 ‒ 1          0 = ‒y2 ‒ 1  

                                                𝑥2 = ‒ 1             z2 = ‒ 1                                 y2 = ‒ 1    

∴                                           𝜋2 = 𝜌
-1𝑣 -1

l
-1𝜇 = 

𝜇

𝜌𝑣𝑙
 = 

1

𝑅𝑒
  = 𝑅𝑒 (𝜋2 =

1

𝜋2
) 

  ∴                                           𝜋3 = 𝜌
𝑥3𝑣𝑦3𝑙𝑧3𝑔 

                                               [M0 L0 T0] = [ML−3]𝑥3[𝐿 T−1]𝑦3[ L𝑧3[LT−2] 

       ∴                                               0 = 𝑥3,          0 = ‒3𝑥3 + y3 + z3 + 1            0 = ‒y3 ‒ 2 

       ∴                                             𝑥3 = 0,           z3 = 1,                                    y3 = ‒2  

       ∴                                             𝜋3 = 𝜌0 𝑣‒2 lL g = 
𝑔𝑙

𝑣2
 = 

𝑣

√𝑔𝑙
  = Fr … (𝜋3 =

1

𝜋3
) 

       ∴                 𝑓1 (
𝐹

𝜌𝑣2𝚥2
, 𝑅𝑒 , 𝐹𝑟) = 0 or constant   

       ∴                                             
F

𝜌𝑓2𝑣2
 = 𝜙 (Re, Fr) 

       ∴                                                       F = 𝜌𝑙2𝑣2𝜙 (Re, Fr) 

Thus, Buckingham 𝜋 theorem yields the value of exponents explicitly. Also the possible 

number of π terms involved is known before hand. 
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6.5 Dimensionless Parameters: 

The dimensionless parameters required for analysis of fluid flow are generally ratios 

of forces per unit volume. These parameters or merely 'number' are, 

1 Froude Number,       Fr = (
 inertia force 

 gravity force 
)
1/2

 

2 Reynold's Number,   Re = (
 inertia force 

 viscous force 
) 

3 Mach Number,          M = (
 inertia force 

 elastic force 
)
1/2

 

4 Weber Number,       W = (
 inertia force 

 surface tension force 
)
1/2

 

5 Euler’s Number,        E = (
 inertia force 

 pressure force 
)
1/2

 

These five numbers are explained briefly below. 

6.5.1 Froude Number Fr : 

                                                 Fr = (
 inertia force 

 gravity force 
)
1/2

= (
𝜌𝐿2v2

𝜌L3 g
)
1/2

 

    ∴                                          Fr  = 
v

√gL
                                                                                  (6.5) 

(Note : 'L' can be characteristic dimension like length, diameter, hydraulic depth 

etc.) 

Application: Free surface flows which are dominated by gravity e.g. open channel 

flow. 
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6.5.2 Reynold's Number Re: 

                                   Re = (
 inertia force 

 viscous force 
) = (

𝜌L2v2

𝜇𝑣 L
) = 

𝜌v

𝜇
 = 
𝑣 L

𝑣
                                         (6.6)  

          

Application: Incompressible fluid flows with dominant viscous force e.g. pipe flow, 

motion of fully submerged bodies like submarine, Torpedo, airplane etc. 

6.5.3 Mach Number M :  

                               M = (
 inertia force 

 elastic force 
)
1/2

 = (
𝜌L2v2

kL2
)
1/2

 = 
v

√k/𝜌
                                       (6.7) 

Application: Compressible flows, water hammer phenomenon. 

6.5.4 Weber Number W : 

                             W = (
 inertia force 

 surface tension force 
)
½

 

                                   = (
𝜌𝐿2𝐯2

𝜎𝐿
)
½

 =  
𝑣

√
𝜎

𝜌𝐿

                                                                             (6.8)                       

Application: Study of droplets or capillary rise where a thin film is involved or depth 

of flow is small. 

6.5.5 Euler Number E : 

                       E = (
 inertia force 

 pressure force 
)
½

 = (
𝜌𝐿2v2

𝑝 L2
)
½

 = 
v

√p/𝜌
                                      (6.9)                     

Application: Study of cavitation phenomenon where pressure force is dominant. 
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6.6 Solved Problems : 

Ex. 6.1: The variables controlling the motion of a floating vessels through water 

are the of the water and the gravitational acceleration g. Derive an 

expression for F by dimensional analysis. 

Solution:  

𝑓(F, V, 𝑙, 𝜌, 𝜇, g) = 0 or constant 

Dimensions 

                             F              V          𝑙            𝜌                 𝜇                 g 

                  [MLT‒2]   [LT‒1]   [L]   [ML‒3]   [ML‒1T‒1]  [LT‒2] 

                  Number of variables n = 6 

Number of primary dimensions m = 3  

∴          Number of 𝜋 terms n ‒ m = 3 

∴                                  𝑓(𝜋1, 𝜋2, 𝜋3) = 0 or constant 

Take 𝜌, V, 𝑙 as repeating variables. 

                             𝜋1 = [𝜌𝑥1V𝑦1]𝑧1 F 

             [M0L0T0] = [ML−3]x1[LT−1]𝑦1[ L𝑧1[MLT−2] 

                     𝑥1 + 1 = 0,         ‒3 𝑥1 + y1 + z1 + 1 = 0,      ‒ y1 ‒ 2 = 0 

∴                           𝑥1 = ‒1,                                      z1 = ‒2,              y1 = ‒2 

∴                          𝜋1 = 𝜌‒1V‒2 J‒2F‒2 = 
F

𝜌V2𝜌2
 

Now,                 𝜋2 =  𝜌x2V𝑦2𝑙𝑧2𝜇   

            [M0 L0 T0] = [ML−3]𝑥2[LT−1]𝑦2[L]𝑧2[ML−1 T−1] 

                      𝑥2 + 1 = 0,       ‒3 𝑥2 + y2 + z2 ‒ 1 = 0,       ‒ y2 ‒ 1 = 0 
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∴                           𝑥2 = ‒1,                                     z2 = ‒1,               y2 = ‒1 

∴                            𝜋2 = 𝜌‒1 V‒1 𝑙‒1 𝜇 = 
𝜇

𝜌V𝐼
 

Now,                𝜋2 =  𝜌𝑥1𝑣𝑦3𝑇3g               

              [M0 L0 T0] = [ML−3]𝑥3[LT−1]3[ L]
𝛼3[LT−2] 

                                 𝑥3 = 0,      ‒3𝑥3 + y3 + z3 + 1 = 0,      ‒ y3 ‒ 2 = 0 

∴                               𝑥3 = 0,                                       z3 = 1,                y3 = ‒2 

∴                               𝜋3 = 𝜌0 V‒2 𝑙1 g = 
gl

V2
 

∴    𝑓1(
F

𝜌V2𝑙2
,
𝜇

𝜌V𝑙
,
g𝑙

 V2
) = 0 or constant 

∴                                                F = 𝜌V2𝜌𝜙 [
𝜇

𝜌V𝑙
,
g𝑙

 V2
] 

 

 

Ex. 6.2: The thrust F of supersonic air-craft during light is dependent on the length 

of aircraft (L), air-craft velocity (V), air viscosity (𝜇), air density (𝜌) and 

bulk modulus of air (K). Using Buckingham 𝜋 theorem, show that the 

rational equation for thrust is given by : 

𝐹 = 𝜌𝐿2𝑉2𝜙 [𝑅𝑒 ,
𝐾

𝜌𝑉2
] 

Solution: 

𝑓(F, L, V, 𝜇, 𝜌, K) = 0 or constant 

Dimensions        

                         F        L        V             𝜇              𝜌            K 
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                   [LT‒2]  [L]  [LT‒1]  [ML‒1T‒1]  [ML]  [ML‒1T‒2] 

                  Number of variables n = 6  

Number of primary dimensions m = 3  

∴                      Number of 𝜋 terms = 3 

∴                                𝑓(𝜋1, 𝜋2, 𝜋3) = 0 or constant 

Take 𝜌, V, 𝑙 as repeating variables.   

                                𝜋1 =  𝜌𝑥1𝑉𝑦1𝐿𝑧1F  

                  [M0 L0 T0] = [ML−3]x1[LT−1]y1[ L]𝑧1[MLT−2] 

                            𝑥1 + 1 = 0,       ‒3 𝑥1 + y1 + z1 + 1 = 0,     ‒ y1 ‒ 2 = 0 

∴                                  𝑥1 = ‒1,                                    z1 = ‒2,              y1 = ‒2 

∴                                 𝜋1 =  𝜌‒1 V‒2 L‒2 F = 
F

𝜌V2 L2
 

Now,                       𝜋2 =  𝜌𝑥2𝑉𝑦2𝐿𝑧2𝜇 

                   [M0 L0 T0] = [ML−3]𝑥2[LT−1]𝑦2[ Lz2[ML−1 T−1] 

                             𝑥2 + 1 = 0,     ‒3 𝑥2 + y2 + z2 ‒ 1 = 0,     ‒ y2 ‒ 1 = 0 

∴                                   𝑥2 = ‒1,                                   z2 = ‒1,             y2 = ‒2 

∴                                  𝜋2 = 𝜌‒1 V‒1 L‒1𝜇 = 
𝜇

𝜌V𝐿
 

                                      
1

𝜋2
 = 
𝜌VL

𝜇
  = Re 

Now,                        𝜋3 =  𝜌𝑥3𝑉𝑦3𝐿𝑧3 K 

                      [M0 L0 T0] = [MLL−3]x3[LT−1]𝑦3[ L]x3[ML−1 T−2] 

                              𝑥3 + 1 = 0,     ‒3 𝑥3 + y3 + z3 ‒ 1 = 0,     ‒ y3 ‒ 2 = 0 
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∴                                    𝑥3 = ‒1,                                   z3 = 0,              y3 = ‒2 

∴                                   𝜋3 = 𝜌‒1 V‒2 L0 K = 
K

𝜌V2
 

∴                            
𝐹

𝜌𝑉2𝐿2
 = 𝜙 (𝑅𝑒 ,

𝐾

𝜌𝑉2
) 

∴                                      F = 𝜌V2 L2 𝜙 (𝑅𝑒 ,
𝐾

𝜌𝑉2
) 

 

Ex. 6.3: A viscous fluid is confined between two long cylinders. A torque per unit 

length 'J' is required to turn the inner cylinder at constant angular velocity 

'𝜔'. The cylinder radii are 'r' and 'R' and the fluid 'viscosity is '𝜇'. Set up a 

nondimensional equation for the set of parameters given. If both radii are 

doubled, how does it affect T. If the viscosity is halved, what effect does 

it have on T. 

Solution :  

𝑓(J, 𝜔, r, R, 𝜇) = 0 or constant 

Dimensions   

                              J           𝜔    r    R           𝜇 

                          [MLT‒2]  [L]  [t]  [L]  [ML‒1T‒1] 

              Number of variables n = 5  

Number of primary variables m = 3  

∴                  Number of 𝜋 terms = 2 

                                         𝑓(𝜋1, 𝜋2) = 0 or constant 

Taking 𝜔, 𝑟, 𝜇 as repeating variables. 

                                    𝜋1 = 𝜔𝑥1𝑟𝑦1𝜇𝑧1𝐽 

                     [M0 L0 T0] = [T−1]x1[ L]𝑦1[ML−1 T−1]z1[MLT−2] 
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                   ‒𝑥1 ‒ z1 ‒ 2 = 0,     y1 ‒ 1 + 1 = 0,     ‒ z1 ‒ 2 = 0 

∴                                  𝑥1 = 0,                     y1 = 0,               z1 = ‒2 

∴                                 𝜋1 = 𝜔0 r0 𝜇‒2 J = 
𝐽

𝜇2
 

Now                        𝜋2 = 
𝑅

𝑟
  by observation 

∴                  𝑓(
J

𝜇2
,
R

r
)  = 0 or constant 

∴                                     J = 𝜇2𝜙(
R

r
) 

i)   If both radii are doubled torque will not change. 

ii)  If 𝜇 is halved, J will be reduced by 
1

4
. 

 

 

Ex. 6.4 : The pressure drop per unit length (Δp/L) for an incompressible fluid flow 

through a pipe depends upon the pipe diameter (D), the pipe roughness (E), 

velocity of the fluid (V), fluid density (𝜁) and its viscosity (𝜇), Using the 

Buckingham 𝜋 - theorem show that the relation between the variables is 

given by: 

𝐴𝑝

𝐿
=
𝜁𝑉2

𝑑
𝑓 (
𝐸

𝐷
⋅
𝜇

𝜁𝑉𝐷
) 

Solution :  

𝑓(
Δ𝑝

𝐿
, D, ∈, V, 𝜁, 𝜇) = 0 or constant 

Dimensions  
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Δ𝑝

𝐿
      D     ∈       V           𝜁           𝜇 

                     [ML‒2T‒2]   [L]  [L]  [LT‒1]  [ML‒3]  [ML‒1T‒1] 

                  Number of variables n = 6  

Number of primary dimensions m = 3 

∴                      Number of 𝜋 terms = 3  

∴                                𝑓(𝜋1, 𝜋2, 𝜋3) = 0 or constant 

Taking 𝜌, 𝑉, 𝐷 as repeating variables. 

                                        𝜋1 = 𝜁𝑥1𝑉𝑦1𝐷𝑧1  
ΔP

𝐿
                            

                        [M0 L0 T0] = [ML−3]x1[LT−1]𝑦1[ L]z1[ML−2 T−2] 

                                    𝑥1 + 1 = 0,     ‒3𝑥1 + y1 + z1 ‒ 2 = 0,      ‒ y1 ‒ 2 = 0 

∴                                         𝑥1 = ‒1,                                z1 = 1,              y1 = ‒2 

∴                                        𝜋1 = 𝜁‒1 V‒2 D1 
ΔP

L
 = 
(ΔP/L)⋅D

𝜁V2
 

Now,                             𝜋2 = 
𝜀

𝐷
  by observation. 

Now,                             𝜋2 = 𝜁𝑥2𝑣𝑦2𝐷𝑧2𝜇  

                              [M0 L0 T0] = [ML−3]x2[LT−1]
1

2[ L]2 2[ML−1 T−1] 

                                     𝑥2 + 1 = 0,     ‒3𝑥2 + y2 + z2 ‒ 1 = 0,     ‒ y2 ‒ 1 = 0 

∴                                           𝑥2 = ‒1,                             z2 = ‒1,            y2 = ‒1   

∴                                          𝜋3 = 𝜁‒1 V‒1 D‒1 𝜇 = 
𝜇

𝜁VD
 

∴  𝑓1 (
(ΔP/L)⋅D

𝜁V2
,
𝐸

D
,
𝜇

𝜁VD
) = 0 or constant 
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∴                                          
ΔP

L
 = 
𝜁V2

D
𝜙(

E

D
,
𝜇

𝜁VD
) 

 

 

Ex. 6.5: Using the Buckingham 𝜋 theorem show that the velocity 𝑈 through a 

circular orifice is given by, 

u = √gH 𝜙 [
𝛼

H
,
𝜇

𝜌VH
] 

where H is the head of the orifice, 𝛼 diameter of orifice, 𝑝 density and 𝜇 

viscosity. 

Solution :  

𝑓(u, g, H, α, 𝜇, 𝜌) = 0 or constant 

Dimensions 

                               u            g         H      α             𝜇               𝜌 

                        [LT‒1]   [LT‒2]   [L]   [L]   [ML‒1T‒1]   [ML‒3]      

                  Number of variables n = 6  

Number of primary dimensions m = 3 

∴                     Number of 𝜋 terms = 3  

∴                               𝑓(𝜋1, 𝜋2, 𝜋3) = 0 or constant 

Taking 𝜌, u, H as repeating variables. 

                                      𝜋1 = 𝜌𝑥1𝑢𝑦2𝐻𝑧g 

                      [M0 L0 T0] = [ML−3]x1[LT−1]y2[ L]z1[LT−2] 

                                        𝑥1 = 0,    ‒3𝑥1 + y2 + z1 + 1 = 0,    ‒ y2 ‒ 2 = 0 

∴                                     𝑥1 = 0,                                 z1 = 1,             y2 = ‒2 
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∴                                    𝜋1 = 𝜌0 u‒2 H1  g = 
gH

u2
   ∴  √𝜋1 = 

√gH

u
 

Now,                          𝜋2 = 
𝛼

𝐻
  by observation. 

Now,                           𝜋2 = 𝜌𝑥2 ⋅ 𝑢𝑦2𝐻2𝜇  

                          [M0 L0 T0] = [ML−3]x2[LT−1]𝑦2[ L]x2[M1 L−1 T−1] 

                                   𝑥2 + 1 = 0,    ‒3𝑥2 + y2 + z2 ‒ 1 = 0,    ‒ y2 ‒ 1 = 0 

∴                                       𝑥2 = ‒1,                               z2 = ‒1,           y2 = ‒1 

∴                                    𝜋3 = 𝜌‒1 u‒1 H‒1 𝜇 = 
𝜇

𝜌uH
 

∴      𝑓1(
√gH

u
,
𝛼

H
,
𝜇

𝜌VH
) = 0 or constant 

∴                                     √gH = 𝜙 [
𝛼

H
,
𝜇

𝜌VH
] 

∴                                             u = √gH 𝜙 [
𝛼

H
,
𝜇

𝜌VH
] 

 

 

Ex. 6.6 : The resisting torque T of a lubricated joumal bearing depends on the 

joumal diameter D, clearance c, length 𝑙, speed of rotation N, viscosity of 

oil 𝜇 and load W show that, 

𝑇

𝑊𝐷
= 𝜙(

𝑙

𝐷
,
𝐶

𝐷
,
𝜇𝐷2𝑁

𝑊
) 

Solution : 

𝑓(T, D, C, 𝑙, N, 𝜇, w) = 0 or constant 
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Dimensions 

                         T          D     C      𝑙       N               𝜇               w 

                  [ML2T‒2]   [L]   [L]   [L]   [T‒1]    [ML‒1T‒1]   [MLT‒2] 

                  Number of variables n = 7. 

Number of primary dimensions m = 3. 

               Number of 𝜋 tems n ‒ m = 4. 

∴                               𝑓(𝜋1, 𝜋2, 𝜋3, 𝜋4) = 0 or constant 

Take W, N, D as repeating variables. 

                          𝜋1 = W𝑥1 N𝑦1D𝑧1 T 

                 [M0 L0 T0] = [MLTT−2]x1[ T−1]𝑦1[L]𝑧1[ML2 T−2] 

                              0 = 𝑥1 + 1,     0 = 𝑥1 + z1 + 2,     0 = ‒2𝑥1‒ y1 ‒ 2 

∴                          𝑥1 = ‒1,            z1 = ‒1,                  y1 = 0 

∴                                      𝜋1 = W‒1 N0 D‒1 T = 
T

WD
 

∴                                      𝜋2 = 
𝑙

D′
 ,    𝜋3 = 

C

D
 

∴                                       𝜋4 =  W𝑥2N𝑦2D2𝜇 

                           [M0 L0 T0] = [MLT −2]x1[ T−1]𝑦1[L]21[ML−1 T−1] 

                                     0 = 𝑥1 + 1,      0 = 𝑥1 + z1 ‒ 1,     0 = ‒2𝑥1‒ y1 ‒ 1 

∴                                 𝑥1 = ‒1,           z1 = 2                     y1 = 1 

∴    𝑓(
T

WD
,
𝑙

D
,
C

D
,
𝜇ND2

 W
) = 0 or constant 

                                               
T

WD
 = 𝜙 (

𝑙

D
,
C

D
,
𝜇ND2

 W
) 
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Ex. 6.7: Power P, developed by a water turbine depends upon rotation speed N, 

operating head H, diameter D, breadth 'B' of runner, density p, viscosity 

𝜇 and gravity g. Show 

𝑝 = 𝜌𝐷3𝑁3𝜙 [
𝑁

𝐷
,
𝐵

𝐷
,
𝜌𝐷2𝑁

𝜇
,
𝑁𝐷

√𝑔𝑁
] 

Solution :  

𝑓(P, N, H, D, B, 𝜌, 𝜇, g) = 0 or constant 

Dimensions 

                         P            N       H     D     B         𝜌               𝜇               g 

                  [ML2T‒3]   [T‒1]   [L]   [L]   [L]   [ML‒3]   [MLT‒1T‒1]   [LT‒

2] 

                  Number of variables n = 8. 

Number of primary dimensions m = 3  

∴                      Number of 𝜋 terms = 5  

∴          𝑓(𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5, 𝜋6, 𝜋7, 𝜋8) = 0 or constant 

Take 𝜌, N, D as repeating variable. 

                                 𝜋1 = 𝜌
𝑥1𝑁𝑦1𝐷𝑧1P 

                    [M0 L0 T0] = [ML−3]x1[ T−1]y1[ L]z1[ML2 T−3] 

                                      0 = 𝑥1 + 1,    0 = ‒3𝑥1 + z1 + 2,     0 = ‒y1 ‒ 3 

∴                                  𝑥1 = ‒1,         z1 = ‒5,                      y1 = ‒3,      

∴                                  𝜋1 = 𝜌‒1 N‒5 D‒5 P 
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∴                                   𝜋1 = 
P

𝜌N5D5
 

Now                          𝜋2 = 
H

D
 ,  𝜋3 = 

B

D
  by observation 

                                     𝜋4 = 𝜌𝑥2𝑁𝑦2𝐷𝑧2𝜇 

∴                     [M0 L0 T0] = [𝑀−3]𝑥2[𝑇−1]𝑦2[𝐿]22[𝑀𝐿𝐿−1𝐿−1] 

                                         0 =  𝑥2 + 1,     0 = ‒3𝑥2 + z2 ‒ 1,     0 = ‒y2 ‒ 1 

∴                                     𝑥2 = ‒1,           z2 = ‒2,                       y2 = ‒1   

 ∴                                   𝜋4 = 𝜌‒1 N‒1 D‒2 𝜇 = 
𝜇

𝜌ND2
 

 Now,                       𝜋5 = 𝜌𝑥3𝑁𝑦3𝐷𝑧3g   

                         [M0 L0 T0] = [𝑀−3]𝑥3[𝑇−1]𝑦3[𝐿]𝑧3[𝐿𝑇−2] 

                                         0 =  𝑥3,     0 = ‒3𝑥3 + z3 + 1,     0 = ‒y3 ‒ 2 

∴                                                        z3 = ‒1,                       y3 = ‒2     

∴                                       𝜋5 = 𝜌0 N‒2 D‒1 g = 
g

N2D
 

∴  𝑓(
p

𝜌N5D5
,
H

D
,
B

D
,

𝜇

𝜌ND2
,
g

N2D
)  = 0 or constant 

∴                                        P = 𝜌N3 D5 𝜙 (
𝐻

𝐷
,
𝐵

𝐷
,
8

𝑁2𝐷
,

𝜇

𝜌𝑁𝐷2
) 

Now                 𝜋2 ⨯ 𝜋5 = 
𝐻

𝐷
 ⨯ 

𝑔

𝑁2D
 =  

𝑔𝐻

𝑁2D2
      

∴                              
1

𝜋1𝜋5
 = 
N2D2

gH
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                  (𝜋1 ⨯ 𝜋5)
½ = 

ND

√gH
 

∴                                     P = 𝜌N3 D5 𝜙 (
𝐻

𝐷
,
𝐵

𝐷
,
𝜌𝑁𝐷2

𝜇
,
𝑁𝐷

√𝑔𝐻
) 

 

 

Ex. 6.8 : A supersonic plane of length 𝐿 moves with speed ∨ through air of density 

𝜌, method show that dimensionless groups obtained are Mach number, 

Reynold's number and Drag coefficient 
𝐹𝐷

𝜌𝐿2𝑉2
 

Solution :  

𝑓(L, V, 𝜌, 𝜇, k, FD) = 0 or constant 

Dimensions 

                     L       V            𝜌               𝜇               k              FD 

                      [L]   [LT‒1]   [ML‒3]   [ML‒1T‒1]   [ML‒1T‒2]   [MLT‒2]   

                     Number of variables n = 6 

Number of primary dimensions m = 3  

∴                     Number of 𝜋 terms = 3  

Taking 𝜌, V, L as repeating variables. 

                                 𝜋1 = 𝜌
𝑥1N𝑦1L2𝜇 

                    [M0 L0 T0] = [ML−3]x1[LT−1]y1[ L]z1[ML−1 T−1] 

                             𝑥1 + 1 = 0,     ‒3𝑥1 + y1 + z1 ‒ 1 = 0,      ‒y1 ‒ 1 = 0 

∴                                  𝑥1 = ‒1,            3 ‒ 1 + z1 ‒ 1 = 0,            y1 = ‒1 

∴                                                                          z1 = ‒1 
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∴                        𝜋1 = 𝜌‒1 V‒1 L‒1 𝜇 = 
𝜇

𝜌VL
 

                            = 
1

𝑅𝑒
 (First dimensionless group is Reynold's number) 

∴                       
1

𝜋1
 = Re 

                      𝜋2 = 𝜌𝑥2𝑉𝑦2𝐿𝑧k 

            [M0 L0 T0] = [ML−3]x2[LT−1]𝑦2[ L]2[ML−1 T−2] 

                                𝑥2 + 1 = 0,     ‒3𝑥2 + y2 + z2 ‒ 1 = 0,     ‒y2 ‒ 2 = 0 

∴                                    𝑥2 = ‒1,            3 ‒ 2 +  z2 ‒ 1 = 0,             y2 = ‒2,   

∴                                                                                       z2 = ‒1 

∴                         𝜋2 = 𝜌‒1 V‒2 L0 k = 
k

𝜌V2
 

                             
1

𝜋2
 = 
𝜌𝑉2

𝑘
 = 

𝑉2

𝑘/𝜌
 

 

 

Ex. 6.9: Discharge 𝑄 of a centrifugal pump can be assumed to be dependent on 

speed N rpm. Using t, method show that, 

Q = ND3𝜙 (
gH

N2D2
,
𝛾

𝑁 N2
) 

Solution :  

𝑓(Q, 𝜌, 𝜇, P, D, N) = 0 or constant 

Dimensions  

                        Q            𝜌            𝜇                P           D      N   

                  [L3T‒1]   [ML‒3]  [ML‒1T‒1]   [ML‒1T‒2]   [L]   [T‒1] 
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                  Number of variables n = 6 

Number of primary dimensions m = 3 

                           Number of terms = 3 

∴                              𝑓(𝜋1, 𝜋2, 𝜋3) = 0 or constant 

Taking 𝜌, N, D as repeating variables. 

                                   𝜋1 =  𝜌
𝑥1𝑁𝑦1𝐷𝑧1Q 

                     [M0 L0 T0] = [𝑀−3]𝑥1[𝑇−1]𝑦1[𝐿]2[𝐿3𝑇−1] 

                                    𝑥1 = 0,     ‒3𝑥1 + z1 + 3 = 0,     ‒y1 ‒ 1 = 0 

∴                                                                         z1 = ‒3             y1 = ‒1 

∴                                   𝜋1 = 𝜌0 N‒1 D‒3 Q = 
Q

ND3
 

                               𝑥2 + 1 = 0,     ‒3𝑥2 + z2 ‒ 1 = 0,     ‒y2 ‒ 1 = 0 

∴                                   𝑥2 = ‒1,         3 + z2 ‒ 1 = 0,                y2 = ‒ 1 

∴                                                                            z2 = ‒2 

∴                                  𝜋2 = 𝜌
‒1 N‒1 D‒2 𝜇 = 

𝜇

𝜌ND2
 = 

𝛾

ND2
 

                                  𝜋3 = 𝜌
𝑥3𝑁𝑦3D𝑥3P 

                           [M0 L0 T0] = [𝑀−3]𝑥3[𝑇−1]𝑦3[𝐿]𝑧3[𝑀−1𝑇−2] 

∴  𝑓(
𝑄

𝑁𝐷3
,
𝑔𝐻

𝑁2𝐷2
,
𝑣

𝑁2
) = 0 or constant  

                                 𝑥3 + 1 = 0,     ‒3𝑥3 + z3 ‒ 1 = 0,     ‒y3 ‒ 2 = 0 

∴                                      𝑥3 = ‒1,         3 + z3 ‒ 1 = 0,               y3 = ‒2 

∴                                                                              z3 = ‒2 
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∴      𝜋3 = 𝜌‒1 N‒2 D‒2p = 
𝑃

𝜌𝑁2𝐷2
 = 

𝜌⋅𝑔⋅𝐻

𝜌𝑁2𝐷2
  = 

𝑔𝐻

𝑁2𝐷2
 

∴                                    
𝑄

𝑁𝐷3
  = 𝑓(

𝑔𝐻

𝑁2𝐷2
,
𝑣

𝑁2
) 

∴                                           Q = N3𝜙 (
𝑔𝐻

𝑁2𝐷2
⋅

𝑣

𝑁𝐷2
) 

 

 

Ex. 6.10: Drag on a body depends on its characteristic length 𝑙, speed 𝑢 of the body 

Mass density and viscosity of the fluid and gravitational acceleration. 

Obtain an expression for drag in terms of dimensionless parameters. 

Solution:  

𝑓(F, l, u, 𝜌,  𝜇, g) = 0 or constant   

Dimensions 

                         F          l        u            𝜌              𝜇              g   

                  [MLT‒2]   [L]  [LT‒1]   [ML‒3]   [ML‒1T‒1]   [LT‒2] 

Taking 𝜌, 𝑙, u as repeating variables. 

                             𝜋1 = 𝜌
𝑥1𝑙1

𝑦1u2F 

                 [M0 L0 T0]  = [ML−3]x1[LTy1[LT−1]z1[MLT−2] 

                            𝑥1 + 1 = 0,     ‒3𝑥1 + y1 + z1 + 1 = 0,     ‒ z1 ‒ 2 = 0 

∴                                 𝑥1 = ‒1,           3 + y1 ‒ 2 + 1 = 0,                z1 = ‒2 

∴                                                                                   y1 = ‒2 

∴                                 𝜋1 = 𝜌‒1 𝑙‒2 u‒2 F = 
F

𝜌𝑙2u2
  

                                 𝜋2 = 𝜌𝑥2𝐼𝑦2𝑢𝑧2𝜇 
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                    [M0 L0 T0] = [𝑀𝐿−3]𝑥2[L]𝑦2[𝐿𝑇−1]𝑧2[M𝐿−1𝑇−1] 

                           ‒𝑥2 + 1 = 0,   ‒3𝑥2 + y2 + z2 ‒ 1 = 0,   ‒ z2 ‒ 1 = 0 

∴                                  𝑥2 = ‒1,         3 + y2 ‒ 1 ‒ 1 = 0,             z2 = ‒1 

∴                                                                                 y2 = ‒1 

∴             𝜋2 = 𝜌‒1 𝑙‒1 u‒1 𝜇 = 
𝜇

𝜌u𝑙
 = 

1

R𝑒
 ;  

1

𝜋2
 = Re (Reynold's number) 

                                 𝜋3 = 𝜌𝑥3𝑙𝑦3𝑢𝑧1g 

                  [M0 L0 T0] = [ML−3]x3[ L]y3[ L T−1]2[ L T−2] 

                                     𝑥3 = 0,     ‒3𝑥3 + y3 + z3 + 1 = 0,     ‒ z3 ‒ 2 = 0 

∴                                                                      y3 ‒ 2 + 1 = 0,               z3 = ‒2 

∴                                                                                    y3 = 1 

∴                                 𝜋3 = 𝜌0 𝑙1 u‒2 g = 
𝑔𝑙

𝑢2
 

                              
1

𝜋3
 = 
𝑢2

𝑔𝑙
,   √

1

𝜋3
 =  

𝑢

√𝑔𝑙
  = Fr (Froude number) 

∴  𝑓(
𝐹

𝜌𝑅2𝑢2
, 𝑅𝑒 , 𝐹𝑟) = 0 or constant 

∴                                        F = 𝜌R2 u2 𝜙(Re, Fr) 

 

UNIT SUMMARY 

Unit is summarized in the following points : 

1. Dimensions of all quantities must be known correctly (Refer Table 6.3.1) 

2. Rules for applying Buckingham 𝜋 theorem. 
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3. Various non-dimensional parameters, like Froude number, Reynold's number, 

Mach number, Weber number, Euler number with their derivations. 

 6.7: Exercise 

 6.7.1: Objective Questions: 

1. Which of the following is a primary quantity. 

  a)  Mass    b) Density 

c)  Speed    d) Volume 

 Ans:  (d) 

 

2. Which is the dimensionless quantity from the following? 

  a)  Mass    b) Weight 

c)  Specific weight   d) Reynold’s number 

 Ans:  (d) 

 

3. Which of the following is the dimensions of force. 

  a) [M LT – 1 ]    b)  [M LT – 2] 

c)  [M L T – 3 ]    d)  [M L2 T 2 ] 

 Ans:  (b) 

 

4. The temperature is a primary quantity in dimensional analysis. 

 a)   True    b)  False 

 Ans:  (a) 

 

5. The ratio of inertia force to the viscous force is called as..... 

 a)   Reynold’s number   b) Euler's number 

 c)   Weber's number   d)  None of the above 
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 Ans:  (a) 

 

6. The dimensions of specific weight are - 

  a) [M LT – 1]    b)  [M LT – 2] 

c)  [M L T – 3 ]    d)   [ML-2T-2] 

 Ans:  (d) 

 

7. The reciprocal of Euler number is called as Newton number. 

 a)   True    b)  False 

 Ans:  (d) 

8. The ratio of inertia force to the surface tension force is called as..... 

 a)   Reynold’s number   b)  Euler's number 

 c)   Weber's number   d)   None of the above 

 Ans:  (c) 

 

9. Dimensional analysis converts large number of variables into 

 a)   Larger number of dimensionless groups 

 b)   Smaller number of dimensionless groups 

 c)   Larger & smaller number of dimensionless groups 

 d)   None 

 Ans:  (b) 

 

10. The size of a  model in dimensional analysis is 

 a)   >  the prototype   b)  <  the prototype 

 c)   =  the prototype   d)  None 

 Ans:  (b) 

 

11. First preferred repeating variable in Buckingham’s Pi Theorem  method is  

 a)  Flow property   b)  Fluid property 
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 c)   Geometric property  d)  None 

 Ans:  (c) 

 

12. Dimensional homogeneity helps to determine the 

 a)   Units of a physical quantity 

 b)   Dimensions of a physical quantity 

 c)   Units & dimensions of a physical quantity 

 d)   None 

  Ans:  (c) 

 

13. Dimensional analysis develops which type of relations from the experimental 

data ? 

 a)   Analytical    b)  Empirical 

 c)   Analytical & empirical  d)  None 

 Ans:  (b) 

 

14.   The dimensions of dynamic viscosity are  

  a) [M LT – 1 ]    b)  [M LT – 2] 

c)  [ML-1T-1]    d)  [M L2 T 2 ] 

 Ans:  (c) 

 

 

15.   Which is the dimensionless quantity? 

 a)  Stress     b)  Strain 

 c)  Modulus    d)  None 

 Ans:  (b) 
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6.7.2: Theory Questions : 

Q. 1  State Buckingham's 𝜋 theorem. 

 Q. 2  Define and derive equations for following dimensionless numbers. Froude 

Number, Reynold's Number.  

 Q. 3  State dimensions of following variables. 

    (i)  Angular velocity  

    (ii)  Kinematic viscosity. 

    (iii)  Moment of inertia of mass. 

   (iv)  Momentum 

              Q. 4  Write short note on : 

    (i)   Mach number 

    (ii)  Euler number 

    (iii)  Froude number 

   (iv)  Reynolds number 

 Q.5.  What do you understand by dimensional homogeneity ? Explain how 

dimensional analysis is used in analyzing fluid flow problems. 

 

         6.7. 3: Problems : 

 

1.  Using Buckingham's 𝜋-theorem, show that the velocity through a circular 

orifice is given by  

𝑉 = √2𝑔𝐻𝑓 [
𝐷

𝐻
,
𝜇

𝜌VH
] 

  H - Heading causing flow 

2. The power required by an agitator in a tank is a function of the following 

variables: a. Diameter of the agitator b. Number of rotations of the impeller per 

unit time c. Viscosity of liquid d. Density of liquid 
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(i) From dimensional analysis using Buckingham's method, obtain a relation 

between power and the four variables.  

(ii) The power consumption is found experimentally to be proportional to the 

square of the speed of rotation. By what factor would the power be expected 

to increase if the impeller diameter was doubled? 

3.   The efficiency of a fan 𝜂 depends upon following factors : 

  (i)  Density 𝜌 

  (ii)  Dynamic viscosity of fluid 𝜇 

  (iii)  Diameter of rotor D.  

  (iv)  Discharge 𝜙 

  (v)  Angular velocity 𝜔 

                Show that 

𝜂 = 𝜙 (
𝜇

𝐷2𝜔𝜌
,
𝜙

𝑑3𝜔
) 

 

4. The discharge 𝑄 through an oil ring depends on the diameter 𝑑 of oil ring, 

speed N rpm, mass density 𝜌 of oil, absolute viscosity 𝜇 of oil, surface tension 

𝜎 and specific weight 𝛾 of oil. Show that 

𝑄 = 𝑁𝑑3𝜙 (
𝜇

𝜌𝑁𝑑2
,

𝜎

𝜌𝑁2𝑑3
,
𝛾

𝜌𝑁2𝑑
) 

 

5. Torque 𝑇 of a propeller depends upon density of liquid 𝜌, viscosity of liquid 

𝜇, theorem show that 

𝑇 = 𝜌𝑁2𝐷5𝜙 [
𝑁𝐷

𝑉1

𝜌𝑁𝐷2

𝜇
] 
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QR CODES FOR SUPPORTING VIDEO  

 

                                  
(1)                    (2)                      (3)                     (4)                   (5) 
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CO AND PO ATTAINMENT TABLE 

 

Following is the blank CO and PO attainment table, one can use this for individual practice 
for CO-PO mapping. Course outcomes (COs) for this course can be mapped with the 
programme outcomes (POs) after the completion of the course and a correlation 
can be made for the attainment of POs to analyze the gap. After proper analysis of 
the gap in the attainment of POs necessary measures can be taken to overcome the 
gaps.  
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