

Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front
title cover. In case you don’t find the hologram on the front cover title, please write us to at
contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for
yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:
Step 1: Scratch the hologram
Step 2: Under the scratch area, your “coupon code” is available
Step 3: Logon to www.khannabooks.com
Step 4: Use your “coupon code” in the shopping cart and get your copy at a special discount
Step 5: Enjoy your reading!

Copyright © Reserved

No part of this publication may be
reproduced, stored in a retrieval system or
transmitted, in any form or by any means,
electronic, mechanical, photocopying,
recording or otherwise without prior
permission of the publisher.

This book is sold subject to the condition
that it shall not, by way of trade, be lent,
re-sold, hired out or otherwise disposed
of without the publisher’s consent, in any
form of binding or cover other than that in
which it is published.

Disclaimer: The website links provided by
the author in this book are placed for
informational, educational & reference
purpose only. The Publisher do not
endorse these website links or the views of
the speaker/ content of the said weblinks.
In case of any dispute, all legal matters
to be settled under Delhi Jurisdiction only.

ISBN: 978-93-91505-21-9
Book Code: UG003EN

Programming for Problem Solving
by R. S. Salaria
[English Edition]

First Edition: 2021

Published by:
Khanna Book Publishing Co. (P) Ltd.
Visit us at: www.khannabooks.com
Write us at: contact@khannabooks.com
CIN: U22110DL1998PTC095547

To view complete list of books,
Please scan the QR Code:

KPH

Printed in India.

(v)

The author is grateful to AICTE for their meticulous planning and execution to publish the
technical book for Engineering and Technology students.

This book is an outcome of various suggestions of AICTE members, experts and authors who
shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum
and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting
education in regional languages, this book is being translated in scheduled Indian regional
languages.

Acknowledgements are due to the contributors and different workers in this field whose
published books, review articles, papers, photographs, footnotes, references and other valuable
information enriched us at the time of writing the book.

Finally, I like to express my sincere thanks to the publishing house, M/s. Khanna Book
Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate
on all the aspects of publishing to make it a wonderful experience.

R. S. Salaria

Acknowledgement

(vii)

Problem solving is unquestionably one of the most important skills; other skills such as writing
efficient code, effective communication, working with a team, and many others, are also very

important. It’s impossible to say any one skill is the MOST important.

The subject of Programming for Problem Solving aims at developing problem solving skills
and the skills to create programs in C language for their implementation.

The textbook in your hand is designed as per the model curriculum of AICTE for the first year
students of all branches of under graduate programme in Engineering & Technology (BE/BTech).

Programming books do teach problem solving. Unfortunately there are limitations on what
can actually be taught. It is mostly learned by practice.

The point that I wish to make is to get students to see the problem solving process in action.
For example, designing a sorting algorithm is a basic example of a “problem” that needs to be
“solved”. Understanding how to implement different algorithms and select the best strategy for
sorting helps you learn how to solve problems, in a very rudimentary way. Careful examination of
what is covered in this type of analysis will improve your problem solving process. Unfortunately,
most students just learn the algorithms and complete the exercises, and don’t dig deeper than that.

If you just read the book or notes taken in the class and implement the solution, you aren’t
learning to solve the problem. A more effective method is to read the problem, then close the
book/notes and try to come up with a solution. After creating a solution on your own, go back
and compare your results with what is written in the book/notes. Then you learn how to solve
problems.

Problem solving is really a self-directed process. It requires curiosity, flexibility, careful
observation and analysis, and a conceptual framework that grows slowly over time. Of those
things, the only one that can be taught is the conceptual framework, so that is what books and
classes provide. The rest is up to you.

The book in your hand will provide you everything you need to become a good problem
solver and good programmer as well.

Enjoy reading this book, and feel free to send your free and frank comments, suggestions, and
positive criticism. Your valuable inputs will help me to improve and fine tune the book to meet
your expectations.

Last but not the least, while writing the book, due care has been taken to avoid errors (misprints
and/or mistakes), yet it is difficult to claim perfection. I will be grateful to the readers if any errors
are pointed out.

R. S. Salaria

Preface

(ix)

OUTCOME BASED EDUCATION

Outcome-Based Education (OBE) is a student-centric teaching and learning methodology in which
the course delivery, assessment are planned to achieve stated objectives and outcomes. It focuses on
measuring student performance, i.e., outcomes at different levels.

Some important aspects of the Outcome Based Education:

	 1.	 Course is defined as a theory, practical or theory cum practical subject studied in a semester.

	 2.	 Course Outcomes (COs) are statements that describe significant and essential learning that
learners have achieved, and can reliably demonstrate at the end of a course. Generally three or
more course outcomes may be specified for each course based on its weightage.

	 3.	 Programme is defined as the specialization or discipline of a Degree. It is the interconnected
arrangement of courses, co-curricular and extracurricular activities to accomplish predetermined
objectives leading to the awarding of a degree. For example, BE/BTech – Computer Science &
Engineering

	 4.	 Programme Outcomes (POs) are narrower statements that describe what students are expected
to be able to do by the time of graduation. POs are expected to be aligned closely with Graduate
Attributes.

	 5.	 Programme Educational Objectives (PEOs) of a program are the statements that describe the
expected achievements of graduates in their career, and also in particular, what the graduates are
expected to perform and achieve during the first few years after graduation.

	 6.	 Programme Specific Outcomes (PSOs) are what the students should be able to do at the time
of graduation with reference to a specific discipline. Usually there are two to four PSOs for a
programme.

Knowledge levels for assessment of outcomes based education on Blooms Taxonomy:
Level Parameter Description

K1 Remember It is the ability to remember the previously learned material/information
K2 Understand It is the ability to grasp the meaning of material.
K3 Apply It is the ability to use learned material in new and concrete situations

K4 Analyze
It is the ability to break down material/concept into its component parts/
subsections so that its organizational structure may be understood.

K5 Evaluate
It is the ability to judge the value of material/concept/statement/creative material
/research report for a given purpose.

K6 Create
It is the ability to put parts/subsections together to form a new whole material/
idea/concept/information.

(x)

PROGRAMME OUTCOME (POs)

For the implementation of an outcome based education the first requirement is to develop an outcome
based curriculum and incorporate an outcome based assessment in the education system. By going through
outcome based assessments evaluators will be able to evaluate whether the students have achieved the outlined
standard, specific and measurable outcomes. With the proper incorporation of outcome based education
there will be a definite commitment to achieve a minimum standard for all learners without giving up at any
level. At the end of the programme running with the aid of outcome based education, a students will be able
to arrive at the following outcomes:
PO-1:	� Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.
PO-2:	� Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

PO-3:	� Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

PO-4:	� Conduct investigations of complex problems: Use research-based knowledge and research methods
including design of experiments, analysis and interpretation of data, and synthesis of the information
to provide valid conclusions.

PO-5:	� Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

PO-6:	� The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
engineering practice.

PO-7:	� Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

PO-8:	� Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

PO-9:	� Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO-10:	� Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

(xi)

PO-11:	� Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO-12:	� Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

(xii)

COURSE OUTCOMES

The course will enable the students

CO-1: To formulate simple algorithms for arithmetic and logical problems

CO-2: To translate the algorithms to programs (in C language)

CO-3: To test and execute the programs and correct syntax and logical errors

CO-4: To implement conditional branching, iteration and recursion

CO-5: To decompose a problem into functions and synthesize a complete program using divide and
conquer approach

CO-6: To use arrays, pointers and structures to formulate algorithms and programs

CO-7: To apply programming to solve matrix addition and multiplication problems and searching and
sorting problems

CO-8: To apply programming to solve simple numerical method problems, namely root finding of
function, differentiation of function and simple integration

Course
Outcomes

Expected Mapping with Programme Outcomes
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12

CO-1 3 3 3 - - - - - - - - -
CO-2 3 - 1 - - - - - - - - -
CO-3 3 - 1 - 3 - - - - - - -
CO-4 3 - - - - - - - - - - -
CO-5 3 3 1 2 - - - - - - - -
CO-6 3 - 1 - - - - - - - - -
CO-7 3 2 1 1 - - - - - - - -
CO-8 3 2 1 1 - - - - - - - -

(xiii)

ABBREVIATIONS

Abbreviations Full form
ALU Arithmetic and Logic Unit
ANSI American National Standards Institute
ASCII American Standard Code For Information Interchange
BIOS Basic Input Output System
BIOS Basic Input Output System
BMI Body Mass Index
BODMAS Bracket, Of, Division, Multiplication, Addition, And Subtraction
BOSS Bharat Operating System Solutions
CPU Central Processing Unit

EOF End-Of-File
GCD Greatest Common Divisor
GUI Graphical User Interfaces
HCF Highest Common Factor
HLL High-Level Language
IDE Integrated Developments Environment
IPO Input-Process-Output
OS Operating System
PDL Program Design Language
POST Power On Self Test
RAM Random Access Memory
ROM Read Only Memory
VDU Visual Display Unit
VLSI Very Large Scale Integration

(xiv)

LIST OF FIGURES

Unit-1: Introduction to Programming
Fig. 1.1 	 Functional components of a computer system	 2
Fig. 1.2 	 Common input devices	 3
Fig. 1.3 	 Common output devices	 4
Fig. 1.4	 Memory chips	 4
Fig. 1.5	 Common storage devices	 5
Fig. 1.6	 Functional diagram of a Personal Computer	 5
Fig. 1.7	 Layered architecture of a Computer System	 7
Fig. 1.8	 Operating System managing various resources of a Computer System 	 7
Fig. 1.9	 Flowchart to find the nature of roots of a quadratic equation	 12
Fig. 1.10	 Pseudocode and flowchart for sequence structure	 12
Fig. 1.11	 Pseudocode and flowchart for If . . . Endif selection structure	 13
Fig. 1.12	 Pseudocode and flowchart for If . . . Else . . . Endif selection structure	 13
Fig. 1.13	 Syntax of else if ladder	 13
Fig. 1.14	 Logic flow of else if ladder	 14
Fig. 1.15	 Pseudocode and flowchart for While . . . Endwhile iterative structure	 14
Fig. 1.16	 Pseudocode and flowchart for Do . . . While iterative structure	 14
Fig. 1.17	 Flowchart and pseudocode to swap two variables	 16
Fig. 1.18	 Flowchart and pseudocode to test whether given number is Even or Odd 	 17
Fig. 1.19	 Flowchart and pseudocode to find largest of three numbers	 17
Fig. 1.20	 Flowchart to compute the commission	 19
Fig. 1.21	 Flowchart and pseudocode to find the sum of digits of a number	 20
Fig. 1.22	 Flowchart and pseudocode to check whether the given number n is palindrome or not	 21
Fig. 1.23	 Flowchart and pseudocode to check whether the given number n is an Armstrong

number or not	 22
Fig. 1.24	 Flowchart to check whether number n is prime or not 	 23
Fig. 1.25	 Illustration of computational procedure for HCF/GCD	 24
Fig. 1.26 	 Flowchart and pseudocode to compute HCF of two numbers	 25
Fig. 1.27	 Flowchart and pseudocode to print first n terms of the Fibonacci sequence	 26

(xv)

Fig. 1.28	 General Structure of a C Program	 27
Fig. 1.29 	 Compilation process	 31
Fig. 1.30 	 Turbo C/C++ Compiler’s screen shot indicating syntax errors	 32
Fig. 1.31 	 Turbo C/C++ Compiler’s screen shot indicating success of compilation process	 32
Fig. 1.32	 Turbo C/C++ Compiler’s screen shot indicating success of linking process	 33
Fig. 1.33	 Turbo C/C++ Compiler’s user screen showing program output	 33

Unit-3: Conditional Branching and Loops
Fig. 3.1	 Logic flow control and code of if statement	 76
Fig. 3.2	 Logic flow control and code of if-else statement	 77
Fig. 3.3	 Code of if - else if ladder	 80
Fig. 3.4	 Logic flow control of if - else if ladder	 80
Fig. 3.5	 Code of switch statement	 82
Fig. 3.6	 Logic flow control of switch statement	 82
Fig. 3.7	 Logic flow control and code of for statement	 89
Fig. 3.8	 Logic flow control and code of while statement	 91
Fig. 3.9	 Logic flow control and code of do-while statement	 93
Fig. 3.10	 Action of break statement in switch statement	 97
Fig. 3.11	 Action of break statement in for, while and do-while statements	 98
Fig. 3.12	 Action of continue statement in for, while and do-while statements	 99
Fig. 3.13	 Illustration of computational procedure for GCD using long division	 104

Unit-4: Arrays
Fig. 4.1 	 The marks Array	 120
Fig. 4.2 	 Declaration of 1D arrays	 121
Fig. 4.3 	 Two-dimensional array	 127
Fig. 4.4 	 Storing a string in memory	 134
Fig. 4.5 	 Difference in the storage of characters and strings	 135
Fig. 4.6 	 Difference between a string and an array of characters	 135
Fig. 4.7 	 String stored in part of array	 135

Unit-5: Basic Algorithms
Fig. 5.1 	 Illustration of Bubble sort method	 164
Fig. 5.2 	 Illustration of selection sort method	 167
Fig. 5.3 	 Illustration of insertion sort method	 170

(xvi)

Fig. 5.4 	 Root approximation by Bisection method	 172
Fig. 5.5 	 Approximating polynomial p(x) for function f(x)	 179
Fig. 5.6 	 Definite integral represented by the shaded area 	 179
Fig. 5.7 	 Approximation of area by Trapezoidal rule	 180

Unit-6: Functions
Fig. 6.1 	 Hierarchical organization of a multifunction program	 184
Fig. 6.2 	 Syntax for function declaration	 186
Fig. 6.3 	 Syntax for function definition	 187
Fig. 6.4 	 Passing one-dimensional array as an argument to a function	 196
Fig. 6.5 	 Passing two-dimensional array as an argument to a function	 197

Unit-7: Recursion
Fig. 7.1 	 Illustration of partitioning of array	 221
Fig. 7.2 	 Illustration of successive steps of Merge sort	 224

Unit-8: Structures
Fig. 8.1 	 Defining a tagged structure	 242
Fig. 8.2 	 Defining a type-defined structure	 242
Fig. 8.3 	 Passing structure to function	 250
Fig. 8.4 	 Function returning a structure	 251

Unit-9: Pointers
Fig. 9.1 	 Memory Organization	 269
Fig. 9.2 	 Representation of a variable in memory	 269
Fig. 9.3 	 Pointer as a Variable	 270
Fig. 9.4 	 Linear linked list of integer values with 4 nodes	 274

Unit-10: File Handling
Fig. 10.1 	 Illustration of storage of data in files	 291

(xvii)

LIST OF TABLES

Unit-1: Introduction to Programming
Table 1.1: Various flowchart symbols and their brief description	 11
Table 1.2: Keywords in C	 37
Table 1.3: Common Escape Sequences	 38
Table 1.4: List of some punctuators and their description	 38
Table 1.5: Built-in data types 	 39
Table 1.6: Type of Integer Numbers	 39
Table 1.7: Type of Real Numbers	 40
Table 1.8: I/O Functions 	 42
Table 1.9: List of commonly used format specifiers	 44

Unit-2: Arithmetic Expressions and Precedence
Table 2.1: Binary Arithmetic Operators	 54
Table 2.2: Relational (Comparison) Operators	 55
Table 2.3: Logical Operators	 55
Table 2.4: Bitwise Operators	 56
Table 2.5: Use of sizeof Operator	 57
Table 2.6: Use of addressof (&) Operator	 58
Table 2.7: Assignment Operators	 59
Table 2.8: Some sample arithmetic expressions	 60
Table 2.9: Illustration of evaluation of arithmetic expression	 61
Table 2.10: Precedence and associativity of operators	 64
Table 2.11: Some commonly used mathematical functions	 65

Unit-4: Arrays
Table 4.1: Frequently used string functions	 137
Table 4.2: Interpretation of value returned by strcmp() function	 140

Unit-6: Functions
Table 6.1: Difference between call by value & call by reference Part-1	 195

(xviii)

Table 6.2: Difference between call by value & call by reference Part-2	 195

Unit-7: Recursion
Table 7.1: Comparison: Recursion vs Iteration	 227

Unit-9: Pointers
Table 9.1: Memory Management Functions	 275

Unit-10: File Handling
Table 10.1: Text File vs Binary File	 290
Table 10.2: File opening modes	 292
Table 10.3: Various values of wherefrom for fseek() function	 304
Table 10.4: Some examples illustrating the use of the fseek() function	 304

(xix)

GUIDELINES FOR TEACHERS
To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be
enhanced. Teachers should take a major responsibility for the proper implementation of OBE.

Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

	 •	 Within reasonable constraint, they should manipulate time to the best advantage of all students.
	 •	 They should assess the students only upon certain defined criterion without considering any other

potential ineligibility to discriminate them.
	 •	 They should try to grow the learning abilities of the students to a certain level before they leave the

institute.
	 •	 They should try to ensure that all the students are equipped with the quality knowledge as well as

competence after they finish their education.
	 •	 They should always encourage the students to develop their ultimate performance capabilities.
	 •	 They should facilitate and encourage group work and team work to consolidate newer approach.
	 •	 They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Creating

Applying

Level
Teacher should

Check
Student should be

able to
Possible Mode of

Assessment

Evaluating

Understanding

Analysing

Remembering Students ability to
recall (or remember)

Students ability to
explain the ideas

Students ability to use
information

Students ability to
distinguish

Students ability to
Justify

Students ability to
create

Define or Recall

Explain or Classify

Operate or
Demonstrate

Differentiate or
Distinguish

Argue or Defend

Design or Create

Quiz

Presentation/Seminar

Technical Presentation/
Demonstration

Project/Lab
Methodology

Assignment

Mini project

GUIDELINES FOR STUDENTS
Students should take equal responsibility for implementing the outcome based education (OBE).

Some of the responsibilities (not limited to) for the students in OBE system are as follows:
	 •	 Students should be well aware of each unit outcomes (UOs) before the start of a unit in each and every

course.
	 •	 Students should be well aware of each course outcomes (COs) before the start of the course.
	 •	 Students should be well aware of each programme outcomes (POs) before the start of the programme.
	 •	 Students should think critically and reasonably with proper reflection and action.
	 •	 Learning of the students should be connected and integrated with practical and real life consequences.
	 •	 Students should be well aware of their competency at every level of OBE

(xxi)

CONTENTS

Foreword	 iii
Acknowledgement	 v
Preface 	 vii
Outcome Based Education� ix
Programme Outcome (POs)� x
Course Outcomes� xii
Abbreviations� xiii
List of figures� xiv
List of Tables� xvii
Guidelines for Teachers� xix
Guidelines for Students� xix

1. 	Introduction to Programming .. 1–51
		 Unit Specifics	 1
		 Rationale	 1
		 Pre-Requisites	 1
		 Unit Outcomes	 1
	 1.1	 Introduction to Computers	 2
		 1.1.1  Components of a Computer System	 2
		 1.1.2  Hardware	 6
		 1.1.3  Software	 6
				 1.1.3.1 Operating System 	 6
				 1.1.3.2 Language Translators 	 8
				 1.1.3.3 Programming Environment 	 9
		 1.1.4  Concept of Booting	 10
	 1.2	 Idea of Algorithms	 10
		 1.2.1  Flowchart	 11
		 1.2.2  Pseudocode	 12
	 1.3	 From Algorithms to Program	 26
		 1.3.1  Structure of a C Program	 26
		 1.3.2  Example C Programs	 28
		 1.3.3  Creating, Compiling and Executing a Program	 31

(xxii)

		 1.3.4  Various C Compilers	 34
	 1.4	 Getting Started with C Language	 34
		 1.4.1 Characteristics of C Language 	 35
		 1.4.2  Application Areas of C Language	 35
		 1.4.3  Basic Building Blocks of C Language	 36
 				 1.4.3.1 Character Set 	 36
				 1.4.3.2 Tokens 	 36
 				 1.4.3.3 Concept of Data Type 	 39
 				 1.4.3.4 Constants 	 40
 				 1.4.3.5 Variables 	 41
 				 1.4.3.6 Expressions 	 41
 				 1.4.3.7 Statements 	 42
 				 1.4.3.8 Handling Input/Output 	 42
		 Unit Summary	 45
		 Exercise	 47
		 Practicals 	 50
		 Know More	 51
		 References & Suggested Readings	 51

2. 	Arithmetic Expressions and Precedence .. 52–73
		 Unit Specifics 	 52
		 Rationale 	 52
		 Pre-Requisites 	 52
		 Unit Outcomes 	 52
	 2.1	 Introduction	 53
	 2.2	 Operators	 53
		 2.2.1 Arithmetic Operators	 54
		 2.2.2 Relational (Comparison) Operators	 55
		 2.2.3 Logical Operators	 55
		 2.2.4 Bitwise Operators	 55
		 2.2.5 Special Operators	 56
				 2.2.5.1 Increment & Decrement Operators	 56
				 2.2.5.2 The sizeof Operator	 57
				 2.2.5.3 The addressof Operator	 58
				 2.2.5.4 Indirection Operator	 58
				 2.2.5.5 Conditional/Ternary Operator	 58
				 2.2.5.6 Assignment Operators 	 59
	 2.3	 Expressions	 59

(xxiii)

		 2.3.1  Arithmetic Expressions	 60
		 2.3.2  Evaluation of Arithmetic Expressions	 61
		 2.3.3  Type Conversion	 62
				 2.3.3.1 Implicit Type Conversion	 62
				 2.3.3.2 Explicit Type Conversion	 62
	 2.4	 Precedence and Associativity	 63
	 2.5	 Library Functions	 65
		 Unit Summary 	 67
		 Exercise 	 67
		 Practicals 	 70
		 Know More 	 72
		 References & Suggested Readings 	 73

3. 	Conditional Branching and Loops ... 74–118
		 Unit Specifics 	 74
		 Rationale 	 74
		 Pre-Requisites 	 74
		 Unit Outcomes 	 74
	 3.1	 Introduction	 75
	 3.2	 Conditional Branching	 75
		 3.2.1 	 The if Statement	 76
		 3.2.2  The if - else Statement	 77
		 3.2.3  Nested if and if - else Statements	 79
		 3.2.4  The if-else if Ladder	 80
		 3.2.5	 The switch Statement	 81
	 3.3	 Looping	 89
		 3.3.1  The for Statement	 89
		 3.3.2  The while Statement	 90
		 3.3.3  The do - while Statement	 93
		 3.3.4  Nested while, for and do – while Statements	 94
	 3.4	 Jumping Statements	 97
		 3.4.1  The break Statement	 97
		 3.4.2  The continue Statement	 98
			 Unit Summary 	 105
		 Exercise 	 105
		 Practicals 	 114
		 Know More 	 118
		 References & Suggested Readings 	 118

(xxiv)

4. 	Arrays 	 ...119–156
		 Unit Specifics 	 119
	 	 Rationale	 119
		 Pre-Requisites	 119
		 Unit Outcomes	 119
	 4.1	 Introduction 	 120
	 4.2	 One-Dimensional Arrays	 120
		 4.2.1  Declaration	 121
		 4.2.2  Initialization	 122
		 4.2.3  Accessing Elements	 122
		 4.2.4  Input	 122
		 4.2.5  Output	 123
	 4.3	 Two-Dimensional Arrays	 127
		 4.3.1  Declaration	 128
		 4.3.2  Initialization	 128
		 4.3.3  Accessing Elements	 128
		 4.4.4  Input	 129
		 4.3.5  Output	 129
	 4.4	 Character Arrays and Strings	 134
		 4.4.1  Storing Strings	 134
		 4.4.2  Need of String Delimiter	 135
		 4.4.3  String Literals	 136
		 4.4.4  String Variables	 136
 				 4.4.4.1 Declaring String Variables	 136
 				 4.4.4.2 Initializing String Variables	 136
		 4.4.5  Input/Output of Strings	 137
		 4.4.6  String Manipulation Functions	 137
				 4.4.6.1 The strlen() Function	 138
				 4.4.6.2 The strcpy() Function	 138
				 4.4.6.3 The strcat() Function	 139
				 4.4.6.4 The strcmp() Function	 140
				 4.4.6.5 The strrev() Function	 141
				 4.4.6.6 The strupr() Function	 141
				 4.4.6.7 The strlwr() Function	 142
		 4.4.7  Array of Strings	 142
		 Unit Summary 	 147
		 Exercise 	 147
		 Practicals 	 152
		 Know More 	 156
		 References & Suggested Readings 	 156

(xxv)

5. 	Basic Algorithms ...157–182
		 Unit Specifics 	 157
		 Rationale 	 157
		 Pre-Requisites 	 157
		 Unit Outcomes 	 157
	 5.1	 Searching Algorithms	 158
		 5.1.1  Linear Search	 158
		 5.1.2  Binary Search	 159
	 5.2	 Sorting Algorithms	 161
		 5.2.1  Bubble Sort	 162
		 5.2.2  Selection Sort	 166
		 5.2.3 	 Insertion Sort	 168
	 5.3	 Finding Root of an Equation	 171
		 Unit Summary 	 173
		 Exercise 	 174
		 Practicals 	 176
		 Know More 	 182
		 References & Suggested Readings 	 182

6. 	Functions ...183–213
		 Unit Specifics 	 183
		 Rationale 	 183
		 Pre-Requisites 	 183
		 Unit Outcomes 	 183
	 6.1	 Introduction	 184
	 6.2	 What is a Function?	 184
	 6.3	 Advantages of Using Functions	 185
	 6.4	 Type of Functions	 185
	 6.5	 Concept of Local Data & Global Data	 185
	 6.6	 User-Defined Functions	 186
	 6.7	 Declaring And Defining Functions	 186
		 6.7.1  Declaring a Function	 186
		 6.7.2  Defining a Function	 187
	 6.8	 Calling a Function	 189
	 6.9	 The return Statement	 190
	 6.10	 Passing Arguments to a Function	 190
		 6.10.1  Call by Value	 190
		 6.10.2  Call by Reference	 192
		 6.10.3  Comparison between Call by Value and Call by Reference	 195

(xxvi)

		 6.10.4  Passing One-Dimensional Array as Argument	 196
		 6.10.5  Passing Two-Dimensional Array as Argument	 197
		 6.10.6  Passing String as Argument	 199
		 Unit Summary 	 204
		 Exercise 	 205
		 Practicals 	 209
		 Know More 	 213
		 References & Suggested Readings 	 213

7. Recursion ...214–239
		 Unit Specifics 	 214
		 Rationale 	 214
		 Pre-Requisites 	 214
		 Unit Outcomes 	 214
	 7.1	 Introduction	 215
	 7.2	 Recursive Functions	 215
		 7.2.1  Factorial Function	 216
		 7.2.2  Fibonacci Numbers	 217
		 7.2.3  Ackermann Function	 218
	 7.3	 Quick Sort Algorithm	 219
	 7.4	 Merge Sort Algorithm	 223
	 7.5	 Recursion, Iteration or . . .?	 227
		 Unit Summary 	 231
		 Exercise 	 232
		 Practicals 	 238
		 Know More 	 239
		 References & Suggested Readings 	 239

8. Structures ... 240–266
		 Unit Specifics 	 240
		 Rationale 	 240
		 Pre-Requisites 	 240
		 Unit Outcomes 	 240
	 8.1	 Introduction	 241
	 8.2	 Defining A Structure	 242
	 8.3	 Declaring Structure Variables	 243
	 8.4	 Initializing Structures	 244
	 8.5	 Accessing Structure Elements	 244

(xxvii)

	 8.6	 Assigning of Structures	 245
	 8.7	 Reading/Writing Structures 	 246
	 8.8	 Arrays of Structures 	 247
		 8.8.1  Accessing Elements of Array of Structures 	 247
		 8.8.2  Initializing Array of Structures 	 248
	 8.9	 Passing Structure to a Function	 250
	 8.10	 Function Returning a Structure	 251
		 Unit Summary 	 259
		 Exercise 	 259
		 Practicals 	 264
		 Know More 	 266
		 References & Suggested Readings 	 266

9. Pointers ... 267–288
		 Unit Specifics 	 267
		 Rationale 	 267
		 Pre-Requisites 	 267
		 Unit Outcomes 	 267
	 9.1	 Introduction	 268
	 9.2	 Idea of Pointers	 269
	 9.3	 Accessing Address of a Variable	 270
	 9.4	 Declaring A Pointer 	 271
	 9.5	 Assigning Address to a Pointer 	 271
	 9.6	 Accessing Variable Using a Pointer	 271
	 9.7	 Pointer Arithmetic	 272
	 9.8	 Pointers as Function Arguments	 273
	 9.9	 Pointers and Structures	 274
		 9.9.1  Self-Referential Structures	 274
	 9.10	 Dynamic Memory Allocation	 275
		 9.10.1  Allocating Memory	 275
		 9.10.2  De-Allocating Memory	 276
		 Unit Summary 	 278
		 Exercise 	 279
		 Practicals 	 283
		 Know More 	 288
		 References & Suggested Readings 	 288

(xxviii)

10. File Handling .. 289–314
		 Unit Specifics 	 289
		 Rationale 	 289
		 Pre-Requisites 	 289
		 Unit Outcomes 	 289
	 10.1	 Introduction	 290
	 10.2	 Types of Files	 290
	 10.3	 Steps in Processing a File	 291
		 10.3.1  Opening a File	 291
		 10.3.2  Closing a File	 292
		 10.3.3  Reading and Writing of Text Files	 293
				 10.3.3.1 Reading and Writing using Character I/O Functions	 293
				 10.3.3.2 Reading and Writing using String I/O functions	 295
				 10.3.3.3 Reading and Writing using Formatted I/O functions	 297
		 10.3.4  Reading and Writing of Binary Files	 299
	 10.4	 File Positioning Functions	 303
		 10.4.1  Rewind File: rewind() Function	 303
		 10.4.2  Current Location: ftell() Function	 303
		 10.4.3  Set Position: fseek() Function	 304
	 10.5	 File Status Functions	 305
			 10.5.1  Test End of File: feof() Function	 305
		 10.5.2  Test Error: ferror() Function	 305
		 13.5.3  Clear Error: clearerr() Function	 305
		 Unit Summary 	 308
		 Exercise 	 309
		 Practicals 	 311
		 Know More 	 314
		 References & Suggested Readings 	 314

REFERENCES FOR FURTHER LEARNING 	 315
CO AND PO ATTAINMENT TABLE 	 316
INDEX					 317-320

UNIT SPECIFICS
This unit discusses the topics related to introduction to computer and its components, software and its
types, important software tools related to the course, development of algorithms, translating algorithms
to programs, and the various steps related to creating, editing, compiling and executing C programs, and
introduces basic fundamental elements of C languages.

RATIONALE
We all are living in a digital era. Therefore, there is a need to empower everyone with the knowledge
and ability to use computers and technology efficiently. Engineers theorize, design, develop, and apply
hardware and software solutions to real-life problems that we confront day in day out.

This fundamental unit helps students to understand components of a computer system and
associated devices, and how they communicate with each other to accomplish a task; development of
algorithms for solving logical and numerical problems; and various stages in converting an algorithm to
executable program using C language.

PRE-REQUISITES
	 –	 Working of computers
	 –	 Basic mathematics
	 –	 Logical reasoning
	 –	 Communication skills

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U1-O1: formulate algorithms for simple arithmetic and logical problems

U1-O2: translate algorithms to C programs

U1-O3: create, compile, and execute programs on a given platform/develop environment

U1-O4: demonstrate testing & debugging of a program

1 Introduction to
Programming

2  |  Programming for Problem Solving

Unit 1
Outcomes

Expected Mapping With Course Outcomes
(1 – Weak Correlation; 2 – Medium Correlation; 3 – Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8

U1-O1 3 - - - - - - -

U1-O2 - 3 - - - - - -

U1-O3 - - 3 - - - - -

U1-O4 - - 3 - - - - -

1.1  INTRODUCTION TO COMPUTERS
Computer is an electronic machine that performs tasks or computations according to a set of instructions
called programs.

The first fully electronic computers, introduced in the 1940s, were huge machines that required
teams of people to operate. Compared to those early machines, today’s computers are amazing - they are
thousand times faster and can fit on your desk, in your lap, or even in your pocket.

A computer, in general, is capable of
•• Receiving the data and instructions in various forms,
•• Storing the data and instructions in its memory,
•• Retrieving the data already stored on secondary storage,
•• Performing arithmetic and logical operations, according to the specified instructions, with

very high speed and greater accuracy,
•• Producing the results in many forms, and
•• Communicating with other computers.

1.1.1  Components of a Computer System

Secondary Storage
Unit

Memory Unit

Control UnitInput Unit Output Unit

Arithmetic and Logic
Unit (ALU)

flow of data

flow of control Central Processing
Unit (CPU)

Fig. 1.1: Functional components of a computer system

Introduction to Programming  |  3

A computer is a combination of hardware and software. Hardware represents physical components of a
computer like motherboard, memory devices, monitor, keyboard, etc., while software represents a set
of programs or instructions. Both hardware and software together make the computer system function.

Every task given to a computer follows an Input-Process-Output Cycle (IPO cycle). It needs certain
input, processes that input and produces the desired output. The input unit takes the input, the central
processing unit does the processing of data and the output unit produces the output. The memory unit
holds the data and instructions during the processing.

Let us have a look at the functional components of a computer one-by-one.

Input Unit
The input unit consists of various input devices that can be connected to a computer, such as keyboard,
mouse, light pen, microphone, etc. The standard input device is keyboard, which will come with every new
computer. At any time, more than one input device can be connected to a computer.

The purpose of the input unit is to receive information from the outside world, convert it into
binary form, and then transfer it to the main memory. It may consist of entering data to be processed by
some program, recording of speech, capturing of a scene or photograph, or selecting some objects on
the display.

Fig. 1.2: Common input devices

Output Unit
The output unit consists of various output devices that can be connected to a computer, such as visual
display unit (VDU) or simply known as monitor, printers, plotters, audio systems etc. The standard output
device is a monitor, which will come with every new computer. At any time, like input devices, more than
one output device can be connected to a computer.

4  |  Programming for Problem Solving

The purpose of the output unit is to receive the information, in binary form, from the main memory
unit, convert it into human understandable form, and then output it. It may consist of displaying,
printing, or plotting the results of some computer program or even playing some music or movie.

Fig. 1.3: Common output devices

Memory Unit
The memory unit acts as the warehouse of a computer, where
executing programs, input data, intermediate and final results of
computations are stored. Information entered into a computer
is first stored in the memory unit. Similarly, the data or results
to be output are taken from the memory unit. The memory
unit represents a volatile memory, which means that the stored
information will be lost when power is switched off.

Arithmetic and Logic Unit
The arithmetic and logic unit (ALU), as its name implies, performs arithmetic and logical operations.
Arithmetic operations include addition, subtraction, multiplication, and division. Logical operations are
used to compare two data items, and include operations such as less than (<), less than or equal to (≤),
greater than (>), greater than or equal to (≥), equal to (=), and not equal to (≠).

Control Unit
The control unit co-ordinates and controls all the other parts of computer system. Under the direction
of a program, the control unit performs four basic operations:

•• Fetch - getting the next program instruction from the computer’s memory.
•• Decode - figuring out what the program is telling the computer to do?
•• Execute - performing the requested action, such as adding two numbers or deciding whether

one of them is larger.
•• Write-Back - writing the results back to memory.

This four-step process is called a machine cycle, or a processing cycle, and consists of two phases: the
instruction cycle (fetch and decode) and the execution cycle (execute and write-back).

Fig. 1.4: Memory chips

Introduction to Programming  |  5

Secondary Storage Unit
The secondary storage unit provides long-term storage for important data for future use. The data is
transferred from the memory unit to the secondary storage unit. In order to process the data residing
in secondary storage, it is transferred to the memory. Please remember that data stored in secondary
storage can not be processed directly in secondary storage itself. The data can only be processed if it is
in the memory.

	 (a)  Hard disk		 (b)  CD/DVD	 (c)  Pen drive

Fig. 1.5: Common storage devices

	 	 Control unit, Arithmetic and logic unit, and Main memory unit, collectively, are known as
Central Processing Unit (CPU).

	 	 All the external devices, such as input device and output devices, connected to the
computer are commonly known as peripherals.

Advancement in the field of materials and microelectronics, has made it became possible to embed
control unit, arithmetic and logical unit, and limited high speed memory in the form of few registers,
inside the single Very Large Scale Integration (VLSI) chip, known as a microprocessor.

Formally, a microprocessor, commonly referred as processor, is a general-purpose programmable
device, which can receive information in binary form, process it and transmit the results. It can be
programmed to solve a wide variety of problems using instructions that it understands. Set of all the
instructions that a processor can understand is known as the instruction set.

Secondary Storage
Unit

Microprocessor
Unit

Main Memory
Unit

Input Unit Output Unit

Fig. 1.6: Functional diagram of a Personal Computer

6  |  Programming for Problem Solving

The role of other units remains the same as in case of a general digital computer. Majority of the
present PCs including laptops are built around Intel or AMD based microprocessors.

1.1.2  Hardware
Hardware refers to the parts of a computer that you can see and touch, including the case and everything
inside it. Various components of the computer system that constitutes its hardware include system unit
(which houses major hardware components such as motherboard, power supply, hard disk, etc.), input/
output devices as well as storage devices.

1.1.3  Software
Software, in its most general sense, is a set of instructions or programs that tell the hardware what to do.

Software can be difficult to describe because it is virtual and not physical like computer hardware.
Instead, software consists of lines of code (instructions) written by computer programmers that have
been compiled into a computer program. Software programs are stored as binary data that is copied to
a computer’s hard drive, when it is installed. Since software is virtual and does not take up any physical
space, it is much easier (and often cheaper) to upgrade than computer hardware.

The most important example of software is an operating system (OS) that manages the resources
of a computer system, and provides an interface using which the user can interact with computer to
perform various tasks.

It is important to remember that hardware and software are integral parts of a computer system —
hardware is of no use without software and software cannot be used without hardware. It is the software
that drives hardware, i.e., it is the software that gives hardware its capability.
Software can be broadly categorized as
	 l	 System software: It is a type of software that is designed to run a computer’s hardware and

application programs. If we think of a computer system as a layered model, the system software
is the interface between the hardware and user applications. The operating system and language
translators (assembler, compiler and interpreter), linker and loader are examples of system
software.

	 l	 Application software: It is a type of software that is designed for a specific purpose and is used
by end users. Word processor, database software, spreadsheet software, entertainment software,
reservation software, inventory management software, etc., are examples of application software.

	 l	 Utility software: It is a type of software that is designed to help analyze, configure, optimize
or maintain a computer. It is used to support the computer infrastructure. Antivirus software,
compression tools, disk management tools, etc., are examples of utility software.

1.1.3.1  Operating System
The most important program on any computer is the Operating System or simply OS. It is a large program
made up of many smaller programs. It acts as a resource manager of the computer system and provides
an interface between the users and the hardware.

The resources of a computer system include processor, memories and I/O devices, users, etc. As a
manager it coordinates the activities of various resources so as to provide the users with the required
information.

Introduction to Programming  |  7

	 Fig. 1.7: Layered architecture of 	 Fig. 1.8: �Operating System managing various
	 a Computer System	 resources of a Computer System

Commonly used Operating Systems for PCs/Laptops include

•• Unix 

•• Linux 

•• Windows 

•• Solaris 

•• BOSS (Bharat Operating System Solutions) 

Commonly used Operating Systems for Mobile/Hand Held Devices include

•• Android 

•• iOS 

•• Symbian 

8  |  Programming for Problem Solving

1.1.3.2  Language Translators
A software component that translates program written in one language to another language is known as
language translator (also known as language processor).

It is pertinent to mention here that while machine language requires no translation, but the programs
written in high-level languages, such as C, requires a translator to translate instructions written in C
language to machine language before they can be executed.

A program written using C language is known as source code. The translated version of the source
code is a program in machine language, known as object code.

The language translator for assembly language is known as an assembler, and the language translators
for high-level languages are known as compilers and interpreters.

Assembler
An assembler is a program that translates a program in assembly language (source code) to machine
language (object code).

As there is one-to-one correspondence between instructions in machine language and assembly
language, the assembler translates each instruction in assembly language to corresponding instruction
in machine language.

Compiler
A compiler is a program that translates (compiles) a program written in a high-level language (source
code) to machine language (object code).

This process of translation is known as compilation. During compilation, compiler reads the source
code, line by line, and checks for syntax errors. Note that any violation of the rules of the programming
language (also known as the grammar of the language), is known as syntax error.

If there are syntax errors, then it displays error messages identifying the error locations and prints a
program listing that highlights the locations and the likely causes of the errors, and no translation takes
place. However, if there are no syntax errors in the source code, the compiler re-reads the source code
and translate it into an object code which then it writes onto another file, usually with extension obj (for
object).

Once translation is done, the compiler has no further role in the subsequent steps. However, if the
source code is modified, we need to recompile it to incorporate the modification in the object code.

Interpreter
An interpreter is another type of translator used for translating high-level languages. However,
interpreter doesn’t produce object code. Instead, it translates one line of source code at a
time and executes the translated instruction. It continues till all the instructions are translated
and executed. Note that if any instruction is to be executed repeatedly, it will be translated each time.

Once the source code is translated into the object code by the compiler, which is a onetime task, the
object code, after further processing (linking), is executed directly. This results in faster execution of the
program. However, the interpreter first understands the code and then executes the instruction, which
lead to slow execution of the program. In addition, every time the program is executed using interpreter,
the translation will be repeated.

Introduction to Programming  |  9

Although interpreters lead to slower translation of program, they are helpful tools for beginners
for learning language and also for debugging the programs. As the program executes line by line the
programmer can see exactly what each line does.

Here it is important to mention that in order to execute a program using interpreter, first we need
to run the interpreter, only then we can instruct the interpreter to execute the user program. Therefore,
every time you run a program you need to run an interpreter as well.

1.1.3.3  Programming Environment
Programming environment is an environment in which programs are created and tested, and it has less
influence on the design of the language than the operating environment on which the programs are
expected to be run.

A programming environment consists of support tools and a command language (set of commands)
to invoke them. Each support tool is another program that may be used by the programmer as an aid
during one or more stages of creation of a program.

Typical tools in a programming environment include editors, language translators, linkers, loaders,
etc. Language translators are explained in the earlier section, the remaining tools are described here.
	 l	 Editor – Editor is a program that helps in creating and editing files. Further, there are editors that

allow working with text files only, and are called text editors. Examples of popular text editors
are notepad and edit of Windows operating system, vi of Unix and Linux operating systems. Even
popular word processing programs such as MS Word, allows creation of text files in addition to
word documents.

	 l	 Linker – Note that the object code produced by the compiler is not in a form that can be executed
by the computer. Some more information is needed to be pumped into the object code to make
it in a form that can be executed by the computer.

		 When you write a program, you may be referring to various library functions for performing
input/output operations and for mathematical computation (sqrt, sin, cos, abs, exp to name
a few frequently used mathematical library functions). The instructions defining the task to
be performed by these library function are in the machine language (binary) form and are
contained in system libraries (files with extension LIB) supplied with the compiler. Plus, you
may be referring to some user-defined functions which are written in a separate program file,
and whose object code is lying separately than the object code under consideration. Therefore,
there is a need to combine the object code of the library as well as user-defined functions with
the object code under consideration, and this task is accomplished by the program called linker.

			 Linker is a program that combines the object code of the program with the object codes of the
library and user-defined functions, in the desired manner, and writes the same in a separate
program file with extension, usually EXE under Windows. This file produced by the linker is
known as executable file or simply as run file, and is the file that is used to execute the program.

	 l	 Loader – Loader is a program that is responsible for transferring the executable file from the
secondary storage to memory. On execution, the loader, with assistance of the operating system,
first finds free memory of the requisite amount and then transfers the executable file into that
part of memory, takes appropriates steps such as address translation, and then initiates its
execution. From that point onwards, the role of the loader is over, and the control is taken over

10  |  Programming for Problem Solving

by the program. Instructions of the program are executed to perform the desired task, but under
the overall supervision of operating system. As soon as the program finishes its execution, it is
removed from the memory.

�Popular Integrated Developments Environments (IDEs), such as Turbo C/C++ and Borland
C++, Visual Studio, Dev C++, CodeBlocks, Netbeans, Eclipse, etc., integrate various tools
(editor, compiler, linker, debugger, etc.) in a unified manner, so that a programmer can work
with these tools with much ease and enhanced productivity.

1.1.4  Concept of Booting
In simple terms, booting is a process in which your computer gets initialized. This process includes
initializing all your hardware components in your computer and getting them to work together and to
load your default operating system which will make your computer operational.
The technical details of booting process can be summarized as follows:
	 1.	 When the computer is switched on, a copy of boot program is brought from ROM into the main

memory.
	 2.	 Then CPU runs a jump instruction that transfers to BIOS (Basic Input output System) and it

starts executing.
	 3.	 BIOS conduct a series of self diagnostic tests called POST (Power On Self Test). These tests

include memory test, configuring and starting video circuitry, configuring system’s hardware
and checking other devices that help computer to function properly.

	 4.	 Thereafter, the BIOS locate a bootable drive to load the boot sector. The Boot Strap Loader
program loads and executes the operating system.

The booting process is of two types:
	 l	 Cold booting: When the system starts from initial state, i.e., it is switched on. It is also called

hard booting. The system goes through a number of stages as explained above
	 l	 Warm booting: When the Reset button or Ctrl+Alt+Del key combination is used to restart the

system. It is also called soft booting. Here the system does not start from the initial state and
therefore the diagnostic tests are not carried out in this case.

1.2  IDEA OF ALGORITHMS
An algorithm is a finite sequence of instructions defining the solution of a particular problem.

Characteristics of a good algorithm:
There are five important characteristics of an algorithm that should be considered while designing any
algorithm for problem.
	 l		Input: An algorithm must have zero or more but finite number of inputs, which are externally

supplied.
			 Example of zero input algorithms can be to find the sum of first 100 natural numbers. Here, the

user doesn’t need to supply any external input since it is already specified to find the sum of first
100 natural numbers.

Introduction to Programming  |  11

			 However, if the above problem is re-stated as finding the sum of first n natural numbers, the
user is required to provide single input denoting the value for n.

	 l	 Output: An algorithm must have at-least one desirable outcome, i.e., output.
	 l	 Definiteness (No ambiguity): Each step must be clear and unambiguous, i.e., having one and

only one meaning.
	 l	 Finiteness: If we trace the steps of an algorithm, then for all cases, the algorithm must terminate

after a finite number of steps.
	 l	 Effectiveness: Each step must be sufficiently basic that it can in principle be carried out by a

person using only paper and pencil. In addition, not only should each step be definite, it must
also be feasible.

An algorithm can be represented using a flowchart or a pseudocode.

1.2.1  Flowchart
A flowchart is a pictorial representation of an algorithm. It uses different shapes to denote different types
of instructions. The actual instructions are written within the shapes using clear and concise statements.
These shapes are connected by directed lines to indicate the sequence in which instructions are to be
executed.

Table 1.1 shows various symbols used in flowcharts along with their name and brief
description.

Table 1.1: Various flowchart symbols and their brief description

Symbol Name Purpose

 Oval Terminal - to mark the beginning and end of the
program logic flow.

 Parallelogram Input/Output - to denote input to the program or
output from the program.

Rectangle Processing - to denote arithmetic operations and

movement of data.

Diamond Decision - to denote a point where decision has to be

made to branch to one of the alternatives.

 Small circle Connector - To provide a logical link between
segments of a flowchart.

Directed lines Flow Lines - To indicate the sequence in which

instructions are to be executed.

12  |  Programming for Problem Solving

b2 – 4ac = 0

Stop

b2 – 4ac < 0

Input vales of a, b, c

Start

b2 – 4ac > 0 Compare
b2 – 4ac
with 0

Print “Roots are
real & equal”

Print “Roots are
real & distinct”

Print “Roots are
imaginary”

Fig. 1.9: Flowchart to find the nature of roots of a quadratic equation

1.2.2  Pseudocode
The word “pseudo” means imitation or false and the word “code” refers to the instruction written in a
programming language. Pseudocode, therefore, is an imitation of actual computer instruction. Pseudo
instructions are phrases written in English like statements. Instead of using symbols to describe the logic
of the program, as in flowcharts, pseudocode uses a structure that resembles computer instructions.
Because, it emphasizes the design of the program, pseudocode is also called Program Design Language
(PDL).

Pseudocode is made up of the following basic logic structures that have proved to be sufficient for
writing any computer program:
	 1.	 Sequence
	 2.	 Selection (If... Endif, If... Else... Endif, If... Else If... Endif)
	 3.	 Iteration (While... Endwhile, Do... While)

Sequence logic is used for performing instructions one after another in sequence. Thus, for sequence
logic, pseudocode instructions are written in the sequence in which they are to be executed.
The flow of logic is from top to bottom.

:
:

:
:

 instruction-1

 instruction-2

 instruction-3

instruction-1

instruction-2

instruction-3

Fig. 1.10: Pseudocode and flowchart for sequence structure

Introduction to Programming  |  13

Selection logic, also known as decision logic, is used for making decision. It is used for selecting a
proper path out of the alternative paths in the program logic.

Selection logic is depicted as either If... Endif or If... Else... Endif or If... Else If... Endif structure.
The If... Endif construct says that if the expression is true, then execute statement else (if the

expression is false) skip over the statement.

		 :

		 :

If (expression) then

 statement

Endif	

		 :

		 :

expression

Statement

true

false

Fig. 1.11: Pseudocode and flowchart for If... Endif selection structure

The If... Else... Endif construct says that if the expression is true then execute statement-1, else (if the
expression is false) execute statement-2.

	 :

	 :

If (expression) then

 statement-1

Else

 statement-2

Endif

	 :

	 :

truefalse
expression

Statement-1Statement-2

Fig. 1.12: Pseudocode and flowchart for If... Else... Endif selection structure
Depending on the outcome of the expression being

tested, if there are multiple alternatives (execution paths),
the Else If ladder is a very handy construct.

The expressions are evaluated in order, and if any
expression is true then the statement block associated
with it is executed, and this terminates the whole chain.
The last else part handles none of the above or default case
where none of the specified expressions are satisfied.

If (expression-1) then
 statement-1
Else If (expression-2) then
 statement-2
Else If (expression-3) then
 statement-3
	 

Else If (expression-n) then
 statement-n
Else
 statement-s
Endif

Fig. 1.13: Syntax of else if ladder

14  |  Programming for Problem Solving

expression-1

true

true

true

true

false

false

false

false

expression-2

expression-3

expression-n

statement-1 statement-2 statement-3 statement-n statement-s

Fig. 1.14: Logic flow of else if ladder
Iterative logic is used to produce loops when one or more instructions are to be executed several

times depending on some expressions. It uses two structures called While... Endwhile and Do... While.

	 :

	 :

While (expression)

 statement

Endwhile

	 :

	 :

expression

Statement

false

true

Fig. 1.15: Pseudocode and flowchart for While... Endwhile iterative structure

	 :

	 :

Do

 statement

While (expression)

	 :

	 : false

Statement

expressiontrue

Fig. 1.16: Pseudocode and flowchart for Do... While iterative structure

Introduction to Programming  |  15

The only difference between them is that Do... While loop is always executed at least once as the
expression is tested at the end of the loop, whereas the While... Endwhile loop may not execute even once
since the expression is tested in the beginning and the expression may fail for the first time itself.

Pseudocode Description

Comments
Each instruction may be followed by a comment. The comments begin with a double slash, and the
explain the purpose of the instruction, such as

	 Read: n 	 // Enter the value of variable n
Appropriate use of comments enhances the readability of the pseudocode, which in turn helps in

maintaining the pseudocode.

Variable Names
For variable names, we will use italicized lowercase letters such as max, loc, etc., whereas for defined
constants, if any, we will use uppercase letters.
Assignment Statement
The assignment statement will use the notation as

	 Set max = a
�to assign the value of a to max. The right hand side of the assignment statement can have a value, a
variable or an expression.
However, if several assignment statements appear in the same line, such as

	 Set k = 1, loc = 1, max = ai
then they are executed from left to right.
Input/Output
Data may be input and assigned to variables by means of a read statement with the following format

	 Read: Variable list
where the Variable list consists of one or more variables separated by comma.
�	 Similarly, the data held by the variables and the messages, if any, enclosed in double quotes can be
output by means of a print statement with the following format

	 Print: message and/or Variable list
where the message and the variables in the Variable list are separated by comma.

Execution of Instructions
The instructions are usually executed one after the other as they appear in the pseudocode. However,
there may be instances when some instructions are skipped or some instructions may be repeated as a
result of certain expressions.

Completion of the Algorithm
A pseudocode is completed with execution of the last instruction. However, it can be terminated at any
intermediate state using the exit instruction.

16  |  Programming for Problem Solving

Pseudocode to display the nature of roots of a quadratic equation of the type
		 ax2 + bx + c = 0 		 provided a ≠ 0.
Pseudocode 1.1
 Begin
 Read: a, b, c
 Set disc = b2 - 4ac				
 If (disc = 0) then
 Print: ″Roots are real and equal″
 Else If (disc > 0) then
 Print: ″Roots are real and distinct″
 Else
 Print: ″Roots are imaginary″
 Endif
 End.

ILLUSTRATIVE EXAMPLES
Example 1.1: Draw a flowchart and write a pseudocode to swap (interchange) two variables say a and b.
Solution:
Think of the scenario – we have water in one glass and juice in another glass. We want to have water
in a glass in which we have juice, and juice in a glass in which we have water. How can this task be
accomplished?

In a similar way, we have to use a third variable say t, to facilitate the swapping of values of two
variables as demonstrated in the following flowchart and pseudocode.

Start

Stop

Read: a, b

Print: a, b

Set t = a

Set a = b

Set t = a

Fig. 1.17: Flowchart and pseudocode to swap two variables

Pseudocode 1.2
Begin

 Read: a, b

 Set t = a

 Set a = b

 Set b = t

 Print: a, b

 End.

Introduction to Programming  |  17

Example 1.2: �Draw a flowchart and write a pseudocode to test whether a given natural number ‘n’ is even
or odd.

Solution: You all may know that any natural number is even if it is exactly divisible by 2, i.e., division by
2 gives 0 as remainder. The operation of obtaining remainder is called modulo (mod in short) operation.
The following flowchart and psuedocode demonstrates the logic.

Start

Read: n

Print: n, “is Even”Print: n, “is Odd”

YesNo

Stop

Is n mod 2 = 0 ?

Fig. 1.18: Flowchart and pseudocode to test whether
given number is Even or Odd

Example 1.3: Draw a flowchart and write a pseudocode to find the largest of three numbers, say a, b, c.
Solution: We first compare a with b. If a is greater than b then we compare a with c. If a is greater than c,
then a is taken as the largest number otherwise we take c as the largest number.

However, if a is not greater than b, we compare b with c. If b is greater than c then b is taken as the
largest number otherwise we take c as the largest number.
The following flowchart and pseudocode demonstrates the logic.

 Start

Print c

Is a > b ? Yes

Input a, b, c

Stop

No

Is a > c ? Is b > c ?

Print a Print b

Yes Yes No No

Fig. 1.19: Flowchart and pseudocode to find largest of three numbers

Pseudocode 1.3
 Begin
 Read: n
 If (n mod 2 = 0) then
 Print: n, ″is Even”
 Else
 Print: n, ″is Odd”
 Endif
 End.

18  |  Programming for Problem Solving

Pseudocode 1.4
 Begin
 Read: a, b, c
 If (a > b)
 If (a > c) then
 Print: a
 Else
 Print: c
 Endif
 Else
 If (b > c) then
 Print: b
 Else
 Print: c
 Endif
 Endif
 End.

Example 1.4: Based on the percentage of marks in a subject, letter grade is assigned to a student as per the
following examination policy:

Percentage of Marks Grade
percentage ≥ 90 A+
90 > percentage ≥ 80 A
80 > percentage ≥ 70 B
70 > percentage ≥ 60 C
60 > percentage ≥ 50 D
percentage < 50 F

Write a pseudocode to assign a letter grade to a student whose percentage of marks in a subject is
given.

Pseudocode 1.5
 Begin
 Read: percentage
 If (percentage >= 90)
 Print: ″Grade = A+″
 Else If (percentage >= 80)
 Print: ″Grade = A″
 Else If (percentage >= 70)
 Print: ″Grade = B″
 Else If (percentage >= 60)
 Print: ″Grade = C″
 Else If (percentage >= 50)
 Print: ″Grade = D″
 Else
 Print: ″Grade = F″
 Endif
 End.

Introduction to Programming  |  19

Example 1.5: Commission on sales by a salesman is calculated as per following policy:

Amount of Sale (in `) Commission Rate
0 – 5000 Nil

5001 – 10000 5 % excess of 5000
10001 – 15000 7.5 % excess of 10000

> 15000 10 % excess of 15000

Draw a flowchart and write a pseudocode that accepts sales made by a salesman and displays the
commission due.
Solution:

 Start

Input sales

Yes Is sales ≤
5000?

Set commission = 0

Stop

Yes

Print commission

No

Is sales ≤
15,000?

Set commission = 250+ 0.075*
(sales – 10000)

Set commission = 1000+ 0.1*
(sales – 15000)

Yes

No

Is sales ≤
10000?

Set commission =
(sales –5000) * 0.05

No

Fig. 1.20: Flowchart to compute the commission

Pseudocode 1.6
 Begin
 Read: sales
 If (sales <= 5000)
 Set commission = 0
 Else If (sales <= 10000)
 Set commission = (sales − 5000) * 0.05;
 Else If (sales <= 15000)
 Set commission = 250 + (sales − 10000) * 0.075;
 Else

20  |  Programming for Problem Solving

 Set commission = 1000 + (sales − 15000) * 0.1;
 Endif
 Print: ″Computed commission = ″, commission
 End.

Example 1.6: Draw a flowchart and write a pseudocode to find the sum of digits of a number n.
Solution:

 Start

Input n

Print “Sum = ”, s

Is n > 0? No

Stop

Set d = n mod 10

Set s = s + d

Set n = n / 10

Yes

Set s = 0

Fig. 1.21: Flowchart and pseudocode to find the sum of digits of a number

Pseudocode 1.7

 Begin

 Read: n

 Set s = 0

 While (n > 0) do

 Set d = n mod 10

 Set s = s + d

 Set n = n / 10

 Endwhile

 Print: ″Sum = ″, s

 End.

Introduction to Programming  |  21

Example 1.7: �Draw a flowchart and write pseudocode to check whether the given number n is palindrome
or not.

Solution:

 Start

Input n

Set t = n

Is t > 0?

Set d = t mod 10

Set s = s × 10 + d

Set t = t / 10

Yes

Set s = 0

Print
“Palindrome”

No

Stop

Is s = n?
Yes

Print
“Not Palindrome”

No

Fig. 1.22: Flowchart and pseudocode to check whether the given number n is palindrome or not

Pseudocode 1.8
 Begin
 Read: n
 Set t = n, s = 0
 While (t > 0) do
 Set d = t mod 10
 Set s = s × 10 + d
 Set t = t / 10
 Endwhile
 If (s = n) then
 Print: ″Palindrome″
 Else
 Print: ″Not a Palindrome″
 Endif
 End.

A number is called palindrome if it
reads same from both the ends.
For example, the number 1991 is
a palindrome, whereas the number
1932 is not.

22  |  Programming for Problem Solving

Example 1.8: Draw a flowchart and write a pseudocode to check whether the given number n is an
Armstrong number or not.
Solution:

 Start

Input n

Set t = n

Print
“Armstrong”

Is t > 0? No

Stop

Set d = t mod 10

Set s = s + d×d×d

Set t = t / 10

Yes

Set s = 0

Is s = n?
Yes

Print
“Not Armstrong”

No

Fig. 1.23: Flowchart and pseudocode to check whether the given number n is an
Armstrong number or not

Pseudocode 1.9
 Begin
 Read: n
 Set t = n, s = 0
 While (t > 0) do
 Set d = t mod 10
 Set s = s + d × d × d
 Set t = t / 10
 Endwhile
 If (s = n) then
 Print: ″Armstrong″
 Else
 Print: ″Not Armstrong″
 Endif
 End.

A number is called Armstrong if sum of cube of
its digits equals the number itself. For example,
153 is an Armstrong number because
	 13 + 53 + 33 = 1 + 125 + 27 = 153
However, number 135 is not an Armstrong
number, since
	13 + 33 + 53 = 1 + 27 + 125 = 153 ≠ 135

Introduction to Programming  |  23

Example 1.9: Draw a flowchart to find whether the given natural number n is a prime number or not.
Solution: A natural number is said to be prime if it is divisible by 1 and itself only, i.e., it cannot be
factorized. In addition, to this definition, an even number except 2 is not a prime number.

yes

Print n is a prime
number

Stop

no

Is n divisible by
k?

yes

Add 2 to k

Is k ≤ m?
no

Print n is not a prime
number

no

Assign value of

n to m

Assign value 3 to k

Is n > 2 and
divisible by 2?

yes

Start

Input value for n

1

1

Fig. 1.24: Flowchart to check whether number n is prime or not

Therefore, our test criteria becomes
	 1.	 If n is greater than 2 and is even then n is not a prime number.
	 2.	 If test at step 1 fails, then we try to divide number n by factors k = 3, 5, 7, … n . Therefore, if

n is divisible by any value of k, number n is not a prime number.
	 3.	 If test at step 2 also fails, then n is a prime number.

Following is the pseudocode to find whether the given positive number n is a prime number or not.

Pseudocode 1.10
 Begin
 Read: n
 If (n > 2 and n mod 2 == 0) then
 Print: n, ″ is not a prime number″
 Exit
 Else

	 Set m = n

24  |  Programming for Problem Solving

 For k = 3 to m by 2 do
 If (n mod k == 0) then
 Print: n, ″ is not a prime number″
 Exit
 Endif
 Endfor	
 Print: n, ″ is a prime number″
 Endif
 End.

Example 1.10: To find highest common factor (HCF), also known as greatest common divisor (GCD), of
two natural numbers m and n.
Solution:

320 25

 -25

 70

 -50

12

25 20

 -20

1

20

 -20

 0

4

quotient

remainder

divisor

dividend

 5

Fig. 1.25: Illustration of computational procedure for HCF/GCD

Fig. 1.25 demonstrates the long/continued division method to find the HCF/GCD of two natural
numbers. You must have observed that in successive divisions, the divisor of the previous division
becomes dividend, remainder of becomes divisor, and division is again carried out. This process is
continued till the reminder becomes zero, and the current divisor is taken as HCF/GCD of the given
natural numbers.
This process can be implemented by using the following steps
	 1.	 Perform division.
	 2.	 If remainder is zero, then stop and take the divisor as HCF/GCD.
	 3.	 Replace dividend by divisor.
	 4.	 Replace divisor by remainder.
	 5.	 Repeat from step 1.

Introduction to Programming  |  25

no Stop

Divide m by n and let the
remainder be r

Replace m by n and n by r

Start

Input m, n

Is r = 0?
yes

Print “HCF/GCD = ”, n Is r = 0?

Fig. 1.26: Flowchart and pseudocode to compute HCF of two numbers

Pseudocode 1.11
 Begin

 Read: m, n

 Set r = m mod n

 While (r ≠ 0) do

 Set m = n

 Set n = r

 Set r = m mod n

 Endwhile

 Print: ″HCF/GCD = ″, n

 End.

Example 1.11: Draw a flowchart and write a pseudocode to print first n terms of the Fibonacci sequence.
For example, if input value for n is 8, the output should be

0   1   1   2   3   5   8   13
Solution: Observe that, leaving first two terms, each term is obtained as the sum of the immediately
preceding two terms.

If we use variable prev for previous term, curr for current term, next for next term, and setting prev
and curr to values 0 and 1, respectively, i.e., first two terms of the sequence, then the entire sequence can
be generated by using the recurrence relation

	 next = prev + curr
	 replace prev by curr
	 replace curr by next

26  |  Programming for Problem Solving

Print next

Stop

Is count < n?
No

Set next = prev + curr

Yes

Start

Input n

Set prev = 0, curr = 1

Print prev, curr

Set count = 2

Set count = count + 1

Set prev = curr

Set curr = next

Fig. 1.27: Flowchart and pseudocode to print first n terms of the Fibonacci sequence

1.3  FROM ALGORITHMS TO PROGRAM
By now, you have learned that algorithms are a way to solve given problems using computer. Algorithm
contains the logic to solve a given problem. This logic need to be converted to a program using a
programming language. C language is our programming language for this course.

In this section, we will learn the basic aspects of C language that will enable us to convert simple
algorithms to a C program.

1.3.1  Structure of a C Program
The usual order of instructions/statements written in a C program is as depicted below.

A C program is written in a free format. By free format, we mean that an instruction can start
anywhere in a line and can end anywhere. Even an instruction can span more than one line. Spacing is of
no consequence in C language, it is just used to enhance the readability of the program.

Further, C language is case sensitive, i.e., it differentiates between lowercase and uppercase letters.
Every C program is written in lowercase letters only.

Pseudocode 1.12
 Begin

 Read: n

 Set prev = 0, curr = 1

 Set count = 2

 Print: prev, curr

 While (count < n) do

 Set next = prev + curr

 Print: next

 Set count = count + 1

 Set prev = curr

 Set curr = next

 Endwhile

 End.

Introduction to Programming  |  27

Section 1: Comments

Section 2: Preprocessor Directives

Section 3: Global Declarations

Section 5: Other Functions as required

Section 4: Comments

int main ()

{

	
Local Declarations

	
Statements

 return 0;
}

Fig. 1.28: General Structure of a C Program

Now, let us understand the role of each section in a C program one-by-one:
	 l	 Section 1 is optional. If present it contains the description about the program. This description

usually contains the information about the task being accomplished by the program.
		 For example,

 /*
	 * Program to compute the factorial of a given
	 * natural number (positive integer number).
 *
	 * Filename : prime.c
 */

		 Note that any text enclosed in pair of “/*” and “*/”, no space in between, is ignored by the
compiler, i.e., it is not translated to machine code.

	 l	 Section 2 contains the preprocessor directives. The frequently used preprocessor directives are
#include and #define. These directives tell the preprocessor how to prepare the program for
compilation.

			 The #include directive tells which header files are to be included in the program and the #define
directive is usually used to associate an identifier with a literal (constant) that is to be used at
many places in the program.

28  |  Programming for Problem Solving

		 For example,
 	#include<stdio.h>

		 tells the preprocessor to include the contents of the header file named stdio.h to at this point in
the program file.

		 Likewise,
 	#define N 200

		 tells the preprocessor to replace every occurrence of identifier N by value 200.
	 l	 Section 3 is optional. If present, it contains the global declarations. These declarations usually

include the declaration of data items (variables) which are to be shared between different
functions in the program. In addition, these declarations can also include declaration of other
functions (prototypes) to be used in the program.

	 l	 Section 4 contains the main() function. The execution of the program always begins with the
execution of the main() function. It can call any number of other functions, and those called
function can further call other functions.

			 The first section in the main() function, as well as other functions, contains local declarations.
These declarations are local in the sense that they pertain to the requirements of that function
only. The second section contains the instructions (also known as statements) that define the
actions to be performed by the function.

	 l	 Section 5 is also optional. If present, it contains the definitions of other functions.
		 If the problem to be solved is simple and small in size, then only the main() function is sufficient

to accomplish the task.
		 However, if the problem is complex and the size of the problem is large, it is divided into small

and independent subproblems, and then we write separate functions for each subproblem.
		 The main() function coordinates the execution of these functions by appropriate calls to these

functions, and synthesizes the solutions of the subproblems obtained from these functions.

1.3.2  Example C Programs
In order to have a feel of the structure of a C program, let us consider few simple example C programs.

The following program is the standard first C program that is given in every textbook of C. When
executed, it simply displays the message Hello, World.
Listing 1.1
 1: /*
 2: * Program to greet the user with the message ″Hello World″.
 3: * File name: hello.c
 4: */
 5: #include<stdio.h>
 6: int main()
 7: {
 8: printf(″Hello, World\n″);
 9: return 0;

 10: }

Introduction to Programming  |  29

 Test Run
 Hello, World

Dissection of the Program
Here the line numbers are added for ready reference.

Lines 1-4 contains the comments.
Line 5 contains preprocessor #include directive.
Line 6 specifies a function named main. This is a special name that is recognized by the system. It

points to the precise place in the program where execution begins. Every C program must have a main
function.

Every C function has a return type associated with it. Where return type is one of the data types
that determine the type of the value returned by the function. If a function is not supposed to return any
value, its return type is specified as void.

Since main function is the function from where execution begins, it is usually declared with type
int. A pair of parentheses follows the word main.

Line 7 contains character ‘{’, called left brace or left curly bracket. There is also matching right brace
‘}’ in line 10, which appears at the end of the main function. This pair of matching braces encloses the
body of the function.

Line 8 uses library function printf() that displays “Hello, World” on the computer screen.
Line 9 uses return statement, which on execution terminates the execution of the program and

return the control back to the operating system. In addition, it also returns value 0 to the operating
system indicating that the program terminated successfully.

Line 10 marks the end of the main function as well as end of the program as this is the only function
in the program.

Let us take another example program, where some input is provided by the user, computations is
performed, and the results of the computations are displayed.

The program in this example, takes temperature in Celsius scale as input, computes its equivalent
temperature in Fahrenheit scale, and displays the same on computer screen.
The relation between temperature in Celsius and Fahrenheit is

	
C

100
	=	

F – 32
180

which on simplification gives
	 F 	= 1.8 × C + 32

This mathematical relation is used to compute F for given value of C.

Listing 1.2
 1: /*

 2: * Program to convert temperature from Centigrade scale

 3: * to Fahrenheit scale

 4: */

30  |  Programming for Problem Solving

 5: #include<stdio.h>

 6: int main()

 7: {

 8: float f, c;

 9: printf(″\nEnter temperature in Celsius scale: ″);

 10: scanf(″%f″, &c);

 11: f = 1.8 * centigrade + 32;

 12: printf(„\nEquivalent temperature in Fahrenheit scale″);

 13: printf(„ = %.2f\n″,f);

 14: return 0;

 15: }

Test Run
Enter temperature in Celsius scale: 30

Equivalent temperature in Fahrenheit scale = 86.00

Dissection of the Program
Lines 1-4 represent comments.
Line 5 represent preprocessor directive.
Line 6-15 represent the definition of the main function enclosed in pair of braces {}.
Line 8 declares two variables, f and c of type float, which can represent and store two real numbers

(float) in computer memory. Variable c is used to hold the value, representing temperature in Celsius
scale, entered by the user during program execution. Variable f is to used to hold the computed value,
representing temperature in Fahrenheit scale, equivalent to given temperature in Celsius scale.

Line 9 uses library function printf() that displays “Enter temperature in Celsius scale: “ on the
computer screen. We call these kinds of messages as user prompts as they guide the user to enter the
desired input. In this case, the value to be entered is temperature in Celsius scale.

You must have observed that the entire sequence of characters enclosed in double quotes is not
printed. Then, what is the role of characters ‘\n’ in the beginning? These two characters together represent
the new line character. Although new line character is a combination of two characters, i.e., ‘\’ and ‘n’, they
are translated by the C compiler into a single character. The new line character instructs the compiler to
advance to the next line before printing subsequent information.

Line 10 uses another library function scanf() that accepts the user input and stores in variable c (in
fact, in a memory location that is reserved for c). The first argument is a format string that is enclosed
in double quotes and tells the system how the entered value is to be interpreted. Following the format
string, there is a list of one or more variables; each variable prefixed with character ‘&’, called addressof
operator.

Line 11 is an assignment statement that computes the temperature in Fahrenheit scale equivalent to
given temperature in Celsius scale, and assigns to variable f, i.e., stores in variable f.

Introduction to Programming  |  31

Lines 12-13 uses library function printf() that outputs the stored value in variable f along with the
message “Equivalent Temperature in fahrenheit = “. The use of these kinds of messages is not mandatory,
but is very useful as they make the output easy to interpret.

Line 14 uses return statement, which terminates the program and returns value 0 to the operating
system.

1.3.3  Creating, Compiling and Executing a Program
Once the algorithm is ready, the next step is to convert the algorithm into a computer program.
During this conversion each step of the algorithm is coded as one or more C language instructions. It
is recommended that student should write the program first on a piece of paper before typing in the
computer.

To demonstrate the various steps, we will consider Turbo C/C++ Compiler, which is easy to use for
the beginners.

Creating and Editing Programs
Once the program is ready on paper, we type in computer memory using a text editor. A text editor helps
us to enter the character data into computer memory, allows editing (changing) the data in computer
memory, and save the data from memory in a disk file to secondary memory with extension “.c”.

This stored file is known as source file, and its contents are known as source code. This source file
will be the input for the compiler.

The programmer must carefully follow the C language rules. Violation of language rules results in
grammatical errors, more precisely known as syntax errors. The Compiler will check for syntax errors.
These errors must be eliminated before moving further.

Compiling Programs
The source code in the source file, stored on the disk, must to be translated into machine language. This
job is done by the Compiler. The C compiler actually is a combination of two separate programs – the
preprocessor and the translator.

Compilation

Source Code

Preprocessor Translator

Translation Unit

Object Code

Fig. 1.29: Compilation process

The preprocessor reads the source code and prepares it for translation. While reading the source
code, it scans the code for preprocessor directives and processes them accordingly.

For example, when it encounters the #include directive, it substitutes that directive with the contents
of the specified header file (such as stdio.h), and when it encounters the #define directive, it substitutes

32  |  Programming for Problem Solving

the identifier with the specified literal (constant). The output from the preprocessor is an intermediate
file, known as translation unit.

The translator reads the translation unit instruction-by-instruction and checks them for their
grammatical accuracy. If there is any syntax error, it flags an error message – called diagnostic message
on the screen. These diagnostics messages help the programmer to identify the cause of these errors and
the places where they are present.

Fig. 1.30: Turbo C/C++ Compiler’s screen shot indicating syntax errors

Therefore, if there is even a single syntax error, the translation process, known as compilation, is
terminated. In this case, open the source file using the text editor, and make the necessary corrections
and repeat the compilation.

However, if there are no syntax errors in the translation unit, the translator rereads the instruction
from the beginning, translates them into machine language, and writes them onto a disk file. The
translated version of the source code is known as object code, and is stored in the disk file with extension
“*.obj”.

Fig. 1.31: Turbo C/C++ Compiler’s screen shot indicating success of compilation process

Introduction to Programming  |  33

Linking Programs
Once the source code is translated into object code, though it is in machine language, still it is not in
executable form. The reason being is that it may be referring to library functions (pre-written functions
supplied with the compiler in the form of libraries). All these functions also need to be included in the
object code to get a final machine code, which is in the executable form, known as executable code, and
that is stored in disk file with extension “*.exe”. This executable code is the final form of the program
that is ready for execution.

Fig. 1.32: Turbo C/C++ Compiler’s screen shot indicating success of linking process

Executing Programs
Once the program is linked, it is ready for execution. To execute a program we give an operating system
command, such as run, to load the program into computer memory and execute it. Getting the program
into memory is the function of an operating system program known as loader. The loader locates the
executable program in the secondary storage, reads it and brings it into the computer memory. Once the
program is loaded, the operating system transfers the control to the program and the program begins its
execution.

Fig. 1.33: Turbo C/C++ Compiler’s user screen showing program output

34  |  Programming for Problem Solving

Testing the Program
Even when the program is executing, the output of the program may not be correct.

This could be because of logical errors in the program. A logical error is a mistake that the
programmer made while designing the solution to the problem. For example, a programmer tells the
computer to calculate the net pay by adding deductions to the gross salary instead of subtracting. A
compiler cannot detect these errors.

Therefore, the programmer must find and correct logical errors by carefully examining the program
output for a set of data for which results are already known. Such type of data is known as test data.

Syntax errors and logical errors collectively are known as bugs. The process of identifying and
eliminating these errors is known as debugging.

1.3.4  Various C Compilers
The following are two predominantly used C Compilers on Window based systems.
	 l	 Turbo C/C++ Complier
	 l	 Dev C++ Complier
The following are few links to online C Compliers:
	 l	 https://www.codechef.com/ide
	 l	 https://ide.geeksforgeeks.org
	 l	 https://www.onlinegdb.com/online_c_compiler
	 l	 https://www.programiz.com/c-programming/online-compiler/
	 l	 https://www.tutorialspoint.com/compile_c_online.php
	 l	 https://www.jdoodle.com/c-online-compiler/
	 l	 https://techiedelight.com/compiler/

1.4  GETTING STARTED WITH C LANGUAGE
C programming language was developed by Dennis Ritchie in AT & T Bell laboratory in 1972, and still
it is one of the most popular languages.

Programming language can be divided into two broad categories, depending on their level of
interaction with the underlying hardware of the computer:
	 l	 Low-level Languages - under this category, we have machine language and assembly language.

These languages permit efficient use of the computer.
			 But the problems with these languages are:
		 q �These are hardware dependent, i.e., programs written using these languages are not portable,

i.e., cannot be used on other computers.
		 q �Programming using these languages is not an easy job. One must have thorough knowledge

of the architecture of the computer.
	 l	 High-level Languages - under this category, we have vast collection of languages starting with

FORTRAN, COBOL, PASCAL, etc., and at present, the major high level languages in demand
are C, C++, Java, and Python. These languages are designed for better programming efficiency,
i.e., faster program development.

Introduction to Programming  |  35

		 These languages have following advantages:
		 q �The syntax for writing program instructions is very much like English statements. This

enables readers to learn high-level languages (HLLs) quickly. In addition, the programs
written in HLLs can be easily understood, which facilitates its maintenance.

		 q �The programs written in HLLs are not hardware dependent. This means that program written
for one machine can be transferred to another machine with minimal changes or none at all,
i.e., these languages are portable.

The C language stands between these two categories. That is why it is often called middle-level
language, since it was designed to have best of both the worlds, i.e., good programming efficiency as well
as good machine efficiency.
	 l	 To achieve programming efficiency, the C language has all the elements of any other modern

high-level language.
	 l	 To achieve machine efficiency, the C language has requisite features to access any hardware

component of the system, to operate at register level, and to interface with high-speed assembly
language routines.

1.4.1  Characteristics of C Language
C language was and will remain as one of the most popular programming languages.
Some of the key characteristics that add to its popularity are:
	 l	 It is a general purpose programming language, and therefore, can be used to solve wide variety

of problems.
	 l	 It supports structuring programming, and therefore, programs developed in it can easily be

understood.
	 l	 It is free form, i.e., no rigid format for writing programs. Any instruction can start from anywhere

and end anywhere. In addition, a single instruction can span (can be written in) many lines.
	 l	 It is case sensitive. It distinguishes between lowercase (small) and uppercase (capital) alphabets.
	 l	 It was the first language to provide rich set of operators.
	 l	 It allows you, through pointers, to access any storage location and the devices connected to your

computer through your program.
	 l	 It allows you to manipulate internal processor registers, and thus it is very useful for low-level

programming.
	 l	 It is portable, that means any program written in it can be used on any computer without or with

little modification(s).
	 l	 It allows you to develop your own library of functions that can be linked to any program like

standard library functions.

1.4.2  Application Areas of C Language
The strength of C language makes it a natural choice for
	 l	 System programming that include writing software for language translators, device drivers,

editors, linkers, loaders, etc.

36  |  Programming for Problem Solving

	 l	 Network software to implement different communication protocols.
	 l	 Graphics programming that include writing software for graphical user interfaces (GUIs),

scientific visualization, and presentation graphics, etc.
	 l	 Embedded systems where C routines are interfaced with high speed assembly language routines

and the resulting code is stored in ROM chip which is a part of the embedded system.

1.4.3  Basic Building Blocks of C Language
One of the difficult aspects of learning a programming language is that almost each and everything is
interrelated. Therefore, it seems almost impossible to understand anything before you know little about
everything.

In this section, we will learn about various functional elements, also known as building blocks, of
the C language.

1.4.3.1  Character Set
In a most basic sense, a C program is a sequence of characters. When these characters are submitted to
the compiler, they are interpreted in various contexts as characters, identifiers, constants, and statements.
The characters used in a C source program belong to the American Standard Code for Information
Interchange (ASCII pronounced as ass-kee) set.
The characters in C language are grouped into the following categories:
	 l	 Letters (A-Z, a-z)
	 l	 Digits (0-9)
	 l	 Special characters (, : ; ~ > < # % ‘ ^ + - * . = ! | () { } [] / &)
	 l	 White space characters (Blank space, horizontal tab, etc.)

All C compilers ignore white space characters. These characters are basically used to
enhance the readability and understandability of a C program.

1.4.3.2  Tokens
A token is a smallest entity that has a meaning in itself. A C program is a sequence of tokens. Tokens in
C language can be classified into following categories:
	 l	 Keywords
	 l	 Identifiers
	 l	 Literals
	 l	 Punctuators
	 l	 Operators

Keywords
Every word in C is either classified as a keyword or an identifier.

Keywords are basically those words that have predefined and fixed meaning and these meanings
cannot be changed. These keywords serve as basic building blocks for forming program instructions
(statements). All keywords are written in lowercase. Their incorrect usage results in a syntax error.

Introduction to Programming  |  37

Table 1.2: Keywords in C

asm

auto

break

case

char

Const

continue

default

do

double

else

enum

extern

float

for

goto

if

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

Identifiers
An identifier is basically a name in a program. Identifiers can be used to denote variables, arrays and
functions. These user-defined names consist of sequence of characters, where each character can be a
letter, a digit or an underscore ‘_’, and cannot start with a digit. Both uppercase and lowercase letters are
permitted, however, lowercase are commonly used. The underscore is usually used to link the two or
more words to create meaning full names.

Since C language is case sensitive (it distinguishes between lowercase and uppercase), therefore, the
identifiers price and Price will be treated as two different identifiers.

RULES FOR IDENTIFIERS
1.	 The first character must be an alphabet or an underscore.
2.	 Must consist of letters, digits or underscore only.
3.	 Cannot use a keyword.
4.	 Cannot contain a white space.

Examples of valid identifiers:

 myFile	 roll_no	 date_of_birth	 _chk

 file10	 N1TO10		 area			 AbCdE

Literals
A literal (often referred to as constants) refer to fixed value that do not change during the execution of
a program.
	 l	 Integer Literals – numbers without a decimal point. An integer number consists of a sequence

of digits preceded by an optional sign, plus (+) or minus (-).
	 l	 Real Literals – numbers having fractional parts.
	 l	 Single Character Literals – consists of a single character enclosed in single quotes (‘) such as ‘A’.

Internally, each character is represented by an integral value that represents the ASCII code of
the character. For example, character ‘A’ will be represented by integral value 65, character ‘B’ by
66, etc.

			 The C language allows certain characters that cannot be entered/typed directly from the
keyboard such as backspace, tab, carriage return, newline, etc. These characters are represented
by a sequence that begin with character \ (back slash), and are known as escape sequences.

38  |  Programming for Problem Solving

Table 1.3: Common Escape Sequences

Escape Sequence Represents Effect
\n Newline Subsequent output starts from new line.

\t Horizontal Tab Moves over to the next eight-space-
wide field.

\r carriage return Carriage return.
\0 Null character Terminates a string.

	 l	 String (multi-character) Literals – consists of a sequence of characters enclosed in double
quotes. The characters can be from any character in the character set.

		 Note that single character literal such as ‘A’ is not equivalent to single character string literal as
“A”.

Punctuators
Punctuators are also called separators. Various punctuators used in C++ are described in following table.

Table 1.4: List of some punctuators and their description

Punctuators Description

Brackets [] Used to enclose array subscripts.

Parentheses () Used to enclose arguments in function declaration as well as function
definition, parameters in function calls and expressions.

Braces { } Used to enclose a block of statements. Also used to enclose list of elements
while initializing arrays.

Comma, Used to separate arguments in function definition, and parameters in function
call.

Semicolon ; Used to terminate a statement.

Operators
Operators are the verbs of C language that let the user perform operations on values. The C language’s
rich set of operators is one of its distinguished features.
These operators can be enumerated in following categories:
	 l	 Arithmetic Operators (+, -, *, /, %)
	 l	 Relational Operators (<, <=, >, >=, ==, !=)
	 l	 Logical Operators (!, &&, ||)
	 l	 Bit-wise Operators (~, >>, <<, &, |)
	 l	 Special Operators
		  	Increment & Decrement Operators (++, - -)
		 	 The sizeof Operator
		 	 The addressof Operator (&)
		 	 Indirection/de-reference Operator (*)
		 	 Ternary/Conditional Operator (? :)

Introduction to Programming  |  39

1.4.3.3  Concept of Data Type
A data type is an interpretation applied to a string of bits. Formally, data type is defined as a finite set of
values along with well-defined set of rules for operations that can be performed on these values.
Data types in C are of two types:
	 l	 Built-in Data Types
		 	 Built-in data types are the most basic data types in C.
		 	 Built-in means that they are pre-defined in C and can be used directly in a program.
		 	 Examples are char, int, float, and double.
		 	 Apart from these, we also have void data type.
	 l	 Derived Data Types
		 	 These are derived from existing data types (built-in or user-defined).
		 	 Examples are arrays and pointers.
	 l	 User-defined Data Types
		 	 These are created by the user to meet their requirements.
		 	 Examples are structure, union, and enumeration.

In this section, we will learn about built-in data types only. The remaining data types, as per the
requirements of the syllabus will be discussed at the appropriate place.

The various built-in data types, also known as fundamental data types or basic data types, supported
by C are summarized in Table 1.5.

Table 1.5: Built-in data types

Name Description
Integer
 int Integer numbers
Real/Floating-point
 float
 double

Single precision floating-point numbers (precision is 6 decimal places)
Double precision floating-point numbers (precision is 12 decimal places)

Character
 char A Single Character

The int data type is used for integers, and consists of a subset of integers. Table 1.6 shows the different
types of integer numbers, their memory requirements, and the range of values for each type.

Table 1.6: Type of Integer Numbers

Type
Memory Requirements (in bytes)

Range of Values16-bit Compiler
(Turbo C/C++)

32-bit Compiler
(Dev C/C++)

short 2 2 for 2-byte integer
 -32768 to +32767
for 4-byte integer
 -2147483648 to +2147483647

int 2 4
long 4 4

40  |  Programming for Problem Solving

The float and double data types are used for numbers that have a decimal point. The only difference
between float and double data types is that the range and precision, the double data type has greater
precision than that of float data type.

A real value is an approximation of the desired real number correct to certain decimal positions.
A real value of type float is accurate to six decimal positions; where as a real value of type of double is
accurate to twelve decimal positions.
Table 1.7 shows the different types of real numbers, their memory requirements, and the range of values
for each type.

Table 1.7: Type of Real Numbers

Type Bytes Range
float 4 3.4 × 10–38 to 3.4 × 10+38

double 8 1.7 × 10–308 to 1.7 × 10+308

The char data type is used for characters, and it requires only 1-byte of memory. Here is a special
thing about char data type - characters are stored in memory using their ASCII codes which are numeric,
i.e., integers.

The word void means empty, therefore, we can say void data type has no value.
It is useful in many situations. One of such situation — it is used as return type for functions that

do not return a value.

1.4.3.4  Constants
A constant refers to fixed values that do not change during the execution of a program. Constants can
be handled using following ways:
	 l	 Using literal – directly encoding the value in an arithmetic expression.
	 l	 Using symbolic constants – A symbolic constant is a name that substitutes a literal.
			 For example,

 #define PI 3.142

			 Here, the #define pre-processor directive associates the name PI with the literal 3.142.
			 During the compiling, the preprocessor will replace each occurrence of name PI with literal

3.142.
	 l	 Using a variable declared as constant
			 A variable, as discussed next, is something whose value may change during the program

execution. However, a variable can be marked as constant using keyword const.
		 For example,

 const float pie = 3.142;

			 Here, the variable named pie, which belong to data type float, is initialized with value 3.141, and
is marked as constant. Thereafter, we can use the value of variable in our program, but we cannot
change its value, i.e, now variable pie will behave as a constant.

Introduction to Programming  |  41

1.4.3.5  Variables
A variable provides us with named storage that we can write to, retrieve, and manipulate throughout the
course of the program.

In other words, variables are memory locations in the computer’s memory that holds data. Contents
of a variable may vary – hence the name variable. Variables hold different kind of data and the same
variable might hold different values during the execution of a program.

Each variable in C language is associated with a specific data type, which determines the size and
layout of its associated memory, the range of values that can be stored within that memory, and the set
of operations that can be applied to it.

Declaring Variables
In C language, each variable in a program must be declared. The syntax for declaring and defining

a variable is
 type v1, v2,..., vn;

where v1, v2,..., vn are the names of the variables separated by comma.
Following are some examples of variable declarations and definition:

 int count, m, n;
 float value, sum;
 char ch;
 double deviation;

First statement declares variables count, m and n of type int. Compiler reserves 2 or 4 bytes
(depending on the compiler) for each of these variables.

Second statement declares variable value and sum of type float. Compiler reserves 4-bytes for each
of these variables.
Third statement declares variable ch of type char. Compiler reserves 1-bytes for it.
Fourth statement declares variable deviation of type double. Compiler reserves 8-bytes for it.

Initializing Variables
In addition to declaring variable, an initial value can also be provided to the variable.

To do that, a variable is followed by character ‘=’ and then the value to be given to the variable.
Consider the following statement
 int sum = 0;

It initializes variable sum to a value 0.

1.4.3.6  Expressions
An expression is a formula for computing a value. It consists of a sequence of operands and operators.
The operands may contain function references, variables, and constants. The operators specify the action
to be performed on the operands.
In the following expression
 a + b

plus (+) is an operator and a, b are operands.

42  |  Programming for Problem Solving

The C language supports following types of expressions:
	 l	 Arithmetic expressions l	 Relational expressions 	 l Logical expressions

Each type of expression takes certain types of operands and uses a specific set of operators. Evaluation
of every expression produces a value of specific type. Remember that expressions are not statements, but
may be components of statements.
For example, consider the following line of text
 x = 2.0/3.0 + a * b;

The entire line is a statement, but the portion after the equal sign is an expression. In particular,
this line of text represents an assignment statement that assigns the value of the expression to variable x.

1.4.3.7  Statements
Statements perform a number of tasks, such as computing, storing the results of computations, altering
the flow of control, reading and writing from or onto devices/files, and providing the information for
the compiler.

1.4.3.8  Handling Input/Output
In almost every program, the users have to input some data that will be stored in memory, and then
subsequently processed. The intermediate and final results of the computations are also stored in
memory. And finally, there is need to output the results of the computations so that user can use them
in their day-to-day work.

The common input device is the keyboard and the output device is a computer screen, sometimes
called the monitor. This subsystem comprising keyboard and monitor is referred to as a console.

To use entire range of I/O functions, we need to include header file named stdio.h in all our programs.

Table 1.8: I/O Functions

Function
Category Function Name Description

Unformatted

getchar()

Returns a character that has been recently typed. The
typed character is echoed to the computer screen. After
typing the appropriate character, the user is required to
press Enter key.

getche()
Returns a character that has been recently typed. The
typed character is also echoed to the computer screen.
But the user is not required to press Enter.

getch()
Returns a character that has been recently typed. But,
neither the user is required to press Enter key nor the
typed character is echoed to the computer screen.

putchar() Display a character on the screen.

gets() Accepts a string from the keyboard.

puts() Display a string on the screen.

Formatted
scanf() Accepts formatted data from the keyboard.

printf() Displays formatted data on the screen.

Introduction to Programming  |  43

The only difference between these functions is that the formatted functions permit
the input from the keyboard or output sent to a screen to be formatted as per the
requirements.
For example, if different values are to be displayed, how many columns on screen
to be used, and how much space between two values is to be given. If a value to be
displayed is of real type, then how many decimal places to output.

Listing 1.3
 /*

 Program to demonstrate working of character I/O functions

 */

 #include <stdio.h>

 int main()

 {

 char ch;

 printf(″\nEnter any character: ″);
 ch = getchar();

 printf(″\nCharacter you typed is ″);
 putchar(ch);

 printf(″\nEnter any character: ″);
 ch = getche();

 printf(″\nCharacter you typed is ″);
 putchar(ch);

 printf(″\nEnter any character: ″);

 ch = getch();

 printf(″\nCharacter you typed is ″);

 putchar(ch);

 return 0;

 }

Test Run
Enter any character: A↵

Character you typed is A

Enter any other character: x

Character you typed is x

Enter any other character:

Character you typed is H

44  |  Programming for Problem Solving

Listing 1.4
 /*
 Program to illustrate working of string I/O functions
 */

 #include <stdio.h>

 int main()

 {

 char str[31];

 printf(″\nEnter string of length <= 30: ″);
 gets(str);

 printf(″\nString you typed is ″);
 puts(str);

 return 0;

 }

Test Run
Enter string of length <= 30: Wel Come
String you typed is Wel Come

The scanf() function allows us to input data in a specified format. Its syntax is
scanf(″format string ″, list of addresses of variables);

where the format string contains the format specifiers that begin with character ‘%’ and are separated by
space or comma.

The list of addresses of variables are used so that scanf() function can place the data received from the
keyword. The address of a variable is obtained by using address operator (character &), and pronounced
as addressof operator.

Table 1.9: List of commonly used format specifiers

Format Specifier Used For
%d signed decimal integer
%f single precision floating real number
%lf double precision floating real number
%c single character
%s single-word string

On execution, the input data must be entered strictly according to the specified format string
otherwise results can be very strange.
The printf() function allows to output the data in a specified format. Its syntax
printf(″format string ″, list of variables);

where the format string contains the format specifiers, the escape sequences, and the text to be
output along with the output data.

Introduction to Programming  |  45

All the format specifiers used with scanf() function are valid for printf() function.

Listing 1.5
 /*
 Program to demonstrate working of formatted I/O functions
 */
 #include <stdio.h>
 int main(void)
 {
 int a;
 printf(″\nEnter values for a : ″);
 scanf (″%d″, &a);
 printf(″\nValue of a = %d\n″, a);
 return 0;
 }

 Test Run
 Enter values for a : 150

 Value of a = 150

UNIT SUMMARY
In this chapter, we have learned that
	 q	 Computer is an electronic machine that performs tasks or computations according to a set of

instructions called programs.
	 q	 A computer can receives input in variety of forms, process these input as per the instruction, and

present the results in variety of forms.
	 q	 Components of a computer system include input unit, output unit, memory unit, control unit,

arithmetic and logic unit, and secondary storage unit.
	 q	 The control unit, the arithmetic and logic unit, and the main memory unit, collectively, are

known as Central Processing Unit (CPU).
	 q	 All the external devices, such as input device and output devices, connected to the computer are

known by the common name as peripherals.
	 q	 Hardware refers to the parts of a computer that you can see and touch, including the case and

everything inside it.
	 q	 Software, in its most general sense, is a set of instructions or programs that tell the hardware

what to do.
	 q	 Operating system (OS) manages the resources of the computer system, and provides an interface

using which the user can interact with the computer to perform various tasks.
	 q	 Software can be categorized as system software, application software, and utility software.
	 q	 Booting is a process that refers the system getting initialized.

46  |  Programming for Problem Solving

	 q	 An algorithm is a finite sequence of instructions defining the solution of a particular problem.
	 q	 An algorithm can be represented using a flowchart and psuedocode.
	 q	 A flowchart is a diagrammatic representation of an algorithm, where different geometrical

shapes are used to represent different type of operations.
	 q	 Pseudocode is a plain language description of the steps in an algorithm.
	 q	 Syntax errors are the result of incorrect use of language rules.
	 q	 Logical errors are the result of lack of understanding the problem or its solution.
	 q	 C language is developed by Dennis Ritchie.
	 q	 C language is a middle-level language and portable.
	 q	 C language is case sensitive.
	 q	 General structure of a C program consists of five sections are – comments, preprocessor

directives, global declarations, main() function, and other functions as required.
	 q	 Key application areas of C language include systems programming, network programming,

GUI, scientific visualization, embedded systems, etc.
	 q	 Different steps in building a program are – creation, compilation, linking, and executing.
	 q	 Text editor is a program that helps us in entering and changing the program in computer

memory, and finally saving on a disk file.
	 q	 Source code is program written in a high-level language such as C and is stored in a disk file

known as source file.
	 q	 A compiler is a program that translates the C program to the machine language. It has two

components – preprocessor and translator. The preprocessor processes the program and prepares
it for translation. The translator does the final translation.

	 q	 Process of translating the source program into object program is known as compilation.
	 q	 Object code is program in machine language that produced by the compiler and is stored in a

file known as object file.
	 q	 Linker is a program that adds the machine language of library functions from system libraries

and user-defined function, and produces final executable program.
	 q	 Executable code is a program in machine language that produced by the linker and is stored in

a file known as run file, which is ready for execution.
	 q	 Loader is a program that transfers the executable program from a disk file on a secondary storage

into computer memory and prepares it for execution.
	 q	 Testing is the process to ensure that program works correctly for all possible inputs to the

program.
	 q	 Debugging is the process of identifying, locating and fixing the bugs. It is not an independent

activity in the program development process; it is always associated with testing.
	 q	 A value coded directly or represented through a identifier that does not change during the

course of program execution is called a constant, where as those values that may change is called
a variable.

	 q	 Data type is a set of values along with set of permissible operations.

Introduction to Programming  |  47

	 q	 Various data types supported by C language are named as built-in data types, derived data types,
and user-defined data types.

	 q	 Every data item to be processed by the program needs to be declared.
	 q	 Input/output in a C program can be formatted or unformatted.

EXERCISE

Subjective Questions
	 1.	 What is a computer?
	 2.	 Explain the working of functional components of a computer with the help of a block diagram.
	 3.	 When we say memory is volatile, what does it mean?
	 4.	 Differentiate between hardware and software
	 5.	 What an operating system?
	 6.	 What do you understand by term booting?
	 7.	 What are types of software?
	 8.	 What is an algorithm? What are the desirable characteristics of a good algorithm?
	 9.	 What is a flowchart? Describe various flowcharts symbols.
	10.	 What is a pseudocode?
	11.	 Given a choice, would you like to represent an algorithm using flowchart or pseudocode?
	12.	 Describe the general structure of a C program.
	13.	 Describe the various steps in the development of a C program.
	14.	 Why C language is called middle-level language?
	15.	 What is a token? Describe various tokens in C.
	16.	 What is a data type? Name various data types supported by C language.
	17.	 Differentiate between constants and variables.
	18.	 Describe the syntax for declaring and initializing variables.
	19.	 Name various functions for handling input/output in C.

Multiple Choice Questions
 1.	 If a program written in any language on a given platform can be transported to another platform

without any change or with minimal changes, then the language is said to _______.
(a)	 Understandable	 (b)	 Readable
(c)	 Portable	 (d)	 Maintainable

 2.	 Who developed C language?
(a)	 Von Neuman	 (b)	 Dennis Ritchie
(c)	 Peter Norton	 (d)	 Ken Thompson

48  |  Programming for Problem Solving

 3.	 Which of the following character is used to terminate an instruction in a C program?
(a)	 , (comma)	 (b)	 : (colon)
(c)	 ; (semicolon)	 (d)	 . (period)

 4.	 Which of the following cannot be a first letter of an identifier?
(a)	 digit	 (b)	 underscore	
(c)	 alphabet	 (d)	 uppercase alphabet

 5.	 Which of the following are used to enclose the body of a function?
(a)	 []	 (b)	 { }
(c)	 ()	 (d)	 < >

 6.	 The C language can be used on which of the following platforms?
(a)	 Unix	 (b)	 Windows	
(c)	 Linux	 (d)	 All of the above

 7.	 The C language is a _____________ language.
(a)	 High	 (b)	 Low
(c)	 Middle	 (d)	 Symbolic

 8.	 The acronym ANSI stands for ________________.
(a)	 American National Standards International
(b)	 American National Software Incorporation
(c)	 American National Standards Institute
(d)	 American National Standards Instructions

 9.	 Find the odd term
(a)	 Source code	 (b)	 Object code
(c)	 Executable code	 (d)	 ASCII code

10.	 Testing of a program is done to ensure that
(a)	 it should not contain any syntax error	
(b)	 it performs its intended task
(c)	 it compiles successfully	
(d)	 it should not run infinitely

11.	 The term bug refers to ________.
(a)	 Syntax error	 (b)	 Logical error	
(c)	 Runtime error 	 (d)	 All of the above

12.	 The acronym ASCII stands for ________________.
(a)	 American Standard Code for International Information
(b)	 American System for Compiler Information International
(c)	 American System for Code Information International
(d)	 American Standard Code for Information Interchange

Introduction to Programming  |  49

13.	 Which of the following statements is not true about C language?
(a)	 Every instruction is terminated by semicolon
(b)	 It is case insensitive
(c)	 Comments can be placed anywhere in the program code
(d)	 It has features of both high-level and low-level languages

14.	 The term debugging refers to the process of ________.
(a)	 translating the source code to object code
(b)	 linking the object code with the system libraries
(c)	 identifying the bugs and fixing them
(d)	 None of above

15.	 The term portability means that ________________.
(a)	 Program code is understandable
(b)	 Program code is maintainable
(c)	 Program code is bug free
(d)	 Program code can be transported without/with minimal changes to another computer

16.	 The C programs are converted into machine language using ________.
(a)	 Assembler	
(b)	 Interpreter
(c)	 Compiler	
(d)	 Operating system

17.	 Extension of file containing machine code produced by the Turbo C/C++ Compiler is ______.
(a)	 *.com	 (b)	 *.exe		
(c)	 *.c	 (d)	 *.obj

18.	 Which of the following is not a keyword?
(a)	 for	 (b)	 main
(c)	 break	 (d)	 else

19.	 Which of the following is not a valid data type in C language?
(a)	 Char	 (b)	 float
(c)	 long	 (d)	 double

20.	 Which of the following doesn’t denote a primitive data value in C?
(a)	 “a”	 (b)	 ‘k’
(c)	 35.25	 (d)	 14

ANSWERS
1. (c) 2. (b) 3. (c) 4. (a) 5. (b) 6. (d) 7. (c)

8. (c) 9. (d) 10. (b) 11. (d) 12. (d) 13. (b) 14. (c)

15. (d) 16. (c) 17. (d) 18. (b) 19. (a) 20. (a)

50  |  Programming for Problem Solving

Computational Problems
Develop algorithm and represent it using flowchart and/or psuedocode:

	 1.	 To test whether the given year is leap year or not.
	 2.	 To test whether the given date is valid or not.
	 3.	 To find the largest digit in a natural number ‘n’.
	 4.	 To find the smallest digit in a natural number ‘n’.
	 5.	 To find the nth prime number.
	 6.	 To test whether a triangle can be formed with given three line segments with lengths ‘a’, ‘ b’ and

‘c’ in cms.
	 7.	 To test whether a triangle can be formed with given three angles with measures ‘a’, ‘ b’ and ‘c’ in

degrees.
	 8.	 Two test whether two lines intersect each other or not. Given two points A(xa,ya) & B(xb,yb) on

one line and C(xc,yx) & D(xd, yd) on the second line.

	 9.	 The Body Mass Index (BMI) of a person is calculated as BMI = W
H2

, where W is weight in
kilograms and H is height in meters.

BMI Classification
 < 18.5 Under weight
18.5–24.9 Normal weight
25.0–29.9 Overweight
30.0–34.9 Class I obesity
35.0–39.9 Class II obesity

			 Classify obesity of a person whose weight and height is given.
	 10.	 The monthly telephone bill is to be computed as follows:
			 Minimum ` 200 for upto 100 calls
			 plus ` 0.60 per call for next 50 calls
			 plus ` 0.50 per call for next 50 calls
			 plus ` 0.40 per call for any call beyond 200 calls.
			 Compute monthly bill for given number of calls.

PRACTICALS
	 1.	 Familiarization with the operations of the PC/Laptop: concept of booting, configuring desktop,

working with files and folders, installing software, and executing various applications.
	 2.	 Familiarization with programming environment: creating & editing, compiling, and executing a

C program.

Introduction to Programming  |  51

KNOW MORE
Problem solving is a skill, and a skill can’t be learned overnight. Therefore, to inculcate the required
skills among the students, teacher should demonstrate the problem solving approach by taking suitable
examples, and involving the students in developing the solution.

Finally, teacher should give ample related problems so that students can apply the concepts learned
to solve problems they have not seen or solved earlier.

REFERENCES & SUGGESTED READINGS
	 1.	 R.G. Dromey, How to solve it by Computer, Pearson Education.
	 2.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 3.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
	 4.	 V. Anton Spraul, Think Like a Programmer, No Starch Press.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to various types of operators, their precedence and associativity,
various types of expressions, rules governing the evaluation of expressions, and library functions.

RATIONALE
In problems related to science & engineering, the programmer has to deal with variety of algebraic
expressions that may involve various arithmetic operations and standard mathematical & trigonometric
functions. To convert those algebraic expressions to their equivalent expressions in C, and to control
their order of evaluation, the programmer should have knowledge of various operators supported by C,
how expressions are evaluated, and other related issues.

This unit helps the students to understand various aspects related to operators, expressions, and
their evaluation.

PRE-REQUISITES
	 –	 Linear algebra
	 –	 Standard mathematical functions

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U2-O1: Explain various operators and their usage
U2-O2: Convert algebraic expressions to C expressions
U2-O3: Explain the way expressions are evaluated
U2-O4: Explain the concept of precedence and associativity among operators
U2-O5: Explain type conversion in assignment and expressions

Unit 2
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U2-O1 1 - - - - - - -
U2-O2 - 1 - - - - - -
U2-O3 - - 2 - - - - -
U2-O4 - - 2 - - - - -
U2-O5 - - 1 - - - - -

2 Arithmetic Expressions
and Precedence

Arithmetic Expressions and Precedence   |  53

2.1  INTRODUCTION
Operators are the verbs of a language that let a user perform computations on values. You can think of
operators as the verbs and operands as the subjects and object of those verbs. C language’s rich set of
operators is one of its distinguished features.

An expression is a formula consisting of operands and operators linked together to compute a value.
The computed values are to be stored in a variable for future use. This is done using an assignment
statement.

In a computer program, variety of computations are to be performed as per requirements of the
problem in hand. Yet, there are some routine type computations that may be part of almost every
program. Therefore as a convenience, every modern programming language provides a support for these
routine type computations in the form of library functions.

This unit attempts to describe these semantic units of the C language.

2.2  OPERATORS
Operators are the foundation of any programming language. The functionality of any programming
language is incomplete without the use of operators.

Operators, generally, are of two types:
l Unary Operators – operators that operate on a single operand. The unary operators are prefixed

with their operands.
For example, –x, here unary minus ‘–’ operator precedes by its operand x (supposed to hold a
numeric value), and negates its value, i.e., changes its sign.

l Binary Operators – operators that operate with two operands. The binary operators are embedded
between their operands.
For example, a+b, here binary plus ‘+’ operator appears between its operands a and b (both
supposed to hold numeric values), and adds the value of variable b to that of a.

The C language’s rich set of operators is one of its distinguished features. These operators can be
enumerated in following categories:

l Arithmetic Operators (+, -, *, /, %)
l Relational Operators (<, <=, >, >=, ==, !=)
l Logical Operators (!, &&, ||)
l Bit-wise Operators (~, >>, <<, &, | , ^)
l Special Operators
q Increment & Decrement Operators (++, - -)
q 	The sizeof Operator
q The addressof Operator (&)
q 	Indirection/de-reference Operator (*)
q 	Ternary/Conditional Operator (? :)

In this unit, we will focus mainly on operators used in arithmetic computations, the other type of
operators will be introduced for the completeness of the topic.

54  |  Programming for Problem Solving

2.2.1  Arithmetic Operators
Arithmetic operators are used to perform mathematical operations like addition, subtraction,
multiplication, etc.

Table 2.1: Binary Arithmetic Operators

Operator Symbol Form Operation
Addition + x + y Adds value of y to value of x.
Subtraction – x – y Subtracts value of y from value of x.
Multiplication * x * y Multiplies value of x by value of y.
Division / x / y Divides value of x by value of y.
Modulus % x % y Divides value of x by value of y and gives remainder.

Integer Arithmetic
When both the operands are integers, the operations will be called integer arithmetic and will always
yield an integer value.

Consider the following statements
	 int x 	= 13, y = 5;
then we have the following results:
	 x – y 	= 	8
	 x + y 	= 	18
	 x * y 	= 	65
	 x / y 	= 	2 (decimal part truncated)
	 x % y 	= 	3 (remainder of division)

Real Arithmetic
When both the operands are real numbers, the operations will be called real arithmetic and will always
yield a real value. Since real numbers (floating-point values) are rounded to permissible number of
significant digits, result of arithmetic operations is an approximate value of correct result.

That is
 	 6.0 / 7.0 	= 0.857143
	 –1.0 / 3.0 	= –0.333333
 	 3.0 / –2.0 	= –1.500000
The modulus operation cannot be used with real operands.

Mixed-mode Arithmetic
When one of the operands is real and the other is integer, the operations will be called mixed-mode
arithmetic and will always yield a real value. The integer operand is converted into real operand and then
real arithmetic is performed, resulting in a real value.

That is
 	 6 / 7.0 	→ 6.0 / 7.0 = 0.857143
	 –1.0 / 3 	→ –1.0 / 3.0 = – 0.333333

Arithmetic Expressions and Precedence   |  55

Note that
	 15 / 10.0 	= 1.5
	 15.0 / 10 	= 1.5
where as
	 15 / 10 	= 1

2.2.2  Relational (Comparison) Operators
These operators are used to compare values of the operands that must be compatible, in order to facilitate
decision-making. If the comparison succeeds, they return a value 1 (equivalent to Boolean value true)
and if comparison fails then they return a value 0 (equivalent to Boolean value false).

Table 2.2: Relational (Comparison) Operators

Operator Symbol Form Meaning
Greater than > x > y Return True if x is greater than y.
Greater than or equal to >= x >= y Return True if x is greater than or equal to y.
Less than < x < y Return True if x is less than y.
Less than or equal to <= x <= y Return True if x is less than or equal to y.
Equal to == x == y Return True if x and y are equal.
Not equal to != x != y Return True if x and y are not equal.

Note that in C language, the non-zero value is treated as equivalent to Boolean True and
zero value as equivalent to Boolean False. Further, there is no support for Boolean data
as such in C language in old versions of C language. The new version of C language,
known as C99 standard, supports the Boolean type.

2.2.3  Logical Operators
These operators are used to form compound conditions by joining two or more simple conditions
formed using relational operators.

Table 2.3: Logical Operators

Operator Symbol Form Meaning
Logical AND && x && y Return True if both the operands are True.
Logical OR || x || y Return True if either of the operands is True.

Logical NOT ! ! x Return True if operand is false, and False if operand True
(complements the operand).

2.2.4  Bitwise Operators
Bitwise operators act on operands as if they were string of binary digits. It operates bit by bit, hence the
name. Note that these operators are used with integral operands only.

To demonstrate the working of bitwise operators, let x = 10 (0000 1010 in binary) and y = 4 (0000
0100 in binary), assuming that 8 bits are used to represent an integer number.

56  |  Programming for Problem Solving

Table 2.4: Bitwise Operators

Operator Symbol Form Meaning Example

Bitwise AND & x & y Return 1 if corresponding bits
are 1 else 0.

 x = 0000 1010 (10)
 y = 0000 0100 (4)
x & y = 0000 0000 (0)

Bitwise OR | x | y Return 1 if either or both of
corresponding bits are 1 else 0.

 x = 0000 1011 (11)
 y = 0000 0101 (5)
 x | y = 0000 1111 (15)

Bitwise XOR ^ x ^ y Return 1 if corresponding bits
are not equal.

 x = 0000 1011 (11)
 y = 0000 0101 (5)
 x ^ y = 0000 1110 (14)

Bitwise NOT ~ ~ x Inverts 1 to 0 and 0 to 1 x = 0000 1011 (11)
 ~x = 1111 0100 (-12)

Bitwise right
shift >> x >> y

Shifts the bits of left operand to
right by number of bits specified
by the right operand. The right
most bit is shifted out after each
shift, while the left most bit is
restored.
Note: Each right shift by 1-bit is
equivalent to integral division by
2.

 x = 0000 1011 (11)
x >> 1 = 0000 0101 (5)

Bitwise left
shift << x << y

Shifts the bits of left operand to
left by number of bits specified
by the right operand. The left
most bit is shifted out after each
shift, while the right most bit is
filled with 0.
Note: Each left shift by 1-bit is
equivalent to multiplication by 2.

 x = 0000 1011 (11)
x << 1 = 0001 0110 (22)

2.2.5  Special Operators
Let us discuss each of them briefly, and their utility you will be able to appreciate in the subsequent
sections and chapters.

2.2.5.1  Increment & Decrement Operators
The C language supports two very useful operators – increment operator (++) and decrement operator
(--). These operators can be used with all basic data types. The increment operator adds 1 to the
operand, while decrement operator subtracts 1 from the operand.

Both operators are unary operators and can be used in the prefix as well as postfix notation as
shown below:
 ++k;		 or	 k++;
 --k;		 or	 k--;

Arithmetic Expressions and Precedence   |  57

Here, ++k (as well as k++) is equivalent to k = k + 1 or k += 1, and --k (as well as k--) is
equivalent to k = k - 1 or k - = 1.

These operators are most frequently used in while and for loops as control variables.
While ++k or k++ means the same thing when they form statements independently, they behave

differently when they are used as part of other expressions.
Consider the following statements
int y, k = 5;
y = ++k;

In this case, first the value of k is incremented and then assigned to y, and hence y and k will have
same value as 6. Thus, the above statements are equivalent to following statements
 int y, k = 5;
 ++k;
 y = k;

However, if we write the above statements as
 int y, k = 5;
 y = k++;

then first the current value of k (value 5) is assigned to y and then the value of k is incremented, and
hence y will have value 5 while k will have value as 6.

Thus, the above statements are equivalent to following statements
int y, k = 5;					 int y, k = 5;
y = k;				 or			 y = k;
++k; 							 k++;

2.2.5.2  The sizeof Operator
The size of operator returns the size, in bytes, of the given operand. The syntax of sizeof operator is
 sizeof(exp)

where exp represents a data type (built-in or user-defined), a literal/constant or a variable. For example

 sizeof(float)

returns value 4.
Table 2.5: Use of sizeof Operator

sizeof Operator used as Returns Justification

sizeof(12) 2 Integer constant by default belong to data type int, and size
for int is 2 on Turbo C/C++ and 4 on Dev C++.

sizeof(′a′) 1 Size of Character constant is 1.
sizeof(int) 2 Size of data type int is 2 on Turbo C/C++ and 4 on Dev C++.
sizeof(125.25) 8 Real constant by default belong to data type double.
sizeof(125.25F) 4 Real constant is of data type float, and size for float is 4.
double x;
sizeof(x);

8 Variable x is of type double, and size for double is 8.

58  |  Programming for Problem Solving

2.2.5.3  The addressof Operator
Character ‘&’ when prefixed with a variable returns the address of the memory locations, hence its name
addressof operator. It is used in the scanf() function and to initialize the pointers. The use of addressof (&)
operator is demonstrated in Table 5.11.

2.2.5.4  Indirection Operator
Character ‘*’ when prefixed with a pointer variable returns the value stored in a memory location whose
address is held in pointer variable. That is, value is accessed through pointer variable indirectly, hence its
name indirection operator.

Consider following statements
 int y = 10, x;
 int *py;
 py = &y;
 x = *py;

The expression “*py” returns the values at address which held in pointer variable py, i.e., value of
variable y which is 10, gets assigned to variable x.

Table 2.6: Use of addressof (&) Operator

Addressof (&) Operator used as Task Performed

int y = 10;
int *py;
py = &y;

First statement declares and defines variable y of type int.
It also initializes it with value 10.
Second statement declares and defines a pointer variable
py that can hold an address of a memory location reserved
for storing value of type int.
Third statement assigns the address of variable y to
pointer variable py.

int x, y;
scanf(″%d %d″, &x, &y);

First statement declares and defines two variable x and y
of type int.
Second statement takes two integer values as input from
the keyboard and stores those values at addresses of
variable x and y, respectively.

2.2.5.5  Conditional/Ternary Operator
Consider the following segment, written in pseudocode

 if (a > b) then
 set big = a
 else	
 set big = b
 endif

This segments assigns the maximum of the values of a and b to big. It is clear that the
value assigned to variable big will depend on the outcome of the test condition “a > b”.

Arithmetic Expressions and Precedence   |  59

Such expressions are known as conditional expressions, and can be written using conditional
operator. The syntax of using ternary operator is
 exp1 ? exp2 : exp3;

where exp1, exp2, exp3 are expressions.
The expression exp1 is evaluated first. If it is non-zero (true), then the expression exp2 is evaluated,

and that is the value of the conditional expression; otherwise expression exp3 is evaluated, and that is
the value of the conditional expression. Note that only one of the expression exp2 and exp3 is evaluated.

Thus, the above pseudocode segment using conditional operator can be written as
 big = (a > b) ? a : b;

Parentheses are not necessary around the first expression of the conditional expression since
the precedence of ‘?:’ is very low, just above assignment operator. However, the use of parentheses is
recommended as they make the condition part easier to see.

2.2.5.6  Assignment operators
Assignment operators are used to assign values to variables. For example,
 a = 5

Here ‘=’ is a simple assignment operator that assigns the value 5 to the variable a. It can also be used
to assign value of another variable or an expression.

There are various compound operators in C like
 a += 5

that adds to the variable and later assigns the same. It is equivalent to
 a = a + 5

Operators of type ‘+=’ are also called shorthand assignment operators.

Table 2.7: Assignment Operators

2.3  EXPRESSIONS
An expression is a formula consisting of one or more operands and zero or more operators linked together
to compute a value. An operand may be a function reference, a variable, an array element or a constant.

For example, in the expression
 a + b

plus character ‘+’ is an operator and a and b are operands.

Operator Example Equivalent to
&= x &= 5 x = x & 5
|= x |= 5 x = x | 5
^= x ^= 5 x = x ^ 5
>>= x >>= 5 x = x >> 5
<<= x <<= 5 x = x << 5

Operator Example Equivalent to
= x = 5 x = 5
+= x += 5 x = x + 5
-= x -= 5 x = x - 5
*= x *= 5 x = x * 5
/= x /= 5 x = x / 5
%= x %= 5 x = x % 5

60  |  Programming for Problem Solving

There are four types of expressions in C. These are
	 1.	 Arithmetic expressions
	 2.	 Relational expressions
	 3.	 Logical expressions
	 4.	 Conditional expressions

Each type of expression takes certain types of operands and uses a specific set of operators.
Evaluation of every expression produces a value of specific type. Expressions are not statements, but may
be components of statements.

For example, consider the line
 x = 2.0/3.0 + a * b;

The entire line is a statement, but the portion after the assignment operator is an expression.
In this section, our discussion will be limited to arithmetic expression.

2.3.1  Arithmetic Expressions
An arithmetic expression is made up of operands and arithmetic operators. It produces a value that is of
type int, float or double. When an expression involves only integral operands, it is known as a pure integer
expression, when it involves only real operands it is known as a pure real expression, and when it involves
both integral and real operands it is known as a mixed mode expression.

Table 2.8: Some sample arithmetic expressions

Mathematical/Algebraic Expressions The C Arithmetic Expressions
a + b

2
(a+b)/2

a + b
c

 + d a+b/c+d

ab
c – d2

 + d (a*b)/(c-d*d)+d

1 +
a

b +
1
c

1+a/(b+1/c)

a
c + b

d

 – e
a/((c+b)/d)-e

ax2 + bx + c a*x*x+b*x+c

ut +
1
2

at2 u*t+0.5*a*t*t

m(a × h +
v2

2) m*(a*h+(v*v)/2)

While converting mathematical/algebraic expressions into C arithmetic expressions, parentheses
can be used to control associativity and the order in which operators are evaluated. If parentheses are

Arithmetic Expressions and Precedence   |  61

present in an expression, then the expression within the parentheses is evaluated first and within the
parentheses the implicit precedence is observed. If there is nesting of parentheses (parentheses inside
parentheses), then the inner most parentheses are evaluated first.

2.3.2  Evaluation of Arithmetic Expressions
As you know expressions are evaluated by performing one operation at a time, and same is the case when
expressions are evaluated by a computer. The order of evaluation of individual operations is governed by
the precedence and associativity of operators.

However, when individual operations are performed, the following cases can happen:
	 l	 When both of the operands are of type integer, the integer arithmetic will be performed and the

results of the operation will be an integer value.
		 For example, 5/2 will yield 2 not 2.5 as the fractional part is ignored.
	 l	 When both of the operands are of type real, the real arithmetic will be performed and the results

of the operation will a real value.
		 For example, 5.0/2.0 will yield 2.5.
	 l	 However, when one operand is of type integer and the second one is of type real, the mixed

mode arithmetic will be performed. In this case, first integer operand will be converted into
real operand, and then real arithmetic will be performed and the results of the operation will
be a real value. For example, 5/2.0 or 5.0/2 will yield 2.5, because in the first case, value 5 will
be converted to 5.0 and then division will be performed while in the second case value 2 will be
converted to 2.0 and then the division will be performed.

	To illustrate the way arithmetic expression are evaluated, consider the following expression
 5 * 4 / (1 + 5 * 2 / 3 + 6) + 8 * (7 / 4)
This expression is evaluated as demonstrated in Table depicted below:

Table 2.9: Illustration of evaluation of arithmetic expression

Operation by Operation Evaluation of Expression Description of Each Operation
5 * 4 / (1 + 5 * 2 / 3 + 6) + 8 * (7 / 4) Given expression

5 * 4 / (1 + 10 / 3 + 6) + 8 * (7 / 4) 5 is multiplied by 2, giving10

5 * 4 / (1 + 3 + 6) + 8 * (7 / 4) 10 is divided by 3 using integral division,
giving 3

5 * 4 / (4 + 6) + 8 * (7 / 4) 3 is added to 1, giving 4

5 * 4 / 10 + 8 * (7 / 4) 6 is added to 4, giving 10

5 * 4 / 10 + 8 * 1 7 is divided by 4 using integral division,
giving 1

20 / 10 + 8 * 1 5 is multiplied by 4, giving 20

2 + 8 * 1 20 is divided by 10 using integral division,
giving 2

2 + 8 8 is multiplied by 1, giving 8

10 8 is added to 2, giving 10, which is the final
value of the expression.

62  |  Programming for Problem Solving

2.3.3  Type Conversion
When values of different types are mixed in an expression, then they are converted to the same type
before performing any operation. This process of converting values from one type to another type is
known as type conversion.

The C language facilitates type conversion in following two forms:
	 l	 Implicit type conversion
	 l	 Explicit type conversion

2.3.3.1  Implicit Type Conversion
An implicit type conversion is automatically performed by the compiler without programmer’s
intervention. This is done when expression is in mixed mode, so as not to lose the information.

Conversion in Evaluation of Expressions

When an operation is to be performed on operands of different types, then operand of lower size is
converted to a type that matches the operand of higher size. Once this conversion of ranks is done, the
operation is performed and the result of the operation will be of type having higher size.

For example, suppose variables x and y are of type float and variables i and j are of type int, in
expression:
 x / i + y * j

While evaluating expression “x/i”, integer operand i will be converted to float type and then operand
x will be divided by i, and the result of the expression will be a value of type float.
Conversions in Assignment Statements
An assignment statement involves an assignment operator (=) and two operands. The operand on the
left hand side of assignment operator is a variable while the operand on the right side can be a literal/
constant, variable or an expression.

Depending on the difference of the size of the operands, the C system tries to either promote or
demote the right operand so as to make its size match the left operand (variable). Promotion occurs if the
right operand has lower size; demotion occurs if the right operand has higher size.

2.3.3.2  Explicit Type Conversion
An explicit type conversion is user-defined that forces an operand or expression to be of specific type.
The process of explicit type conversion is also known as type casting.

The syntax for explicit type conversion or type casting is
 (type)operand	

Here type in the parentheses is referred to as cast operator, which has a precedence of 2. As shown
in the syntax, to cast data from one type to another type, we specify the new type in parentheses before
the value that we want to convert.

For example, to convert variable x of type int to float type, we write the expression as
 (float)x

It is important to note here that in this operation like any other unary operation, the value stored in
x is still of type int, but the value of the expression is promoted to type float.

Arithmetic Expressions and Precedence   |  63

One use of the cast operator is to ensure that the result of a divide operation on integer operands
results in a real number.

For example, if we want to calculate the average, which may contain fraction as well, without a cast
operator, the result will be an integer number because of integer division.

To force the real result, we can write the statement to compute average as
 average = (float)total / n;

In this statement, there is explicit conversion of total to float, and then implicit conversion of n to
float. Now real division will take place and the result will be a real number, as desired, which will be
assigned to average.

2.4  PRECEDENCE AND ASSOCIATIVITY
Precedence is used to determine the order in which different operators are evaluated in an expression.

Associativity is used to determine the order in which different operators with same precedence are
evaluated in an expression.

Precedence is applied before associativity to determine the order in which expressions are evaluated.
Associativity is applied later, if necessary.

Precedence
The concept of precedence is well defined in the subject of mathematics. You must be aware of rule
BODMAS – Brackets, Of, Division, Multiplication, Addition, and Subtraction. In algebra, division and
multiplication is performed before addition and subtraction.

The following is a simple example of precedence:
 5 + 3 * 4

This expression consists of one addition and one multiplication operator. As you know from the
knowledge of algebra, multiplication has higher precedence than addition, multiplication is performed
before addition.

Therefore, the expression will be evaluated as
 (5 + (3 * 4)) → (5 + 12) → 17

giving 17 as the value of the entire expression.

Associativity
Associativity is applied when more than one operator of same precedence is used in an expression.
Associativity can be left-to-right or right-to-left. Left-to-right associativity evaluates the expression by
starting on the left and moving to the right whereas the right-to-left associativity evaluates the expression
by starting on the right and moving to the left.

The following is a simple example of associativity:
 2 + 5 + 7

This expression consists of two addition operators. Here the associativity determines how the
sub expressions are grouped together. Since the addition operator has left-to-right associativity, the
expression will be grouped as
 ((2 + 5) + 7) → (7 + 7) → 14

giving 14 as the value of the entire expression.

64  |  Programming for Problem Solving

Table 2.10: Precedence and associativity of operators

Operator Description Precedence
Level (Rank) Associativity

()
[]

 ->
.

Function call
Array element reference
Structure operator used with pointer to a structure
Structure operator used with structure variable

1 Left-to-right

!
 ~

 ++
--
+
-
*
&

(type)
sizeof

Logical NOT operator
1’s complement
Increment
Decrement
Unary plus
Unary minus
Pointer reference (indirection)
Address of
Type cast
Size of an operand

2 Right-to-left

*
/

%

Multiplication
Division
Modulus (remainder)

3 Left-to-right

+
-

Addition
Subtraction 4 Left-to-right

<<
>>

Left shift
Right shift 5 Left-to-right

<
<=
>

>=

Less than
Less than or equal to
Greater than
Greater than or equal to

6 Left-to-right

==
!=

Equal to
Not equal to 7 Left-to-right

& Bitwise AND 8 Left-to-right

^ Bitwise exclusive OR 9 Left-to-right

| Bitwise inclusive OR 10 Left-to-right

&& Logical AND 11 Left-to-right

|| Logical OR 12 Left-to-right

?: Condition (ternary) 13 Right-to-left

= += -=
*= /= %=
&= ^= !=
<<= >>=

Assignment operators 14 Right-to-left

Arithmetic Expressions and Precedence   |  65

2.5  LIBRARY FUNCTIONS
Quite often it is necessary to evaluate several mathematical functions that are used frequently, such
as square root, logarithms, exponentials, trigonometric functions, etc. Rather than each user writes
their own code to compute these functions, C compiler provides them as built-in library functions as a
convenience.

The user has to include math.h header file in the program unit. In addition to these functions, there
are many other library functions that perform specialized functions, and are defined in different header
files. For example, library functions that manipulate strings are defined in string.h.

Arguments to certain library functions are limited by the definition of the function. For example,
logarithm of a negative number is mathematically undefined. Similarly, square root of a negative number
is mathematically undefined, and therefore, not permitted.

Table 2.11: Some commonly used mathematical functions

Function Description
pow(x,y) Returns x raised to power y, i.e., .
pow10(p) Returns the value .
exp(x) Returns e to the xth power, i.e., .
log(x) Returns the value of ln(x).
log10(x) Returns the value of log10(x).
sqrt(x) Returns the value of .
sin(x) Returns the value sine of x, where the angle x is in radians.
ceil(x) Returns the smallest integer greater than or equal to x.
floor(x) Returns largest integer less than or equal to x.

ILLUSTRATIVE EXAMPLES
In this section, let us consider few situations and/or problems that will give us an opportunity to use
operators and expressions. Before that let us learn about the concept of dry run.

A dry run basically means we will imitate a computer and trace the execution of the instructions
using paper pencil. During the process, we record values of the variables as they change during the
execution including the initial values. Note that if a variable is not initialized, its value will be shown
with character ‘?’.

In the illustrative examples, you will see the dry run of the program and/or section of the program
code, wherever it is deemed necessary to clarify the key concept.
Example 2.1: Swap values of two variables ‘a’ & ‘b’ using third variable ‘t’.
Solution:

int a=10,b=20,t; 		 /* 1 */
t = a; 				 /* 2 */
a = b; 				 /* 3 */
b = t; 				 /* 4 */
The last three lines of the code can also be written in C as
t = a, a = b, b = t;

Dry Run
Statement

No.
a b t

1 10 20 ?
2 10 20 10
3 20 20 10
4 10 20 10

66  |  Programming for Problem Solving

Example 2.2: Swap value of two variables ‘a’ & ‘b’ without using third variable and using arithmetic
addition (+) and subtraction (-) operations only.
Solution:

int a=10,b=20; 		 /* 1 */
a = a + b; 		 	 /* 2 */
b = a - b; 		 	 /* 3 */
a = a - b; 		 	 /* 4 */

This task can also be implemented using following single statement:
a = (a + b) - (b = a);

Example 2.3: Swap value of two variables ‘a’ & ‘b’ without using third variable and using arithmetic
multiplication (*) and division (/) operations only.
Solution:

int a=10,b=20; 	 /* 1 */
a = a * b; 		 /* 2 */
b = a / b; 		 /* 3 */
a = a / b; 		 /* 4 */

This task can also be implemented using following single statement:
 a = (a * b) / (b = a);

Example 2.4: To find the largest of three numbers among a, b, and c.
Solution:

int a=10,b=30,c=25, big; 				 	
big = (a>b)?((a>c)?a:c)):((b>c)?b:c));			

Here, if a is greater than b, expression ((a>c)?a:c) is evaluated; otherwise expression ((b>c)?a:c).
Expression ((a>c)?a:c) will return a if a is greater than c else returns c.
Expression ((b>c)?b:c) will return b if b is greater than c else returns c.

Example 2.5: Write appropriate statements to find the sum of the right-most digit and left-most digit of a
4-digit number stored in n.
Solution:

left_most_digit = n / 1000;
right_most_digit = n % 1000;
sum = left_most_digit + right_most_digit;			

Example 2.6: Write appropriate statements to convert temperature in Celsius scale into Fahrenheit scale.
Solution:

The relationship between temperatures in Celsius scale and Fahrenheit scale is

	 C
100

	 =	
F – 32

180 ⇒ F – 32 = 180
100

 C ⇒ F = 1.8C + 32

float c, f;
f = 1.8 * C + 32;			

Dry Run
Statement

No.
a b

1 10 20
2 30 20
3 30 10
4 20 10

Dry Run
Statement

No.
a b

1 10 20
2 200 20
3 200 10
4 20 10

Arithmetic Expressions and Precedence   |  67

UNIT SUMMARY
In this chapter, we have learned that
	 q	 Operators are the verbs of a language that let the user perform computations on values.
	 q	 Operator can be unary or binary
	 q	 C language was the first language that is rich in operators.
	 q	 Operators are primarily divided into arithmetic operators, relational operators, logical operators,

bit-wise operators, and special operators.
	 q	 Arithmetic operations can be classified as integer arithmetic, real arithmetic, and mixed mode

arithmetic.
	 q	 Assignment operators are used to assign values to variables.
	 q	 An expression is a formula consisting of operands and operators linked together to compute a

value.
	 q	 Expressions are primarily divided into arithmetic expressions, relational expressions, logical

expressions, and conditional expressions.
	 q	 The process of converting values for one type to another type is known as type conversion.
	 q	 An implicit type conversion is automatically performed by the compiler without programmer’s

intervention.
	 q	 An explicit type conversion is user-defined that forces an operand or expression to be of specific

type.
	 q	 The process of explicit type conversion is also known as type casting.
	 q	 Precedence is used to determine the order in which different operators are evaluated in an

expression.
	 q	 Associativity is used to determine the order in which different operators with same precedence

are evaluated in an expression.
	 q	 Library functions are pre-written functions to implement various routine type operations, and

are provided as part of the compiler. To use them , you need to include appropriate header files
in your program.

EXERCISE

Subjective Questions
	 1.	 What is an operator? Describe the usage of various arithmetic operators with suitable examples.
	 2.	 Among arithmetic operators, what are the broad categories of operators?
	 3.	 Is there any restriction on modulus operator ‘%’?
	 4.	 Describe the working of conditional operator with suitable example.
	 5.	 Explain the function of sizeof operator.
	 6.	 Describe the rules that govern the evaluation of algebraic expressions.
	 7.	 What do you mean by precedence of operators? What is the precedence among various arithmetic

operators?
	 8.	 What do you mean by associativity of operators?

68  |  Programming for Problem Solving

	 9.	 Summarize the rules that apply to expressions whose operands are of different type.
	 10.	 When should parentheses be used in arithmetic expressions? Give at least one example.
	 11.	 Are the library functions actually a part of the ‘C’ language? Explain.
	 12.	 Describe the working of conditional operator with suitable example.
	 13.	 What integer value is equivalent to Boolean false?
	 14.	 What is an expression?
	 15.	 Explain the working of increment and decrement operators.
	 16.	 What is type conversion?
	 17.	 Enumerate the situations where implicit type conversion takes place.
	 18.	 How explicit type casting is done? Give example.
	 19.	 Name the header file that you need to include in order to use mathematical library functions.
	 20.	 Write C expressions equivalent to the following algebraic expressions:

		 (a)	 a – a
a–x + b	 (b)	 1 +

1

a + 1
a

 + b	 (c)	 x +
y–z

a + 1
a

 – √x 	

		 (d)	 x3 – y7

–z
 + ex	 (e)	 (1 – x

1 + x) / (1 + y
1 – y)	 (f)	 1

r
 =

1
r1

 +
1
r2

		 (g)	 √(x2 + y2 + z2)3 	 (h)	 – b – √b2 – 4ac
2a

Multiple Choice Questions
	 1. 	Which of the following is not an arithmetic operator?
 	 (a) 	+	 (b)	 &
	 (c)	 %	 (d)	 *
	 2.	 Precedence of operators determines which operator
	 (a)	 is used first	 (b)	 is important
	 (c)	 operates on largest numbers	 (d)	 executes fast
	 3.	 The operator % can be applied to
	 (a)	 Float values	 (b)	 Double values
	 (c)	 Integral values	 (d)	 All of the above
	 4.	 Expression x % y is equivalent to
	 (a)	 (x-(x/y))	 (b)	 (x-(x/y)*y)	
	 (c)	 (y-(y/x))	 (d)	 (y-(x/y)*x)	
	 5.	 Which of the following is not a bit-wise operator?
	 (a)	 >	 (b)	 >>	
	 (c)	 ^	 (d)	 &

Arithmetic Expressions and Precedence   |  69

	 6. 	 What will be the value of expression 5 / 6 / 3 + 8 / 3?
	 (a)	 4	 (b)	 2
	 (c)	 2.333 (approx.)	 (d)	 None of above
	 7.	 In expression x / y, the value of y should be
	 (a)	 integer	 (b)	 non-zero
	 (c)	 non-negative	 (d)	 positive
	 8. 	 If x is a variable of type int, which of the following is odd?
	 (a)	 x << 1	 (b) 	x = x * 2	
	 (c)	 x *= 2	 (d)	 x <<= 1
	 9.	 Consider the following statement in C language
		 x = (a > b) ? ((a > c) ? a : c) : (b > c) ? b : c;

		 What will be the value of x if a = 3, b = -5, c = 2?
	 (a)	 2	 (b)	 3
	 (c)	-5	 (d)	 None of the above
	 10.	 When a relational expression is false, it has the value _____.
	 (a)	 1	 (b)	 0
	 (c)	-ve	 (d)	 +ve
	 11.	 If a = 15 then the statement b = a << 2; will result in
	 (a)	 30	 (b)	 60
	 (c)	 7	 (d)	 None of the above
	 12.	 Consider the following code segment
		 int i, j = 10;

		 i = j++;

		 The value of i and j at the end of this segment will be
	 (a)	 10, 10	 (b)	 10, 11
	 (c)	 11, 10	 (d)	 11, 11
	 13.	 Consider the following code segment
			 int x = 5.234, y;

		 y = sizeof(x);

		 The value of y will be
	 (a)	 4	 (b)	 2
	 (c)	 8	 (d)	 Syntax error
	 14. 	 Which of the following operator can be used to perform division by 2 on an integral operand?
	 (a)	 /	 (b)	 >>
	 (c)	 <<	 (d)	 Both (a) & (b)

70  |  Programming for Problem Solving

	 15.	 Which of the following statement is not correct about the ++ operator?
	 (a)	 It is a unary operator	 (b)	 Operand can come before or after operator
	 (c)	 It can be applied to an expression	 (d)	 Its associates from right-to-left.

ANSWERS
1. (b) 2. (a) 3. (c) 4. (b) 5. (a) 6. (b) 7. (b) 8. (a)
9. (b) 10. (b) 11. (b) 12. (b) 13. (b) 14. (b) 15. (c)

PRACTICALS
	 1.	 Write a program to find simple and compound interest.
	 Sol. 	 The formulae to compute simple and the compound interest are

		 Simple interest =
p × r × t

100
, and Compound interest = 1 1

100

trp
  + -  
   

		 where p is the principle amount, r is the rate of interest per annum, and t is the time of deposit
in years.

Listing 2.1
 /* program to compute simple and compound interest */

 #include <stdio.h>

 #include <math.h>

 int main()

 {

 float p, r, si, ci;

 int t;

 printf(″\nEnter principle amount : ″);
 scanf(″%f″, &p);
 printf(″Enter rate of interest : ″);
 scanf(″%f″, &r);
 printf(″Enter principle amount : ″);
 scanf(″%d″, &t);
 si = (p*r*t)/100;

 ci = p*(pow(1+r/100,t)-1);

 printf(″\nsimple interest = Rs. %.2f″, si);

 printf(″\ncompound interest = Rs. %.2f″, ci);
 return 0;

 }

Arithmetic Expressions and Precedence   |  71

 Test Run
 Enter principle amount : 1000

 Enter rate of interest : 5

 Enter principle amount : 4

 Simple interest = Rs. 200.00

 Compound interest = Rs. 215.51

	 2.	 Write a program to find the area of a triangle whose measure of three sides is given as a, b, and
c, respectively. The values of a, b, and c must satisfy the condition that

		 a + b > c and b + c > a and c + a > b
	 Sol. 	 The formulae to compute area of triangle is

			 s =
a + b + c

2
, Area = ()()()s s a s b s c- - -

Listing 2.2
 /* program to compute area of a triangle whose sides are given */

 #include <stdio.h>

 #include <math.h>

 int main()

 {

 float a, b, c, s, area;

 printf(″\nEnter value for a : ″);

 scanf(″%f″, &a);

 printf(″Enter value for b : ″);

 scanf(″%f″, &b);

 printf(″Enter value for c : ″);

 scanf(″%f″, &c);

 s = (a+b+c)/2;

 area = sqrt(s*(s-a)*(s-b)*(s-c));

 printf(″\nArea of triangle = %.2f Sq. Units″, area);

 return 0;

 }

Test Run
 Enter value for a : 5

 Enter value for b : 7

 Enter value for c : 6

 Area of triangle = 14.70 Sq. Units

72  |  Programming for Problem Solving

	 3.	 A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of
the building. Write a program to find the time taken by the ball to reach each floor.

	 Sol.	 Since height of each floor is 3 meters, therefore, height (h) of building with 10 floors is 30 meters.
		 Here we use equation of motion,

				 s = ut +
1
2 at2

		 Here s is replaced by h, and a by g(9.8 m/s2).
		 Since ball is dropped from the top (10th) floor, u = 0. Therefore, formula reduces to

				 h =
1
2 gt2 	 ⇒ t = 2h

g

Listing 2.3
 /* program to compute the time taken by ball to reach

 the ground floor, when it is released from the top floor

 */

 #include <stdio.h>

 #include <math.h>

 int main()

 {

 float h = 30, g = 9.8, t;

 t = sqrt(2*h/g);

 printf(″\nTime taken by ball = %.2f seconds″, t);
 return 0;

 }

Test Run
 Time taken by ball = 2.47 seconds

KNOW MORE

Arithmetic expressions are backbone of programs for Science & Engineering related problems. Such
problems involve complex mathematical and algebraic expressions. Therefore, for converting such
expressions into C expressions, one should know the precedence and associativity of operators, types of
arithmetic, and the kind of type conversion that takes place during the evaluation of expressions.

The teacher is expected to develop an understanding about formations and evaluation of expression
and other related issues.

The teacher should also demonstrate the formation and evaluation of expression of various types
with active participation of the students.

Arithmetic Expressions and Precedence   |  73

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to various control statements. These control statements allow the
programmer to alter the sequence of statements or control the repetition of statements in a program. The
various control statements explained in this unit include if, if-else, if-else if ladder, switch, for, while, do-
while, break, and continue statements. There use is demonstrated with suitable examples.

RATIONALE
A computer program is a set of instructions for a computer. These instructions are executed sequentially,
i.e., one after the other as they appear in a program. This order of execution of statement works well
for simple problems where neither any decision making process nor any repetition of instructions is
involved.

However, in practice, it is often required to change the order of execution of instructions or repeat a
group of instructions for known number of times or until certain conditions are satisfied. In such cases,
the order in which these statements will be executed needs to be controlled.

This unit helps the students to understand syntax and working of various statements that can be
used for implementing conditional branching and looping to solve real-life problems.

PRE-REQUISITES
	 –	 Relational operators
	 –	 Logical operators
	 –	 Increment/decrement operators
	 –	 Evaluation of relational/logical expressions

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U3-O1: explain the need for conditional branching and looping
U3-O2: select the correct type of conditional branching statement based on a given problem
U3-O3: select the correct type of loop based on a given problem
U3-O4: use break and continue keywords
U3-O5: create programs to solve real-life problems using conditional branching and loops

3 Conditional Branching
and Loops

Conditional Branching and Loops   |  75

Unit 3
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U3-O1 1 - - - - - - -

U3-O2 - - - 2 - - - -

U3-O3 - - - 2 - - - -

U3-O4 - 1 - 2 - - - -

U3-O5 - - - 3 - - - -

3.1  INTRODUCTION
Changing the order of execution of the statements, i.e., changing the flow of control, might involve one
of the following situations:

l Branching – executing one group of instructions depending on the outcome of a decision.
l Looping – executing a group of instructions repetitively either for a given number of times or

until the required condition is met.
l Jumping – transferring control from one point to another point in the same program unit.

The C Language provides facilities for controlling the order of execution of the statements, which
are referred to as flow control statements or simply as control statements.

The various flow control statements are clubbed in the following categories:
1. 		Conditional Branching – In this category, C language provides the following statements

l if statement
l if - else statement
l else if ladder
l switch statement

2. Looping – In this category, C language provides the following statements
l for statement
l while statement
l do - while statement

3. Jumping – In this category, C language provides the following statements
l break statement
l continue statement

In this unit, we discuss about these statements, and the discussion is supported by plenty of solved
programs.

3.2  CONDITIONAL BRANCHING
The various statements under this category allow the execution of selective statements based on certain
decision criteria. We will see their working supported by well-designed illustrative examples.

76  |  Programming for Problem Solving

3.2.1 The if Statement
The syntax of if statement is

 (a) Logic flow control of if statement (b) Code of if statement

Fig. 3.1: Logic flow control and code of if statement

The expression may represent a relational expression, a logical expression, a numeric variable or a
numeric constant. The specified expression may be a simple expression or compound expression.

Expressions in C evaluate to 0 or 1. If expression evaluates to value 1, then the statements in the
statement-block are executed; otherwise they are bypassed.

Example 3.1: Program to check whether given integer number is negative or positive.

Listing 3.1
 #include<stdio.h>
 int main()
 {
 int n;
 printf(″\nEnter integer number : ″);
 scanf(″%d″, &n);

 if (n < 0) {
 printf(″\nNumber is negative.\n″);
 return 0;
 }
 printf(″\nNumber is positive.\n″);
 return 0;
 }

Conditional Branching and Loops   |  77

Test Runs
First Run
 Enter integer number : -25
 Number is negative.
Second Run
 Enter integer number : 30
 Number is positive.

3.2.2  The if - else statement
The if statement executes a single statement, (simple or compound), when the specified expression
evaluates to a non-zero value. It does nothing when it evaluates to a zero value. Is there any way whereby
one statement is executed if the expression evaluates to a non-zero value and another statement if the
expression evaluates to a zero value? The answer is yes.

This objective is achieved by using if - else statement whose syntax is

 (a) Logic flow control of if - else statement (b) Code of if - else statement

Fig. 3.2: Logic flow control and code of if-else statement

If expression evaluates to 1, statement-1 is executed and statement-2 is bypassed. However, if the
expression evaluates to 0, statement-1 is bypassed and statement-2 is executed.

Example 3.2: Program to check whether the natural number is even or odd.
Listing 3.2
 #include<stdio.h>
 int main()

 {
 int n;
 printf(″\nEnter any natural number : ″);
 scanf(″%d″, &n);

78  |  Programming for Problem Solving

 if (n % 2 == 0)
 printf(″\nNumber entered is EVEN\n″);
 else
 printf(″\nNumber entered is ODD\n″);
 return 0;
}

Test Runs
First Run
 Enter any whole number: 22
 Number entered is EVEN
 Second Run
 Enter any number: 15
 Number entered is ODD

Example 3.3: Program to find the larger of two numbers.
Listing 3.3
 include<stdio.h>
 int main()

 {
 int a, b;
 printf(″\nEnter value for a : ″);
 scanf(″%d″, &a);
 printf(″\nEnter value for b : ″);
 scanf(″%d″, &b);
 if (a > b)
 printf(″\n%d is the larger.\n″, a);
 else
 printf(″\n%d is the larger.\n″, b);
 return 0;
 }

Test Runs
First Run
 Enter value for a : 20
 Enter value for b : 10
 20 is the larger.
 Second Run
 Enter value for a : 15
 Enter value for b : 25
 25 is the larger.

Conditional Branching and Loops   |  79

3.2.3  Nested if and if - else statements
If statements can be nested, i.e., an if statement can be contained within another if statement. The inner
if statement will be executed if expression of outer if statement evaluates to non-zero value.

Likewise, if-else statements can also be nested. Here, if statement can be nested in if part or else part.
Likewise, if - else statement can be nested in if part or else part.

Example 3.4: Write a program to determine whether the given year is a leap year. A given year is a leap
year if any one of the following conditions is satisfied:
	 1.	 Year is evenly divisible by 4 and not divisible by 100.
	 2.	 Year is evenly divisible by 4, evenly divisible by 100 as well as evenly divisible by 400.
In all other cases, given year is not a leap year.
For example,
	 1.	 The years 1988, 1992, and 1996 are leap years, as they are divisible by 4 but not by 100.
	 2.	 The years 1700, 2100, and 2500 are not leap years as they are divisible by 4, by 100 but not by 400.
	 3.	 The years 1600, 2000, and 2400 are leap years, as they are divisible by 100 as well as by 400.
Listing 3.4
 #include <stdio.h>
 int main()
 {
 int year;
 printf(″Enter given year : ″);
 scanf(″%d″, &year);
 if (year % 4 == 0) {
 if (year % 100 == 0) {
 if (year % 400 == 0)
 printf(″\nYear %d is a leap year.\n″, year);
 else
 printf(″\nYear %d is not a leap year.\n″, year);
	 }
 else
 {
 printf(″\nYear %d is a leap year.\n″, year);
 }
 }
 else
 {
 printf(″\nYear %d is not a leap year.\n″, year);
 }
 return 0;
}

80  |  Programming for Problem Solving

 Test Runs
 First Run
 Enter any year : 2000
 Year 2000 is a leap year.
 Second Run
 Enter any year : 2008
 Year 2008 is a leap year.
 Third Run
 Enter any year : 2006
 Year 2006 is not a leap year.

3.2.4  The if-else if Ladder
The if-else-if ladder is an extension to the if-else statement.
It is used in a scenario where there are multiple cases to
be performed for different conditions.

The syntax of if-else-if ladder is shown in Fig. 3.3.
The expressions are evaluated in order, and if any

expression is true then the statement block associated
with it is executed, and this terminates the whole chain.

The last else part handles none of the above or
default case where none of the specified expressions are
satisfied.

expression-1

true

true

true

true

false

false

false

false

expression-2

expression-3

expression-n

statement-1 statement-2 statement-3 statement-n statement-s

Fig. 3.4: Logic flow control of if - else if ladder

if (expression-1)
 statement-1
else if (expression-2)
 statement-2
else if (expression-3)
 statement-3
	 :
else if (expression-n)
 statement-n
else
 statement-s

Fig. 3.3: Code of if - else if ladder

Conditional Branching and Loops   |  81

Example 3.5: Given percentage of marks. The grade of student is computed as per following policy.

Percentage of Marks Grade
percentage ≥ 90 A
90 > percentage ≥ 75 B
75 > percentage ≥ 60 C
60 > percentage ≥ 50 D
percentage < 50 F

Write a program to print the grade of students when their percentage of marks is given.
 Listing 3.5
 #include<stdio.h>

 int main()

 {

 float percentage;

 printf(″\nEnter percentage of marks : ″);

 scanf(″%f″, &percentage);

 if (percentage >= 90)

 printf(″\nGrade is A\n″);

 else if (percentage >= 75)

 printf(″\nGrade is B\n″);

 else if (percentage >= 60)

 printf(″\nGrade is C\n″);

 else if (percentage >= 50)

 printf(″\nGrade is D\n″);

 else

 printf(″\nGrade is E\n″);

 return 0;

 }

 Test Run
 Enter percentage of marks : 93
 Grade is A

3.2.5  The switch Statement
The switch statement provides an alternative to multiple cases to be performed for different values of a
variable/expression.

The syntax of switch statement is shown in Fig. 3.5.

Fig. 3.5: Code of switch Statement

82  |  Programming for Problem Solving

If expression takes any value from val-1, val-2,
val-3, ..., val-n, the control is transferred to that appropriate
case. In each case, the statements are executed and then
the break statement transfers the control out of switch
statement.

If no break statement is used following a case, except
the last one in the absence of default keyword, the control
will fall through to the next case. If the value of the
expression does not match any of the case values, control
goes to the default keyword, which is usually at the end of
the switch statement. The use of the default keyword can
be of a great convenience. If there is no default keyword,
the whole switch statement simply skipped when there is
no match.

expression
= val-1

= val-2 = val-3
= val-n

default

statement-1 statement-2 statement-3 statement-n statement-d

Fig. 3.6: Logic flow control of switch statement

Example 3.6: Write a program to implement four function calculator.
Listing 3.6
 #include<stdio.h>
 int main()
 {
 int a, b;
 char op;

switch (expression)
{
 case val-1 :
 statement-1
 break;
 case val-2 :
 statement-2
 break;
 :
 case val-n :
 	 statement-n
 	 break;
 default :
 	 statement-d
}

Fig. 3.5: Code of switch statement

Conditional Branching and Loops   |  83

 printf(″\nEnter expression such as 5 + 3 : ″);
 scanf(″%d %c %d″, &a, &op, &b);
 switch (op)
 {
 case ′+′ : printf(″\n%d %c %d = %d\n″, a, op, b, a+b);
 break;
 case ′-′ : printf(″\n%d %c %d = %d\n″, a, op, b, a-b);
 break;
 case ′*′ : printf(″\n%d %c %d = %d\n″, a, op, b, a*b);
 break;
 case ′/′ : printf(″\n%d %c %d = %d\n″, a, op, b, a/b);
 break;
 default : printf(″\nWrong input\n″);
 }
 return 0;
 }

 Test Run
 Enter expression such as 5 + 3 : 20 / 2
 20 / 2 = 10

There may be situations, when we want that same statement should be executed for more than one
value of the expression. To handle such situation, we code these cases one after the other, and followed by
the statement, as shown below:

 switch (expression)
 {
 :
 case val-4 :
 case val-5 :
 case val-6 : statement;
 break;
 :
 }

The statement-block will be executed whenever the value of the expression is val-4, val-5, or val-6.

Example 3.7: Program to test whether an alphabet is vowel or consonant.

Listing 3.7
 #include<stdio.h>
 int main()
 {

84  |  Programming for Problem Solving

 char ch;
 printf(″\nEnter an alphabet : ″);
 ch = getche();
 switch (ch)
 {
 case ′a′ :
 case ′A′ :
 case ′e′ :
 case ′E′ :
 case ′i′ :
 case ′I′ :
 case ′o′ :
 case ′O′ :
 case ′u′ :
 case ′U′ : printf(″\nAlphabet is vowel.\n″);
 break;
 default :
 printf(″\nAlphabet is consonant.\n″);
 }
 return 0;
 }

 Test Run
 Enter an alphabet : A
 Alphabet is vowel.

ILLUSTRATIVE EXAMPLES FOR CONDITIONAL BRANCHING

Example 3.8:  Program to find roots of a quadratic equation of type
			 ax2 + bx + c = 0 provided a ≠ 0.
Solution: The roots of the quadratic equation are given by the formula:

	 x1,2	=	
2 4

2
b b ac

a
- ± -

	 where expression b2 - 4ac is known as the discriminant.

Depending on the sign of the discriminant, there are three possibilities for the roots:
	 1.	 If b2 - 4ac < 0, then the root are imaginary, and we can compute real part and imaginary part

separately as
		 real part = –

b
2a 	 imaginary part 	=

2(4)
2

b ac
a

- -

Conditional Branching and Loops   |  85

	 2.	 If b2 - 4ac = 0, then the roots are real and equal, and root is simply computed as

				 root = –
b

2a
	 3.	 If b2 - 4ac > 0, then the roots are real and distinct and are computed as

 	 	root one =
2 4

2
b b ac

a
- - - 	 root two =

2 4
2

b b ac
a

- + -

 Listing 3.8
 #include<stdio.h>
 #include<math.h>
 int main()
 {
 float a, b, c, disc, root1, root2;
 float realPart, imagPart;
 printf(″\nEnter values of a,b,c: ″);
 scanf(″%f,%f,%f″, &a, &b, &c);
 if (a == 0) {
 printf(″\nIt is not an quadratic equation\n″);
 return 0;
 }
 disc = b * b - 4.0 * a * c;
 if (disc < 0)
 {
 realPart = - b / (2*a);
 imagPart = sqrt((double)-disc) / (2*a);
 printf(″\nRoots are imaginary″);
 printf(″\nReal part = %.3f″, realPart);
 printf(″\nImaginary part = %.3f\n″, imagPart);
 }
 else if (disc == 0)
 {
	 root1 = - b / (2*a);
	 printf(″\nRoots are real and equal″);
	 printf(″\nEach root = %.3f\n″, root1);
 }
 else
 {
 root1 = (-b-sqrt((double)disc)) / (2*a);
 root2 = (-b+sqrt((double)disc)) / (2*a);
 printf(″\nRoots are real and distinct″);
 printf(″\nRoot 1 = %.3f″, root1);
 printf(″\nRoot 2 = %.3f\n″, root2);
 }
 return 0;
 }

86  |  Programming for Problem Solving

 Test Run
 Enter values of a,b,c: 2,3,5
 Roots are imaginary
 Real part = -0.750
 Imaginary part = 1.392

Example 3.9: Suppose income tax for individuals is computed on slab rates as follows:
Income Tax Payable

Upto ` 1,00,000/- Nil
From ` 1,00,001/- to ` 2,00,000/- 10% of the excess over ` 1,00,000/-
From ` 2,00,001/- to ` 3,00,000/- 20% of the excess over ` 2,00,000/-
Above ` 3,00,000/- 30% of the excess over ` 3,00,000/-

Write a program that reads the income and prints the income tax due.

Solution: Note the following:
	 l	 If the income is upto ` 1,00,000/- only, then the tax is nil.
	 l	 If the income is in the range of ` 1,00,001/- to ` 2,00,000/-, then the tax is 10% of the amount in

excess of ` 1,00,000/-.
	 l	 If the income is in the range of ` 2,00,001/- to ` 3,00,000/-, then the tax is 10% of ` 1,00,000/-

(` 10,000/-) for a slab of ` 1,00,001 to ` 2,00,000/- plus 20% of the amount in excess of
` 2,00,000/-.

	 l	 If the income is more than ` 3,00,000/-, then the tax is 10% of ` 1,00,000/- (` 10,000/-) for a
slab of `1,00,001 to ` 2,00,000/- plus 20% of ` 1,00,000/- (` 20,000/-) for a slab of ` 2,00,001 to
` 3,00,000/- plus 30% of the amount in excess of ` 3,00,000/-.

Let us have hands on by computing the tax if the given income is
	 (a) 	` 2,50,000/- 	 (b) 	̀ 1,75,000/- 		 (c) ` 3,20,000/-

	 (a)	 Tax Computations for income of 	̀ 2,50,000/-
For first ` 1,00,000/-	 	 Tax is Nil
For next ` 1,00,000/-	 	 Tax is 10,000/- (@ 10%)
For next ` 50,000/-	 	 Tax is 10,000/- (@ 20%)
Total Tax due		 	 ` 20,000/-

	 (b)	 Tax Computations for income of ` 1,75,000/-
		 For first ` 1,00,000/-	 	 Tax is Nil

For next ` 75,000/-	 	 Tax is 7,500/- (@ 10%)
Total Tax due		 	 ` 7,500/-

	 (c)	 Tax Computations for income of ` 3,20,000/-
		 For first ` 1,00,000/-	 		 Tax is Nil

For next ` 1,00,000/-	 		 Tax is 10,000/- (@ 10%)
For next ` 1,00,000/-	 		 Tax is 20,000/- (@ 20%)
For next ` 20,000/-	 	 Tax is 6,000/- (@ 30%)
Total Tax due		 	 ` 36,000/-

Conditional Branching and Loops   |  87

 Listing 3.9
 #include<stdio.h>
 void main()
 {
 float income, tax;
 printf(″\nEnter gross income (in Rs.): ″);
 scanf(″%f″, &income);
 if (income <= 100000.0)
 tax = 0;
 else if (income <= 200000.0)
 tax = (income - 100000.0) * 0.1;
 else if (income <= 300000.0)
 tax = 10000 + (income - 200000.0) * 0.2;
 else
 tax = 30000 + (income - 300000.0) * 0.3;
 printf(″\nTax due = Rs. %.2f\n″, tax);
 }

 Test Run
 Enter gross income : 250000
 Tax due = Rs. 20000.00

Example 3.10: Write a program that accepts day of week as number and prints name of corresponding day,
i.e., 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

 Listing 3.10
 #include <stdio.h>
 int main()
 {
 int day;
 printf(″\nEnter day of week as number (0 - 6) : ″);
 scanf(″%d″, &day);
 switch (day)
 {
 case 0 : printf(″\nDay of week is Sunday.″);
 break;
 case 1 : printf(″\nDay of week is Monday.″);
 break;
 case 2 : printf(″\nDay of week is Tuesday.″);
 break;
 case 3 : printf(″\nDay of week is Wednesday.″);
 break;

88  |  Programming for Problem Solving

 case 4 : printf(″\nDay of week is Thursday.″);
 break;
 case 5 : printf(″\nDay of week is Friday.″);
 break;
 case 6 : printf(″\nDay of week is Saturday.″);
 break;
 default : printf(″\nWrong input″);
 }
 printf(″\n″);
 return 0;
 }

 Test Run
 Enter day of week as number (0 - 6) : 2
 Day of week is Tuesday

Example 3.11: Write a program to test whether the natural number is even or odd without using modulus
by 2 operation and if statement.

 Listing 3.11
 #include <stdio.h>

 int main()

 {

 int n;

 printf(″\nEnter any natural number : ″);

 scanf(″%d″, &n);

 switch (n%10)

 {

 case 0 :

 case 2 :

 case 4 :

 case 6 :

 case 8 : printf(″\n%d is even.\n″);

 break;

 default : printf(″\n%d is even.\n″);

 }

 return 0;

 }

Conditional Branching and Loops   |  89

 Test Runs
 First Run
 Enter any natural number : 120
 120 is even.

 Second Run
 Enter any natural number : 75
 75 is odd.

3.3  LOOPING
The various statements under this category allow the repetitive execution of group of statements either
for a given number of times or till certain conditions are met. We will see their working supported by
well-designed illustrative examples.

3.3.1  The for Statement
The for statement is suited for problems where the number of times a statement or statement-block will
be executed is known in advance.

true

false
test

change

statements

init

for (init; test; change)
{
 statements
}

	 (a) Logic flow control	 (b) Code of for
 of for statement 	 statement

Fig. 3.7: Logic flow control and code of for statement

where init is an expression to initialize the counter, test is an expression to see when to stop iterating,
and change is an expression to change the counter for each pass of the loop. The init and change parts can
have more than one statement separated by a comma.

To demonstrate the use of for statement, let us develop some program making using of for statement.

90  |  Programming for Problem Solving

Example 3.12: Write a program to find the sum of first n natural numbers.

 Listing 3.12
 #include<stdio.h>
 int main(void)
 {
 int i, n, sum = 0;
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);
 for (i = 1; i <= n; i++) {
 sum = sum + i;
 }
 printf(″\nSum of first %d natural numbers = %d\n″, n, sum);
 return 0;
 }

 Test Run
Enter value for n : 10
Sum of first 10 natural numbers = 55

Example 3.13: Write a program to find the factorial of a natural number n.

 Listing 3.13
 #include<stdio.h>
 int main(void)
 {
 int i, n, prod = 1;
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);
 for (i = 1; i <= n; i++) {
 prod = prod * i;
 }
 printf(″\nFactorial %d = %d\n″, n, prod);
 return 0;
 }

 Test Run
Enter value for n : 5
Factorial 5 = 120

3.3.2  The while Statement
The while statement is suited for problems where it is not known in advance that how many times a
statement or a statement-block will be executed.

Conditional Branching and Loops   |  91

 while (expression)
 {
 Statement
 }

expression

statements

false

true

	 (a) Logic flow control	 (b) Code of while
 of while Statement 	 statement

 Fig. 3.8: Logic flow control and code of while statement

Here expression can be a constant, a variable or an expression. The statement is executed repeatedly till
the expression evaluates to 1. Whenever expression evaluates to 0, the execution of while statement will
terminate and control will pass to a statement immediately following it.

The following points must be kept in mind while using while statement:
	 l	 There must be a statement prior to while statement that initializes the expression.
	 l	 In the statement-block, there must be a statement that modifies the expression.

To demonstrate the use of while statement, let us develop some program making using of while
statement.
Example 3.14: Write a program to find the sum of digits of a natural number n.
 Listing 3.14
 #include <stdio.h>
 int main()
 {
 int i, n, sum = 0, temp, digit;
 printf(″\nEnter any natural number : ″);
 scanf(″%d″, &n);
 temp = n;
 while (temp > 0)
 {
 digit = temp % 10;
 sum = sum + digit;
 temp = temp / 10;
 }
 printf(″\nSum of digits of %d = %d\n″, n, sum);
 return 0;
 }

92  |  Programming for Problem Solving

 Test Run
 Enter any natural number : 2375
 Sum of digits of 2375 = 17

Example 3.15: Write a program to count number of characters, vowels, and words in a paragraph.

 Listing 3.15
 #include <stdio.h>
 int main()
 {
 int vowelCount = 0,characterCount = 0,wordCount = 0;
 char ch;
 printf(″Type in the paragraph and terminate by ENTER key\n\n″);
 while ((ch = getche()) != ′\r′)
 {
 characterCount++;
 switch (ch)
 {
 case ′ ′ :
 case ′\t′ :
 wordCount++;
 break;
 case ′a′ :
 case ′A′ :
 case ′e′ :
 case ′E′ :
 case ′i′ :
 case ′I′ :
 case ′o′ :
 case ′O′ :
 case ′u′ :
 case ′U′ :
 vowelCount++;
 break;
 }
 }
 wordCount++;
 printf(″\nCharacter count = %d″, characterCount);
 printf(″\nVowel count = %d″, vowelCount);
 printf(″\nWord count = %d\n″, wordCount);
 return 0;
 }

Conditional Branching and Loops   |  93

 Test Run
 Type in the paragraph and terminate by ENTER key
 Programming is the way to instruct computer to do a particular task.
 Character count = 68
 Vowel count = 20
 Word count = 12

3.3.3  The do - while Statement
The do-while statement, like while statement, is also suited for problems where it is not known in advance
that how many times a statement will be executed.

 do
 {
 Statement
 }
 while (expression);

true

false

expression

statements

	 (a) Logic flow control	 (b) Code of do-while
 of do-while statement 	 statement

Fig. 3.9: Logic flow control and code of do-while statement

where expression is a constant, a variable or an expression. The statement is executed repeatedly till
the expression evaluates to 1.

Example 3.16: Write a program to compute the average of unknown numbers.

 Listing 3.16
 #include<stdio.h>
 int main()
 {
 int n = 0;
 char yesno;
 float number, sum = 0, average;
 do {
 printf(″\nEnter number %d: ″, n+1);
 scanf(″%f″, &number);
 n++;

94  |  Programming for Problem Solving

 sum += number;
 printf(″\nAny more number [yn]?: ″);
 yesno = getchar();
 }
 while ((yesno == ′y′) || (yesno == ′Y′));
 average = sum / n;
 printf(″\n\nAverage of given numbers = %.2f\n″, average);
 return 0;
 }

 Test Run
 Enter number 1: 2.5
 Any more number [yn]?: y
 Enter number 2: 12.0
 Any more number [yn]?: y
 Enter number 3: 10.25
 Any more number [yn]?: y
 Enter number 4: 8.75
 Any more number [yn]?: y
 Enter number 5: 11.0
 Any more number [yn]?: n
 Average of given numbers = 8.90

3.3.4  Nested while, for and do – while Statements
Just as if statements can be nested, these statements can also be nested. The inner loop is executed from
the beginning for each iteration of the outer loop.

The following sections of code show the nesting of looping statements within their own types.
for(i=0;i<m;i++)
{
 :

for(j=0;j<n;j++)
 {
 :

 }
}

i=0;
while(i<m)
{
 :
 j=0;
 while(j<n)
 {
 :

 j++;
 }
 i++;
}

i=0;
do
{
 :
 j=0;
 do
 {
 :

 j++;
 } while(j<n);
 i++;
} while(i<m);

Conditional Branching and Loops   |  95

In general, it is possible to nest while and do-while statements inside for statement, for
statement inside the while and do-while statements, i.e., all sort of nesting combinations are
permitted.

To demonstrate the use of nested loops, let us develop a few programs using nested for
loops.
Example 3.17: Write a program to print the following pattern
 		 1
 		 2 2
 		 3 3 3
 Listing 3.17
 #include <stdio.h>
 int main()
 {
 int i, j;
 printf(″\n″);
 for (i = i; i <= 3; i++)
 {
 for (j = 1; j <= i; j++)
 {
 printf(″%4d″, i);
 }
 printf(″\n″);
 }
 return 0;
 }

Example 3.18: Write a program to print the following pattern
 		 3 3 3
 		 2 2
 		 1
 Listing 3.18
 #include <stdio.h>
 int main()
 {
 int i, j;
 printf(″\n″);
 for (i = 3; i >= 1; i--)
 {
 for (j = 1; j <= i; j++)
 {
 printf(″%4d″, i);

96  |  Programming for Problem Solving

 }
 printf(″\n″);
 }
 return 0;
 }

Example 3.19: Write a program to print the following pattern
 		 1
 		 1 2
 		 1 2 3
 Listing 3.19
 #include <stdio.h>
 int main()
 {
 int i, j;
 printf(″\n″);
 for (i = i; i <=3; i++)
 {
 for (j = 1; j <= i; j++)
 {
 printf(″%4d″, j);
 }
 printf(″\n″);
 }
 return 0;
 }

Example 3.20: Write a program to print the following pattern
 		 *
 		 * *
 		 * * *
 Listing 3.20
 #include <stdio.h>
 int main()
 {
 int i, j;
 printf(″\n″);
 for (i = i; i <= 3; i++)
 {
 for (j = 1; j <= i; j++)

Conditional Branching and Loops   |  97

 {
 printf(″ *″);
 }
 printf(″\n″);
 }
 return 0;
 }

3.4  JUMPING STATEMENTS
These statements transfer the control from one part of the program to another part. In this section, we
will see their working.

3.4.1  The break Statement
The break statement is always used inside the body of the switch statement, and looping statements.

switch (expression)
{
 case val-1 : statement-1
 break;
 case val-2 : statement-2
 break;
 case val-3 : statement-3
 break;

 :
 :

 case val-n : statement-n
 break;
 default :
 statement-d
}

Fig. 3.10: Action of break statement in switch statement

In switch statement, it is used as the last statement of every case except the last one. When executed,
it transfers the control out of switch statement and the execution of the program continues from the
statement following switch statement.

In for, while and do-while statements, it is always used in conjunction with if statement. Note that
break never used with if statement if it is not a part of the body of the looping statement. When executed,
it transfers the control out of looping statement and the execution of the program continues from the
statement following looping statement.

98  |  Programming for Problem Solving

for(i=0;i<m;i++)
{
 :
 if (expression)
 break;
 :
}

i=0;
while(i<m)
{
 :
 if (expression)
 break;
 :
}

i=0;
do
{
 :
 if (expression)
 break;
 :
} while(i<m);

Fig. 3.11: Action of break statement in for, while and do-while statements

In simple terms, we can say that break when executed terminates the execution of the loop.

Example 3.21: Write a program to demonstrate the use of break statement in a loop.

 Listing 3.21
 #include <stdio.h>
 int main()
 {
 int i;
 for (i = 1; i < 10; i++)
 {
 if (i % 5 == 0)
 break;
 printf(″%d ″, i);
 }
 return 0;
 }

 Test Run
 1 2 3 4

The use of break statement in conjunction with if statement terminates the for loop for value of i
that is divisible by 5.

3.4.2  The continue Statement
The continue statement is always used inside the body of the looping statements. There may be a situation
where we want that from a given statement onward, the rest of the statements up to the last statement of
the loop should be skipped. This task is accomplished by using continue statement.

The continue statement transfers the control to the beginning of the next iteration of the loop thus
bypassing the statements which are not yet executed. Note that the continue statement is always used in
conjunction with the if statement.

Conditional Branching and Loops   |  99

for(i=0;i<m;i++)
{
 :
 if (expression)
 continue;
 :
}

while(i<m)
{
 :
 if (expression)
 continue;
 :
}

do
{
 :
 if (expression)
 continue;
 :
} while(i<m);

Fig. 3.12: Action of continue statement in for, while and do-while statements

In simple terms, we can say that the continue statement when executed terminates the current
iteration of the loop.

Example 3.22: Write a program to demonstrate the use of continue statement in a loop.
 Listing 3.22
 #include <stdio.h>
 int main()
 {
 int i;
 for (i = 1; i < 10; i++)
 {
 if (i % 5 == 0)
 continue;
 printf(″%d ″, i);
 }
 return 0;
 }

 Test Run
 1 2 3 4 6 7 8 9

The use of continue statement in conjunction with if statement skips the rest of the statements of the
for loop for values of i that is divisible by 5.

ILLUSTRATIVE EXAMPLES FOR LOOPS
Example 3.23: �Write a program to print a multiplication table for a given number and the number of rows

in the table.
For example, for a number 5 and rows = 3, the output should be:
 5 × 1 = 5
 5 × 2 = 10
 5 × 3 = 15

100  |  Programming for Problem Solving

 Listing 3.23
 #include <stdio.h>
 int main()
 {
 int num, rows, i, j;
 printf(″\nEnter number whose table to print : ″);
 scanf(″%d″, &num);
 printf(″\nEnter rows to print : ″);
 scanf(″%d″, &rows);
 for (i = 1; i <= rows; i++)
 {
 printf(″\n%d x %d = %d″, num, i, num*i) ;
 }
 return 0;
 }

 Test Run
 Enter number whose table to print : 5
 Enter rows to print : 3
 5 x 1 = 5
 5 x 2 = 10
 5 x 3 = 15

Example 3.24: Write a program to find whether the given natural number n is a prime number or not.
A natural number is said to be prime if it is divisible by 1 and itself only, i.e., it cannot be factorized. In
addition, to this definition, an even number except 2, is not a prime number.
Therefore, our test criteria becomes
	 1.	 If n is greater than 2 and is even then n is not a prime number.
	 2.	 If test at step 1 fails, then we try to divide number n by factors k = 3, 5, 7, … √n . Therefore, if n

is divisible by any value of k, number n is not a prime number.
	 3.	 If test at step 2 also fails, then n is a prime number.

The following program implements this criterion.

 Listing 3.24
 #include<stdio.h>
 #include<math.h>
 int main()
 {
 int n, k, m;
 printf(″\nEnter a positive integer number: ″);
 scanf(″%d″, &n);

Conditional Branching and Loops   |  101

 if ((n > 2) && ((n % 2) == 0))
 {
 printf(″\n%d is not a prime number.\n″, n);
 return 0;
 }
 m = sqrt(n);
 for (k = 3; k <= m; k += 2)
 {
 if (n % k == 0)
 {
 printf(″\n%d is not a prime number.\n″, n);
 return 0;
 }	
 }
 printf(″\n%d is a prime number.\n″, n);
 return 0;
 }

Test Runs
 First Run
 Enter a positive integer number: 43
 43 is a prime number.
 Second Run
 Enter a positive integer number: 92
 92 is not a prime number.

Example 3.25: The number 1991 is a palindrome because it is the same number when read forward or
backward. Write a program to check whether the given number is palindrome or not.
Here, we first form a new number by reversing the digits of a given number and then we compare the given
number with reversed number. If they match, then the given number is palindrome otherwise it is not a
palindrome.
 Listing 3.25
 #include<stdio.h>
 int main()
 {
 int sum = 0, digit;
 int number, temp;
 printf(″\nEnter any positive integer number: ″);
 scanf(″%d″, &number);
 temp = number;
 while (temp > 0)
 {

102  |  Programming for Problem Solving

 digit = temp % 10;
 temp /= 10;
 sum = sum * 10 + digit;
 }
 if (number == sum)
 printf(″\n%d is a palindrome number.\n″, number);
 else
 printf(″\n%d is not a palindrome number.\n″, number);
 return 0;
 }

Test Runs
 First Run
 Enter any positive integer number: 1991
 1991 is a palindrome number.
 Second Run
 Enter any positive integer number: 1234
 1234 is not a palindrome number.

Example 3.26: Write a program to check whether the given natural number is an Armstrong number.
Armstrong number is a 3–digit number whose sum of cubes of its digits equals the number itself. For
example, number 153 is an Armstrong number as
	 13 + 53 + 33 = 1 + 125 + 27 = 153
 Listing 3.26
 #include<stdio.h>
 int main()
 {
 int n, t, s = 0, d;
 printf(″\nEnter 3-dgit natural number : ″);
 scanf(″%d″, &n);
 t = n;
 while (t > 0)
 {
 d = t % 10;
 s = s + d * d * d;
 t = t / 10;
 }
 if (s == n)
 printf(″\n%d is an Armstrong number.\n″, n);
 else
 printf(″\n%d is not an Armstrong number,\n″, n);
 return 0;
 }

Conditional Branching and Loops   |  103

 Test Runs
 First Run
 Enter 3-dgit natural number : 153
 153 is an Armstrong number.
 Second Run
 Enter 3-dgit natural number : 135
 135 is not an Armstrong number.

Example 3.27: A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0
and 1. Subsequent terms are found by adding the preceding two terms in the sequence. For example, first 10
terms of the Fibonacci sequence are
	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34

Write a program to generate the first n terms of the sequence.

 Listing 3.27
 #include<stdio.h>
 int main()
 {
 int prev = 0, curr = 1, next, n, count;
 printf(″\nEnter value for n(>2) : ″);
 scanf(″%d″, &n);
 printf(″%d %d″, prev, curr);
 count = 2;
 while (count < n)
 {
 next = prev + curr;
 printf(″%d ″, next);
 count++;
 previ = curr;
 curr = next;
 }
 printf(″\n″);
 return 0;
 }

 Test Run
 Enter value for n(>2) : 10
 0 1 1 2 3 5 8 13 21 34

104  |  Programming for Problem Solving

Example 3.28: The following figure demonstrates the way to compute greatest common divisor (GCD) of
two positive integer 25 and 320 using long division.

320 25

 -25

 70
 -50

12

25 20

 -20

1

20
 -20

 0

4

quotient

remainder

divisor

dividend

 5

Fig. 3.13: Illustration of computational procedure for GCD using long division

From above figure, you must have observed that in successive divisions, the divisor of the previous
division becomes dividend, remainder becomes divisor, and the division is again carried out. This
process is carried out till the reminder becomes zero, and the current divisor is taken as GCD of the
given integer numbers.

Write a program to find greatest common divisor (GCD), of two positive integer m and n.

 Listing 3.28
 #include<stdio.h>
 void main()
 {
 int m, n, r;
 printf(″\nEnter value for m : ″);
 scanf(″%d″, &m);
 printf(″Enter value for n : ″);
 scanf(″%d″, &n);
 while (1)
 {
 r = n % m;
 if (r == 0)
 {
 printf(″\nGCD = %d\n″, n);
 return;
 }
 n = m;
 m = r;
 }
 }

 Test Run
 Enter value for m : 25
 Enter value for n : 320
 GCD = 5

Conditional Branching and Loops   |  105

UNIT SUMMARY
In this chapter, we have learned that
	 q	 The control statements allow controlling the order of execution of statements.
	 q	 This controlling of statements may involve selecting a statement from alternate statements or

executing some selected statements repeatedly.
	 q	 The if – else and switch statements are known as decision making statement as they allow to

select a statement from the alternatives depending upon the outcome of the given condition.
	 q	 The switch statement works with only those situations where a condition can take integral

values.
	 q	 The for, while and do–while statements are known as iterative or looping statements as they

allow to repeat (iterate) the selected statements.
	 q	 The for statement is preferred in situations where we know in advance the number of times the

statements are to be executed.
	 q	 The while and do–while statements are preferred when the number of times the statements are

to be executed depends on the satisfaction of certain conditions.
	 q	 The only difference between while and do–while statements that is do-while is always executed

at least once whereas while loop may or may not be executed at all.
	 q	 The break statement is used with switch and all the looping statements. On its execution, it

transfers the control outside the block.
	 q	 When used with the switch statement, the break statement takes the control outside the scope of

the switch statement.
	 q	 When used with looping statement, the break statement takes the control outside the loop, i.e.,

it terminates the execution of the loop.
	 q	 The continue statement is used only with looping statements. Its execution skips the statements

following it, i.e., it terminates the current iteration and the next iteration starts afresh.

EXERCISE

Subjective Questions
	 1.	 When the if statement does not have an associated else, what happens when the condition

evaluates to zero value?
	 2.	 What is the advantage of switch statement over else-if construct?
	 3.	 What does nesting mean?
	 4.	 Is anything wrong with the following program?

void main()
{
 char ch;
 if ((ch = getche()) == ′a′)
 printf(″\nYou typed character a\n″);
}

	 5.	 Where is the break statement used, and what is its function?

106  |  Programming for Problem Solving

	 6.	 Rewrite the following code fragment using the switch statement:
char code;
code = getchar();
if (code == ′A′)
 printf(″\nAccountant\n″);
else if (code == ′C′ || code == ′G′)
 printf(″\nGrade IV\n″);
else if (code == ′F′)
 printf(″\nFinancial Advisor\n″);
else
 printf(″\nIncorrect code\n″);

	 7.	 Rewrite the following code fragment using the if-else statements:
int month;

 scanf(″%d″, &month);
switch (month)
{
 case 1 :
 case 3 :
 case 5 :
 case 7 :
 case 8 :
 case 10:
 case 12: printf(″\nIt is a month having 31 days\n″);
 break;
 case 4 :
 case 6 :
 case 9 :
 case 11: printf(″\nIt is a month having 30 days\n″);
 break;
 case 2: printf(″\nIt is a month having 28/29 days\n″);
 default: printf(″\nIncorrect month\n″);
}

	 8.	 Rewrite the following code segments using the switch statement:
if (ch == ′N′)
 north++;
if (ch == ′S′)
 south++;
if (ch == ′E′)
 east++;

if (ch == ′O′)
 Outstanding++;
else if (ch == ′E′)
 Excellent++;
else if (ch == ′G′)
 Good++ ;

Conditional Branching and Loops   |  107

if (ch == ′W′)
 west++;
else
 unknown++;

else if (ch == ′P′)
 Poor++;
else
 Unknown++ ;

	 9.	 Write any two point of difference in operation of switch and if- else.

	 10.	 What is the effect of the absence of break statement in a switch statement?

	 11.	 What happens if the expression of a while statement is initially false?

	 12.	 What is the difference between while and do - while statements?

	 13.	 When is the do - while statement preferred over while statement?

	 14.	 Can there be multiple increment expressions in increment part of the for statement?

	 15.	 When is the while statement preferred over a for statement?

	 16.	 Where the break statement is used, and what is its function?

	 17.	 What is the action of continue statement?

	 18.	 Differentiate between the working of break and continue statement.

Multiple Choice Questions

	 1. 	 Consider the following code:
switch(ch)
{
 case ′a′: printf(″a″);
 case ′b′: printf(″b″);
 default: printf(″error″);
}

 		 If value ‘a’ is given to character variable ch, then the output will be

 	 (a)	 a	 (b)	 ab	 (c)	 aberror	 (d)	 Error

	 2. 	Consider the following code:
 	 int a = 6, b = 6;
	 if (b == 6 || --a)
 	 {
	 statement1;
	 statement2;
	 }

		 Suppose statement1 and statement2 does not modify the value of a and b, then what is the value
of a after executing the above code?

 	 (a)	 6	 (b)	 5	 (c)	 7	 (d)	 Error

108  |  Programming for Problem Solving

	 3. 	Which of the following statement is true about switch statement?

	 (a) 	It may contain zero or more cases.
	 (b)	 Constant expressions are valid case values.
	 (c)	 Statement block of every case must have break statement as its last statement to avoid the

control to fall through the later cases.
	 (d)	 All of the above.
	 4.	 If default statement is omitted in switch statement and there is no match with case values, then
	 (a)	 No statement in the switch block is executed.
	 (b)	 Execute all statements in the switch block.
	 (c)	 Execute the statements in the last case block only.
	 (d)	 A run time error occurs.
	 5.	 What will be the result of attempting to compile and run the following program?

#include <stdio.h>
void main()
{
 int c;
 printf(″\nEnter value of c: ″);
 scanf(″%d″, &c);
 switch(c);
 {
 case 1 : printf(″\nHello 1\n″);
 break;
 case 2 : printf(″\nHello 2\n″);
 break;
 default : printf(″\nInvaild value\n″);
	 break;
 case 3 : printf(″\nHello 3\n″);
 break;
 case 4 : printf(″\nHello 4\n″);
 }

}

	 (a) 	Program will fail to compile because default can only appear at the end after all valid cases.
	 (b) 	Program will compile and execute.
	 (c) 	Program will fail to compile and compiler will report the syntax error as “Case outside of

switch statement in function main” followed “Misplaced break in function main” for all cases
and the break statements.

	 (d)	 None of above.
	 6.	 Consider the following program

#include <stdio.h>
void main()
{

Conditional Branching and Loops   |  109

 int a, b = 10;
 scanf(″%d″, &a);
 if (a = 0)
 b *= 2;
 else
 b /= 2;
 printf(″%d″, b);
}

		 What will be result of executing the above program with user input of number 6?
	 (a)	 20	 (b)	 10	 (c)	 5	 (d)	 None

	 7.	 Which of the following is not a valid type of expression in the switch statement?
	 (a)	 character	 (b)	 integer	 (c)	 float	 (d)	 enum

	 8.	 What will be the output of following program?
void main() {
 char val=1;
 if(val--==0)
 printf(″TRUE″);
 else
 printf(″FALSE″);
}

	 (a)	 TRUE	 (b)	 FALSE	 (c)	 Error	 (d)	 one of above

	 9.	 What will be the output of following program?
#define TRUE 1
void main()
{
 if(TRUE)
 printf(″1″);
 printf(″2″);
 else
 printf(″3″);
 printf(″4″);

		 }
	 (a)	 Error	 (b)	 1	 (c) 12		 (d)	 34

	 10.	 What will be the output of following program?
void main()
{
 int a=10;
 switch(a) {
 case 5+5:
 printf(″Hello\n″);

110  |  Programming for Problem Solving

 default:
 printf(″OK\n″);
 }
}

	 (a)	 Hello	 (b)	 OK	 (c)	 Hello, OK	 (d)	 Error
	 11.	 What will be the output of following program?

void main()
{
 int a=2;
 switch(a)
 {
 printf(″Message\n″);
 default:
 printf(″Default\n″);
 case 2:
 printf(″Case-2\n″);
 case 3:
 printf(″Case-3\n″);
 }
 printf(″Exit from switch\n″);
}

	 (a)	 Case-2	 (b)	 Message	 (c)	 Message	 (d)	 ase-2
						 Case-2 		 Case-3
								 Exit from switch
	 12. 	 What will be the output of following program?

void main()
{
 short day=2;
 switch(day)
 {
 case 2: || case 22:
 printf(″%dnd″,day);
 break;
 default:
 printf(″%dth″,day);
 break;
 }
}

	 (a)	 2nd	 (b)	 22nd	 (c)	 Error	 (d)	 2nd
								 22nd

Conditional Branching and Loops   |  111

	 13.	 What will be the output of following program?
void main()
{
 int a=2;
 switch(a)
 {
 case 1L:
 printf(″One\n″); break;
 case 2L:
 printf(″Two\n″); break;
 default:
 printf(″Else\n″); break;
 }
}

	 (a)	 One	 (b)	 Two	 (c)	 Error	 (d)	 Else
	 14.	 What will be the output of following program?

#define TRUE 1
void main()
{
 switch(TRUE)
 {
 printf(″Hello″);
 }
}

	 (a)	 Hello	 (b)	 No output	 (c)	 Garbage value	 (d)	 Error

	 15.	 What will be the output of following program?
void main()
{
 int x;
 float y = 5.5;
 switch(x=y+1)
 {
 case 6: printf(″It′s Eight.″); break;
 default: printf(″Oops No choice here.″);
 }
}

	 (a)	 Oops No choice here.	 (b)	 It’s Eight.Oops No choice here!!!
	 (c)	 It’s Eight.	 (d)	 Error
	 16.	 Consider the following code:

while (++i <= n);

		 What will be the value of i when the loop completes, initial value of i being 1?
	 (a)	 n	 (b)	 n-1	 (c) n+1		 (d)	 n+2

112  |  Programming for Problem Solving

	 17. 	 Consider the following code. What is its output?
for (i = 1;i <= 5; i++)
{
 printf(″%d″, i += 2);
}

 	 (a)	 1 2 3 4 5 	 (b)	 3 4 5 6 7	 (c)	 3 5 7 9 11	 (d)	 3 6
	 18.	 Which of the following statement is not true about continue statement?
	 (a)	 It can be used in conjunction with switch statement.
	 (b)	 It terminates the loop.
	 (c)	 It terminates the current iteration.
	 (d)	 It can be used with all looping statements as well as switch statement.
	 19.	 Which of the following statement is not true about switch statement?
	 (a)	 It may contain zero or more cases.
	 (b)	 Constant expressions are valid case values.
	 (c)	 The expression in switch statement can be of float type.
	 (d)	 Statement block of every case must have break statement as its last statement to avoid the

control to fall through the later cases.
	 20.	 The continue statement is used to
	 (a)	 continue the next iteration of the loop statement.
	 (b)	 exit the block of loop statement .
	 (c)	 exit from the outermost block even it is used in the innermost block.
	 (d)	 continue execution of the program even error occurs.
	 21.	 Consider the following program

void main()
{
 int i, j;
 for (i = 0; j = 10; i < j; i++, j--);
 printf(“x”);
}

		 How many times letter ‘x’ will be printed?
	 (a)	 5	 (b)	 1	 (c)	 10	 (d)	 4
	 22.	 Consider the following program

void main()
{
 unsigned char ch;
 for (ch = 0; ch <= 256; ch++)
 printf(″%d = %c″, ch, ch);
}

		 How many times for loop will be executed?
	 (a)	 256	 (b)	 255	 (c)	 257	 (d)	 Infinitely

Conditional Branching and Loops   |  113

	 23.	 How many times the while loop will be executed in the following program?
void main()
{
 int j = 1;
 while (j <= 100);
 {
 printf(″\nj = %d, j*j = %d″, j, j*j);
	 j++;
 }
}

	 (a)	 Infinite times	 (b)	 100 times	 (c)	 99 times	 (d)	 101 times
	 24.	 What will be the output of following program?

void main()
{
 int i;
 for(i = 0; i < 5; i++) {
 int j = 3;
 printf(″%d ″,i*j);
 }
 printf(″%d″,j);
}

	 (a)	 Program will compile and execute successfully. (b) Program will fail to compile.	
	 (c)	 Program will give output as 0 3 6 9 12 3 (d) None of the above
	 25.	 What will be the output of following program?

void main()
{
 int i = 0;
 for(;;) {
 if (i++ == 4) break;
 continue;
 }
 printf(″i = %d″,i);
}

	 (a)	 i = 4	 (b)	 i = 5	 (c)	 i = 0	 (d)	 Error

ANSWERS
1. (c) 2. (a) 3. (d) 4. (a) 5. (c)
6. (c) 7. (c) 8. (a) 9. (c) 10. (c)

11. (d) 12. (c) 13. (b) 14. (b) 15. (c)
16. (c) 17. (d) 18. (d) 19. (c) 20. (a)
21. (b) 22. (d) 23. (a) 24. (b) 25. (b)

114  |  Programming for Problem Solving

Programming Problems
	 1.	 Write a program to check whether the given natural number is EVEN or ODD without using any

arithmetic operator.
	 2.	 Given measure of three line segments as a, b, and c, write a program to check whether these line

segments can be used to form a triangle or not.
	 3.	 Given measure of three angles of a triangle ABC as a, b, and c degrees, respectively, write a

program to check whether a triangle can be formed with these angles or not.
	 4.	 Write a program, using switch statement, to check whether the given alphabet is a vowel or a

consonant.
	 5.	 Given a measure of an angle in degrees and in anti-clockwise direction, write a program to find

the type of the angle.
	 6.	 Given three points A(x1, y1), B(x2, y2) and C(x3, y3), determine whether they are collinear, i.e., lie

on the same line.
	 7.	 Given points (x1, y1) & (x2, y2) on line AB, and points (x3, y3) & (x4, y4) on line CD, write a

program to determine whether lines AB & CD intersect each other.
	 8.	 Write a program to find the day of the week on a given date.
	 9.	 Write a program to find your age when your date-of-birth and today’s date is given, both in the

format dd/mm/yyyy.
	 10.	 Write a program to convert time from 12 hours system to 24 hours system.
	 11.	 Write a program to convert time from 24 hours system to 12 hours system.
	 12.	 Write a program to find difference in time when the start time and ending time is given, both in

the format hh:mm:ss.
	 13.	 Write a program to find the nth prime number.
	 14.	 Write a program to print first n prime numbers.
	 15.	 Write a program to find the nth term of the Fibonacci sequence.
	 16.	 You know that an even number is a number which is divisible by 2. However there is another

approach that can be used to check whether the given number is even or not. The approach is by
inspecting the unit digit - if the unit digit is 0, 2, 4, 6, or 8, the number is even. So you are required
to write a program to check whether the given number is even or not without performing the
division by 2.

PRACTICALS

	 1. 	 Write a program to find the roots of a quadratic equation.
		 Refer to Example 3.8.
	 2. 	 Write a program to test whether given natural number is prime number or not.
		 Refer to Example 3.24.

Conditional Branching and Loops   |  115

	 3. 	 Write a program to test whether given natural number is palindrome number or not.
		 Refer to Example 3.25.
	 4. 	 Write a program to check whether a given date in format dd/mm/yyyy is valid or not.

 Listing 3.29
 /*
 Program to check whether date given in format dd/mm/yyyy
 is valid or not.
 */
 #include<stdio.h>
 int main()
 {
 int mm, dd, yyyy;
 char ch;
 printf(″\nEnter date in format dd/mm/yyyy : ″);
 scanf(″%2d%c%2d%c%4d″, &dd, &ch, &mm, &ch, &yyyy);
 if (mm < 1 || mm > 12) {
 printf(″\nDate is Invald.\n″);
 return 0;
 }
 if (mm == 2) {
 /* condition to check for leap year */
 if ((yyyy%400==0)||((yyyy%4==0)&&(yyyy%100!=0))) {
 if (dd > 1 && dd <= 29)
 printf(″\nDate is valid.\n″);
 else
 printf(″\nDate is invald.\n″);
 } else {
 if (dd > 1 && dd <= 28)
 printf(″\nDate is valid.\n″);
 else
 printf(″\nDate is invald.\n″);
 }
 } else if (mm == 4 || mm == 6 || mm == 9 || mm == 11) {
 if (dd > 1 && dd <= 30)
 printf(″\nDate is valid.\n″);
 else
 printf(″\nDate is invald.\n″);
 } else {
 if (dd > 1 && dd <= 31)
 printf(″\nDate is valid.\n″);
 else
 printf(″\nDate is invald.\n″);
 }
 return 0;
 }

116  |  Programming for Problem Solving

 Test Runs
 First Run

Enter date in format dd/mm/yyyy : 29/2/2020
Date is valid.

Second Run
Enter date in format dd/mm/yyyy : 29/2/2021
Date is invalid.

	 5.	 Write a program to print all Armstrong numbers.
		 Note that Armstrong numbers 3–digit numbers. Therefore, we start from 100 (first 3-digit

number) and continue upto 999 (last 3-digit number), and on the way test each number to see
whether it is an Armstrong number.

 Listing 3.30
 /*
 Program to print all Armstrong numbers
 */

 #include<stdio.h>
 int main()
 {
 int i, t, s, d;
 printf(″\nFollowing is list of all Armstrong numbers.\n\n″);
 for (i = 100; i <= 999; i++)
 {
 t = i;
 s = 0;
 while (t > 0)
 {
 d = t % 10;
 s = s + d * d * d;
 t = t / 10;
 }
 if (s == i)
 printf(″%d ″, i);
 }
 printf(″\n″);
 return 0;
 }

 Test Run
 Following is list of all Armstrong numbers.
 153 370 371 407

Conditional Branching and Loops   |  117

	 6. 	 Write a program to print all prime number in the range m..n. The values for m and n will be
supplied by the user at execution time.

 Listing 3.31
 /*
 Program to find prime numbers in the range m..n. Value
 of m and n will be supplied by user at execution time
 */
 #include<stdio.h>
 #include<math.h>
 int main()
 {
 int i, m, n, k, mm;
 printf(″\nProgram to find prime numbers in range m..n\n\n″);
 printf(″\nEnter value of m : ″);
 scanf(″%d″, &m);
 printf(″\nEnter value of n : ″);
 scanf(″%d″, &n);
 printf(″\n\nPrime numbers in range %d..%d are\n\n″, m, n);
 for (i = m; i <= n; i++)
 {
 if ((i > 2) && ((i % 2) == 0))
 continue;
 mm = sqrt(i);
 for (k = 3; k <= mm; k += 2)
 {
 if (i % k == 0)
 break;
 }	
 if (k > mm)
 printf(″%d ″, i);
 }
 printf(″\n″);
 return 0;
 }

 Test Run
 Program to find prime numbers in range m..n
 Enter value of m : 10
 Enter value of n : 50
 Prime numbers in range 10..50 are
 11 13 17 19 23 29 31 37 41 43 47

118  |  Programming for Problem Solving

KNOW MORE

The topic of conditional branching and looping constitutes the core part of programming. Therefore,
students are expected to have sound grip over the topic.

The teacher is expected to discuss the problem undertaken, to develop the logic with the active
participations of the students.

The teacher should not dictate the solution of the problem, hence program, rather should facilitate
that students develop programs on their own using programs listed in the books as a reference.

The teacher should also demonstrate the process of testing & debugging to ensure the correctness
of the program.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi..
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to arrays. These arrays can be of numeric data or character data.
The array of characters is used to handle strings in C language. This unit explains various aspects of the
arrays & strings, and demonstrates their use with suitable examples.

RATIONALE
In real-life problems, we come across real-life situations where we have to deal with the collection of data
that may be homogenous or heterogeneous. Further that collection of data may be numeric in nature or
non-numeric.

Therefore, to solve real-life problems dealing with collecting data, homogenous in particular, we need
appropriate data structure to store those collections in memory, and facilitate their processing to arrive at the
solution of the problem in-hand.

An array is a data structure rich enough to store the collection of homogeneous data as well as very easy
to process.

This unit will help the student understand the various aspects related to arrays and develop programs for
real-life problems dealing with homogeneous data collection.

PRE-REQUISITES
	 –	 Basic data types
	 –	 Condition branching
	 –	 Loops and nested loops

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U4-O1: explain the concept of arrays
U4-O2: declare, initialize, and perform input/output of arrays
U4-O3: Use arrays to formulate algorithms and programs
U4-O4: Use arrays to solve matrix related problems
U4-O5: explain strings as an array of characters
U4-O6: demonstrate the use of standard string handling functions

4 Arrays

120  |  Programming for Problem Solving

Unit 4
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U4-O1 1 - - - - - - -

U4-O2 - - 1 - - - - -

U4-O3 - - - - - 3 - -

U4-O4 - - - - - 3 - -

U4-O5 - - 1 - - - - -

U4-O6 - - - - - 2 - -

4.1  INTRODUCTION
An array is a collection of homogeneous data elements (i.e., of the same data type) described by a single
name, and each individual element of an array is referenced by a subscripted variable, formed by affixing
to the array name a subscript or index enclosed in brackets.

The term subscript has the same meaning as in the mathematical notation.

Type of Arrays
	 l	 One-dimensional (1D) array - It is a type of array where we need only single subscript to access

its elements. A one-dimensional array is also known as a linear array. It is the most frequently
used type of array.

	 l	 Two-dimensional (2D) array - It
is a type of array where we need two
subscripts to access its elements. This type
of array is used to store type of collection
of data where its elements are arranged
into rectangular fashion, i.e., in rows
and columns. In business terminology
we call it a table, and in mathematics
terminology, we call it a matrix.

	 l	 Multi-dimensional arrays - It is a type
of array where we need more than two
subscripts to access its elements. These
types of arrays are used to store data
related to complex engineering problems.

In this unit, our discussion will be restricted
to 1D and 2D. In addition, we will also discuss
strings that are a special case of character arrays.

4.2  One-Dimensional Arrays
Fig. 4.1 depicts various aspects of a one-
dimensional array, named marks, that stores
marks of 10 students.

Index

23marks[0]

marks[1]

marks[2]

marks[3]

marks[4]

marks[5]

marks[6]

marks[7]

marks[8]

marks[9]
marks

45

35

70

55

40

50

67

66

72

Elements
of array

Name of the
array

Fig. 4.1: The marks Array

Arrays   |  121

4.2.1  Declaration
An array must be declared before it can be used. Array declaration tell the compiler the name of the array,
the type of its elements, and the size or number of elements in the array. The size of the array is a constant
and must have a value at compilation time.

The syntax for declaration of a one-dimensional array is
 type arrayName[arraySize];

Fig. 4.2 shows three different array declarations, one for integers, one for floating-point numbers,
and one for characters. Elements of the arrays are shown just for completeness at this moment.

56 5.0 Amarks[0] cgpa[0] name[0]

marks[1] cgpa[1] name[1]

marks[2] cgpa[2] name[2]

marks[3] cgpa[3] name[3]

marks[4] cgpa[4] name[4]

marks[5] cgpa[5] name[5]

marks[6] cgpa[6] name[6]

marks[7] cgpa[7] name[7]

marks[8] cgpa[8] name[8]

marks[9] cgpa[9] name[9]

int marks[10];

(a)

float cgpa[10];

(b)
char name[10];

(c)

54 7.0 n

50 6.5

68 5.5 u

69 8.5 \0

76 4.5 n

77 8.0 i

80 7.0 S

43 6.0 d

80 9.0

Fig. 4.2: Declaration of 1D arrays

The declaration statement
 int marks[10];

allocates a contiguous memory block of 20 bytes (in Turbo C/C++ Compiler, which is a 16-bit
compiler), 2-bytes for each element of type int. The first 2-bytes are used for the first element of the array
(marks[0]), the next 2-bytes for the second element of the array (marks[1]), and so on. The last 2-bytes
are used for element marks[9].

The declaration statement

 float cgpa[10];

allocates a contiguous memory block of 40 bytes, 4-bytes for each element of type float. The first
4-bytes are used for the first element of the array (cgpa[0]), the next 4-bytes for the second element of the
array (cgpa[1]), and so on. The last 4-bytes are used for element cgpa[9].

The declaration statement

 char name[10];

allocates a contiguous memory block of 10 bytes, 1-byte for each element of type char. The first
byte is used for first element of the array (name[0]), the next byte for the second element of the array
(name[1]), and so on. The last byte is used for element name[9].

122  |  Programming for Problem Solving

4.2.2  Initialization
Just as ordinary variables can be initialized along with declaration, the elements of the arrays can also be
initialized. For each element in the array, we provide a value. The only difference is that the values must
be enclosed in braces, and if there is more than one, separated by a comma.

The following examples provide all possible ways of initializing one-dimensional array.
The following statement

 int b[10]={12, 0, 14, -4, 7, 8, 10, 11, 9, 15};

initializes element b[0] to 12, b[1] to 0, b[2] to 14, b[3] to -4, b[4] to 7, b[5] to 8, b[6] to 10, b[7] to
11, b[8] to 9, b[9] to 15.

If the array is initialized like this
 int b[] = {12, 0, 14, -4, 7};

Since the size of the array is not specified, the compiler counts the number of elements in the
initialization list and fixes that as the array size.
What can you expect from the following declaration statement?

 int b[10] = {1, 2, 3};

It initializes element b[0] to 1, b[1] to 2, b[2] to 3, and all remaining elements are initialized to 0. We
can say that in partially initialized arrays, all remaining elements are initialized to 0.
What can you expect from the following declaration statement?

 int a[6]={12, 0, 14, -4, 7, 15, -20, 22, 25};

The compiler will flag an error message as the initialization list contains more elements than the declared
size.

4.2.3  Accessing Elements
A single index is used to access individual elements in a one-dimensional array. The index must be an
integral value or an expression that evaluates to an integral value.

For example, given the marks array in Fig. 4.2 (a), we would access the first element as
 marks[0]

To process all the elements in marks, a loop similar to the following code is used:

 for (i = 0; i < 10; i++)
 process (marks[i]);

4.2.4  Input
Consider the declaration
 int a[50];

Suppose, the actual number of elements in a 1D array is n (<=50). The user will supply the value of
n at execution time.

Arrays   |  123

The following segment shows the way data is entered into one-dimensional array.
 for (i = 0; i < n; i++)
 {
 scanf(″%d″, &a[i]);
 }

Observe the following things:
	 1.	 We start the index, i, at 0 and goes upto (n-1).
	 2.	 Even though we are dealing with array elements, the address of operator (&) is still necessary in

the scanf() function call.
The elements of array can be entered on same line by separating with space/horizontal-tab or one
element per line.

4.2.5  Output
To output values of elements of an array, we use the loop as follows:
 for (i = 0; i < n; i++) {
 printf(″%d ″, a[i]);
 }
 printf(″\n″);

All the values are displayed on one line, separated by two spaces.
However, if all the values cannot be displayed in one line either because of their magnitude of values

or number of values, they are displayed in subsequent lines. After, the for loop completes, a call to printf()
function advances the cursor to the next line.

The following for loop display one value per line:

 for (i = 0; i < n; i++) {
 printf(″\n%d″, a[i]);
 }
 printf(″\n″);

ILLUSTRATIVE EXAMPLES of 1D Arrays
Having understood the various aspects of the one-dimensional arrays, let us write some example
programs to demonstrate the power of one-dimensional arrays to handle complex problems.
Example 4.1: �Given an array, named a, of size n(< 50) whose elements are of type int. Write a program that

output those elements of the array that are even.

Listing 4.1
 /*
 Program that outputs those elements of a 1D array that are EVEN
 */
 #include<stdio.h>
 int main()
 {

124  |  Programming for Problem Solving

 int a[50], i, n;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d natural numbers as elements of array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 printf(″\nEVEN elements of array are\n″);
 for (i = 0; i < n; i++)
 {
 if (a[i] % 2 == 0)
 printf(″%d ″, a[i]);
 }
 printf(″\n″);
 return 0;
 }

 Test Run
 Enter size of array n(<=50) : 10
 Enter 10 natural numbers as elements of array
 10 7 15 14 24 23 77 35 70 12
 EVEN elements of the array are
 10 14 24 70 12

Example 4.2: �Given an array, named a, of size n(< 50) whose elements are of type int. Write a program to
find the largest element, smallest element, and the average of elements of 1D array.

Listing 4.2
 /*
 Program to find the largest element, smallest element,
 and the average of elements of 1D array
 */
 #include <stdio.h>
 int main()
 {
 int a[20];
 int i, j, n, largest, smallest, sum;
 float average;
 printf(″\nEnter size of array n(<=20) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d element of 1D array\n″, n);

Arrays   |  125

 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 /* code segment to find largest element */
 largest = a[0];
 for (i = 1; i < n; i++) {
 if (a[i] > largest)
		 largest = a[i];
 }
 /* code segment to find smallest element */
 smallest = a[0];
 for (i = 1; i < n; i++) {
 if (a[i] < smallest)
		 smallest = a[i];
 }
 /* code segment to find average of elements */
 sum = 0;
 for (i = 0; i < n; i++)
	 sum = sum + a[i];
 average = (float) sum/n;
 /* code segment to output the results */
 printf(″\nLargest element = %d″, largest);
 printf(″\nSmallest element = %d″, smallest);
 printf(″\nAverage of elements = %.2f\n″, average);
 return 0;
 }

 Test Run
 Enter size of array n(<=20) : 10
 Enter 10 element of 1D array
 10 24 33 15 19 21 35 20 40 16
 Largest element = 40
 Smallest element = 10
 Average of elements = 23.30

Example 4.3: Given a decimal number n. Write a program to convert n into its equivalent binary number.

Listing 4.3
 /*
 Program to convert a decimal number ′n′ into its equivalent
 binary number. The program uses 1D array to store remainders
 during the process of conversion and then prints this array in
 reverse order.
 */

126  |  Programming for Problem Solving

 #include <stdio.h>
 int main()
 {
 int a[20];
 int i, j, t, n;

 printf(″\nEnter decimal number n : ″);
 scanf(″%d″, &n);
 t = n;
 i = 0;
 while (t > 0)
 {
 a[i] = t % 2;
 i++;
 t = t / 2;
 }
 printf(″\nDecimal number %d is equivalent to ″, n);
 for (j = i-1; j >= 0; j--)
 	 printf(″%d″, a[j]);
 printf(″ binary.\n″);
 return 0;
 }

 Test Run
 Enter decimal number n : 10
 Decimal number 10 is equivalent to 1010 binary.

Example 4.4: �Given an array, named a, of size n(< 50) whose elements are of type int. Write a program to
swap the adjacent elements of a 1D array.

Listing 4.4
 /*
 Program to swap adjacent elements of a 1D array.
 Size of array is even number.
 */
 #include <stdio.h>

 int main()
 {
 int a[20];
 int i, n, t;

Arrays   |  127

 printf(″\nEnter size of array n(<=20) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d element of 1D array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 /* code segment to swap adjacent elements */
 for (i = 0; i < n-1; i += 2) {
 t = a[i];
	 a[i] = a[i+1];
	 a[i+1] = t;
 }
 printf(″\nElements of array after swapping adjacent elements\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, a[i]);
 printf(″\n\n″);
 return 0;
 }

 Test Run
 Enter size of array n(<=20) : 10

 Enter 10 element of 1D array
 10 24 33 15 19 21 35 20 40 16

 Elements of an array after swapping adjacent elements
 14 10 15 33 21 19 20 35 16 40

4.3  Two-Dimensional Arrays
The array we have discussed so for are known
as one-dimensional arrays because the data
are organized linearly only in one direction
(dimension). Many applications require that
data be organized in more than one dimension.
One common example is a matrix (a table),
which is an array that consists of rows and
columns.

Fig. 4.3 shows a matrix (table) with 4 rows
and 4 columns which is commonly used as a
two-dimensional array.
















  

0

1

2

3

0	 1	 2	 3

first
dimension

(rows)

second
dimension
(columns)

Fig. 4.3: Two-dimensional array

128  |  Programming for Problem Solving

4.3.1  Declaration
Two-dimensional arrays, like one-dimensional arrays, must be declared before being used. Declaration
tells the compiler the name of the array, the type of its elements, and the size of each dimension.

The syntax for declaration of two-dimensional array is

 type arrayName[RowSize][ColSize];

By convention, the first dimension specifies the number of rows in the array while the second
dimension specifies the number of columns in each row.
Consider the declaration

 int a[3][3];

This declarations statement allocates a contiguous memory block of 18 bytes, 6-bytes for each row.
The first set of 6-bytes is used to store elements of first row, the second the set of 6-bytes are used to
store elements of the second row, and the third set of 6-bytes are used to store elements of third (last)
row. Within in each row, the first 2-bytes are used to store element of the first column, the next 2-bytes
are used to store element of second column, and final 2-bytes are used to store element of the third (last)
column.

�Elements of a two-dimensional array are stored row-wise, i.e., in the allocated
contiguous block of memory, the first elements of first row are stored, then elements of
the second row, and finally elements of the third row, and so on.

4.3.2  Initialization
One way to initialize two-dimensional arrays is as shown below:
 int a[3][3] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };

It will initialize all elements of the first row with value 0, elements of the second row with value 1,
the elements of third row with 2 and elements of the fourth row with value 3.

Though the above initialization has no problems, it highly recommended that the nest braces be
used to show the exact nature of the two-dimensional array.
The array a is better initialized as shown below:

 int a[3][3] = { { 0, 0, 0 },
 { 1, 1, 1 },
 { 2, 2, 2 },
 { 3, 3, 3 },
 };

In the above initialization process, we initialize each row as a one-dimensional array of three
elements enclosed in braces. The array of three rows also has its set of braces. Note that we use commas
between the elements in the columns and also commas between the rows.

4.3.3  Accessing Elements
To access jth element of the ith row, we write
 a[i][j]

Arrays   |  129

To process all the elements row-wise of a, nested loops similar to the following code will be used:
 for (i = 0; i < 3; i++)
 {
 for (j = 0; j < 3; j++)
 {
 process (a[i][j]);
 }
 }

4.4.4  Input
Following segment shows the way elements can be read row-wise using nested for loops:

 for (i = 0; i < 3; i++)
 {
 for (j = 0; j < 3; j++)
 {
 scanf(″%d″, &a[i][j]);
 }
 }

In general, if the two-dimensional array is of size m × n, the first loop varies from 0 to (m – 1) and
the second loop varies from 0 to (n – 1).

4.3.5  Output
To output values of elements of two-dimensional array, we use nested loops as follows:
 for (i = 0; i < 3; i++)
 {
 for (j = 0; j < 3; j++)
 {
 printf(″%d ″, a[i][j]);
 }
 printf(″\n″);
 }

The elements of the two-dimensional array will be output row-wise by the above segment. Thus, the
first loop controls the rows while the second loop controls the columns.

ILLUSTRATIVE EXAMPLES of 2D Arrays

Example 4.5: Program to compute the transpose of a matrix A of order m × n.
We know that if we interchange the rows with columns, we get transpose of a given matrix, say B of order
n × m, i.e.,

	 bji = aij

130  |  Programming for Problem Solving

Listing 4.5
 /*
 Program to compute transpose of matrix A(mxn)
 */
 #include<stdio.h>
 int main()
 {
 int a[10][10], b[10][10];
 int n, m, i, j;
 printf(″Enter the size of matrix A as m,n: ″);
 scanf(″%d,%d″, &m, &n);
 printf(″\nEnter %d elements of matrix A row-wise\n″,m*n);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 scanf(″%d″, &a[i][j]);
 }
 }
 for (i = 0 ; i < m ; i++) {
 for (j = 0 ; j < n ; j++) {
 b[j][i] = a[i][j];
 }
 }
 printf(″\nTranspose is\n\n″);
 for (i = 0 ; i < n; i++) {
 for (j = 0; j < m; j++) {
 printf(″%5d″, b[i][j]);
 }
 printf (″\n″);
 }
 return 0;
 }

 Test Run
 Enter the size of matrix A as m,n: 3,3
 Enter 9 elements of matrix A row-wise
 1 2 3
 4 5 6
 7 8 9
 Transpose is
 1 4 7
 2 5 8
 3 6 9

Arrays   |  131

Example 4.6: Program to add two matrices A and B, each of order m × n.
We know that to add two matrices, we add corresponding elements to get the element of a resultant
matrix, say C of order m × n, i.e.,

cij = aij + bij

Listing 4.6
 /*
 Program to add matrix A and B, each of order mxn
 */
 #include<stdio.h>
 int main()
 {
 int a[10][10], b[10][10], c[10][10];
 int n, m, i, j;
 printf(″Enter the size of matrices as m,n: ″);
 scanf(″%d,%d″, &m, &n);
 printf(″Enter %d elements of matrix A row-wise\n″, m*n);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 scanf(″%d″, &a[i][j]);
 }
 }
 printf(″Enter %d elements of matrix B row-wise\n″, m*n);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 scanf(″%d″, &b[i][j]);
 }
 }
 for (i = 0 ; i < m ; i++) {
 for (j = 0 ; j < n ; j++) {
 c[i][j] = a[i][j] + b[i][j];
 }
 }
 printf(″\nSum A+B is\n\n″);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 printf(″%4df″, c[i][j]);
 }
 printf (″\n″);
 }
 return 0;
 }

132  |  Programming for Problem Solving

 Test Run
 Enter size of matrices as m,n: 3,3
 Enter 9 elements of matrix A row-wise
 1 1 1
 1 1 1
 1 1 1
 Enter 9 elements of matrix B row-wise
 2 2 2
 2 2 2
 2 2 2
 Sum A+B is
 3 3 3
 3 3 3
 3 3 3

Example 4.7: �Program to multiply two matrices A and B. The matrix A is of order m × n matrix and the
matrix B is of order p × q matrix, provided n = p.

As we want to multiply two matrices A and B, where the matrix A is of order m × n and the matrix
B is of order p × q, the product matrix, say matrix C, will be of order m × p with entry cij, which appears
in the ith row and jth column is given as:
	 cij = sum of the products of the entries in the ith row of matrix A with
 	 the corresponding entries in the jth column of matrix B
 	 = ai0 × b0j + ai1 × b1j + ai2 × b2j + . . . + ai(n-1) × b(n-1)j

	 =





1

0

n

ik kj
k

a b

Listing 4.7
 /*
 Program to multiply matrix A of size mxn by matrix B of
 size pxq. The program also checks for the feasibility of product.
 */
 #include<stdio.h>
 int main()
 {
 int a[10][10], b[10][10], c[10][10];
 int n, m, p, q, i, j, k;
 printf(″Enter the size of matrix A as m,n: ″);
 scanf(″%d,%d″, &m, &n);
 printf(″Enter the size of matrix B as p,q: ″);
 scanf(″%d,%d″, &p, &q);

Arrays   |  133

 if (n != p) {
 printf(″\nMatrix Product AxB is not feasible\n″);
 return 1;
 }
 printf(″\nEnter %d elements of matrix A row-wise\n″, m*n);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 scanf(″%a″, &a[i][j]);
 }
 }
 printf(″\nEnter %d elements of matrix B row-wise\n″, p*q);
 for (i = 0 ; i < p; i++)
 {
 for (j = 0; j < q; j++)
 {
 scanf(″%d″, &b[i][j]);
 }
 }
 for (i = 0 ; i < m ; i++) {
 for (j = 0 ; j < q ; j++) {
 c[i][j] = 0;
 for (k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
 printf(″\nProduct AxB is\n\n″);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < q; j++) {
 printf(″%4d″, c[i][j]);
 }
 printf (″\n″);
 }
 return 0;
 }

 Test Run
 Enter the size of matrix A as m,n: 3,3
 Enter the size of matrix B as p,q: 3,3

134  |  Programming for Problem Solving

 Enter 9 elements of matrix A row-wise
 1 1 1
 1 1 1
 1 1 1
 Enter 9 elements of matrix B row-wise
 2 2 2
 2 2 2
 2 2 2
 Product AxB is
 6 6 6
 6 6 6
 6 6 6

4.4  CHARACTER ARRAYS AND STRINGS
Each of the arrays illustrated so far contained numeric elements. However, we can also have an array of
characters. Using an array of characters, we can store string data. But do remember that strings are not
directly supported in C language, though sometimes loosely we refer to array of characters as strings.

A string in C language is a variable-length array of characters that is delimited by a null character
(‘\0’). Generally, characters comprising a string are selected only from printable characters; however,
C language does permit the use of any character except the null character. In fact, it is common to use
formatting characters, such as tabs, format specifiers, etc., in strings.

In this section, we will discuss the various aspects related to the handling of strings in the C language.

The C language uses variable length, delimited strings. The null character ‘\0’ is used
as a delimiting character. Though the null character ‘\0’ looks like a sequence of two
characters, ‘\’ and ‘0’, but in C language, it is treated as a single character.

4.4.1  Storing Strings
In C language, a string is stored in an array of
characters. It is terminated by the null (‘\0’) character.
Fig. 4.4 shows how a string “Hello” is stored in memory.
Because a string is stored in an array, the name of the array,
and hence string, is a pointer to the beginning of the string.

Fig. 4.5 shows the difference between the storage of a
character and a one-character string. The character requires
single storage location of 1-byte whereas one-character
string requires two storage locations of 1-byte each; one for
the character and one for the delimiter. The figure also shows
how an empty string is stored. The empty string consists of
null character only.

H

e

l

l

o

\0

Beginning
of string

End of
string

Fig. 4.4: Storing a string in memory

Arrays   |  135

H

\0

\0H

Character
String

“H”

Empty
String

“ ”

Fig. 4.5: Difference in the storage of characters and strings

4.4.2  Need of String Delimiter
The question – Why actually we need a null character to terminate a string? - may be coming to your
mind. The answer to this question is that a string is not a data type; it is data structure – an array.
Therefore, the implementation of a string is logical, not physical. The physical structure is the array in
which a string is stored. Since, strings are of varying length, there is a need to identify the logical end of
data within a physical structure.

Let us look at the need of a string delimiter from another point of view. If the data is of fixed length,
then we don’t need string data structure to store them rather it can easily be stored in an array. When
data is stored in an array, the end of the data is always indicated by the last element of the array. But, if
the data is not of fixed length (i.e., varying length), then we need some other way to determine the end
of the data. The null character is used to mark the end of the string data.

H

e

l

l

o

\0

H

e

l

l

o

T

a

T

a

\0

?

?

?

End of string
(null

character)

Array
(no null

character)

Part of the array,
but not part of

the string (a) String		 (b) Array

Fig. 4.6: Difference between a string and an array
of characters

Fig. 4.7: String stored in part of array

Because strings are variable-length structures, enough space for the maximum-length string that we
have to store plus one for the null character (delimiter) be reserved.

136  |  Programming for Problem Solving

In many situations it may be possible that the entire array is not filled and we may have null character
in the middle of the array. In that case, the array from the beginning to the null character is treated as
string and remaining elements of the array are ignored. This means that a part of an array of characters
can be treated as a string provided it ends with a null character, as shown in Fig. 4.7.

4.4.3  String Literals
A string literal, also known as string constant, is a sequence of characters enclosed in double-quotes. The
following are examples of some string literals:

″Hello! you are wel come″
″Hari\′s Book″
″″
″A″

Note that embedded spaces are significant. And if quotes, single (‘) or double (“), are part of the
string, they must be used with the escape sequence.

4.4.4  String Variables
A string variable is an array of characters.

4.4.4.1  Declaring String Variable
A string variable is declared as shown in the following statement
 char str[20];

This statement declares string variable str of length 20. In fact, the maximum characters that can
be stored are 19 as the last character is always the null character. In fact, the above declarations reserve
a memory block of 20 bytes, with the array name str representing the address of the first element of the
array.

4.4.4.2  Initializing String Variables
The string variable can also be initialized during declaration. The following declaration illustrates one
such approach.
 char mess[] = {′Y′, ′o′, ′u′, ′ ′, ′a′, ′r′, ′e′, ′ ′,
 ′w′, ′e′, ′l′, ′ ′, ′c′, ′o′, ′m′, ′e′, ′\0′};

Here string variable mess is initialized as sequence of character constants. In this style it is
programmer’s job to specify the null character as the last character. In addition to this, as you can see,
the size of the array is not specified. Can you guess what will be the size of mess? In fact it is the number
of character constants specified, including the null character.

Since strings will often be used, the C language provides a short and efficient approach for initializing
strings.

For example, the task of above statement can also be accomplished as
 char mess[] = ″You are wel come″;

Note that in this approach, the compiler automatically appends the null character.

Arrays   |  137

4.4.5  Input/Output of Strings
A string can be read and written. The C language provides library function gets() and puts() for input
and output of string data.
Listing 4.8
 /*
 Program to perform I/O of string data with string I/O functions

 */

 #include<stdio.h>

 int main()

 {

 char str[30];

 printf(″\nEnter string of length <= 29″);
 printf(″\nand terminate with ENTER key\n\n″);
 gets(str);

 printf(″\nYou have entered\n\n″);
 puts(str);

 return 0;

 }

 Test Run
 Enter string of length <= 29
 and terminate with ENTER key

 There is no substitute of hard work.↵
 You have entered

 There is no substitute of hard work.

4.4.6  String Manipulation Functions
Almost every C Compiler provides a large number of library functions for manipulating strings. Table
4.1 lists some frequently used string functions.

Table 4.1: Frequently used string functions
String Function Operation Performed

strlen(str) Return length of string str.

strcat(str1, str2) Concats or joins string str2 with string str1. The result is stored in string
str1.

strcpy(str1, str2) Copies the contents of string str2 to string str1.

strcmp(str1, str2)

Compares the first string str1 with second string str2, and returns the
value

• < 0, if string str1 comes earlier in dictionary order than str2
• = 0, if both strings str1 and str2 are same
• > 0, if string str1 comes later in dictionary order than str2

138  |  Programming for Problem Solving

String Function Operation Performed
strrev(str) Reverses the string str.
strlwr(str) Converts alphabets in string str to lowercase.
strupr(str) Converts alphabets in string str to uppercase.

Let us discuss some of these string functions one by one.

4.4.6.1  The strlen() Function
This function takes one argument that can be a string constant or a variable. It counts the number of
characters present in the string. Do remember that null character ‘\0’ is not a part of the character; it is
merely used to mark the end of the string, so it is not counted.
Listing 4.9
 /*
 Program to illustrate the use of strlen()function
 */

 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char str[30];
 printf(″\nEnter string : ″);
 gets (str);
 printf(″Length of string = %d\n″, strlen(str));
 return 0;
 }

 Test Run
 Enter string : Programming
 Length of string = 11

4.4.6.2  The strcpy() Function
This function takes two arguments - first is a string variable and the second can be a string constant or
a variable. It copies the character(s) of the second arguments to the first argument.
Listing 4.10
 /*
 Program to illustrate the use of strcpy()function
 */
 #include <stdio.h>
 #include <string.h>
 int main()

Arrays   |  139

 {
 char str1[30], str2[30];
 printf(″\nEnter string str1 :);
 gets(str1);
 strcpy(str2, str1);
 printf(″String str2 = %s\n″, str2);
 return 0;
 }

 Test Run
 Enter string str1 : Hey, how are you?
 String str2 = Hey, how are you?

4.4.6.3  The strcat() Function
This function takes two arguments - first is a string variable and the second can be a string constant or a
variable. It appends the character(s) of the second arguments at the end of the first argument.

Listing 4.11
 /*
 Program to illustrate the use of strcat()function
 */
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str1[30], str2[30];
 printf(″\nEnter string str1 : ″);
 gets(str1);
 printf(″\nEnter string str2 : ″);
 gets(str2);
 strcat(str1, str2);
 printf(″String str1 after concatenation with str2 = %s\n″, str1);
 return 0;
 }

 Test Run
 Enter string str1 : naughty
 Enter string str2 : boy
 String str1 after concatenation with str2 = naughtyboy

140  |  Programming for Problem Solving

4.4.6.4  The strcmp() Function
This function takes two arguments - both can be string variables or constants. It compares the characters
of each but one at a time and returns a value indicating the result of the comparison. For example, in the
statement
 strcmp (str1, str2);

value returned will have the meanings as explained in Table 4.2.

Table 4.2: Interpretation of value returned by strcmp() function
Value Returned Meaning

< 0 String str1 comes earlier in dictionary order than str2.
= 0 Strings str1 and str2 are same (identical).
> 0 String str1 comes later in dictionary order than str2.

Listing 4.12
 /*
 Program to illustrate the use of strcmp()function
 */
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str1[30], str2[30];
 int value;
 printf(″\nEnter string str1 : ″);
 gets(str1);
 printf(″Enter string str2 : ″);
 gets(str2);
 value = strcmp(str1, str2);
 if (value > 0) {
 printf(″\n%s comes after %s″, str1, str2);

 printf(″ in dictionary order\n″);

 } else if (value < 0) {
 printf(″\n%s comes before %s″, str1, str2);

 printf(″ in dictionary order\n″);

 } else
 printf(″\nBoth strings are same\n″);
 return 0;
 }

Arrays   |  141

 Test Run
 Enter string str1 : software
 Enter string str2 : hardware

 hardware comes before software in dictionary order

4.4.6.5  The strrev() Function
This function takes string variable as its argument. It reverses the order of characters in the string.
Listing 4.13
 /*
 Program to illustrate the use of strrev()function
 */
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str[50];
 printf(″\nEnter string : ″);
 gets(str);
 strrev(str);
 printf(″\nReverse string = %s\n″, str);
 return 0;
 }

 Test Run
 Enter string : programming

 Reverse string = gnimmargorp

4.4.6.6  The strupr() Function
This function takes string variable as its argument. It converts the alphabets in a string to uppercase.

Listing 4.14
 /* Program to illustrate the use of strupr)function */
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str[50];
 printf(″\nEnter string in lowercase : ″);
 gets(str);

142  |  Programming for Problem Solving

 strupr(str);
 printf(″\nGiven string in UPPERCASE = %s\n″, str);
 return 0;
 }

 Test Run
 Enter string in lowercase : programming

 Given string after conversion to UPPERCASE = PROGRAMMING

4.4.6.7  The strlwr() Function
This function takes string variable as its argument. It converts the alphabets in a string to lowercase.

Listing 4.15
 /*
 Program to illustrate the use of strupr)function
 */
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str[50];
 printf(″\nEnter string in UPPERCASE : ″);
 gets(str);
 strlwr(str);
 printf(″\nGiven string in Lowercase = %s\n″, str);
 return 0;
 }

 Test Run
 Enter string in UPPERCASE : PROGRAMMING

 Given string in Lowercase = programming

4.4.7  Array of Strings
In the last section, we discussed string variables that can store one string value at a time. Suppose we
want to handle a list (array) of such strings, then what is the solution? The answer to this question can be
found by using a two-dimensional array of characters. In two-dimensional arrays, the first row stores the
first string; the second row stores the second string, and so on.

Suppose, we want to handle a list of names of 4 persons, where the name of each person can be
maximum of 30 characters long, the following will be the required declaration
 char names[4][31];

Arrays   |  143

The following statement shows the way a list of strings can be initialized.
char names[4][31] = { ″Ram Parkash″,
 ″Inder Mohan Singh Sidhu″,
 ″Amanpreet″,
 ″Rajan″
 };

Listing 4.16
 /*
 Program to illustrates input/output of array of strings
 represented as two-dimensional array of characters
 */
 #include <stdio.h>
 int main()
 {

 char names[50][31];
 int i, n;
 printf(“Enter number of strings : “);
 scanf(”%d”, &n);

 fflush(stdin); /* clear keyboard buffer */
 for (i = 0; i < n; ++i)
 {
 printf(″Enter string %d: ″, i+1);
 gets(names[i]);
 }
 printf(“\nList of given strings\n\n”);
 for (i = 0; i < n; ++i)
 puts (names[i]);
 return 0;
 }

 Test Run
 Enter number of strings : 5

 Enter string 1 : Hari
 Enter string 2 : Santosh
 Enter string 3 : Balwinder
 Enter string 4 : Ram
 Enter string 5 : Sham

 List of given strings

 Hari
 Santosh

144  |  Programming for Problem Solving

 Balwinder
 Ram
 Sham

ILLUSTRATIVE EXAMPLES
Example 4.8: Write a program to find the frequency of a given character in a string.

Listing 4.17
 /*
 Program to find the frequency of a given character in a string
 */
 #include <stdio.h>
 int main()
 {
 char str[81], ch;
 int i, count = 0;
 printf(″\nEnter a string : ″);
 gets(str);
 printf(″\nEnter a character to find its frequency : ″);
 ch = getchar();
 for (i = 0; str[i] != ′\0′; i++)
 {
 if (ch == str[i])
 count++;
 }
 printf(″\nFrequency of %c = %d″, ch, count);
 return 0;
 }

 Test Run
 Enter a string : I love programming in C language.

 Enter a character to find its frequency : a

 Frequency of a = 3

Example 4.9: Write a program to count the number of vowels, consonants, digits, and white-spaces in a
string.
Listing 4.18
 /*
 Program to count the number of vowels, consonants, digits,
 and white-spaces in a string

Arrays   |  145

 */

 #include <stdio.h>
 int main()
 {
 char str[80];
 int vowels = 0, consonants = 0, digits = 0, spaces = 0;
 int i;

 printf(″\nEnter a line of text : ″);
 gets(str);
 for (i = 0; str[i] != ′\0′; i++)
 {
 if (str[i] == ′a′ || str[i] == ′A′ || str[i] == ′e′ ||
 str[i] == ′E′ || str[i] == ′i′ || str[i] == ′I′ ||
 str[i] == ′o′ || str[i] == ′O′ || str[i] == ′O′ ||
 str[i] == ′U′) {
 vowels++;
 } else if ((str[i] >=′a′ && str[i]<=′z′)
 ||(str[i]>= ′A′ && str[i] <= ′Z′)) {
 consonants++;
 } else if (str[i] >= ′0′ && str[i] <= ′9′) {
 digits++;
 } else if (str[i] == ′ ′ || str[i] == ′\t′) {
 spaces++;
 }
 }

 printf(″\nVowels = %d″, vowels);
 printf(″\nConsonants = %d″, consonants);
 printf(″\nDigits = %d″, digits);
 printf(″\nWhite spaces = %d″, spaces);
 return 0;
 }

 Test Run
 Enter a line of text : I love programming in C language.

 Vowels = 10
 Consonants = 17
 Digits = 0
 White spaces = 5

146  |  Programming for Problem Solving

Example 4.10: Write a program that displays a string starting with a given character.

Listing 4.19
 /*
 Program to display strings which start with a given character
 */

 #include <stdio.h>
 int main()
 {
 char str[20][31], ch;
 int i, n;
 printf(″\nEnter number of strings : ″);
 scanf(″%d″, &n);
 fflush(stdin);
 for (i = 0; i < n; ++i)
 gets(str[i]);

 printf(″\nEnter a character : ″);
 ch = getchar();

 printf(″\nStrings that start with character : %c\n″, ch);

 for (i = 0; i < n; ++i) {
 	 if (ch == str[i][0])
 puts(str[i]);
 }

 return 0;
 }

 Test Run
 Enter number of strings : 10
 Delhi
 Dehradun
 Hyderabad
 Bangaluru
 Dalhousie
 Nagpur
 Darjiling
 Jaipur
 Agra
 Pune

 Enter a character : D

Arrays   |  147

 Strings that start with character : D
 Delhi
 Dehradun
 Dalhousie
 Darjiling

UNIT SUMMARY
In this chapter, we have learned that
	 q	An array is a data structure to store collections of similar values under a given name.
	 q 	Elements of an array stored in contiguous memory locations.
	 q 	Elements of an array are accessed by the name of the array followed by an index within brackets.

One pair of brackets is used for each dimension.
	 q 	An array must be declared before use. Declaration tells the compiler about the name of the array,

type of each element and the size for each dimension.
	 q 	Arrays can be initialized at the time of declaration.
	 q 	When an array is partially initialized, the rest of the elements are set to zero.
	 q 	A two-dimensional array is a representation of a table (matrix) with rows & columns.
	 q 	A multi-dimensional array is an extension of a two-dimensional array to three, four, or more

dimensions.
	 q 	As such, C language does not support string data type however strings are handled as an array

of characters.
	 q 	The C language uses null-terminated variable length strings.
	 q 	A string constant in C language is a sequence of characters enclosed in double quotes.
	 q 	To store a string, we need an array of characters with size one plus than the maximum length

string.
	 q 	The list of strings is handled by using two-dimensional array of characters.
	 q 	There is a rich library of functions for manipulating strings.

EXERCISE

Subjective Questions
	 1.	 What is an array?
	 2.	 Is it possible to declare and initialize an array in C simultaneously? If yes, how?
	 3.	 What are the rules for naming an array?
	 4.	 What is the subscript of the first element of the array?
	 5.	 How a real array named data with 100 elements will be declared? What will be the subscript of

the last element?
	 6.	 Is it possible to declare more than one array in the same declaration statement?

148  |  Programming for Problem Solving

	 7.	 Is the following array declaration is correct? If not, why?
		 int a(50);

	 8.	 If the declaration segment is
#define ROWS 100

float height[ROWS];

		 Is the following segment to enter data in array is correct?
for (i = 0; i <= ROWS; i++)

 scanf (″%f″, height[i]);

	 9.	 When an array is passed as an argument to a function, what is actually passed?
	 10.	 When an entire array is passed as an argument to a function, the function can alter the values of

the elements of the array. We want to prevent the function from doing so, how can this task be
accomplished?

	 11.	 Is anything wrong with the following declaration? Explain.
int a[3][] = { { 1, 2, 3 }, { 3, 2, 1 }, { 4, 5, 2 } };

	 12.	 How a string is stored in C language?
	 13.	 What will be the declaration for array named str in which string “C is just like sea” is to be stored?
	 14.	 What is the difference between “A” and ‘A’?
	 15.	 Consider the following declaration
	 char name[20];

	 16.	 What is the maximum length of string which can be stored correctly in name?
	 17.	 Consider the following declaration
	 char name[20];

		 Is following the correct way of assigning the string “Rajan Mehta” to name?
	 name = ″Rajan Mehta″;

Multiple Choice Questions
	 1.	 Elements of two-dimensional array are stored in
	 (a)	 column major order	 (b)	 row major order
	 (c)	 random order	 (d)	 None
	 2.	 The value within [] in an array declaration specifies
	 (a)	 size of the array	 (b)	 largest permitted subscript value
	 (c)	 both (a) & (b)	 (d)	 None of the above
	 3.	 Given the declaration “int a[10];” Identify the which of the following is wrong?
	 (a)	 a[-1]	 (b)	 a[0]	 (c)	 a[10]	 (d)	 ++a
	 4.	 When we should use an array?
	 (a)	 When we need to hold constants.	
	 (b)	 When we need to hold data of same type.
	 (c)	 When we need to hold data of different type.
	 (d)	 When we need to obtain automatic memory cleanup functionality.

Arrays   |  149

	 5.	 The use of arrays makes a program __________ .
	 (a)	 general and capable of handling class of problems.
	 (b)	 difficult to understand.
	 (c)	 compact and efficient.
	 (d)	 both a & c.
	 6.	 What is the difference between the 5’s in the below expressions?

int num[5];

num[5]=10;

	 (a)	 First specifies the array size, the second one specifies an individual element
	 (b)	 First specifies the individual element, the second one specifies the size
	 (c)	 Both specify the array size
	 (d)	 None of the above
	 7.	 What would be the output of the program, if the array begins at address 1200?
 void main()	

 {

 int a[5]={ 2,4,6,8,10 };

	 printf(″%u, %d ″, a, sizeof(a));

 }

	 (a)	 1202, 10	 (b)	 10, 1202
	 (c)	 10, 1200	 (d)	 1200, 10
	 8.	 A two dimensional array can be called as a _____________ .
	 (a)	 Matrix	 (b)	 Vector	
	 (c)	 Stack	 (d)	 queue
	 9.	 What will be the output of the following program?

void main()
{
 void fun(int x[]);
 int a[] = {1, 2, 3, 4, 5 };
 fun(a);
 printf(″\n%d,%d″, a[0], a[1]);
 printf(″%d,%d,%d\n″, a[2], a[3], a[4]);
}
void fun(int x[])
{
 x[2] = x[2] + 2;
 x[4] = x[4] + 4;
}

	 (a)	 5,6,7,8,9	 (b)	 2,4,6,8,10
	 (c)	 3,4,5,6,7	 (d)	 1, 2, 5, 4, 9

150  |  Programming for Problem Solving

	 10.	 Which would be the output of the following program?
void main()
{
 int a[5] = { 1, 2 };
 printf(″\n%d,%d,%d\n″, a[2], a[3], a[4]);
}

	 (a)	 0, 0, 0	 (b)	 2, 2, 2	 (c)	 1, 1, 1	 (d)	 Garbage
	 11.	 What will happen if you assign a value to an array element in a C program whose subscript

exceeds the size of the array?
	 (a)	 Nothing will happen, and the element will get a given value.
	 (b)	 Compiler will flag a syntax error.
	 (c)	 Memory location immediately after the last memory location of the array will be overwritten,

and this may cause the system to crash.
	 (d)	 The array size will automatically be increased to accommodate the new value.
	 12.	 If the declaration is ″char sample[80];″, what is the length of string that can be correctly

represented by sample?
	 (a)	 80	 (b)	 79	 (c)	 81	 (d)	 None
	 13.	 Which of the following statement is true about strings in C?
	 (a)	 Every string must be terminated by a null character (‘\0’).
	 (b)	 String is a primitive data type in C.
	 (c)	 String can be assigned to another string using assignment operator ‘=’.
	 (d)	 All of the above.
	 14.	 What will be the output of the following program?

void main()
{
 printf(5+″Fascimile″);
}

	 (a)	 Error	 (b)	 Fascimile 	 (c)	 mile	 (d)	 Fasci
	 15.	 Which of the following is not correct for creating and initializing a char array named vowels with

string value “aeiou”?
	 (a)	char vowels[] = { ′a′, ′e′, ′i′, ′o′, ′u′, ′\0′ };	

	 (b)	char vowels[] = { ′a′, ′e′, ′i′, ′o′, ′u′, ′\n′ };

	 (c)	char vowels[] = ″aeiou″;
	 (d)	 None of the above
	 16.	 If two strings str1 and str2 are identical, then the value y in the following code segment will be

______.
int y;
y = strcmp(str1, str2);

	 (a)	 1	 (b)	 -1	 (c)	 0	 (d)	 None of the above

Arrays   |  151

	 17.	 Which of the following is a correct output of the following program?
#include <string.h>
void main() {
 char str[] = ″Spider\0man\0″;
 printf(″%d″, strlen(str));
}

	 (a)	 6	 (b)	 10	 (c)	 11	 (d)	 13
	 18.	 Which of the following is a correct output of the following program?

void main()
{
 char str[] = ″Sales\0man″;
 puts(str);
}

	 (a)	 Sales	 (b)	 man 	 (c)	 Salesman	 (d)	 Error
	 19.	 What will be the output of the following program?

int main()
{
	 printf(″%d″, strcmp(″ABC″,″abc″));
	 return 0;
}

	 (a)	 0	 (b)	 1 	 (c)	 -1	 (d)	 Error
	 20.	 Which of the following functions is more appropriate to read a multiword string?
	 (a)	 scanf()	 (b)	 gets() 	 (c)	 getchar()	 (d)	 getstring()

ANSWERS
1. (b) 2. (a) 3. (d) 4. (b) 5. (d) 6. (a) 7. (d) 8. (a)
9. (d) 10. (a) 11. (c) 12. (b) 13. (a) 14. (c) 15. (b) 16. (c)

17. (a) 18. (a) 19. (c) 20. (b)

Programming Problems
	 1.	 Write a program that accepts an array, interchanges the first element with the last element, the

second element with the second last element, and so on, and finally prints the new array.
	 2.	 Write a program to read a set of n integers between 1 and 10 and count the number of times

each integer appears in the set. Print the integers in order of frequency, the number occurring
the highest number of times first.

	 3.	 A department store chain has m (<10) stores, and each store has the same n (<15) departments.
The weekly sales of the chain are stored in m × n array SALES (say). Write down the program
which

		 l		Prints the total weekly sales of each store.
		 l Prints the total weekly sales of each department.
		 l 	Prints the total weekly sales of the chain.
	 4.	 Write a program that inserts an element d in kth position of an array a of size n.

152  |  Programming for Problem Solving

	 5.	 Write a program that removes an element from the kth position of an array a of size n.
	 6.	 Write a program to remove duplicate elements from an array.
	 7.	 Given a matrix A of order m × n, write a program to find the row having the maximum number

of elements that are even.
	 8.	 Write a program that asks the user to enter a sentence and then splits out the words in the

sentence and puts them in a table.
	 9.	 Write a program that asks the user for a list of words and prints the list in reverse order.
	 10.	 Suppose you translate a number into a string of digits spelled out, one word for each digit,

followed by a single space. For example, the number 407 become the digit string: “Four Zero
Seven”. Write a program to accept a positive number and print out its digit string.

	 11.	 Write a program that accepts an amount in figures and prints that in words. For example, for an
amount of 12500 it should output the string Twelve Thousand Five Hundred only.

	 12.	 Write a program to find third largest element in an unsorted array.

PRACTICALS
	 1.	 You are given a 1D arrays, named x, that stores data of some survey with n(≤50) observations.

Write a program to compute the mean, variance, and standard deviation of the data.
	 Sol.	 The formulae to compute mean, variance, and standard deviation are

			 () 1mean =

n

i
i

x
x

n
=
∑

,
()2

1variance =

n

i
i

x x

n
=

-∑
, standrad deviation = variance

Listing 4.20
 /*
 Program to find mean, variance, and standard deviation
*/

#include <stdio.h>
#include <math.h>
int main()
{
 float x[50];
 int i, n;
 float mean, variance, std_deviation, sum, d;
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d values\n″, n);
 for (i = 0; i < n; i++) {
 scanf(″%f″, &x[i]);
 }
 /* Compute the sum of all elements */
 sum = 0;
 for (i = 0; i < n; i++) {
 sum = sum + x[i];

Arrays   |  153

 }
 /* Compute mean (average) */
 mean = sum / n;
 /* Compute variance */
 sum = 0;
 for (i = 0; i < n; i++) {
 d = x[i]-mean;
 sum = sum + d * d;
 }
 variance = sum / n;
 /* Compute standard deviation */
 std_deviation = sqrt(variance);
 /* print results of computations, rounded to 2 decimals */
 printf(″Mean = %.2f\n″, mean);
 printf(″Variance = %.2f\n″, variance);
 printf(″Standard deviation = %.2f\n″, std_deviation);
 }

 Test Run
 Enter value for n : 10

 Enter 10 values
 12.5
 10
 15
 25.75
 30
 22
 16
 19
 24
 11

 Mean = 18.52
 Variance = 41.06
 Standard deviation = 6.41

	 2.	 Write a program to add matrices A(m×n) and B(m×n).
		 Refer to Example 4.6.
	 3.	 Write a program to multiply matrix A(m×n) by B(p×q).
		 Refer to Example 4.7.
	 4.	 Write a program to test whether the given word is palindrome or not.
		 A word is a palindrome if reads same from both ends. Examples are words like “nitin”, “radar”,

“madam”, “refer”, etc.

154  |  Programming for Problem Solving

		 To test a word to see whether it is palindrome, one approach is to use the strrev() library function
to reverse a string, and then compare the original string with the reversed string. If both are
same, then the word is palindrome otherwise the word is not a palindrome.

Listing 4.21
 /*
 Program to check whether given word is palindrome or not,
 using library function strrev()
 */

 #include<stdio.h>
 #include<string.h>

 int main()
 {
 char str[30], temp[30];

 printf(″\nEnter any word : ″);
 gets(str);

 strcpy(temp, str);
 strrev(temp);

 printf(″\nGiven word = %s\n″, str);
 printf(″\n%s after reversing = %s\n″, str, temp);

 if (strcmp(str, temp) == 0)
 printf(″\n%s is a palindrome word.\n″, str);
 else
 printf(″\n%s is not a palindrome word.\n″, str);

 return 0;
 }

 Test Runs
 First Run

 Enter any word : nitin

 Given word = nitin

 nitin after reversing = nitin

 nitin is a palindrome word.

 Second Run
 Enter any word : never

 Given word = never

 never after reversing = reven

 never is not a palindrome word.

Arrays   |  155

		 The second approach is that we take two index variables, say i and j, i is initialized with the index
of the first character and j is initialized with the index of the last character of the word.

		 We iterate till i < j, and in each iteration, we compare the character at index i and at index j to
find the first mismatch. If a mismatch is found, then the word is not a palindrome.

		 Further, in each iteration, the index i is incremented and index j is decremented.
		 If no mismatch is found and the condition i = j is reached, it will indicate that the given word is

a palindrome.

Listing 4.22
 /*
 Program to check whether given word is palindrome or not,
 without using any string manipulation function
 */

 #include<stdio.h>
 #include<string.h>
 int main()
 {
 char str[30];
 int i = 0, j, n = 0;
 printf(″\nEnter any word : ″);
 gets(str);
 /* to get length of word in variable ′n′ */
 while (str[n] != ′\0′)
 n++;
 i = 0; /* index of first character */
 j = n–1; /* index of last character */
 while (i < j)
 {
 if (str[i] != str[j]) {
 printf(″\n%s is not a palindrome word.\n″, str);
 return 0;
 }
 i++;
 j--;
 }
 printf(″\n%s is a palindrome word.\n″, str);
 return 0;
 }

 Test Runs
 First Run

 Enter any word : madam

 madam is a palindrome word.

156  |  Programming for Problem Solving

 Second Run
 Enter any word : india

 india is not a palindrome word.

KNOW MORE
The topic of arrays is one of the important aspects of a programming language. There are numerous
real-life problems that require handling large collection of data, and arrays are the ideal data structures
to store such data in a computer program.

The teacher is expected to understand the concepts of arrays, need of arrays, and the various aspects
related to handling of arrays in C language.

The teacher should demonstrate the use of arrays by taking examples from real-life situations and
creating C programs to solve them.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi..
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to searching, sorting, and finding solution of an equation. The
working of various searching and sorting are explained with suitable examples in this unit. In addition,
the process of finding the solution of an equation using Bisection method is also explained.

RATIONALE
There are many situations in real-life where we have to search for a particular piece of information. If the
information is not organized the only way to check each and every item of information till we find that
one or we may end up that item is not found. However, if the information is organized in a particular
order, then we can search any item very quickly using efficient algorithms.

This unit helps students to understand the various techniques to arrange (sort) information in
desired order, the various techniques to search a given item of information.

In addition, this unit also explains how we can find the roots of an equation.

PRE-REQUISITES
	 –	 Conditional branching
	 –	 Looping/Iteration
	 –	 Arrays

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U5-O1: explain and implement various searching algorithms
U5-O2: explain and implement various sorting algorithms
U5-O3: explain and implement the method of finding roots of an equation

Unit 5
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U5-O1 3 3 - - - 3 - -
U5-O2 3 3 - - - 3 - -
U5-O3 3 3 - - - 3 - -

5 Basic Algorithms

158  |  Programming for Problem Solving

5.1  SEARCHING ALGORITHMS
Searching is the process of finding the location of given element in an array. The search is said to be
successful if the given element is found, i.e., the element does exists in the array; otherwise unsuccessful.

There are two approaches to search operation:
	 l	 Linear search
	 l	 Binary search

The algorithm that one chooses generally depends on organization of the array elements. If the
elements are in random order, then one have to use linear search technique, and if the array elements are
sorted, then it is preferable to use binary search technique. These two search techniques are described
in the next sections.

5.1.1  Linear Search
Given no information about the array a, the only way to search for given element item is to compare item
with each element of a one by one. This method, which traverses a sequentially to locate item is called
linear search or sequential search.
 Listing 5.1
 /*
 * Program to demonstrate the use of linear search technique
 * to search a given element in an un-sorted array
 */
 #include <stdio.h>
 int main()
 {
 int a[50], i, n, item, flag;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 printf(″\nEnter element to search : ″);
 scanf(″%d″, &item);
 flag = 0;
 for (i = 0; i < n; i++)
 {
 if(item == a[i]) /* match found */
 {
 flag = 1;
 break;
 }
 }

Basic Algorithms  |  159

 if (flag == 1)
 printf(″\nElement found at index: %d\n″, i);
 else
 printf(″\nElement not found...\n″);
 return 0;
 }

 Test Run - 1
 Enter size of array n(<=50) : 10
 Enter 10 elements of array
 12 5 18 9 11 10 25 36 22 100
 Enter element to search : 11
 Element found at index: 4

 Test Run - 2
 Enter size of array n(<=50) : 10
 Enter 10 elements of array
 12 5 18 9 11 10 25 36 22 100
 Enter element to search : 55
 Element not found...

Complexity Analysis
In the best possible case, the item may occur at first position. In this case, the search operation terminates
in success with just one comparison. However, the worst case occurs when either the item is present
at last position or missing from the array. In the former case, the search terminates in success with n
comparisons. In the later case, the search terminates in a failure with n comparisons. Thus, we find that
in worst case the linear search needs O(n) operation.

5.1.2  Binary Search
Suppose the elements of the array A are sorted in ascending order (if the elements are numbers) or
dictionary order (if the elements are strings). The best searching algorithm, called binary search, is used
to find the location of the given element.

We do use this approach in our daily life. For example, suppose we want to find the meaning of
the term 	 in a computer dictionary. Obviously, we don’t search page by page. We open the dictionary in
the middle (roughly) to determine which half contains the term being sought. Then for the subsequent
search one half is discarded, and we search in the other half. This process is continued till either we have
located the required term or that term is missing from the dictionary, which will indicated by the fact
that at the end we will be left with only one page.
Example 5.1: To illustrate the working of the binary search technique, consider the following sorted array
A with 7 elements
		 3, 10, 15, 20, 35, 40, 60
and we want to search element 15.

160  |  Programming for Problem Solving

Solution:

To start with, we take beg = 0, end = 6, and compute location of middle element as
	 mid 	= (beg + end) / 2 = (0 + 6) / 2 = 3
Since a[mid], i.e., a[3] ≠ 15, and beg <= end. We start next iteration.
As a[mid] = 20 > 15, therefore, we take end = mid - 1 = 3 - 1 = 2, whereas beg remains unchanged.

Compute location of middle element
	 mid 	= (beg + end) / 2 = (0 + 2) / 2 = 1
Since a[mid], i.e., a[1] 	≠ 15, and beg <= end. We start next iteration.
As a[mid] 	= 10 < 15, therefore, we take beg = mid + 1 = 1 + 1 = 2, whereas end remains unchanged.
	 Since beg 	= end, compute location of the middle element
	 mid 	= (beg + end) / 2 = (2 + 2) / 2 = 2
Since a[mid], i.e., a[2] 	= 15, the search terminates on success.
The element is found at index 2.

 Listing 5.2
 /*
 * Program to demonstrate the use of binary search technique
 * to search a given element in a sorted array
 */
 #include <stdio.h>
 int main()
 {
 int a[50], i, n, item, beg, end, mid, flag;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array in ascending order\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 printf(″\nEnter element to search : ″);
 scanf(″%d″, &item);
 flag = 0;
 beg = 0;
 end = n - 1;
 while (beg < end)
 {
 mid = (beg + end) / 2;
 if(item == a[mid]) { /* match found */
 flag = 1;
 break;
 }

 a[0] a[1] a[2] a[3] a[4] a[5] a[6]

Given Array a 3 10 15 20 35 40 60

Basic Algorithms  |  161

 if(item < a[mid])
 end = mid - 1;
 else
 beg = mid + 1;
 }

 if (flag == 1)
 printf(″\nElement found at index: %d\n″, mid);
 else
 printf(″\nElement not found...\n″);
 return 0;
 }

 Test Run - 1
 Enter size of array n(<=50) : 10↵
 Enter 10 elements of array in ascending order
 5 9 10 11 12 18 25 36 44 100
 Enter element to search : 44
 Element found at index: 8

 Test Run - 2
 Enter size of array n(<=50) : 10
 Enter 10 elements of array in ascending order
 5 9 10 11 12 18 25 36 44 100
 Enter element to search : 35
 Element not found...

Complexity Analysis
In each iteration, the search is reduced to one half of the array. Therefore, for n elements in the array,
there will be log2n iterations. Thus, the complexity of binary search is O(log2n). This complexity will be
same irrespective of the position of the element, even if it is not present in the array.

5.2  SORTING ALGORITHMS
Sorting is the process of arranging the elements in some logical order. This logical order may be ascending
or descending in case of numeric values or dictionary order in case of alphanumeric values.

We do, almost, use this process daily in our routine activities. For example, we do arrange our
class notes in increasing order of date in order to refer them quickly later on. Like this there are many
situations, which you can enumerate.

In this section, we sill discuss following sorting algorithms:
	 l	 Bubble sort	 l Insertion sort		 l Selection sort

We will consider an array named a of size n whose elements are of type int for the discussion of all
these algorithms.

162  |  Programming for Problem Solving

5.2.1  Bubble Sort
The Bubble sort method requires (n-1) pass to sort an array. In each pass, every element a[i] is compared
with a[i+1], for i = 0 to (n-k), where k is the pass number, and if they are out of order, i.e., if a[i] > a[i+1],
they are swapped. This will cause the largest element move or bubble up.

After the end of the first pass, the largest element in the array will be placed in (n-1)th position,
and on each successive pass, the next largest element is placed at position (n-2), (n-3), ..., 1, respectively.

For more clarity, carefully examine the following steps.
Pass 1:
	 Step 1. If a[0] > a[1] then swap a[0] and a[1].
	 Step 2. If a[1] > a[2] then swap a[1] and a[2].
		 

	 Step n-1. If a[n-2] > a[n-1] then swap a[n-2] and a[n-1].
Pass 2:
	 Step 1. If a[0] > a[1] then swap a[0] and a[1].
	 Step 2. If a[1] > a[2] then swap a[1] and a[2].

		 

	 Step n-2. If a[n-3] > a[n-2] then swap a[n-3] and a[n-2].
 		 

Pass k:
	 Step 1. If a[0] > a[1] then swap a[0] and a[1].
	 Step 2. If a[1] > a[2] then swap a[1] and a[2].
		 

	 Step n-k. If a[n-k+1] > a[n-k] then swap a[n-k+1] and a[n-k].
 		 

Pass n-1:
	 Step 1. If a[0] > a[1] then swap a[0] and a[1].
After (n-1) passes, the array will be sorted in ascending order.

Example 5.2: To illustrate the working of bubble sort method, consider the sorting of the following array in
ascending order.
		 12 40 3 2 15
Solution: Note that, the output of a given pass becomes the input for the next pass. The sorting process
is self explanatory. In each pass, one element, shown as shaded, reaches to its final position.
Given array can be shown as

a[0] a[1] a[2] a[3] a[4]
12 40 3 2 15

Pass-1:
a[0] a[1] a[2] a[3] a[4]
12 40 3 2 15

	 (a) 	 Compare a[0] and a[1]. Since a[0] < a[1] (12 < 40), no action is taken.

Basic Algorithms  |  163

a[0] a[1] a[2] a[3] a[4]

12 40 3 2 15

	 (b) 	 Compare a[1] and a[2]. Since a[1] > a[2] (40 > 3), swap these elements.
a[0] a[1] a[2] a[3] a[4]

12 3 40 2 15

	 (c) 	 Compare a[2] and a[3]. Since a[2] > a[3] (40 > 2), swap these elements.
a[0] a[1] a[2] a[3] a[4]

12 3 2 40 15

	 (d) 	Compare a[3] and a[4]. Since a[3] > a[4] (40 > 15), swap these elements.
a[0] a[1] a[2] a[3] a[4]
12 3 2 15 40

Thus, after first pass, the largest element, 40, has moved to its final position. However, the rest of
the numbers, which may have changed their positions, are yet to be sorted. The shaded part shows the
elements that have been sorted.

For the remaining passes, only comparisons and swaps, if required, are shown.
Pass-2:

a[0] a[1] a[2] a[3] a[4] Action

12 3 2 15 40 Swap

3 12 2 15 40 Swap

3 2 12 15 40 No swap

3 2 12 15 40

After second pass, the second largest element, 15, has moved to its final position.

Pass-3:
a[0] a[1] a[2] a[3] a[4] Action

3 2 12 15 40 Swap

2 3 12 15 40 No swap

2 3 12 15 40

After third pass, the third largest element, 12, has moved to its final position.

164  |  Programming for Problem Solving

Pass-4:
a[0] a[1] a[2] a[3] a[4] Action

2 3 12 15 40 No swap

2 3 12 15 40

After fourth pass, the fourth largest element, 3, has moved to its final position. Thus, the array is
completely sorted in 4 passes.

The above sorting process can also be visualized as shown below:

12
40
3
2

15

12
40
3
2

15

12
40
3
2

15

12
3

40
2

15

12
3
2

40
15

12
3
2

15
40

Pass 1

Pass 2

12
3
2

15
40

3
12
2

15
40

3
2

12
15
40

3
2

12
15
40

Pass 3 Pass 4

3
2

12
15
40

2
3

12
15
40

2
3

12
15
40

2
3

12
15
40

2
3

12
15
40

Fig. 5.1: Illustration of Bubble sort method

Complexity Analysis
After (n-1) passes, the array will be sorted in ascending order. As you must have noticed, the first pass
requires (n-1) comparisons, the second pass requires (n-2),..., kth pass requires (n-k), and the last pass
requires only one comparison. Therefore, total comparisons are

 f(n) = (n-1) + (n-2) + (n-3) + … +(n-k) +…+ 3 + 2 + 1 = n(n-1)/2 = O(n2)

Basic Algorithms  |  165

 Listing 5.3
 /*
 * Program to demonstrate the use of Bubble sort method
 * to sort a given array in ascending order
 */

 #include <stdio.h>

 int main()
 {
 int a[50], i, j, n, temp;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 for (i = 0; i < n-1; i++)
 {
 for (j = 0; j < n-i-1; j++)
 {
 if (a[j] > a[j+1]) {
 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 }
 }
 }
 printf(″\nArray after sorting...\n\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, a[i]);
 printf(″\n″);
 return 0;
 }

 Test Run
 Enter size of array n(<=50) : 10
 Enter 10 elements of array
 5 12 10 15 22 18 2 -10 7 16
 Array after sorting...
 -10 2 5 7 10 12 15 16 18 22

166  |  Programming for Problem Solving

5.2.2  Selection Sort
Selection sort method also requires (n-1) pass to sort an array. In the first pass, find the smallest element
from elements a[0], a[1], a[2], . . ., a[n-1] and swap with the first element, i.e, a[0]. In the second pass,
find the smallest element from elements a[1], a[2], a[3], . . ., a[n-1] and swap with a[1]. And so on.

For more clarity, carefully examine the following steps:
Pass 1:
	 l	 Find the location loc of the smallest element in the entire array, i.e., a[0], a[1], a[2],..., a[n-1].
	 l	 Interchange a[0] & a[loc]. Then a[0] is trivially sorted.
Pass 2:
	 l	 Find the location loc of the smallest element in the sub array a[1], a[2], a[3],. . ., a[n-1].
	 l	 Interchange a[1] & a[loc]. Then elements a[0] and a[1] are sorted, since a[0] < a[1].
 		 
Pass k:
	 l	 Find the location loc of the smallest element in the sub array a[k], a[k+1],

a[k+2],.. ., a[n-1].
	 l	 Interchange a[k] & a[loc]. Then elements a[0], a[1], a[2], . . ., a[k] are sorted.
 	 		 
Pass n-1:
	 l	 Find the location loc of the smaller of the elements a[n-2], a[n-1].
	 l	 Interchange a[n-2] & a[loc]. Then elements a[0], a[1], a[2], . . ., a[n-1] are sorted.

After (n-1) passes, the array will be sorted in ascending order.
Example 5.3: To illustrate the working of the selection sort method, consider the following array a with
7 elements as
		 20, 35, 40, 100, 3, 10, 15
Solution: In each iteration i, we find the location loc of the smallest element in the unsorted part of the
array. If loc ≠ i then element at i and loc are swapped.

Interchange elements a[0] & a[4], i.e., 20 & 3 to obtain following array.

Interchange elements a[1] & a[5], i.e., 35 & 10 to obtain following array.

Interchange elements a[2] & a[6] , i.e., 40 & 15 to obtain following array.

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Given Array a 20 35 40 100 3 10 15

i = 0
loc = 4

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 1:

20 35 40 100 3 10 15

i = 1
loc = 5Pass 2:

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

3 35 40 100 20 10 15

i = 2
loc = 6

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

3 10 40 100 20 35 15Pass 3:

Basic Algorithms  |  167

Interchange elements a[3] & a[4], i.e., 100 & 20 to obtain following array.

Interchange elements a[4] & a[5], i.e., 100 & 35 to obtain following array.

Interchange elements a[5] & a[6], i.e.,100 & 40 to obtain following sorted array.

Fig. 5.2: Illustration of selection sort method

The shaded part shows the part of the array sorted so for after each iteration. In each iteration, one
element is added on the right of the sorted part.

To implement the selection sort algorithm, we need a routine to find the location loc of the smallest
element among the elements a[k-1], a[k+1], a[k+2],. . ., a[n-1], during kth pass.

 Listing 5.4
 /*
 * Program to demonstrate the use of selection sort method
 * to sort a given array in ascending order
 */
 #include <stdio.h>
 int main()
 {
 int a[50], i, j, n, temp, min, loc;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 for (i = 0; i < n-1; i++)
 {
 min = a[i];
 loc = i;
 for (j = i+1; j < n; j++)

i = 3
loc = 4

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 4:

3 10 15 100 20 35 40

i = 4
loc = 5

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 5: 3 10 15 20 100 35 40

i = 5
loc = 6

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 6: 3 10 15 20 35 100 40

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

3 10 15 20 35 40 100

168  |  Programming for Problem Solving

 {
 if (a[j] < min) {
 min = a[j];
 loc = j;
 }
 }
 if (loc != i) {
 temp = a[i];
 a[i] = a[loc];
 a[loc] = temp;
 }
 }
 printf(″\nArray after sorting...\n\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, a[i]);
 printf(″\n″);
 return 0;
 }

 Test Run
 Enter size of array n(<=50) : 6
 Enter 6 elements of array
 12 5 10 15 22 18
 Array after sorting...
 5 10 12 15 18 22

Complexity Analysis
As you must have noticed, the first pass requires (n-1) comparisons to find the location loc of smallest
element, the second pass requires (n-2), ..., kth pass requires (n-k), and the last pass requires only one
comparison.

Therefore total comparisons are
	 f(n) 	= (n-1) + (n-2) + (n-3) + … +(n-k) +…. + 3 + 2 + 1
		 =	 n(n-1)/2 = O(n2)

5.2.3  Insertion Sort
This algorithm is very popular with bridge players when they
first sort their cards.

In this procedure, we pick up a particular value and then
insert it at the appropriate place in the sorted sub list, i.e.,
during kth iteration the element a[k] is inserted in its proper
place in the sorted sub array a[1], a[2], a[3],. . ., a[k-1].

Basic Algorithms  |  169

This task is accomplished by comparing a[k] with a[k-1], a[k-2], a[k-3], and so on until the first
element a[j] such that a[j] < a[k] is found. Then each of the elements a[k-1], a[k-2], . . ., a[j+1] are
moved one position up, and then element a[k] is inserted in (j+1)st position in the array.

For more clarity, carefully examine the following steps.
Pass 1: 	 a[1] is inserted either before or after a[0] so that a[0] and a[1] are sorted.
Pass 2: 	 a[2] is inserted either before a[0] or between a[0] and a[1] or after a[1] so that the elements

a[0], a[1], a[2] are sorted.
Pass 3: 	 a[3] is inserted either before a[0] or between a[0] and a[1] or between a[1] and a[2] or after

a[2] so that the elements a[0], a[1], a[2], a[3] are sorted.
 		 
Pass k: 	 a[k] is inserted in proper place in the sorted sub array a[0], a[1], a[2], . . ., a[k-1] so that after

insertion, the elements a[0], a[1], a[2], . . ., a[k-1], a[k] are sorted.
 		 
Pass n-1: �a[n-1] is inserted in proper place in the sorted sub array a[0], a[1], a[2], . . ., a[n-2], so that

after insertion, the elements a[0], a[1], a[2], . . ., a[n-1] are sorted.
Thus, after (n-1) passes, the array will be sorted in ascending order.

Example 5.4: To illustrate the working of the insertion sort method, consider the following array a with 7
elements as

35, 20, 40, 100, 3, 10, 15
Solution: Given array a

				 Since a[1] < a[0], insert element a[1] before a[0] giving the following array.

				 Since a[2] > a[1], no action is performed.

				 Since a[3] > a[2], again no action is performed.

				� Since a[4] is less than a[3], a[2], a[1] as well as a[0], therefore insert a[4] before a[0], giving
the following array.

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

35 20 40 100 3 10 15

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 1: 35 20 40 100 3 10 15

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 2:

20 35 40 100 3 10 15

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 3: 20 35 40 100 3 10 15

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Pass 4: 20 35 40 100 3 10 15

170  |  Programming for Problem Solving

				� Since a[5] is less than a[4], a[3], a[2], and a[1], therefore insert a[5] before a[1], giving the
following array.

				� Since a[6] is less than a[5], a[4], a[3], and a[2], therefore insert a[6] before a[2], giving the
following sorted array.

Fig. 5.3: Illustration of insertion sort method

 Listing 5.5
 /* Program to demonstrate the use of insertion sort method
 * to sort a given array in ascending order
 */
 #include <stdio.h>
 void main()
 {
 int a[50], i, j, k, n, temp;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 for (k = 1; k < n; k++) {
 temp = a[k];
 j = k - 1;
 while ((temp < a[j]) && (j >= 0)) {
 a[j+1] = a[j];
 j--;
 }
 a[j+1] = temp;
 }
 printf(″\nArray after sorting...\n\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, a[i]);
 printf(″\n″);
 }

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

3 20 35 40 100 10 15Pass 5:

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

Pass 6: 3 10 20 35 40 100 15

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
3 10 15 20 35 40 100

Basic Algorithms  |  171

 Test Run
 Enter size of array n(<=50) : 7
 Enter 7 elements of array
 5 12 10 15 22 18 16
 Array after sorting...
 5 10 12 15 16 18 22

5.3  FINDING ROOT OF AN EQUATION
In general, there are two types of methods to find roots of an equation.

Direct methods
Direct methods give the roots of an equation in a finite number of steps. In addition, these methods are
capable of giving all the roots at the same time.

For example, the roots of the quadratic equation
	 ax2 + bx + c 	= 0 		

where a ≠ 0	

 are given by x1,2 = 	
– b ± √b2 – 4ac

2a 	

Iterative methods
Iterative methods, also known as trial and error methods, are based on the idea of successive
approximations. They start with one or more initial approximations to the root and obtain a sequence
of approximations by repeating a fixed sequence of steps till the solution with reasonable accuracy is
obtained. Iterative methods, generally, give one root at a time.

Iterative methods are very cumbersome and time-consuming for solving equations manually.
However, they are best suited for use on computers, due to following reasons:
	 1.	 Iterative methods can be concisely expressed as computational algorithms.
	 2.	 It is possible to formulate algorithms that can handle class of similar problems. For example, an

algorithm can be developed to solve a polynomial equation of degree n.
	 3.	 Round-off errors are negligible in iterative methods as compared to direct methods.

The following are popular iterative methods to find root of an equation.
	 l	 Bisection Method		 l Regula-falsi method
	 l	 Secant method		 l Newton-Raphson method
	 l	 Method of Successive approximations	

We will learn about Bisection method to find the root of an equation of type
 f(x) = 0
in this section.
Bisection method is one of the simplest iterative methods. To start with, two initial approximations,

say x1 and x2 such that f(x1)×f(x2) < 0, which ensures that root lies between x1 and x2, are taken. Next
x-value, say x3, as mid-point of interval [x1, x2] is computed.

172  |  Programming for Problem Solving

f(x)

f(x3)
f(x1)

f(x2)
x1 x3

x x2
new search

interval

starting search interval

Fig. 5.4: Root approximation by Bisection method

There are three possibilities that can arise:
	 (i)	 If f(x3) = 0, then we have a root at x3.
	 (ii)	 If f(x1) and f(x3) are of opposite sign, then the root lies in the interval (x1, x3). Thus x2 is replaced

by x3, and the new interval, which is half of the current interval, is again bisected.
	 (iii)	 If f(x1) and f(x3) are of same sign, then the root lies in the interval (x3, x2). Thus x1 is replaced by

x3, and the new interval is again bisected.
Therefore by repeating this interval bisection procedure, we keep enclosing the root in a new search

interval, which is halved in each iteration.
This iterative cycle is terminated when the search interval becomes smaller than the prescribed

tolerance (error permitted in the root). Hence, if epsilon is the prescribed tolerance in the required root,
then the iterative cycle terminates when the absolute error becomes less than or equal to epsilon, i.e.,
		 |x1 – x2| < epsilon

We take the mid-point of the last search interval as the desired approximation to the root.
 Listing 5.6
 /*
 * Program to implement Bisection method to find one of the
 * root of equation x^3 - 4x - 9 = 0
 */
 #include<stdio.h>
 #include<stdlib.h>
 #include<math.h>
 double f(double x)
 {
 return pow((double)x,(double)3.0)-4*x-9;
 }
 int main()
 {
 float x1, x2, epsilon, x3;
 printf(″Enter first point of the search interval : ″);
 scanf(″%f″, &x1);
 printf(″Enter second point of the search interval : ″);
 scanf(″%f″, &x2);

Basic Algorithms  |  173

 if ((f(x1) * f(x2)) > 0) {
 printf(″\nInitial approximations are unsuitable\n″);
 return 1;
 }
 printf(″Enter prescribed tolerance : ″);
 scanf(″%f″, &epsilon);
 do {
 x3 = (x1+x2)/2;
 if (f(x1) * f(x3) < 0)
	 x2 = x3;
 else
	 x1 = x3;
 }
 while(fabs((double)(x1-x2)) > epsilon);
 printf(″\nApproximate root = %8.4f\n″, x3);
 return 0;
 }

 Test Runs
 Test Run 1
 Enter first point of the search interval : 2.5

 Enter second point of the search interval : 2.6

 Initial approximations are unsuitable

 Test Run 2
 Enter first point of the search interval : 2.6

 Enter second point of the search interval : 2.8

 Enter prescribed tolerance : 0.0001

 Approximate root = 2.7065

UNIT SUMMARY
In this chapter, we have learned that
	 q	 Searching is the process of finding the location of given element in an array.
	 q	 Various searching techniques include linear search and binary search.
	 q	 If the array is un-sorted, only choice of searching an element is linear search. However, if the

array is sorted, binary search is a better choice.
	 q	 Sorting is the process of arranging the elements in some logical order.
	 q	 Various sorting techniques include bubble sort, selection, and insertion sort.
	 q	 Among other methods, Bisection method is one of the simplest method to find of root at a time

of polynomial equation of type f(x) = 0.

174  |  Programming for Problem Solving

EXERCISE

Subjective Questions
	 1.	 What is searching?
	 2.	 Describe the linear search method with suitable example.
	 3.	 Describe the binary search method with suitable example.
	 4.	 What is sorting? What is the need of sorting?
	 5.	 Describe the bubble sort method with suitable example.
	 6.	 Describe the selection sort method with suitable example.
	 7.	 Describe the insertion sort method with suitable example.
	 8.	 Describe the Bisection method to find root of an equation.
	 9.	 Given the elements of an array are given as 12, 7, 13, 9, 10, 77, 2, 8. What will be the arrangement

of elements after first pass of the bubble sort method?
	 10.	 Given the elements of an array are given as 11, 70, 13, 99, 5, 17, 21, 38. What will be the

arrangement of elements after three passes of the selection sort method?
	 11.	 Given the elements of an array are given as 12, 7, 11, 92, 13, 71, 21, 38. What will be the

arrangement of elements after four passes of the insertion sort method?
	 12.	 Given the elements of an unsorted array are given as 12, 7, 11, 92, 13, 71, 21, 38. Describe the

steps in order to search elements 71 and 100.
	 13.	 Given the elements of a sorted array are given as 82, 70, 61, 52, 43, 31, 24, 18. Describe the steps

in order to search elements 24 and 99.

Multiple Choice Questions
	 1.	 What is the worst-case time for linear search finding a single item in an array?
	 (a)	 Constant time	 (b)	 Logarithmic time
	 (c)	 Linear time	 (d)	 Quadratic time
	 2. 	 What is the worst-case time for binary search finding a single item in an array?
	 (a)	 Constant time	 (b)	 Logarithmic time
	 (c)	 Linear time	 (d)	 Quadratic time
	 3.	 What additional requirement is placed on an array, so that binary search may be used to locate

an entry?
	 (a)	 The array elements must form a heap	 (b)	 The array must have at least 2 entries
	 (c)	 The array must be sorted	 (d)	 The array’s size must be a power of two
	 4.	 The best way to find an item in an unsorted implemented using an array list is with _________.
	 (a)	 Linear search	 (b)	 Binary search
	 (c)	 Random search	 (d)	 Direct search

Basic Algorithms  |  175

	 5.	 Using Big O notation, the number of comparisons required by a binary search is
	 (a)	 O(log2n)	 (b)	 O(n)	 (c)	 O(n2)	 (d)	 O(nlog2n)
	 6.	 In a selection sort of n elements, how many times, at most, the swap function is called in the

complete execution of the algorithm?
	 (a)	 1	 (b)	 n-1	 (c)	 nlog2n	 (d)	 n2	
	 7.	 Suppose that a selection sort of 100 items has completed 42 iterations of the main loop. How

many elements are now guaranteed to be in their final spot?
	 (a)	 21	 (b)	 41	 (c)	 42	 (d)	 43	
	 8.	 Suppose we are sorting an array of eight integers in ascending order using some sorting algorithm.

After four iterations of the algorithm’s main loop, the array elements are ordered as shown here:
 	 			 52 54 55 57 58 51 53 56
		 Which statement is correct?
	 (a)	 Algorithm might be either selection sort or insertion sort
	 (b)	 Algorithm might be selection sort, but it is not insertion sort
	 (c)	 Algorithm is not selection sort, but it might be insertion sort
	 (d)	 Algorithm is neither selection sort nor insertion sort
	 9.	 Suppose we are sorting an array of ten integers in ascending order using some sorting algorithm.

After four iterations of the algorithm’s main loop, the array elements are ordered as shown here:
				 11 22 33 42 55 50 66 87 98 80
		 Which statement is correct?
	 (a)	 Algorithm might be either selection sort or insertion sort
	 (b)	 Algorithm might be selection sort, but it is not insertion sort
	 (c)	 Algorithm is not selection sort, but it might be insertion sort
	 (d)	 Algorithm is neither selection sort nor insertion sort
	 10.	 Which of the following algorithm can be modified to improve its performance?
	 (a)	 Selection sort	 (b)	 Bubble sort
	 (c)	 Insertion sort	 (d)	 None of the above	

ANSWERS
1. (c) 2. (b) 3. (c) 4. (a) 5. (a)
6. (b) 7. (c) 8. (c) 9. (b) 10. (b)

Programming Problems
	 1.	 Write a program to search an element using binary search when the given elements are sorted in

descending order.
	 2.	 You are given list of names of students in your class. Write a program to sort the names in

dictionary order using a sorting algorithm of your choice.

176  |  Programming for Problem Solving

	 3.	 Write a program to sort letters of your name in reverse dictionary order.
	 4.	 Write a program to sort a list of numbers in descending order using bubble sort method.

Incorporate the ability in the algorithm that if the list gets sorted before exhausting all the phases,
the algorithm must stop.

PRACTICALS

In addition to the above programs for searching and sorting as part of the lab, there are programs for lab
to solve numerical methods that include finding numerical differentiation and integration.

These programs are described next.

1. Numerical Differentiation
Many problems in science and engineering involve the use of differentiation of various types of functions.
If a function is expressed in mathematical form, its derivative can be easily obtained by analytical
methods.

But in many situations, the values of the independent variable x and the corresponding values of the
dependent variable y are available in tabular form.

Consider the situation where the distance covered by an athlete as a function of time during his/her
run for a 100-meter race is given in the following table:
Time (Secs.) : 0 1 2 3 4 5 6 7 8 9 10
Distance (Mts.) : 0 2.5 10 20 30.5 50 54 65.5 77.2 88.5 100

Here many questions can be asked, for example:

	 1.	 What was the speed of the athlete after 5 seconds?
	 2.	 What was the speed of the athlete as he approached the tape?
	 3.	 What was the acceleration of the athlete after 88 seconds?

Normally, speed and acceleration are calculated analytically. Suppose y represents the distance
traveled by the athlete in x seconds, then

Speed =
dy
dx 	 Acceleration 	=

d2y
dx2

But the mathematical relationship between y and x is not known in the above example. Therefore, it
is not possible to use analytical methods. However, we can use the data given in the table to approximate

the values of
dy
dx and

d2y
dx2 . Technique, which performs such calculations, is known as numerical

differentiation.
The general formula to obtain numerical value of first derivative at one of tabulated points is

1

1

1 (1)
k

n k
kjj

x x
j

ddy
dx h j

-
+

=
=

 
= - 

 
Σ

where kjd represents j
kD (jth order forward difference at tabulated point x = xk) and is the element of

the forward difference table represented by a matrix D of order (n-1)×(n-1) for a function tabulated at
n points.

Basic Algorithms  |  177

Table 5.1: Forward difference table

i xi yi Dyi D2yi D3yi

1
2
3
4

x1
x2
x3
x4

y1
y2
y3
y4

Dy1 = y2 – y1
Dy2 = y3 – y2
Dy4 = y4 – y3

D2y1 = Dy2 – Dy1
D2y2 = Dy3 – Dy2

D3y1 = D2y2 – Dy1

As we can see from the above table that the forward difference table for a function tabulated at four
equally a matrix D of size 3×3 can represent spaced points. In general, the forward difference table for a
function tabulated at n equally spaced points can be represented by a matrix of size (n-1)×(n-1) where
the jth order forward difference at the ith point () is represented by the element dij of the matrix D. Note
that only the elements in the column 1 to (n-i), for rows i = 1, 2, 3, . . ., n-1, are of interest.
Example 5.5: Given the following table

x : 0.50 0.75 1.00 1.25 1.50
y = f(x) : 0.13 0.42 1.00 1.95 2.35

 Find f 1(0.75).
Solution: The forward difference table for the given data is

i xi yi Dyi D2yi D3yi D4yi

1 0.50 0.13 0.29 0.29 0.08 -1.00
2 0.75 0.42 0.58 0.37 -0.92
3 1.00 1.00 0.95 -0.55
4 1.25 1.95 0.40
5 1.50 2.35

		 Since h = 0.25, and the derivative is desired at the x = 0.75 (i.e., k = 2). Expanding the formula up
to third term, we get

				 0.75x
dy
dx = = 2322

21
1

2 3
dd

d
h

 
- + 

 

					 = 1 0.37 0.920.58
0.25 2 3

- - +  
 = []1 0.58 0.185 0.307

0.25
- - = 0.352

 Listing 5.7
 /*
 * Program to compute first derivative of the tabulated function
 */
 #include<stdio.h>
 int main()
 {
 float x[10], y[10], d[10][10], a, sum, derivative, h, term;
 int i, j, k, n, sign;

178  |  Programming for Problem Solving

 printf(″Enter number of table points n(<=10) : ″);
 scanf(″%d″, &n);
 printf(″Enter interval size : ″);
 scanf(″%f″, &h);
 printf(″Enter %d pair of values as x,y\n″, n);
 for (i = 1; i <= n; i++)
	 scanf(″%f,%f″, &x[i], &y[i]);
 printf(″Enter tabulated point where to find derivative : ″);
 scanf(″%f″, &a);
 if ((a < x[1]) || (a > x[n]))
 {
 	 printf(″\nValue lies outside range\n″);
	 return 1;
 }
 i = 1;
 while (a != x[i])
 i++;
 k = i;
 for (j = 1; j <= (n-1); j++)
 {
	 for (i = 1; i <= (n-j); i++)
 {
	 if (j == 1)
	 d[i][j] = y[i+1] - y[i];
	 else
	 d[i][j] = d[i+1][j-1] - d[i][j-1];
	 }
 }
 sum = 0.0;
 sign = 1;
 for (j = 1; j <= (n-k); j++)
 {
	 term = sign * d[k][j] / j;
	 sum = sum + term;
	 sign = - sign;
 }
 derivative = (1.0/h) * sum;
 printf(″\nValue of derivative = %.3f\n″, derivative);
 return 0;
 }

 Test Run
 Enter number of table points n(<=10) : 5
 Enter interval size : 0.25
 Enter 5 pair of values as x,y

Basic Algorithms  |  179

 0.5,0.13
 0.75,0.42
 1.0,1.0
 1.25,1.95
 1.5,2.35
 Enter tabulated point where to find derivative : 0.75
 Value of derivative = 0.352

2. Numerical Integration
Numerical integration is the process of computing the value of a definite integral from a set
of numerical values of the function. If a function is defined as a mathematical expression,
then its integral is usually determined using the techniques of calculus, such solutions are
called closed form solutions.

Often, functions that are available in the form of tables and no mathematical relationship
between the variables are known.

In all such situations, values of the integral can be obtained by numerical technique
whose aim is to provide effective procedures for approximate evaluation of definite integrals.

f(x)

p(x)
f(x)

xx = bx = a

Fig. 5.5: Approximating polynomial p(x) for function f(x)

In practice, given set of values for a function f(x), the following table of data

 x : a x1 x2 x3 … b
f(x) : f(a) f(x1) f(x2) f(x3) … f(b)

is used to compute the value of the integral .

x = a

f(x)

x = b x

Fig. 5.6: Definite integral represented by the shaded area

180  |  Programming for Problem Solving

The definite integral of a function is the area under the curve y = f(x) enclosed between
the limits x = a and x = b, the problem of computing the integral of a function is reduced to
the problem of finding the shaded area as shown in Fig. 5.6.

The popular methods used to find numerical integration include:
	 l	 Trapezoidal rule		 l Simpson’s 1/3rd rule		 l Simpson’s 3/8th Rule

We will consider Trapezoidal rule as an example to find the numerical integration of a function.

Trapezoidal Rule
The trapezoidal rule approximates the area under a curve by connecting successive points on the curve
to form trapezoids of uniform width, and then summing the area under these trapezoids to obtain the
approximate area under the curve.

Consider the function f(x), whose graph between x = a and x = b is shown in Fig. 5.7. An
approximation to the area under the curve is obtained by dividing the interval [a, b] into n strips of
width h each, and approximating the area of each strip by that of a trapezoid as shown by the shaded area.

x = a

f(x)

x

h

D C

BA
x = bx = xk x = xk+1

Fig. 5.7: Approximation of area by Trapezoidal rule

Formula for trapezoid rule is

1 2 3 4 12 2 2 .. 2
2 n n
hI y y y y y y += + + + + + +  

assuming that function f(x) is given in the following form

x x1 x1+h x1+2h … x1+nh
y = f(x) y1 y2 y3 … yn+1

Example 5.6: The function f(x) is given as follows:

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Compute the integral of f(x) between x = 0 and x =1.0.

Solution: Given h = 0.1 and n = 10

Basic Algorithms  |  181

The formula for Trapezoidal rule is

 I []1 2 3 4 5 6 7 8 9 10 112()
2
h y y y y y y y y y y y= + + + + + + + + + +

Substituting the values of yi’s and h, we get

 	I = []0.1 1 2 (1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8) 3.0
2

+ × + + + + + + + + + = 2.00

 Listing 5.8
 /* Program to implement Trapezoidal rule for tabulated function */
 #include<stdio.h>
 int main()
 {
 int i, n;
 float x[20], y[20], h, sum, integral;
 printf(″Enter number of intervals n(<=20) : ″);
 scanf(″%d″, &n);
 printf(″Enter size of interval : ″);
 scanf(″%f″, &h);
 printf(″Enter %d pair of values as x,y \n″, n+1);
 for (i = 1; i <= (n+1); i++)
 scanf(″%f,%f″, &x[i], &y[i]);
 sum = (y[1] + y[n+1])/2;
 for (i = 2; i <= n; i++)
 sum = sum + y[i];
 integral = h * sum;
 printf(″\nValue of the integral = %7.2f\n″, integral);
 return 0;
 }

 Test Run
 Enter number of intervals n(<=20) : 10
 Enter size of interval : 0.1
 Enter 11 pair of values as x,y
 0,1
 0.1,1.2
 0.2,1.4
 0.3,1.6
 0.4,2.0
 0.5,2.2
 0.6,2.4
 0.7,2.6

182  |  Programming for Problem Solving

 0.8,2.8
 0.9,3.0
 1.0,1.2
 Value of the integral = 2.00

KNOW MORE
The teacher is expected to explain these methods with the help of examples, and facilitate that should
be able to solve on their own. Once they understand the various methods discussed, they should be
encouraged to create program on their own.

Guide the students to take the program developed as a reference. The purpose of giving programs in
the book is not to encourage spoon feeding rather demonstrate the good programming style.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi..
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to functions. The use of functions allows a programmer to divide
complex problems into small size independent sub problems that can be solved separately and their
solutions can be synthesized to obtain the solution of given complex problem. This unit explains various
aspects functions and demonstrates their use with suitable examples.

RATIONALE
In many real-life situations, we may have to deal with problems whose size and complexity is higher.
Solving these problems in one shot can we very tiresome and error prone. The best way to solve
such problems is to divide them into sub problems that are independent of each other can be solved
independently with much ease. Once each sub problem is solved, solution of these sub problems can be
synthesized to obtain the solution of the entire problem.

Likewise a complex program can be divided into functions that are independent. These functions
can be developed independently of each other and later integrated to make a complete program.

This unit will help the student to understand the various aspects related to functions.

PRE-REQUISITES
	 –	 Condition branching
	 –	 Loops and nested loops
	 –	 Arrays and strings

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U6-O1: explain the usefulness of functions
U6-O2: explain various type of functions
U6-O3: explain the concept of local data and global data
U6-O4: explain all aspects related to declaring, defining, and calling a functions
U6-O5: explain the different ways of passing arguments to a function
U6-O6: develop modular programs for solving real-life problems

6 Functions

184  |  Programming for Problem Solving

Unit 6
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U6-O1 1 - - - 1 - - -

U6-O2 - - - - 1 - - -

U6-O3 - - - - 1 - - -

U6-O4 - - 3 - 2 - - -

U6-O5 - - 2 - 2 - - -

U6-O6 - - - - 3 - - -

6.1  INTRODUCTION
The programs we have discussed so far were very simple and straightforward. They could solve problems
that can be understood without much effort. As we move to larger and larger and more complex problems
and hence programs, you will discover that it is not possible to understand all aspects of such problems
and hence programs without some how reducing them to more elementary parts.

In this unit, we will learn various aspects related to functions.

6.2  WHAT IS A FUNCTION?
A function is an independent unit of execution that performs some specific task within the framework
of a program.

It is independent in the sense it has its own declarations for declaring variables local to the functions
and own set of instructions that define the task to be accomplished by the functions.

Every C program is made up of one or more functions. If it is made of only one function, it will be
the main function. The execution of the program always begins from the main function. However, there
is no restriction on the number of functions in a program. The determining factor regarding the number
of functions required will be the size and complexity of the problem that the program is going to deal
with.

When we run a C program, the operating system calls the main function, and then control is passed
to the main function. The main function can call any function, and one function other than main can
call another function.

Main

readMatrix addMatrix printMatrix

Fig. 6.1: Hierarchical organization of a multifunction program

Functions  |  185

 As shown in Fig. 6.1, the program consists of four functions including main function, and the
intended task of the program to add two matrices. The readMatrix function to perform the input of a
given matrix, and it will be called twice by the main function to perform the input of two matrices such
as Am×n and Bm×n.

Then function addMatrices will be called which will perform the addition of matrices Am×n and
Bm×n and as a result will return another matrix Cm×n to the main function.

Finally, the main function will call printMatrix function to perform the output of Cm×n matrix.

6.3  ADVANTAGES OF USING FUNCTIONS
Several advantages are associated with the use of functions. Some of the major advantages are
	 1.	 The use of functions allows managing large and complex problems by dividing them into small,

simple and manageable parts.
	 2.	 The use of functions provides a way to reuse code that is required more than once a program.
		 As an example, assume that a program requires computing average of series of numbers in

five different parts of the program. Each time the data is different. We could write the code
to compute the average five times, but this would take a lot of effort. It is much easier to write
the code once as a function and then call it five times to compute the average by passing to it
different sets of data.

	 3.	 The use of functions can protect data. This is done using the concept of local data. Local data
consist of data described in a function. This data is available only to the function and that too
while the function is executing.

	 4.	 Various functions comprising a program can be developed and tested in parallel, and thus
reducing the total development time of the program.

6.4  TYPE OF FUNCTIONS
The following are two categories of functions:
	 l	 Library functions - These are the functions which are pre-written, compiled, and their machine

code is available is the system library files. The machine code of the library functions referred in
your program is added to your by linker during the linking process.

		 Note that library functions are not part of the C language; they are provided by the vendors
who developed C compiler for the convenience of the user. To use them you need to include
appropriate header file.

	 l	 User-defined functions - These are the functions which are developed by the users to meet the
requirements of the program in hand. If they are already developed, we can use their source
code in our new program, and thus save lot of time and effort.

In this unit, our discussion is primarily on user-defined functions.

6.5  CONCEPT OF LOCAL DATA & GLOBAL DATA
The formal arguments and variables declared in the body of a function are unknown outside the function.
The factor that determines which function recognizes a variable and which don’t is called the visibility of
variable. A local variable will be visible to the function in which it is declared, but not to others.

186  |  Programming for Problem Solving

In contrast, a global variable is declared in the beginning, i.e., before main function. It is visible to
all the functions and exists till the program terminates.

6.6  USER-DEFINED FUNCTIONS
Though all the C Compilers available provide a rich collection of library functions, bit still as per the
requirement of the program that provides a software solution to real-life problem, there is need to create
functions specific to the requirements.

The C language provides all the specifications to deal with all aspects of user-defined functions that
we are going to discuss next.

The user-defined functions in C fall in the following five categories:
	 l	 Functions that takes no argument(s) and return no value.
	 l	 Functions that takes argument(s) but return no value.
	 l	 Functions that takes no argument(s) but return a value.
	 l	 Functions that takes argument(s) and also return a value.
	 l	 Functions that return multiple values

6.7  DECLARING AND DEFINING FUNCTIONS
Like every variable in C, every function also needs to be declared and defined.

6.7.1  Declaring a Function
Function declaration consists only of a function header; it contains no code. Function header consists
of three parts: the return type, the function name, and the formal argument list. A semicolon follows the
function header.

returnType functionName(formal argument list);

Fig. 6.2: Syntax for function declaration

Function declaration gives the whole picture of the function that needs to be defined later.
Function declaration is also known as function prototype.
If the function has no arguments, then we write void in the parentheses. If the function has two or

more arguments, each is separated by comma.
The following function declaration

 int larget(int a, int b, int c);

tells the compiler that the return type of the function is int, name of the function is largest, and it has
three argument, all of type int. The names of the arguments are not significant.

Even the following function declaration

 int larget(int, int, int);
is equally good and serves the purpose as earlier declaration

Functions  |  187

6.7.2  Defining a Function
Function definition consists two parts; function header and function body.

Function Header

 returnType functionName(formal argument list)

 {
 // Local declarations
 . . .
 // statements
 . . .
 }

Function Body

Fig. 6.3: Syntax for function definition

Function Header
Function header consists of three parts: the return type, the function name, and the formal argument list.
A semicolon is not used at the end of function header.

When nothing is to be returned, the return type void is used.
The formal argument list declares the variable that will receive the data from the calling function

and may also contain variable that can be used to send the data back to the calling function.

The function prototype and function header must match, except semicolon.

Function Body
The function body contains the local declarations and the instructions that define the task
to be accomplished by the function. The body starts with local declarations that specify the
variables needed by the function followed by the instructions.

Let us take few examples to declare and define few functions to perform simpler tasks.

Example 6.1: Declare and define a function named maximum that takes three arguments, each of type int,
and returns the largest of them.

Declaration:
 int maximum(int x, int y, int z);

188  |  Programming for Problem Solving

Definition:
 int maximum(int x, int y, int z)
 {
 if ((x > y) && (x > z))
 return x;
 else if (y > z)
 return y;
 else
 return z;
 }

The logic of the above function can also be written as

 int maximum(int x, int y, int z)
 {
 int big;
 big = x;
 if (y > big)
 big = y;
 if (z > big)
 big = z;
 return big;
 }

Example 6.2: Declare and define a function named isEven that takes single argument n of type int, and
returns 1 if n is even else returns 0.
Declaration:
 int isEven(int n);

Definition:
 int isEven(int n)
 {
 if (n % 2 == 0)
 return 1;
 else
 return 0;
 }

The logic of the above function can also be written as
 int isEven(int n)
 {
 return (n % 2 ? 1 : 0);
 }

Functions  |  189

Example 6.3: �Declare and define a function named sumOfDigits that takes single argument n of type int,
and returns the sum of digits of n.

Declaration:
 int sumOfDigits(int n);

Definition:

 int sumOfDigits(int n)
 {
 int i, s = 0, d ;
 while (n > 0)
 {
 d = n % 10;
 s = s + d;
 n = n / 10;
 }
 return s;
 }

6.8  CALLING A FUNCTION
Like library functions, the user-defined functions are called from a function simply by its name, including
the actual arguments, if any, enclosed within parentheses.

However, parentheses must follow the function name even if there is no actual argument to be
passed to the function.

The actual arguments, if any, must correspond in number, type, and order with formal arguments.
When the name of the function is encountered, the control is transferred to the called function.

The formal arguments are replaced by the actual arguments and the execution of the function is carried
out. When the return statement is executed or last statement has finished its execution, the control is
transferred back to the calling function.

If the function is not returning a value, then the function call will appear as a standalone instruction.
If the function is returning a value, then the function call can appear in an assignment statement, in

an arithmetic expression or in conditional statement or the printf() function as well.
The functions defined in example 6.1 to 6.3, can be called in following possible ways.

 big = maximum(a, b, c);

 if (isEven(n) == 1)
 printf(″\n%d is an Even number.\n″);
 else
 printf(″\n%d is an Odd number.\n″);

 printf(″\nSum of digits of %d = %d\n″, n, sumOfDigits(n));

190  |  Programming for Problem Solving

6.9  THE return STATEMENT
The syntax of return statement is
 return;			 or		 return (exp);

where exp can be a constant, variable or expression. Use of parentheses around exp is optional. The
first form is used with functions defined with return type as void.

The return statement serves two purposes:
	 l	 Execution of return statement terminates the execution of the function and transfers control

from the function back to the calling function.
	 l	 Whatever is following the return statement is returned as a value to the calling function.
	 l	 The return statement need not be last statement of the function. It can be used any where in

the function. As soon as it is executed, the control will return to the calling function. Further, a
function can contain any number of return statements.

�There is key limitation of return statement ¾ it can return only one value. If you want your
function to return two or more values to the calling function, you have to use other means.

6.10  PASSING ARGUMENTS TO A FUNCTION
The mechanism used to pass data to a function is via argument list, where individual arguments are
called actual arguments. These arguments are enclosed in parentheses after the function name. The
actual arguments must correspond in number, type, and order with formal arguments specified in the
function definition. The actual arguments can be constants, variables, array names, or expressions.

There are two approaches to passing arguments to a function:
	 l	 Call by value		 l Call by reference

Let us describe these one by one.

6.10.1  Call by Value
In this approach, the actual arguments are used in the function call. The actual argument can be a
variable, a constant, or an expression.

When the function is called, the values of the actual arguments are substituted to the corresponding
formal arguments, and then the control is transferred to the function.

The local variables of the function are created and after that the statements that define the task to
be the function are executed. If the called function is supposed to return a value, it is returned via return
statement.

Following points must be noted about passing arguments using call by value mechanism:
	 1.	 The actual arguments can be constants, variables, or expressions.
	 2.	 When the control is transferred from the calling function to the called function, the memory for

local variables is allocated, and the statements in the function body are executed.
	 3.	 As soon as the called function finishes its execution, the memory allocated for its local variables

is de-allocated, and finally the control is transferred back to the calling function.
	 4.	 Any change made to the formal arguments will have no effect on actual arguments, since the

function will only be using the local copy of the arguments.

Functions  |  191

Following function definition illustrates the mechanism of passing arguments by value.
 void swap(int a, int b)
 {
 int temp;
 temp = a;
 a = b;
 b = temp;
 }

The above function will be called as
 swap(x,y);

where x and y are actual arguments in the calling function.
 Listing 6.1
 /*
 Program to illustrate the passing of arguments by value.
 It calls a function swap() that swaps/interchanges
 values of arguments.
 */
 #include <stdio.h>
 void swap(int a, int b); /* function prototype */
 int main()
 {
 int x, y;
 printf(«\nEnter value for x : «);
 scanf(«%d», &x);
 printf(«\nEnter value for y : «);
 scanf(«%d», &y);
 printf(″\nBefore calling swap function\n″);
 printf(″\nValue of x = %d, Value of y = %d\n″, x, y);
 swap(x,y); /* function call */
 printf(″\nAfter returning from swap function\n″);
 printf(″\nValue of x = %d, Value of y = %d\n″, x, y);
 return 0;
 }
 void swap(int a, int b)
 {
 int temp;
 printf(″\nValues received from the main function\n″);
 printf(″\nValue of a = %d, Value of b = %d\n″, a, b);
 temp = a;
 a = b;
 b = temp;

192  |  Programming for Problem Solving

 printf(″\nValues of local copy after swapping\n″);
 printf(″\nValue of a = %d, Value of b = %d\n″, a, b);
 }

 Test Run
 Enter value for x : 10
 Enter value for y : 12
 Before calling swap function
 Value of x = 10, Value of y = 12
 Values received from the main function
 Value of a = 10, Value of b = 12
 Values of local copy after swapping
 Value of a = 12, Value of b = 10
 After returning from swap function
 Value of x = 10, Value of y = 12

You must have observed that any change made to the formal arguments have not effect on the actual
arguments.

6.10.2  Call by Reference
In this approach, the addresses of the actual arguments are used in the function call. The actual argument
can be variables only.

The formal arguments are declared as pointers to types that match the data types of the actual
arguments.

When the function is called, the addresses of the actual arguments are substituted to the
corresponding formal arguments which are pointers, and then the control is transferred to the function.

The local variables of the function are created and after that the statements that define the task to
be the function are executed.

If the called function is supposed to return a value, it is returned via return statement.
Following points must be noted about passing arguments using call by reference mechanism:

	 1.	 The actual arguments can only be variables.
	 2.	 When the control is transferred from the calling function to the called function, the memory for

local variables is allocated, and the statements in the function body are executed.
	 3.	 As soon as the called function finishes its execution, the memory allocated for its local variables

is de-allocated, and finally the control is transferred back to the calling function.
	 4.	 Any change made to the formal arguments will have immediate effect on actual arguments,

since function will be working on actual arguments through pointers.
Following function illustrates mechanism of passing arguments by reference (address).

 void swap(int *a, int *b)
 {
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
 }

Functions  |  193

The above function will be accessed as
 swap(&x,&y);

where x and y are actual arguments in the calling function.
 Listing 6.2
 /*
 Program to illustrate the passing of arguments by reference.
 It calls a function swap() that interchanges values of arguments.
 */

 #include <stdio.h>
 void swap(int *a, int *b); /* function prototype */

 int main()
 {
 int x, y;
 printf(″\nEnter value for x : ″);
 scanf(″%d″, &x);
 printf(″\nEnter value for y : ″);
 scanf(″%d″, &y);
 printf(″\nBefore calling swap function\n″);
 printf(″\nValue of x = %d, Value of y = %d\n″, x, y);
 swap(&x,&y); /* function call */
 printf(″\nAfter returning from swap function\n″);
 printf(″\nValue of x = %d, Value of y = %d\n″, x, y);
 return 0;
 }
 void swap(int *a, int *b)
 {
 int temp;
 printf(″\nValues received from the main function\n″);
 printf(″\nValue of *a = %d, Value of *b = %d\n″, *a, *b);
 temp = *a;
 *a = *b;
 *b = temp;
 printf(″\nValues of local copy after swapping\n″);
 printf(″\nValue of *a = %d, Value of *b = %d\n″, *a, *b);
 }

 Test Run
 Enter value for x : 10
 Enter value for y : 12

194  |  Programming for Problem Solving

 Before calling swap function
 Value of x = 10, Value of y = 12
 Values received from the main function
 Value of *a = 10, Value of *b = 12
 Values of local copy after swapping
 Value of *a = 12, Value of *b = 10
 After returning from swap function
 Value of x = 12, Value of y = 10

You must have observed that any change made to the formal arguments is reflected back in the
actual arguments.

Next program is another example to demonstrate the passing of arguments using call by reference.

 Listing 6.3
 /* Program that calls function example() to find the average of
 two numbers, largest & smallest of these numbers. The
 average is retuned via return statement while largest and
 smallest numbers are returned via formal arguments
 */
 #include <stdio.h>
 /* function prototype */
 float example(float x, float y, float *big, float *small);
 int main()
 {
 float x, y, avg, larger, smaller;
 printf(″\nEnter value for x : ″);
 scanf(″%f″, &x);
 printf(″\nEnter value for y : ″);
 scanf(″%f″, &y);
 avg = example(x,y,&larger,&smaller); /* function call */
 printf(″\nAverage of %.2f and %.2f is %.2f\n″, x, y, avg);
 printf(″\nLarger number is %.2f\n″, larger);
 printf(″\nSmaller number is %.2f\n″, smaller);
 return 0;
 }
 /*
 Function to compute the average of two numbers and find the
 largest and smallest of these numbers
 */
 float example(float x, float y, float *big, float *small)
 {
 float average;

Functions  |  195

 average = (x + y) / 2;
 if (x > y) {
 *big = x;
 *small = y;
 } else {
 *big = y;
 *small = x;
 }
 return average;
 }

 Test Run
 Enter value for x : 10.5
 Enter value for y : 12.5
 Average of 10.50 and 12.50 is 11.50
 Larger number is 12.50
 Smaller number is 10.50

6.10.3  Comparison between Call by Value and Call by Reference
Table 6.1 highlights the key points of differences regarding the prototype, definition and function call.

Table 6.1: Difference between call by value & call by reference Part-1

Call by Value Call by Reference
Function Prototype:
 void swap(int a, int b);

Function Prototype:
 void swap(int *a, int *b);

Function Definition:
 void swap(int a, int b)
 {
 int temp;
 temp = a;
 a = b;
 b = temp;
 }

Function Definition:
 void swap(int *a, int *b)
 {
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
 }

Function Call:
 swap(x, y);

Function Call:
 swap(&x, &y);

Table 6.2 highlights the key points of differences regarding the nature of actual arguments, nature of
formal arguments and the impact of any change/modification of formal arguments on actual arguments.

Table 6.2: Difference between call by value & call by reference Part-2

Call by Value Call by Reference
Actual arguments can be constants, variables, or
expressions.

Actual arguments can only be variables.

Formal arguments are ordinary variables. Formal arguments are pointer variables.

196  |  Programming for Problem Solving

Call by Value Call by Reference
Values of actual arguments are substituted in
formal arguments.

Addresses of the actual arguments are substituted
in formal arguments.

Any change made to formal arguments will have
no effect on actual arguments, since the function
will only be using the local copy of the arguments.

Any change made to pointer variables will have
immediate effect on actual arguments, since the
function will be working on actual arguments
through address.

6.10.4  Passing One-Dimensional Array as Argument
Note that instead of passing values of all elements of an array to a function, only address of the array is
passed. As you know, in C, the name of an array is base address, i.e., address of the first element of the
array.

/* main function */

#include <stdio.h>

void fun(int x[], int m);

void main()

{

 int a[10], n;

 /* other local declarations */

 func(a, n); /* function call */

 /* other statements */

}

/* function definition */

void fun(int x[], int m)

{

 /* local declarations */

 /* other statements */

}

Fig. 6.4: Passing one-dimensional array as an argument to a function

Because the name of the array is in fact its address, therefore, passing the array name allows called
function to refer to the array back in the calling function.

 Listing 6.4
 /* Program to demonstrate the passing of an array as an argument */
 #include <stdio.h>
 int largest(int x[], int n);	 /* function prototype */
 int main(void)
 {
 int a[10]={12,15,20,17,25,50,11,10,8,13};
 int i;
 printf(″Largest element of array = %d\n″, largest(a,10));
 return 0;
 }
 /* function that returns largest element of the array */

Functions  |  197

 int largest(const int x[], int n)
 {
 int big, i;
 big = x[0];
 for (i = 1; i < n; i++) {
 if (x[i] > big)
 big = x[i];
 }
 return big;
 }

 Test Run
 Largest element of array = 50

6.10.5  Passing Two-Dimensional Array as Argument
When we pass two-dimensional array to a function, we use the array name as we did with one-dimensional
array. The formal argument in the argument list in the called function header must indicate the array has
two dimensions. This is done by including two sets of brackets, one for each dimension. The first pair
of bracket can be empty but in the second pair of brackets we need to specify the size that is equal to the
size of the corresponding dimension of the actual array. During function call, only the base address of
the array is passed.

/* main function */

#include <stdio.h>

void fun(int x[][4], int m, int n);

void main()

{

 int a[4][4];

 /* other local declarations */

 func(a,m,n); /* function call */

 /* other statements */

}

/* function definition */

void fun(int x[][4], int m, int n)

{

 /* local declarations */

 /* other statement */

}

Fig. 6.5: Passing two-dimensional array as an argument to a function

 Listing 6.5
 /*
 Program to add matrix A(mxn) and matrix B(mxn).
 This program uses function to read, add and display matrices.
 */
 #include<stdio.h>

198  |  Programming for Problem Solving

 #define ROWS 10
 #define COLS 10
 /* function declarations */
 void readMatrix(int a[][COLS], int m, int n);
 void printMatrix(int a[][COLS], int m, int n);
 void addMatrices(int a[][COLS], int b[][COLS], int c[][COLS],
 int m, int n);
 int main()
 {
 int a[ROWS][COLS], b[ROWS][COLS], c[ROWS][COLS];
 int n, m;
 char ch;
 printf(″Enter size of matriices as mxn: ″);
 scanf(″%d%c%d″, &m, &ch, &n);
 readMatrix(a,m,n);	 	 /* input matrix A(mxn) */
 readMatrix(b,m,n);	 	 /* input matrix B(mxn) */
 addMatrices(a,b,c,m,n); /* add matrix A(mxn) & matrix B(mxn) */
 printf(″\nSum A+B is\n\n″);
 printMatrix(c,m,n); /* output matrix C(mxn) */
 return 0;
 }
 /* function that reads a matrix A(mxn) */
 void readMatrix(int a[][COLS], int m, int n)
 {
 int i, j;
 printf(″\nEnter %d elements of matrix A row-wise\n″, m*n);
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 scanf(″%d″, &a[i][j]);
 }
 }
 }
 /* function that displays a matrix ′a′ of order mxn */
 void printMatrix(int a[][COLS], int m, int n)
 {
 int i, j;
 for (i = 0 ; i < m; i++) {
 for (j = 0; j < n; j++) {
 printf(″%4d″, a[i][j]);

Functions  |  199

 }
 printf (″\n″);
 }
 }
 /*
 function that adds A(mxn) & b(mxn), and
 stores the sum in matrix c(mxn)
 */
 void addMatrices(int a[][COLS], int b[][COLS], int c[][COLS],
 int m, int n)
 {
 int i, j;
 for (i = 0 ; i < m; i++)
 {
 for (j = 0 ; j < n; j++)
 {
 c[i][j] = a[i][j] + b[i][j];
 }
 }
 }

 Test Run
 Enter size of matrices as mxn : 3x3
 Enter 9 elements of matrix A row-wise
 1 3 2
 4 5 1
 6 5 8
 Enter 9 elements of matrix A row-wise
 7 3 5
 2 7 3
 4 2 1
 Sum A+B is
 8 6 7
 6 12 4
 10 7 9

6.10.6  Passing String as Argument
A string can be passed as an argument to a function using subscripted notation for arrays. In a function
definition, the formal parameter is declared as an array of characters. The following program illustrates
the passing of a string to a function.

200  |  Programming for Problem Solving

 Listing 6.6
 /* Program to illustrates passing of a string to a function */

 #include<stdio.h>
 #include<string.h>

 void fun(char temp[]); 	 /* function prototype */

 int main()
 {
 char str[] = ″Sample string″;
 fun(str);
 return 0;
 }
 void fun(char temp[])
 {
 printf(″String passed to fun : ″);
 puts(temp);
 printf(″and its length is : %d\n″, strlen(temp));
 }

 Test Run
 String passed to fun : Sample string
 and its length is : 13

ILLUSTRATIVE EXAMPLES
To have hands on defining functions, let use consider few more examples.

Example 6.4: Write a function, say int factorial(int n), to find the factorial of a positive integer number

n. Using this definition of factorial function, write a program to compute the Binomial coefficient n
rc

defined as
!

!()!
n

r
nc

r n r
=

-

 Listing 6.7
 /* Program to compute Binomial coefficient */
 #include <stdio.h>
 int factorial(int n); /* function prototype */
 int main()

Functions  |  201

 {
 int ncr, n, r;
 printf(″\nEnter value of n: ″);
 scanf(″%d″, &n);
 printf(″\nEnter value of r: ″);
 scanf(″%d″, &r);
 ncr = factorial(n)/(factorial(r)*factorial(n−r));
 printf(″\nValue of ncr = %d\n″ , ncr);
 return 0;
 }
 /* Function to compute factorial of a +ve integer number */
 int factorial(int n)
 {
 int prod = 1, i;
 for (i = 1; i <= n; i++)
 prod = prod * i;
 return prod;
 }

 Test Run
 Enter value of n: 5
 Enter value of r: 3
 Value of ncr = 10

This program calls the factorial function thrice with argument n, r, (n−r) respectively, and then
using these values computes the binomial coefficient.

Example 6.5: Write a function, say int computeHCF(int m, int n), that returns HCF of m & n. Using this
definition write a complete program to compute the HCF of two given positive integers m and n.

 Listing 6.8
 /*
 Program to compute HCF of two given positive integers (m and n)
 */
 #include <stdio.h>
 int computeHCF(int m, int n); /* function prototype */
 int main()
 {
 int m, n, hcf;
 printf(″\nEnter value of n: ″);
 scanf(″%d″, &n);

202  |  Programming for Problem Solving

 printf(″\nEnter value of m: ″);
 scanf(″%d″, &m);
 printf(″\nEnter value of n: ″);
 scanf(″%d″, &n);
 hcf = computeHCF(m,n);
 printf(″\nValue of HCF = %d\n″ , hcf);
 return 0;
 }
 /* Function to compute HCF of two positive integer numbers */
 int computeHCF(int m, int n)
 {
 int r;
 while (1)
 {
 r = m % n;
 if (r == 0)
 return n;
 m = n;
 n = r;
 }
 }

 Test Run
 Enter value of m: 125
 Enter value of n: 35
 Value of HCF = 5

Examples 6.6: Write a function, say int smallestDigit(int n), that returns the smallest digit in number n.
Use this function in a program to demonstrate its use.

 Listing 6.9
 /*
 Program to find smallest digit in a positive integer number
 */
 #include <stdio.h>
 int smallestDigit(int n);	 /* function prototype */

 int main()
 {
 int n;
 printf(″\nEnter positive integer number : ″);
 scanf(″%d″, &n);

Functions  |  203

 printf(″\nSmallest digit in %d is %d\n″, n, smallestDigit(n));
 return 0;
 }
 /* function that returns smallest digit in a positive integer number */
 int smallestDigit(int n)
 {
 int sd = 9;
 int d;
 while (n > 0)
 {
 d = n % 10;
 if (d < sd)
 sd = d;
 n = n / 10;
 }
 return sd;
 }

 Test Run
 Enter positive integer number : 23145
 Smallest digit in 23145 is 1

Examples 6.7: Write a function, say int isPrime(int n), that returns value 1 if n is prime number otherwise
returns 0. Use this function in a program to test whether the given natural number is prime number or not.
 Listing 6.10
 /*
 Program to test whether the given natural number is
 prime number or not.
 */
 #include<stdio.h>
 #include<math.h>
 int isPrime(int n); /* function prototype */
 int main()
 {
 int n;
 printf(″\nEnter a positive integer number: ″);
 scanf(″%d″, &n);
 if (isPrime(n) == 1)
 printf(″\n%d is a prime number.\n″, n);
 else
 printf(″\n%d is not a prime number.\n″, n);
 return 0;
 }

204  |  Programming for Problem Solving

 /*
 definition of function that tests whether the given positive
 integer number ′n′ is prime number
 */
 int isPrime(int n)
 {
 int k, m;
 if ((n > 2) && ((n % 2) == 0)) {
 return 0;
 }
 m = sqrt(n);
 for (k = 3; k <= m; k += 2)
 {
 if (n % k == 0)
 {
 return 0;
 }	
 }
 return 1;
 }

 Test Runs
 First Run
 Enter a positive integer number: 43
 43 is a prime number.
 Second Run
 Enter a positive integer number: 92
 92 is not a prime number.

UNIT SUMMARY
In this chapter, we have learned that

	 q	 Many problems that arise because of the size and complexity of software can be handled
efficiently using modular design approach.

	 q	 Each function is complete and independent in its own.
	 q	 Each function handled one aspect of the complex problem.
	 q	 Value can be returned from a function using return statement.
	 q	 A Function can return any type of value. This includes pointers as well.
	 q	 Arguments can be passed to a function either using call by value approach or call by reference

approach.
	 q	 A function prototype, like variable declaration, is a declaration that specifies the return type,

name, and type of formal arguments.

Functions  |  205

EXERCISE

Subjective Questions

	 1.	 What is the difference between a user-defined function and library function?

	 2.	 When is the execution of the function terminated?

	 3.	 How many arguments can be passed to a function?

	 4.	 What are the rules regarding the relationship between formal arguments and actual arguments?

	 5.	 How is a function invoked?

	 6.	 How many times can a function be called?

	 7.	 What is wrong with the following function definition?
testFunction(int k) {
 float temp = 5.25;
 temp = k / 2.0;
 return temp;
}

	 8.	 Find the errors, if any, in the following function definition
void fun(int x, int y) {
 int z;
 /* some statement */
 return z;
}

	 9.	 Find the errors, if any, in the following function definition
void fun(int x, y) {
 int z;
 /* some statement */
 return;
}

	 10.	 Find the errors, if any, in the following function definition
int fun1(int x, int y) {
 int z;
 /* some statement */
 int fun2(int t) {
 return (t-2);
 }
 /* some more statements */
 return z;
}

206  |  Programming for Problem Solving

	 11. 	 What will be the output of the following program?
void main() {
 float r = 5.0, c;
 float func(float t); /* function prototype */
 c = func(r);
 printf(″\nValue returned by function″);
 printf(″ = %d\n″, c);
}
float func(float t) {
 float temp;
 temp = t * t / 2;
 return 5.0;
}

	 12.	 Find the errors, if any, in the following function declarations:

	 (a)	int diff(int x, y);	 (b)	 void fun(void, void);

	 (c)	float diff(float, float); 	 (d)	 int test(float x, int y)

Programming Problems
	 1.		 Write a function, say int sumOfDigits(int number), that returns the sum of digits of a positive

integer number.
	 2.	 Write a function, say float absValue(float value), that returns the absolute value of a number of

type float.
	 3.	 Write a function, say int round(float x), that returns rounded value of x to nearest integer value.
	 4.	 Write a function, say int sumOfN(int n, int m), which computes the sum of n integers starting

with mth integer, i.e., m + (m + 1) + (m + 2) + . . . + (m + n - 1).
	 5.	 Write a function, say int isPrime(int n), that returns 1 if number n is prime else returns 0.
	 6.	 A number is a palindrome if it is the same number when read forward or backward. For

example, numbers 1991, 1001 and 1221 palindrome numbers. Write a function, say int
isPalindrome(unsigned int k), that returns value 1 if the number k is palindrome else returns
value 0.

	 7.	 A positive integer number IJK is said to be well-ordered if I < J < K. For example, number 138
is called well-ordered because the digits in the number (1, 3, 8) increase from left to right, i.e.,
1 < 3 < 8. Number 365 is not well-ordered because 6 is larger than 5. Write a function, say int
isWellOrdered(unsigned int k), that returns value 1 if the k is a well-ordered number else returns
0.

	 8.	 Write a function, say int largestDigit(int x), that returns the largest digit in number x.
	 9.	 Write a function, say int unitDigit(int n), that returns the unit digit of a number represented in

argument n.
	 10.	 Write a function, say int isLeapYear(int year), that returns value 1 if the argument year represents

a leap year else return value 0.

Functions  |  207

	 11.	 Write a function, say int isValidDate(int dd, int mm, int yyyy), that returns value 1 if the date is
valid else returns value 0.

	 12.	 Write a function, say int isTrianglePossible(int a, int b, int c), that returns value 1 if the triangle
can be passed using a, b, and c as its sides else returns value 0.

	 13.	 Write a function, say int countDigits(int n), that return the number of digits in n, i.e., size of
number n.

Multiple Choice Questions
	 1.	 Which of the following statement about functions is false?
	 (a)	 More than one function is allowed in a program unit.
	 (b)	 A function can call another function.
	 (c)	 A function can call itself.
	 (d)	 Constants can appear in the formal argument list.
	 2.	 Which of the following is not a valid reason for using functions?
	 (a)	 They use less memory than repeating the same code.
	 (b)	 They keep different program activities separate.
	 (c)	 They run faster.
	 (d)	 They keep variables safe from other parts of the program
	 3.	 What is the default return type of a function?
	 (a)	 void	 (b)	 int	
	 (c)	 float	 (d)	 char
	 4.	 The program execution starts from the
	 (a)	 main() function	 (b)	 function which is defined first
	 (c)	 function that is defined last	 (d)	 depends on compiler
	 5.	 The C language allow arguments to be passed
	 (a)	 only call by value	 (b)	 only call by reference
	 (c)	 both a & b	 (d)	 depends on compiler
	 6.	 Consider the following program

swap(int i, int j)
{
 i = i + j;
 j = i - j;
 i = i - j;
}
void main()
{
 int i = 5, j = 10;
 swap(i, j);
 printf(″\n%d, %d″, i, j);
}

208  |  Programming for Problem Solving

		 What will happen when we attempt to compile & run the program?

	 (a)	 Program will fail to compile because same variable names cannot be used in main() and
swap() functions.

	 (b)	 Program will fail to compile because return type of the swap function is not specified.

	 (c)	 Program will compile and execute giving output as 5, 10.

	 (d)	 Program will compile and execute giving output as 10, 5.

	 7.	 Identify the correct statement

 	 (a)	 A function can be defined more than once in a program.

	 (b)	 One function cannot be defined within another function definition.

	 (c)	 All functions must be in the same file.

	 (d)	 Function should appear in the order they are called in the main function.

	 8.	 Consider the following function definition, and identify the correct statement
myFunction(a + b, c, d, 5)
int a, b, c, d;
{
 int sum;
 sum = a + b + c + d + 5;
 return sum;
}

	 (a)	 Function will fail to compile because expression is not permitted as formal argument.

	 (b)	 Function will fail to compile because constant is not permitted as formal argument.

	 (c)	 Function will fail to compile because return type of the function is omitted.

	 (d)	 Both (a) and (b).

	 9.	 Which of the following is a part of the function header?

	 (a)	 Function name	 (b)	 Return type

	 (c)	 Argument list	 (d)	 All of the above

	 10.	 Which of the following is a complete function?

	 (a)	int fun();	
	 (b)	int fun(int x) { return x+1; }	
	 (c)	void fun(int) { print(“Hello”); }

	 (d)	void fun(x) { print(“hello”); }

ANSWERS
1. (d) 2. (c) 3. (b) 4. (a) 5. (c) 6. (c) 7. (b) 8. (d) 9. (d) 10. (b)

Functions  |  209

PRACTICALS

	 1.	 Write a program to find the largest element, smallest element, and average of elements of an
array named a with n(≤50) element using following user-defined functions

	 (a)	 Function, say findLargest(int a[], int n), to find the largest element of the array
	 (b)	 Function, say in findSmallest(int a[], int n), to find the smallest element of the array
	 (c)	 Function, say float findAverage(int a[], int n), to find the average of the elements of the array

 Listing 6.11
 /*

 Program to find the largest element, smallest element,

 and average of elements of array using functions

 */

 #include<stdio.h>
 /* function prototypes */
 int findLargest(int a[], int n);
 int findSmallest(int a[], int n);
 float findAverage(int a[], int n);
 int main()
 {
 int a[50];
 int i, n;
 printf(″\nEnter size of array n(<=50) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d elements of array\n\n″);
 for (i = 0; i < n; i++)
 {
 scanf(″%d″, &a[i]);
 }
 printf(″\nSmallest element = %d″, findSmallest(a,n));
 printf(″\nLargest element = %d″, findLargest(a,n));
 printf(″\nAverage of elements = %.2f″, findAverage(a,n));
 return 0;
 }

 int findLargest(int a[], int n)

 {

 int i, max;

 max = a[0];

210  |  Programming for Problem Solving

 for (i = 1; i < n; i++) {
 if (a[i] > max)
 max = a[i];
 }
 return max;
 }
 int findSmallest(int a[], int n)
 {
 int i, min;
 min = a[0];
 for (i = 1; i < n; i++) {
 if (a[i] < min)
 min = a[i];
 }
 return min;
 }

 float findAverage(int a[], int n)
 {
 int i, sum;
 float avg;
 sum = 0;
 for (i = 0; i < n; i++) {
 sum = sum + a[i];
 }
 avg = (float)sum/n;
 return avg;
 }

 Test Run
 Enter size of array n(<=50) : 10

 Enter 10 elements of array

 25 20 40 32 10 15 45 50 30 24

 Smallest element = 10

 Largest element = 50

 Average of elements = 29.10

Functions  |  211

	 2.	 Write a function, say int isPrime(int n), that returns value 1 if n is prime number otherwise
returns 0. Use this function in a program to print first m prime numbers using recursion.

 Listing 6.12
 /*
 Program to print first ′m′ prime numbers using a function
 */
 #include<stdio.h>
 #include<math.h>
 int isPrime(int n); /* function prototype */
 int main()
 {
 int m, num = 2, count = 0;
 printf(″\nEnter value for m : ″);
 scanf(″%d″, &m);
 printf(″\nFirst %d prime number are\n\n″, m);
 while (count < m)
 {
 if (isPrime(num) == 1) {
 count++;
 printf(″%d ″, num);
 }
 num++;
 }
 printf(″\n″);
 return 0;
 }
 /*
 definition of function that tests whether the given
 positive integer number ′n′ is prime number
 */
 int isPrime(int n)
 {
 int k, m;
 if ((n > 2) && ((n % 2) == 0))
 {
 return 0;
 }

212  |  Programming for Problem Solving

 m = sqrt(n);
 for (k = 3; k <= m; k += 2)
 {
 if (n % k == 0)
 {
 return 0;
 }	
 }
 return 1;
 }

 Test Run
 Enter value for m : 10
 First 10 prime number are
 2 3 5 7 11 13 17 19 23 29

	 3.	 Write a function, say int product(int a, int b), that returns product of two numbers a and b. Use
this function in a program to find the product of two given numbers.

 Listing 6.13
 */
 Program to find product of two numbers using function
 */
 #include <stdio.h>
 /* function prototype */
 int product(int a, int b);
 int main()
 {
 int m, n, result;
 printf(″\nEnter first number : ″);
 scanf(″%d″, &m);
 printf(″\nEnter second number : ″);
 scanf(″%d″, &n);
 result = product(m, n);
 printf(″\nProduct of %d and %d = %d\n″, m, n, result);
 return 0;
 }
 /* definition of functio that returns product of two numbers */
 int product(int a, int b)
 {

Functions  |  213

 int temp = 0;
 while (b != 0)
 {
 temp += a;
 b--;
 }
 return temp;
 }

 Test Run
 Enter first number : 15
 Enter second number : 12
 Product of 15 and 12 = 180

KNOW MORE
The use of functions enables the developer to create programs for solving large and complex program
that are easier to code, easy to debug, and easy to modify.

The teacher is expected to develop an understanding among the students about the benefits of using
functions and various aspects related with the development of functions.

The teacher should demonstrate the use of functions by taking examples from real-life situations,
and creating C programs to solve them.

REFERENCES & SUGGESTED READINGS

	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to recursion. Recursion is one of the important concepts in
mathematics & computer science and is used extensively in solving many real-life problems. This unit
explains various aspects of recursion and demonstrates their use with suitable examples.

RATIONALE
In real-life situations, many problems may have iterative solution as well as recursive solution. Then the
important question arises which one to prefer. The main reason we use recursion is to simplify an algorithm
into terms easily understood by most people. It’s important to note here that the purpose of recursion (rather
than its benefit) is to make our code easier to read, and easier to reason with. However, it is important to be aware
that recursion is not a mechanism we can use to optimize our code for performance - if anything; it can have an
adverse effect on performance compared to an equivalent function written iteratively.

To have a short sound bite to remember, we can say that “Recursive functions optimize legibility for
developers; iterative functions optimize performance for computers.”

Usefulness of recursion can be realized and appreciated when we actually try to write a code that resembles
a real life scenario.

This unit will help the student to understand the various aspects related to recursion and its
implementation in C using recursive functions.

PRE-REQUISITES
	 –	 Condition branching
	 –	 Arrays
	 –	 User-defined functions

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U7-O1: explain the concept of recursion
U7-O2: explain concept of base case and recursive step
U7-O3: demonstrate defining and using recursive functions for selected recursive problems
U7-O4: explain and implement Quick sort algorithm
U7-O5: explain and implement Merge sort algorithm
U7-O6: develop modular programs using recursive function for solving real-life problems

7 Recursion

Recursion  |  215

Unit 7
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8

U7-O1 1 - - - - - - -

U7-O2 1 - - - - - - -

U7-O3 - - - - 2 - - -

U7-O4 - - - - - - 3 -

U7-O5 - - - - - - 3 -

U7-O6 - - - - - - 3 -

7.1  INTRODUCTION
Recursion is a powerful concept in the development of programs in which a function has the ability
to refer to itself to solve a problem. This control technique, called recursion is an important concept
in computer science and is convenient for a variety of problems that would be difficult to solve using
iterative constructs such as for, while and do - while loops.

Recursion is used extensively in solving many real-life problems.
Recursive functions can be directly implemented in almost all modern high-level programming

language such C/C++/C#/Java/Python.
This unit introduces recursive functions and illustrates their use through various illustrative

examples.

7.2  RECURSIVE FUNCTIONS
A recursive function is a function whose definition is based upon itself, i.e., which calls itself.

A recursive function is defined in terms of base case and recursive step.
	 1.	 Base Case: The result is computed immediately with the given inputs to the function, i.e., there

is value of argument(s), for which the function does not call itself.
		 In other words, the base case is the solution to the “simplest” possible problem.
		 Consider an example of finding maximum value in a list of numbers. The maximum value in a

list is either the first number or the biggest of the remaining numbers.
		 The the base case in the problem is that the list had only one number, and by definition, if there

is only one number, it is the largest.
	 2.	 Recursive Step: The result is computed with the help of one or more recursive calls to the

function, but with the argument(s) somehow reduced in size, i.e., closer to a base case.
		 In above example of finding maximum value in a list of numbers, the recursive step is to find

maximum value in the remaining list of numbers, i.e., list of reduced size (1 less that the earlier
size).

Let us take few well known examples of recursive functions.

216  |  Programming for Problem Solving

7.2.1  Factorial Function
The factorial of a positive number n, written as n!, is the product of the positive integers from 1 to n:

 n! 	= 1×2×3×. . . ×(n-2)×(n-1).n where as 0! = 1
Thus, definition of the iterative version of the factorial function can be written as

1

if 0

if 0

1

!

n

i

n
i

n

n
=




=
 >

=


∏

From above definition, we have
	 0! 	= 1
	 1! 	= 1
	 2! 	= 1 × 2 = 2
	 3! 	= 1 × 2 × 3 = 6
 	 4! 	= 1 × 2 × 3 × 4 = 24
	 5! 	= 1 × 2 × 3 × 4 × 5 = 120 and so on.
Observe that
	 4! 	= 4 × 3! = 4 × 6 = 24 and 5! = 5 × 4! = 5 × 24 = 120
And this is true for every positive integer n; that is
	 n! 	= n× (n-1)!
Thus, the factorial function can be defined as

	
if 0
if 0

1
!

1)!
n

n nn
n =

× - >


= 


This definition of n! is recursive, since it refers to itself when it uses (n-1)!.

 Listing 7.1
 /*
 Program to print the factorials of first ′n′ natural numbers
 using recursive function
 */
 #include <stdio.h>
 int factorial(int n);	 /* function prototype */
 int main()
 {
 int i, n;
 printf(″\nEnter value of n: ″);
 scanf(″%d″, &n);
 for (i = 1; i <= n; i++) {
 printf(″\n%d! = %d″, i, factorial(i));
 }
 return 0;
 }

Recursion  |  217

 /*
 Recursive function to compute factorial of a number
 */
 int factorial(int n)
 {
 if (n == 0)
 return 1;
 else
 return (n * factorial(n - 1));
 }

 Test Run
 Enter value of n: 6
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720

7.2.2  Fibonacci Numbers
A very important sequence, Fibonacci sequence, usually denoted by F0, F1, . . ., Fn, is as follows:
		 0, 1, 1, 2, 3, 5, 8, 13, . . .

That is, F0 = 0 and F1 = 0 and subsequent terms are sum of the two preceding terms.
For example, the next term in the above sequence is

			 8 + 13 	 = 21
A formal recursive definition for Fibonacci number nF is:

	 if 1
()

(1) (2) if 1
n n

fib n
fib n fib n n

≤=  - + - >

Notice that the recursive definition of the Fibonacci numbers differs from the recursive definitions
of the factorial function in the sense that it refers to itself twice.

 Listing 7.2
 /*
 Program to print first ′n′ terms of Fibonacci sequence
 using recursive functions
 */
 #include <stdio.h>
 int fib(int n);		 /* function prototype */
 int main()
 {

218  |  Programming for Problem Solving

 int i, m;
 printf(″\nEnter value of m: ″);
 scanf(″%d″, &m);
 for (i = 0; i < m; i++)
 {
 printf(″%d ″, fib(i));
 }
 return 0;
 }

 /*
 Recursive function to compute Fibonacci number ′n′
 */
 int fib(int n)
 {
 if (n <= 1)
 return n;
 else
 return (fib(n-1) + fib(n-2));
 }

 Test Run
 Enter value of m: 8
 0 1 1 2 3 5 8 13

7.2.3  Ackermann Function
The Ackermann function is defined recursively, for all non-negative values of m and n, as follows:

1 if 0
(,) (1,1) if 0

(1, (, 1)) Otherwise

n m
A m n A m n

A m A m n

+ =
= - =
 - -

 Listing 7.3
 /*
 Program to compute Ackermann function
 */
 #include <stdio.h>
 int ackermann(int m, int n);	 /* function prototype */
 int main()
 {
 int m, n;
 printf(″\nEnter value of m : ″);

Recursion  |  219

 scanf(″%d″, &m);
 printf(″\nEnter value of n : ″);
 scanf(″%d″, &n);
 printf(″\nA(%d,%d) = %d\n″, m, n, akermann(m,n));
 return 0;
 }
 /* function definition to compute ackermann function A(m,n) */
 int ackermann(int m, int n)
 {
 if (m == 0)
 return (n+1);
 else if (n == 0)
 return ackermann(m-1, 1);
 else
 return ackermann(m-1, ackermann(m,n-1));
 }

 Test Run
 Enter value of m : 1
 Enter value of n : 3
 A(1,3) = 5

7.3  QUICK SORT ALGORITHM
Quicksort is a sorting algorithm that uses the idea of divide and conquer. This algorithm finds the
element, called pivot, that partitions the array into two halves in such a way that the elements in the left
sub array are less than and the elements in the right sub array are greater than the partitioning element.
Then these two subarrays are sorted separately. This procedure is recursive in nature with the base case
- the number of elements in the array are not more than 1.

Suppose variable start and end represents the index of the first and last element of the array, the
quicksort can be defined recursively as
 If (start < end) then
 Partition the array into two halves
 Quicksort the left half	
 Quicksort the right half
 Endif

Following are some of the variations of the quicksort algorithm, depending on the way pivot element
is selected:
	 l	 First element as the pivot
	 l	 Last element as the pivot
	 l	 Random element as the pivot
	 l	 Median as the pivot

220  |  Programming for Problem Solving

We will consider the last element as the pivot in our illustration.
To begin with, we set

pIndex = start
pivot = a[end]

Now, we iterate from start to (end-1) using index variable i, and do the following in each iteration:
If (a[i] < pivot) then
 Swap a[i] and a[pIndex]
 Increment pIndex
Endif

and, finally
	 swap a[pIndex] and a[end]
Put together, the following function accomplishes the task of partitioning.

 int partition(int a[], int start, int end)
 {
 int i, temp;
 int pIndex = start;
 int pivot = a[end];
 for(i = start; i < end; i++)
 {
 if (a[i] < pivot)
 {
 temp = a[i];
 a[i] = a[pIndex];
 a[pIndex] = temp;
 pIndex++;
 }
 }
 temp = a[end];
 a[end] = a[pIndex];
 a[pIndex] = temp;
 return pIndex;
 }

Example 7.1: To illustrate the partitioning process, consider the following array
			 25	 10	 30	 15	 20	 28
Solution: In the given array, start = 0, end = 5
Here the last element (22) is taken as pivot.
To begin with , we take pIndex = start, i = start

25 10 30 15 20 22 25 < 22 – False 25 10 30 15 20 22

i
↓

i
↓

↑
pIndex

↑
pIndex

↑
end

↑
end

Step 1

Recursion  |  221

i
↓

i
↓

↑
pIndex

↑
pIndex

↑
end

↑
end

25 10 30 15 20 22 10 25 30 15 20 2210 < 22 – True

Step 2
i
↓

i
↓

↑
pIndex

↑
pIndex

↑
end

↑
end

10 25 30 15 20 22 10 25 30 15 20 2230 < 22 – False

Step 3
i
↓

i
↓

↑
pIndex

↑
pIndex

↑
end

↑
end

10 25 30 15 20 22 15 < 22 – True 10 15 30 25 20 22

Step 4
i
↓

↑
pIndex

↑
pIndex

↑
end

↑
end

10 15 30 25 20 22 20 < 22 – True 10 15 20 25 30 22

Step 5

↑
pIndex

↑
pIndex

3
< 22 > 22

↑
end

10 15 30 25 20 22 10 15 20 22 30 25
Finally swap

elements at index
end & pIndex

Step 6

Fig. 7.1: Illustration of partitioning of array

The pivot element 22 is placed in its final position and it divides the array into two sub arrays as
 10	 15 	 15	 and 30	 25

As you can see, the elements in the left sub array are smaller than 22, and elements in the right sub
array are greater than 22.

This means that element 22 is correctly placed in its final position and it partitions the remaining
elements in two sub arrays where elements in the left sub array are less than it and elements in the right
sub array are greater it.

222  |  Programming for Problem Solving

The above partitioning step is repeated with each sub array containing 2 or more elements. Since,
we can work on one sub array at a time, we must be able to keep track of the second sub array. This
task is accomplished either using stack explicitly (iterative implementation) or implicitly (recursive
implementation). Both the implementations are given in this section.
 Listing 7.4
 /*
 Program to sort an array of integers in ascending order using
 Quick sort method
 */
 #include<stdio.h>
 /* function prototypes */
 void quickSortRecursive(int a[], int lb, int ub);
 int partition(int a[], int start, int end);

 int main()
 {
 int i, n, a[20];
 printf(″\nEnter size of array n(<=20) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d integer elements of array\n\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 quickSortRecursive(a, 0, n-1);
 printf(″\n\nSorted list of elements\n\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, a[i]);
 printf(″\n″);
 } /*---- end of main function ----*/

 void quickSortRecursive(int a[], int lb, int ub)
 {
 int pIndex;
 if (lb < ub)
 {
 pIndex = partition(a, lb, ub);
 quickSortRecursive(a, lb, pIndex-1);
 quickSortRecursive(a, pIndex+1, ub);
 }
 }
 int partition(int a[], int start, int end)
 {
 int i, temp;
 int pIndex = start;

Recursion  |  223

 int pivot = a[end];
 for(i = start; i < end; i++)
 {
 if (a[i] < pivot)
 {
 temp = a[i];
 a[i] = a[pIndex];
 a[pIndex] = temp;
 pIndex++;
 }
 }
 temp = a[end];
 a[end] = a[pIndex];
 a[pIndex] = temp;

 return pIndex;
 }

 Test Run
 Enter size of array n(<=20) : 6
 Enter 6 integer elements of array
 25 10 30 15 20 28
 Sorted list of elements
 10 15 20 25 28 30

7.4  MERGE SORT ALGORITHM
Merge sort is another sorting algorithm that uses the idea of divide and conquer. This algorithm divides
the array into two halves, sorts them separately, and then merges them.

This procedure is recursive, with the base case — the number of elements in the array are just 1.
Suppose variable beg and end represents the index of the first and last element of the array

respectively, the merge sort can be defined recursively as

 If (beg < end) then
 Divide the list into two halves
 Mergesort the left half	
 Mergesort the right half
 Merge the two-sorted halves into one sorted list
 Endif

Example 7.2: �To illustrate the working of the merge sort method, consider the following array a with 7
elements as

	 33, 26, 35, 29, 18, 10, 24

224  |  Programming for Problem Solving

Solution: The first step of mergesort is to divide the array into two sub arrays. Thus we divide the array
into

	 33, 26, 35, 29 	and 18, 10, 24
and first consider the left sub array. It is again divided into two sub arrays as
	 33, 26 		 and 35, 29

Fig. 7.2: Illustration of successive steps of Merge sort

For each of these sub arrays, we again apply the same method, dividing each of these into sub arrays
of one element each. Sub arrays of size one, of course, require no sorting. Finally, we start merging the
sub arrays to obtain a sorted array.

The sub arrays 33 and 26 merge to give the sorted array 26, 33 and the sub arrays 35 and 29 merge
to give sorted array 29, 35.

Recursion  |  225

At the next step, we merge these two-sorted sub arrays of size two to obtain a sorted array of size
four as

	 26, 29, 33, 35
Now the left half of the given array is sorted, we do the same steps on the right half. First, we divide

it into two sub arrays as
 18, 10 	and 24
The first of these is divided into two sub arrays of size one, which are merged to give 10, 18. The

second sub array, 24, has size one, so needs no sorting. Now these are merged to give the sorted array
 10, 18, 24
Finally, the sorted sub arrays of size four and three are merged to give
	 10, 18, 24, 26, 29, 33, 35

The above sorting process can also be visualized as shown in Fig. 7.2.

 Listing 7.5
 /*
 Program to sort an array of integers in ascending order using
 merge sort method
 */
 #include<stdio.h>
 /*---- function prototype ----*/
 void mergeSortMethod(int a[], int beg, int end);
 void mergingSortedSubArrays(int a[],int lb, int lr,int rb, int rr);
 int main()
 {
 int i, n, a[20];
 printf(″\nEnter size of array n(<=20) : ″);
 scanf(″%d″, &n);
 printf(″\nEnter %d integer elements of array\n\n″, n);
 for (i = 0; i < n; i++)
 scanf(″%d″, &a[i]);
 mergeSortMethod(a, 0, n-1);
 printf(″\n\nSorted list of elements\n\n″);
 for (i = 0; i < n; i++)
 {
 printf(″%d ″, a[i]);
 }
 printf(″\n″);
 } /*---- end of main function ----*/

226  |  Programming for Problem Solving

 void mergeSortMethod(int a[], int beg, int end)
 {
 int mid;
 if (beg < end)
 {
 mid = (beg + end) / 2;
	 mergeSortMethod(a, beg, mid);
	 mergeSortMethod(a, mid+1, end);
	 mergingSortedSubArrays(a, beg, mid, mid+1, end);
 }
 }
 void mergingSortedSubArrays(int a[], int lb, int lr, int rb, int rr)
 {
 int na, nb, nc, k, c[MAX];
 na = lb;
 nb = rb;
 nc = lb;
 while ((na <= lr) && (nb <= rr))
 {
 if (a[na] < a[nb])
	 c[nc] = a[na++];
	 else
	 c[nc] = a[nb++];
	 nc++;
 }
 if (na > lr) {
 while (nb <= rr)
 c[nc++] = a[nb++];
 } else {
 while (na <= lr)
	 c[nc++] = a[na++];
 }
 for (k = lb; k <= rr; k++)
 a[k] = c[k];
 }

 Test Run
 Enter size of array n(<=20) : 7
 Enter 7 integer elements of array
 33 26 35 29 18 10 20
 Sorted list of elements
 10 18 20 26 29 33 35

Recursion  |  227

7.5  Recursion, Iteration or . . .?
When there are number of ways of solving a problem, the obvious question that arises is “Which one
should be selected?”

There is no set of pre-defined rules to select a particular way; however, we must consider the
following issues:
	 l	 Processing time taken.
	 l	 Computer memory used.
	 l	 Time taken to develop the program.
	 l	 Time taken to debug the program.
	 l	 Time to maintain the program.

As a generalization, recursive solutions tend to do well in categories 3, 4, and 5. Because recursive
solutions tend to be simple and small, the time required to modify the programs later is less than the time
needed for non-recursive solution of the same problem, if it does exists.

On the other hand, in general, recursive solutions do not tend to do well in their use of processing
time and the amount of computer memory they require.

Table 7.1 highlights key points of comparison of recursion and iteration

Table 7.1: Comparison: Recursion vs Iteration

Criteria Recursion Iteration
Mode of Implementation Using function call(s) to itself Using loops

State Defined by the argument value(s)
stored in stack

Defined by the value of the control
variable

Progression Function state converges towards
the base case

Value of control variable moves
towards the final value

Termination Base case is reached Control variable satisfies the
condition

No Termination State

Infinite recursive calls may occur
due to some mistake in specifying
the base case, and as a result the
function keeps calling itself, which
may lead system to crash.

Infinite loop due to mistake
in assignment, increment, or
terminating condition, and will result
in program execute endlessly

Code size Tends to be very small Tends to be large
Execution Execution is slower Execution is faster

ILLUSTRATIVE EXAMPLES
Example 7.3: Write a program to find the sum of first n natural numbers using recursion.
The function to find the sum of first n natural numbers, say findSum(n), can be recursively defined as

1
findSum()

findSum(1
if 1
if 1)

n
n nn

n
=  + -

=
>

228  |  Programming for Problem Solving

 Listing 7.6
 /*
 Program to find the sum of first ′n′ natural numbers
 using recursion
 */
 #include<stdio.h>
 int findSum(int n); /* function prototype */
 int main()
 {
 int n, sum;
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);
 sum = findSum(n);
 printf(″\nSum of first %d natural numbers = %d\n\n″, n, sum);
 return (0);
 }
 /*
 definition of recursive function that returns
 sum of first ′n′ natural numbers
 */
 int findSum(int n)
 {
 if (n == 1)
 return 1;
 else
 return (n + findSum(n-1));
 }

 Test Run
 Enter value for n : 10
 Sum of first 10 natural numbers = 55

Example 7.4: Write a program to compute positive exponential power (xn) using recursion.
The positive exponential power function (xn) can be recursively defined as

1

1 if 0

 if 0
n

n

n
x

x x n-

=
= 

× >

 Listing 7.7
 /*
 Program to find the value of the positive exponential power
 function using recursion
 */
 #include<stdio.h>

Recursion  |  229

 float power(float x, int n); /* function prototype */
 int main()
 {
 int n;
 float x;
 printf(″\nEnter value for x : ″);
 scanf(″%f″, &x);
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);
 printf(″\nValue of power function = %.2f\n\n″, power(n));
 return (0);
 }
 /*
 definition of recursive function that returns value
 positive exponential power function (x^n)
 */
 float power(float x, int n)
 {
 if (n == 0)
 return 1;
 else
 return (x * power(x,n-1));
 }

 Test Run
 Enter value for x : 5.25
 Enter value for n : 2
 Value of power function = 27.56

Example 7.5: �Write a program to find the greatest common divisor (GCD) to natural numbers m and n
using recursion.

The GCD function can be recursively defined as

if % 0
if % 0

gcd(,)

gcd(, %)
mn

m n
n

n
m mn n


=

=
≠



 Listing 7.8
 /*
 Program to compute GCD of natural numbers m and n
 using recursion
 */
 int gcd(int m, int n); /* function prototype */
 void main()
 {

230  |  Programming for Problem Solving

 int m, n;
 printf(″\nEnter value of m : ″);
 scanf(″%d″, &m);
 printf(″\nEnter value of n : ″);
 scanf(″%d″, &n);
 printf(″\nValue of GCD(%d,%d) = %d\n″, m, n, gcd(mn,n));
 }
 /*
 definition of recursive function that returns GCD of
 natural numbers ′m′ and ′n′
 */
 int gcd(int m, int n)
 {
 if (m % n == 0)
 return n;
 else
 return gcd(n, m % n);
 }

 Test Run
 Enter value of m: 35
 Enter value of n: 125
 Value of GCD(35,125) = 5

Example 7.6: �Write a program to convert a given decimal number n to its equivalent binary number
using recursion.

 Listing 7.9
 /*
 Program to convert decoml number to equivalent binary number
 function using recursion
 */
 #include<stdio.h>
 void convert(int n); /* function prototype */
 int main()
 {
 int n;
 printf(″\nEnter decimal number : ″);
 scanf(″%d″, &n);
 printf(″\nBinary equivalent of %d = ″,n);
 convert(n);
 printf(″\n″);

Recursion  |  231

 return (0);
 }
 /*
 definition of recursive function that convert
 decimal number to binary
 */
 void convert(int n)
 {
 if (n > 0)
 {
 convert(n/2);
 printf(″%d″, n%2);
	 }
 }

 Test Run
Enter decimal number : 105
Binary equivalent of 105 = 1101001

UNIT SUMMARY
In this chapter, we have learned that

	 q	 Recursion is a powerful concept in the development of programs.

	 q	 A function that calls itself is known as a recursive function.

	 q	 Recursive functions can be directly implemented in C.

	 q	 The popular examples of recursive functions include factorial & Fibonacci numbers.

	 q	 Quick sort is a sorting algorithm that uses the idea of divide and conquer. It finds the element,
called pivot, that partitions the array into two halves in such a way that the elements in the left
sub array are less than and the elements in the right sub array are greater than the partitioning
element. Then these two subarrays are sorted separately.

	 q	 Merge sort is another sorting algorithm that uses the idea of divide and conquer. This algorithm
divides the array into two halves, sorts them separately, and then merges them.

	 q	 Recursive solutions generally take less time to develop and debug the program, and are easy to
maintain than iterative solutions.

	 q	 On the other side, recursive solutions take more processing time and consume more memory
than iterative solutions.

232  |  Programming for Problem Solving

EXERCISE

Subjective Questions
	 1.	 What is a recursion?
	 2.	 When a recursive function said to be well-defined?
	 3.	 What do you mean by base case?
	 4.	 How do a recursive function compare with iterative function?
	 5.	 Is it possible to convert a recursive function to iterative function? If yes, give an example.
	 6.	 Is it possible to convert an iterative function to recursive function? If yes, give an example.
	 7.	 Describe in brief the working of quick sort algorithm.
	 8.	 Describe in brief the working of merge sort algorithm.
	 9.	 How do recursion compare to iteration?

Multiple Choice Questions
	 1.	 Which of the following problems can’t be solved using recursion?
	 (a)	 Factorial of a number	 (b)	 nth fibonacci number
	 (c)	 Length of a string	 (d) 	Problems without base case
	 2. 	 In recursion, the condition for which the function will stop calling itself is ____________ .
	 (a)	 Best case	 (b) 	Worst case
	 (c)	 Base case	 (d)	 There is no such condition
	 3.	 Which of the following statements is true?
	 (a)	 Recursion is always better than iteration
	 (b)	 Recursion uses more memory compared to iteration
	 (c)	 Recursion uses less memory compared to iteration
	 (d)	 Iteration is always better and simpler than recursion
	 4.	 What will happen when the below code snippet is executed?

void fun()
{
 fun();
}
int main()
{
 fun();
 return 0;
}

	 (a) 	The code will be executed successfully and no output will be generated
	 (b) 	The code will be executed successfully and random output will be generated

Recursion  |  233

	 (c)	 The code will show a compile time error
	 (d) 	The code will run for some time and stop when the stack overflows

	 5.	 What is the output of the following code?

void fun(int n)
{
 if(n == 0)
 return;
 printf(″%d ″,n);
 fun(n-1);
}
int main()
{
 fun(10);
 return 0;
}

	 (a)	 10	 (b) 1		 (c)	 10 9 8 … 1 0	 (d)	 10 9 8 … 1
	 6.	 What is the base case for the following code?

void fun(int n)
{
 if (n == 0)
 return;
 printf(″%d ″,n);
 fun(n-1);
}
int main()
{
 fun(10);
 return 0;
}

	 (a)	 return	 (b)	 printf(“%d “, n)		 (c) if(n == 0)	 (d)	 fun(n-1)

	 7. 	 What will be the output of the following C code?

#include<stdio.h>
int main()
{
 printf(″Hello″);
 main();
 return 0;
}

234  |  Programming for Problem Solving

	 (a)	 Hello is printed once	 (b)	 Hello infinite number of times
	 (c)	 Hello is not printed at all	 (d)	 0 is returned
	 8.	 What will be the output of the following C code?

fun(int x)
{
 int b;
 if(x==1)
 return 1;
 else
 b=x*fun(x-1);
 return b;
}
int main()
{
 int n;
 n=fun(4);
 printf(″%d″,n);
 return 0;
}

	 (a)	 24	 (b)	 4	 (c)	 12	 (d)	 10
	 9. 	 What will be the output of the following C code?

int fun(int x)
{
 if(x==2)
 return 2;
 else
 {
 printf(″+″);
 fun(x-1);
 }
}
int main()
{
 int n,i;
 n=fun(6);
 printf(″%d″,n);
 return 0;
}

	 (a) 	++++2	 (b)	 +++++2	 (c)	 +++++	 (d)	 2

Recursion  |  235

	 10.	 How many times is ‘a’ printed when the following C code is executed?

int fun(int b)
{
 if(b==0)
 return 0;
 else
 {
 printf(″a″);
 fun(b--);
 }
}
int main()
{
 int a;
 a=fun(10);
 printf(″%d″,a);
 return 0;
}

	 (a)	 9 times	 (b)	 10 times
	 (c)	 0 times	 (d)	 Infinite number of times
	 11.	 What will be the output of the following C code?

int f(int n)
{
 if(n>0)
 return(n+f(n-2));
}
main()
{
 int n=10;
 int f(int n);
 printf(″%d″,f(n));
}

	 (a)	 10	 (b)	 80	 (c)	 30	 (d)	 Error
	 12.	 Find the output of the following pseudo-code if x = 4 and y = 5:

 int fun(int x, int y)
 {
 if(x > 1)
 fun(x – 2, y + 2);
 printf(″%d″, y);
 }

	 (a)	 5 6	 (b)	 7 6 5	 (c)	 9 7 5	 (d)	 5 7 9

236  |  Programming for Problem Solving

	 13.	 What will be the output of the following pseudocode for n=2?

int fun (int n)
{
	 if (n == 4)
 return n;
 else
 return 2*fun(n+1);
}

	 (a)	 2	 (b)	 16	 (c)	 8	 (d)	 4
	 14.	 What will be the output of the following pseudocode for input n =134?

int fun (int n)
{
 static int a = 0;
 if (n > 0) {
 a = a + 1;
 fun(n/10);
 }
 else
 return a;
}

	 (a)	 8	 (b)	 3	 (c)	 2		 (d) 431

	 15.	 What will be the output of the following C program?

int f(int x)
{
if (x <= 0)
return 1;
return f(x–1) + x;
}
int main()
{
printf(″%d″, f(5));
return 0;
}

	 (a)	 12	 (b)	 16	 (c)	 15	 (d)	 11	

	 16. What does the following function print for n = 25?

void fun(int n)
{
 if (n == 0)

Recursion  |  237

 return;
 printf(″%d″, n%2);
 fun(n/2);
}

	 (a)	 11001	 (b)	 11111	 (c)	 00000	 (d)	 10011
	 17.	 Consider the following C recursive function fun(x, y). What is the value of fun(4, 3)?

int fun(int x, int y)
{
 if (x == 0)
 return y;
 return fun(x - 1, x + y);
}

	 (a)	 13	 (b)	 12	 (c)	 10	 (d)	 9
	 18.	 What does the following C function print for n = 25?

void fun(int n)
{
 if (n == 0)
 return;
 fun(n/2);
 printf(″%d″, n%2);
}

	 (a)	 11001	 (b)	 11111	 (c)	 00000	 (d)	 10011
	 19.	 Select the correct output.

int rec(int num)
{
 return (num) ? num%10 + rec(num/10):0;
}
int main()
{
 printf(″%d″,rec(4567));
 return 0;
}

	 (a)	 4	 (b)	 12	 (c)	 22	 (d)	 21
	 20.	 Select the correct output.

int doSomething(int a, int b)
{
 if (b==1)
 return a;
 else

238  |  Programming for Problem Solving

 return a + doSomething(a,b-1);
}
int main()
{
 int k;
 k = doSomething(2,3);
 printf(″%d″, k);
 return 0;
}

	 (a)	 4	 (b)	 6	 (c)	 5	 (d) 7

ANSWERS
1. (d) 2. (c) 3. (b) 4. (d) 5. (d)
6. (c) 7. (b) 8. (a) 9. (a) 10. (d)

11. (c) 12. (c) 13. (b) 14. (b) 15. (b)
16. (d) 17. (a) 18. (a) 19. (c) 20. (b)

Programming Problems
	 1.	 Write a recursive function that prints first n natural number in the reverse order. For example, if

n = 10, output should be 10 9 8 7 6 5 4 3 2 1.
	 2.	 Write a recursive function to find the largest element of an array.
	 3.	 Write a recursive function to reverse the order of elements of an array.
	 4.	 Write a recursive function to find the greatest common divisor of two natural numbers.
	 5.	 Write a recursive function to find the product of two natural numbers.
	 6.	 Write a recursive function to find factorial of a natural number.
	 7.	 Write a recursive function to find the sum of digits of a natural number.
	 8.	 Write a recursive function to find the convert a decimal number to binary number.

PRACTICALS

	 1.	 Write a program to find the factorial of a natural number n using recursion.
		 Refer to Listing 7.1
	 2.	 Write a program to find the nth Fibonacci number using recursion.

	 		 Refer to Listing 7.2
	 3.	 Write a program to convert a decimal number to its equivalent binary number using recursion.
		 Refer to Listing 7.9

Recursion  |  239

KNOW MORE

The topic of recursion is another important topic in problem solving and is used extensively to solve
many real-life problems.

The teacher is expected to develop an understanding about the concepts of recursion, and to solve
problem using recursive function with students participation.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to structures. Structures are used to store data pertaining to an
entity, where an entity can be an employee, customer, vehicle or book. This unit explains the various
aspects of structures and demonstrates their use with suitable examples.

RATIONALE
There can be real-life problems where we may have to deal with the collection of data where individual
data items can belong to different data types. For example, in an educational institution, there is a need
to store information of students that may include roll number, name, father’s name, mother’s name, date
of birth, email-id, mobile number, address, details of marks of each subject of each semester, fee details, etc.
These data items belong to different data types such as integer, long integer, string, float, etc.

Therefore, we need a mechanism to hold this kind of data collection as a single unit, and the answer
to this question is the structure.

This unit will help the students to understand the various aspects of structures, and develop
programs using structures to solve real-life problems.

PRE-REQUISITES
	 –	 Basic data types
	 –	 Conditional Branching
	 –	 Looping
	 –	 Arrays and strings
	 –	 Functions

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U8-O1: explain the concept of structure
U8-O2: explain different ways of defining a structure
U8-O3: declare and initialize structure variables
U8-O4: declare and initialize the array of structures
U8-O5: develop programs for real-life problems using structures

8 Structures

Structures  |  241

Unit 8
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U8-O1 - - - - - 1 - -

U8-O2 - - - - - 2 - -

U8-O3 - - - - - 2 - -

U8-O4 - - - - - 2 - -

U8-O5 - - - - - 3 - -

8.1  INTRODUCTION
You can think of a structure as an array of closely related items. However, unlike arrays, a structure
is a collection of related data items that can belong to different data types. The data items that make
a structure occupy contiguous memory locations, the same way elements of an array are stored in
contiguous memory locations.

Structures can be used to organize complex data in a more meaningful way.
Suppose we want to store information of employees in an organization. This information may

include the employee’s name (character array), department code (integer number), salary (floating-point
number), and so forth. And we want our program to deal with them as elements of an array.

One possible approach is to use several arrays — a character array for names, an integer array for
department code, a floating-point array for salary, and so forth. And using a common index we can
access the information for a particular employee. Still this approach obscures the fact that we deal with
data items related to a single entity, an employee in our example.

To solve this sort of problem, the C language provides a special data type: the structure. As already
mentioned, you can think of a structure as a group of data items of different data types held together in
a single unit. In our example, the structure would consist of the employee’s name, department number,
salary, and so forth.

Here are few more examples of structures
Name of Structure Probable Constituent Data Items

Date day, month, year
Time hours, minutes, seconds
Book title, author, publisher, price
Address name, house number, locality, city, state, pincode

Student roll number, name, father’s name, grade
Customer name, address, mobile no
Inventory item code, description, quantity, unit price
Employee employee id, name, address, mobile no

In this unit, we learn about various aspects associated with structures.

242  |  Programming for Problem Solving

8.2  DEFINING A STRUCTURE
The C language has two ways to define a structure: tagged structure and type-defined structure.

Tagged Structure
The first way to define a structure is to use a tagged structure. The syntax for declaring a tagged structure is

struct STUDENT
{
 . . .
 Field list
 . . .
};

struct STUDENT
{
 int rollNo;
 char name[20];
 char fname[20];
 char grade;
};

 (a) Format (b) Example

Fig. 8.1: Defining a tagged structure

The tagged structure starts with the keyword struct. The next element in the definition is tag. The
tag is the identifier for the structure, and will be used to declare variable, arguments of the functions, and
return types for the functions.

If we conclude the structure definition with a semicolon after the closing brace, no variables are
declared. In this case, the structure is simply a type template with no associated storage.

Type-defined Structure
The more powerful way to define a structure is by using type definition typedef. The syntax for declaring
a type-defined structure is

typedef struct
{
 . . .
 Field list
 . . .
} TYPE;

typedef struct
{
 int rollNo;
 char name[20];
 char fname[20];
 char grade;
} STUDENT;

 (a) Format (b) Example

Fig. 8.2: Defining a type-defined structure

Structures  |  243

The type-defined structure differs from tagged structure in the following aspects:

	 l	 The keyword typedef is used before the struct keyword.
	 l	 Identifier after the struct keyword is not mandatory as is the case with tagged structure.
	 l	 The identifier is required after the closing brace and before the semicolon.
	 l	 As we will see later, the variable can be declared with the declaration of the tagged structure

whereas it cannot be with type-defined structures.

A type definition, typedef, give a name to a data type by creating a new type that can be
used anywhere a type is permitted. The syntax for type definition is

typedef dataType IDENTIFIER;

where dataType is either built-in data type or user-defined data type, and IDENTIFIER,
usually in uppercase, is the new and convenient name for the dataType. The typedef
keyword tells the compiler to recognize the IDENTIFIER as synonymous of dataType.

Following are few more examples of definitions of structures:
struct Date
{
 int day;
 int month;
 int year;
};

struct Time
{
 int hours;
 int minutes;
 int seconds;
};

struct Book
{
 char title[25];
 char author[25];
 char publisher[15];
 float price;
};

struct Customer
{
 char name[25];
 char address[80];
 long mobile_no;
};

struct Inventory
{
 char item_code[25];
 char desc[25];
 int qty;
 float unit_price;
};

struct Address
{
 char name[25];
 int house_no;
 char locality[25];
 char city[15];
 char state[15];
 long pincode;
};

8.3  DECLARING STRUCTURE VARIABLES
Once a structure is defined, we can declare variables using these declarations. Usually, the definition is
placed in the global area of the program, i.e., before the main() function, so that it is visible to all the
functions in the program. The variables, on the other hand, are usually declared in the local area of
the functions or in the argument list in the functions headers. The following statements shows the way
structure variables are declared.

For tagged structure, the variable is declared as

 struct STUDENT aStudent;

244  |  Programming for Problem Solving

For type-defined structure, the variable is declared as
 STUDENT bStudent;

By comparing both the declarations, you will find the type-defined structure is handier in the
declarations of the variable because you don’t need to use the struct keyword. This can be quite a time
and effort-saving if the variable declarations are required at many places in the program.

Further note that, in the case of tagged structure, the variable declaration can be combined with its
definition as shown below.
 struct EMPLOYEE
 {
 int code;
 char name[25];
 char department[15];
 float salary;
 } aEmployee, bEmployee;

Usually, this approach of declaring variables is not recommended, for the following reasons:

	 1.	 Since structure definition is placed in the global area, and so the variables will also be global.
	 2.	 If we want to declare local variables using this approach, we may have to place the structure

definition in local scope, making the definition of structure invisible to other functions.

8.4  INITIALIZING STRUCTURES
Like simple variables and arrays, structure variables can also be initialized at the time of declaration. The
format used is quite similar to that used to initialize arrays.

The following segment illustrates this
 typedef struct
 {
 int rollno;
 char name[25];
 int age;
 float height;
 } STUDENT;

 STUDENT aStudent = { 1000, ″Surbhi″, 18, 5.6 };

8.5  ACCESSING STRUCTURE ELEMENTS
Individual structure elements of structure variables can be accessed using the dot operator ‘.’ This dot
operator is also referred to as membership operator.

The syntax for accessing a structure element is as follows

 sname.vname
where sname is the name of the structure variable, and vname is the name of the data field.

Structures  |  245

Consider the following statements
 struct Student
 {
 int rollno;
 char name[25];
 char fname[25];
 char grade;
 };

 Student aStudent;;

The individual elements of structure variable aStudent will be accessed as shown below:

 aStudent.rollno		 // reference to element rollno
 aStudent.name	 	 // reference to element name
 aStudent.fname	 	 // reference to element fname
 aStudent.grade	 	 // reference to element grade

8.6  ASSIGNING OF STRUCTURES
A structure is an entity that can be treated as a whole. There is only one operation that can be performed
on the structure as a whole is that a structure can be assigned/copied into another structure of the same
type using the assignment operator.

Again consider the following statements
 typedef struct
 {
 int rollno;
 char name[25];
 int age;
 float height;
 } STUDENT;

 STUDENT aStudent, bStudent;

The following assignment statement
 aStudent = bStudent;

assigns the contents of structure bStudent to aStudent.
It is a unique feature of structures as compared to arrays, where in order to copy one array to

another array of the same type, we have to set up a loop to copy element-by-element.
This is rather an amazing capability when you think about it. When you assign one structure

to another, all the values in the structure are assigned to corresponding structure elements. Simple
assignment statements cannot be used this way for arrays. That is, to assign one array to another, we
have to assign element by element.

246  |  Programming for Problem Solving

8.7  READING/WRITING STRUCTURES
We can read into and write data from a structure element in the same manner as we do with simple
variables.

For example, the elements of aStudent structure, we can read data, interactively, from the keyboard
and place in the aStudent structure using the following statements
 printf(″\nEnter roll number of the student : ″);
 scanf(″%d″, &aStudent.rollno);
 printf(″\nEnter name of the student : ″);
 scanf(″%d″, aStudent.name);
 printf(″\nEnter age of the student : ″);
 scanf(″%d″, &aStudent.age);
 printf(″\nEnter height of the student : ″);
 scanf(″%d″, &aStudent.height);

Note that in the scanf() function, the expression
 &aStudent.rollno

is interpreted by the compiler as
 &(aStudent.rollno)

because of higher precedence of direct selection operator over addressof operator (&), and that is what
exactly is required.
 Listing 8.1
 /*
 Program to demonstrate input/output of structures
 */

 #include<stdio.h>
 #include<sting.h>

 struct EMPLOYEE
 {
 int code;
 char name[25];
 char department[15];
 float salary;
 };

 int main()
 {
 struct EMPLOYEE aEmployee;
 printf(″Enter employee′s code: ″);

Structures  |  247

 scanf(″%d″, &aEmployee.code);
 fflush(stdin);
 printf(″Enter employee′s name: ″);
 gets(aEmployee.name);
 printf(″Enter employee′s department: ″);
 gets(aEmployee.department);
 printf(″Enter employee′s salary: ″);
 scanf(″%f″, &aEmployee.salary);
 printf(″\n\nParticulars of employee as″);
 printf(″ entered by user\n″);
 printf(″\nEmployee′s code: %d″, aEmployee.code);
 printf(″\nEmployee′s name: %s″, aEmployee.name);
 printf(″\nEmployee′s department: %s″,aEmployee.department);
 printf(″\nEmployee′s salary: %.2f\n″, aEmployee.salary);
 return 0;
 }

 Test Run
 Enter employee’s code: 826
 Enter employee’s name: Rajesh Kumar
 Enter employee’s department: Computer Science
 Enter employee’s salary: 20000

 Particulars of employee as entered by user

 Employee′s code: 826
 Employee’s name: Rajesh Kumar
 Employee’s department: Computer Science
 Employee’s salary: 20000.00

8.8  ARRAYS OF STRUCTURES
In many practical situations, we need to create an array of structures. As an example, we need to create an
array of students to work with a group of students in a class. By putting the data of students in an array
of structures, we can quickly and efficiently process the student’s data.

An array of structures to store the data of students will be declared as
 STUDENT students[50];

8.8.1  Accessing Elements of Array of Structures
Individual elements of a structure in an array of structures are accessed by referring to structure variable
name, followed by index, direct selection operator, and ending with the desired structure element.

In our example of students of a class, the name of the ith student can be accessed as follows:
 students[i].name;

248  |  Programming for Problem Solving

8.8.2  Initializing Array of Structures
Like any other array, an array of structures can also be initialized. Since each element of array structures
is a different structure, we need to include elements of each structure in a separate set of braces as shown:
 STUDENT students[50] = { { 1000, ″Monika″,{56,76,85,69}, ′A′ },
 { 1001, ″Ram″, {50,66,70,60}, ′B′ },
 :
 { 1049, ″Raju″, {65,62,68,59}, ′B′ },
 };

The following program illustrates the input, processing and output of an array of structures.
 Listing 8.2
 /*
 Program to illustrate processing of array of structures by
 storing list of students in memory, and computes their grades
 */

 #include <stdio.h>

 typedef struct {
 int rollno;
 char sname[25];	
 int marks[4];
 char grade;
 } STUDENT;

 int main()
 {
 STUDENT students[50];
 int totalMarks, i, j, n;
 printf(″\n\nEnter number of students in a class : ″);
 scanf(″%d″, &n);
 for (i = 0; i < n; i++)
 {
 printf(″\nParticulars of student #%d\n\n″, i+1);
 printf(″Enter students′ roll number : ″);
 scanf(″%d″, &students[i].rollno);
 printf(″\nEnter students′ name : ″);
 gets(students[i].sname);
 printf(″\nEnter students marks in four subjects\n\n″);
 for (j = 0; j < 4; j++)
 scanf(″%d″, &students[i].marks[j]);
 }
 for (i = 0; i < n; i++)
 {

Structures  |  249

 totalMarks = 0;
 for (j = 0; j < 4; j++)
	 totalMarks += students[i].marks[j];
 if (totalMarks > 75)
	 students[i].grade = ′A′;
 else if (totalMarks > 60)
	 students[i].grade = ′B′;
 else if (totalMarks > 50)
	 students[i].grade = ′C′;
 else if (totalMarks > 40)
	 students[i].grade = ′D′;
 else
	 students[i].grade = ′F′;
 }
 printf(″\nPerformance of students\n\n″);
 printf(″%-10s″, ″Roll No.″);
 printf(″%-30s″, ″Name″);
 printf(″%6s\n″, ″Grade″);
 for (i = 0; i < n; i++)
 {
 printf(″%-10d″, students[i].rollno);
 printf(″%-30s″, students[i].sname);
 printf(″%4c\n″, students[i].grade);
)
 return 0;
 }

 Test Run
 Enter number of students in a class : 3

 Particulars of student #1

 Enter students′ roll number : 1000
 Enter students′ name : Ram Kumar
 Enter students marks in four subjects
 98 99 89 88

 Particulars of student #2

 Enter students′ roll number : 1001
 Enter students′ name : Mohit Kumar
 Enter students marks in four subjects
 65 55 45 60

250  |  Programming for Problem Solving

 Particulars of student #3

 Enter students′ roll number : 1002
 Enter students′ name : Jaspreet Singh
 Enter students marks in four subjects
 41 44 45 50

 Performance of students

 SNo. Student′s Name Grade
 1 Sonu A
 2 bhollu C
 3 jaspreet D

8.9  PASSING STRUCTURE TO A FUNCTION
In order to be fully useful, we must be able to pass structures to functions as arguments and returning
them from functions.

typedef struct {
 int day;
 int month;
 int year;
} DATE;
void printDate(DATE);
void main()
{
 DATE aDate = { 10, 6, 2008 };
 int x;
 printDate(aDate);
 /* more statements */
}

/* function definition */

void printDate(DATE tDate)

{

 /* local declarations */

 /* other statements */

}

Fig. 8.3: Passing structure to a function

 Listing 8.3
 /*
 Program to illustrate the passing of a structure to a function
 */
 #include <stdio.h>
 typedef struct
 {
 int day;

Structures  |  251

 int month;
 int year;
 } DATE;
 void printDate(DATE aDate);	 /* function declaration */
 void main()
 {
 DATE tDate = { 10, 6, 2008 }; /* initialize a structure */
 printDate(tDate);			 /* function call */
 }
 void printDate(DATE aDate)
 {
 printf(″\nDate in format dd/mm/yyyy: %02d/%02d/%2d\n″,
 aDate.day, aDate.month, aDate.year);
 }

 Test Run
 Date in format dd/mm/yyyy: 10/06/2008

8.10  FUNCTION RETURNING A STRUCTURE
A function can also return a value of structure type as well via return statement as illustrated below.

typedef struct

{

 int day;

 int month;

 int year;

} DATE;

DATE getDate(void);

void main()

{

 DATE aDate;

 int x;

 aDate = getDate();

 /* more statement */

}

/* function definition */
DATE getDate(void)
{
 DATE tDate;
 /* local declarations */
 /* more statements */
 return tDate;
}

Fig. 8.4: Function returning a structure

 Listing 8.4
 /*
 Program to illustrate function returning a structure
 */

252  |  Programming for Problem Solving

 #include <stdio.h>
 typedef struct
 {
 int day;
 int month;
 int year;
 } DATE;
 DATE getDate(void);		 /* function declaration */
 void main()
 {
 DATE tDate;
 printf(″Enter date in format dd/mm/yyyy : ″);
 tDate = getDate();
 printf(″\nDate entered by you: %02d/%02d/%2d\n″,
 tDate.day, tDate.month, tDate.year);
 }

 DATE getDate(void)
 {
 DATE xDate;
 scanf(″%d/%d/%d″, &xDate.day, &xDate.month, &xDate.year);
 return xDate;
 }

 Test Run
 Enter date in format dd/mm/yyyy: 10/6/2008
 Date entered by you: 10/06/2008

ILLUSTRATIVE EXAMPLES

Example 8.1: Given the following declaration
 struct STUDENT
 {
 int rollNo;
 char name[31];
 int marks;
 };

to represent the information of a student.
Using this structure, write a function that takes a list of students, in the form of an array, as its

argument, and sorts them in the descending order of the marks secured by the students.

Structures  |  253

Using the above structure and function, write a program that reads the data for n students and
displays them in descending order of marks secure by the students.
 Listing 8.5
 /*
 Program to the given information of students in
 descending order of the marks secured by them
 */

 #include <stdio.h>
 typedef struct
 {
 int rollno;
 char name[20];
 int marks;
 } STUDENT;

 int main()
 {
 STUDENT st[50], temp;
 int i, j, n;
 printf(″\nEnter number of students : ″);
 scanf(″%d″, &n);

 for (i = 0; i < n; i++)
 {
 printf(″\nParticulars of student #%d\n\n″, i+1);
 printf(″Enter students′ roll number : ″);
 scanf(″%d″, &st[i].rollno);
 fflush(stdin);
 printf(″Enter students′ name : ″);
 gets(st[i].name);
 printf(″Enter students′ marks : ″);
 scanf(″%d″, &st[i].marks);
 }
 for (i = 1; i < n; i++)
 {
 for (j = 0; j < n-i; j++)
 {
	 if (st[j].marks < st[j+1].marks)
 {

254  |  Programming for Problem Solving

	 temp = st[j];
 st[j] = st[j+1];
 st[j+1] = temp;
	 }
 }
 }

 printf(″\nStudent′s Information after sorting\n\n″);
 printf(″%-10s″, ″Roll No.″);
 printf(″%-20s″, ″Name″);
 printf(″%6s\n\n″, ″Marks″);

 for (i = 0; i < n; i++)
 {
 printf(″%-10d″, st[i].rollno);
 printf(″%-20s″, st[i].name);
 printf(″%4d\n″, st[i].marks);
 }
 return 0;
 }

 Test Run
 Enter number of students : 5

 Particulars of student #1

 Enter students′ roll number : 1000
 Enter students′ name : Ravi
 Enter students′ marks : 80

 Particulars of student #2

 Enter students′ roll number : 1001
 Enter students′ name : Shankar
 Enter students′ marks : 79

 Particulars of student #3

 Enter students′ roll number : 1002
 Enter students′ name : Ankit
 Enter students′ marks : 65

Structures  |  255

 Particulars of student #4

 Enter students′ roll number : 1003
 Enter students′ name : Rupinder
 Enter students′ marks : 75

 Particulars of student #5

 Enter students′ roll number : 1004
 Enter students′ name : Mehak
 Enter students′ marks : 88

 Student′s Information after sorting

 Roll No. Name Marks

 1004 Mehak 88
 1000 Ravi 80
 1001 Shankar 79
 1003 Rupinder 75
 1002 Ankita 65

Example 8.2: Write a program to add two distances given in inch-feet system using Structures.
 Listing 8.6
 /*
 Program to add two distances given in inch-feet system
 using structures and functions
 */

 #include <stdio.h>

 typedef struct
 {
 int feets;
 int inches;
 } Distance;

 /* function prototypes */
 Distance getInput(void);
 Distance addDistances(Distance d1, Distance d2);
 void printDistance(Distance d);
 int main()
 {
 Distance d1, d2, d3;

256  |  Programming for Problem Solving

 printf(″\nEnter the first distance in feets and inches\n″);
 d1 = getInput();
 printf(″\nEnter the second distance in feets and inches\n″);
 d2 = getInput();

 d3 = addDistances(d1, d2);

 printf(″\nSum of given distances\n\n″);
 printDistance(d3);

 return 0;
 }
 Distance getInput()
 {
 Distance temp;
 printf(″\n\tEnter feets : ″);
 scanf(″%d″, &(temp.feets));	
 printf(″\n\tEnter inches : ″);
 scanf(″%d″, &(temp.inches));
 return temp;	
 }
 Distance addDistances(Distance d1, Distance d2)
 {
 Distance temp;
 temp.feets = d1.feets + d2.feets;
 temp.inches = d1.inches + d2.inches;
 if (temp.inches >= 12)
 {
 temp.feets += 1;
 temp.inches -= 12;
 }
 return temp;
 }
 void printDistance(Distance d)
 {
 printf(″\n\tFeets = %d″, d.feets);
 printf(″\n\tInches = %d″, d.inches);
 }

 Test Run
 Enter the first distance in feets and inches

Enter feets : 4
Enter inches : 8

Structures  |  257

 Enter the second distance in feets and inches
Enter feets : 5
Enter inches : 7

 Sum of given distances
 Feets = 10
 Inches = 3

Example 8.3: Use a structure to model a complex number. Using this structure write functions to accomplish
the following tasks:
	 q	 A function that returns the structure read from the keyboard.
	 q	 A function that takes two structures using call by value mechanism as its arguments and return

their sum.
	 q	 A function that takes single structure using call by value mechanism as its arguments and prints

it.
Use these functions in the program to demonstrate their work.
 Listing 8.7
 /*
 Program to demonstrate operations on complex number using
 structure & functions
 */

 #include <stdio.h>

 typedef struct
 {
 float real;
 float imag;
 } COMPLEX;

 COMPLEX input(void); /* function declarations */
 void output(COMPLEX);
 COMPLEX add(COMPLEX, COMPLEX);
 COMPLEX multiply(COMPLEX, COMPLEX);
 int main()
 {
 COMPLEX n1, n2, n3, n4;
 printf(″\nProgram to add two complex numbers\n\n″);
 printf(″\nEnter the first complex number\n″);
 n1 = input();
 printf(″\nEnter the second complex number\n″);
 n2 = input();
 n3 = add(n1,n2);

258  |  Programming for Problem Solving

 printf(“\nSum of the given complex numbers\n\n”);
 output(n3);
 n4 = multiply(n1,n2);
 printf(″\nProduct of the given complex numbers\n\n″);
 output(n4);
 return 0;
 }
 COMPLEX input(void)
 {
 COMPLEX t;
 printf(«\nEnter real part : «);
 scanf(«%f», &t.real);
 printf(«Enter imaginary part : «);
 scanf(«%f», &t.imag);
 return t;
 }
 void output(COMPLEX t)
 {
 printf(«Real part : %.2f», t.real);
 printf(«\nImaginary part : %.2f», t.imag);
 }
 COMPLEX add(COMPLEX a, COMPLEX b)
 {
 COMPLEX t;
 t.real = a.real + b.real;
 t.imag = a.imag + b.imag;
 return t;
 }
 COMPLEX multiply(COMPLEX a, COMPLEX b)
 {
 COMPLEX t;
 t.real = a.real * b.real – a.imag * b.imag;
 t.imag = a.real * b.imag + a.imag * b.real;
 return t;
 }

 Test Run
 Program to add two complex numbers
 Enter the first complex number
 Enter real part : 1.0
 Enter imaginary part : 2.5
 Enter the second complex number
 Enter real part : 2.5
 Enter imaginary part : -1.5

Structures  |  259

 Sum of the given complex numbers

 Real part : 3.50
 Imaginary part : 1.00

 Product of given complex numbers

 Real part : 6.25
 Imaginary part : 4.75

UNIT SUMMARY

In this chapter, we have learned that

	 q	 A structure is a collection of related elements, which can be of different types, having a single
name.

	 q	 Each element of the structure is called a field.
	 q	 There are two ways to declare a structure: tagged structure and type-defined structure.
	 q	 A structure can be initialized when it is declared and defined. The list of comma- separated

values is enclosed in pair of braces.
	 q	 We can access the fields of the structure using direct selection, dot operator (.).
	 q	 Unlike arrays and string, a structure can be assigned to another structure using an assignment

operator.
	 q	 A structure can be passed as an argument to a function.
	 q	 A function can return a structure.

EXERCISE

Subjective Questions
	 1.	 What is the main reason for using structures?
	 2.	 How is a structure different from an array?
	 3.	 What is the structure tag and what is its purpose?
	 4.	 What are different ways of defining a structure? Give example in each case.
	 5.	 Is there thing wrong with the following?

struct Time
{
 int hrs;
 int mts;
 int secs;
}
time t1;

260  |  Programming for Problem Solving

	 6.	 What is wrong with the following, if any?
struct Time
{
 int hrs =10;
 int mts = 20;
 int secs = 35;
} t1, t2, t3;

	 7.	 Identify the errors, if any, in the following
struct
{
 int hrs;
 int mts;
 int secs;
} time;
time t1, t2, t3;

	 8.	 Give the output of the following program:
#include <stdio.h>
struct MyBox {
 int Length, Breadth, Height;
};
void Dimension(MyBox M)
{
 printf(″\n%d x %d x %d\n″,M.Length,M.Breadth,M.Height);
}
void main()
{
 MyBox B1 = { 12, 20, 8 }, B2, B3;
 ++B1.Height;
 Dimension(B1);
 B3 = B1;
 ++B3.Length;
 B3.Breadth++;
 Dimension(B3);
 B2 = B3;
 B2.Height += 5;
 B2.Length--;
 Dimension(B2);
}

Multiple Choice Questions
	 1.	 A structure is
	 (a)	 Scalar data type	 (b)	 Derived data type
	 (c)	 Primitive data type	 (d)	 Use-defined data type

Structures  |  261

	 2.	 Which of the following statement is true about structures?
	 (a)	 The elements of the structure must be of different type.
	 (b)	 Structure tag is mandatory in all cases.
	 (c)	 While declaring a variable of structure type, you need to prefix keyword struct before the tag

name.
	 (d)	 Structure element are accessed using the star (*) operator.
	 3.	 A structure is a data type in which
	 (a)	 Each element must have the same type.	 (b)	 Elements can be of a different type.
	 (c)	 Each element must be of pointer type.	 (d)	 None of above
	 4.	 Consider the following declaration

struct ex {
 char cVvar;
 int iVar;
 long lVar;
};

		 What value will be returned by the sizeof operator called on ex?
	 (a)	 4	 (b)	 7	 (c)	 1	 (d)	 6
 	 5.	 Keyword used to create a structured data type is
	 (a)	 structure	 (b)	 structr	 (c)	 struct	 (d)	 struc
	 6.	 The operator used to access the structure member is
	 (a)	 *	 (b)	 .	 (c)	 &	 (d)	 []
	 7.	 Consider the statement: The size of a struct is always equal to the sum of its members.

	 (a)	Valid	 (b)	 Can’t say
	 (c)	 Invalid	 (d)	 Compiler dependent
	 8.	 Consider the statement: The size of a struct is always equal to the sum of its members.

#include<stdio.h>
struct st
{
	 int x;
	 static int y;
};

int main()
{
	 printf(″%d″, sizeof(struct st));
	 return 0;
}

	 (a)	 4	 (b)	 8
	 (c)	 Runtime error	 (d)	 Compiler time error

262  |  Programming for Problem Solving

	 9.	 Which of the following operator can be applied on structure variables?
	 (a)	 ==	 (b)	 =	 (c)	 >	 (d)	 +
	 10.	 Presence of code like “s.b = 10” indicates a __________
	 (a)	 ordinary variable name	 (b)	 double data type
	 (c)	 structure	 (d)	 syntax error
	 11.	 What will be the output of the following program?

struct Test
{
 char str[20];
};
void main()
{
 struct Test st1, st2;
 strcpy(st1.str, ″C Quiz″);
 st2 = st1;
 st1.str[0] = ′S′;
 cout << st2.str;
}

	 (a)	 C Quiz	 (b)	 S Quiz
	 (c)	 Runtime error	 (d)	 Compile time error

	 12.	 What is actually passed if you pass a structure variable to a function?
	 (a)	 Reference of structure variable	 (b)	 Copy of structure variable
	 (c)	 Starting address of structure variable	 (d)	 Ending address of structure variable
	 13.	 Comment on the output of the following C code.

struct temp {
 int a;
 int b;
 int c;
};
main()
{
 struct temp p[] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
}

	 (a)	 Creates an array of structure of size 3
	 (b)	 Creates an array of structure of size 9
	 (c)	 Illegal assignment to members of structure
	 (d)	 Illegal declaration of a multidimensional array
	 14.	 Which of the following cannot be a structure member?
	 (a)	 Array	 (b)	 Structure	 (c)	 String	 (d)	 Function

Structures  |  263

	 15.	 Which of the following is a properly defined struct?

	 (a)	struct {int a;}	 (b)	 struct a_struct {int a;};
	 (c)	struct a_struct int a;	 (d)	 struct a_struct {int a;}

ANSWERS
1. (d) 2. (c) 3. (b) 4. (b) 5. (c)
6. (b) 7. (a) 8. (d) 9. (b) 10. (c)

11. (a) 12. (b) 13. (a) 14. (d) 15. (b)

Programming Problems
	 1.	 Design a structure named distance to store a length in yard, feet, and inches. Using this structure,

write a program that accepts two measurements from the user as represented by these structures
and prints the absolute difference between these measurements.

	 2.	 Design a structure named student to store data about a student which contains the following
elements — rollno of type int, name an array of type char of size 20, college an array of type char
of size 40, and score of type float. Assume that there are not more than 100 students. Write a
program to input the data about students, and output the stored data according to the merit of
the students.

	 3.	 Consider the following declaration:
struct EMPLOYEE

{

 int code;

 char name[31];

 float salary;

};

		 Given that there are n (<50) employees in an organization. Write a program that output the
details of the employee having the highest salary.

	 4.	 Create a structure named Time to model a time in 12 hour system having three fields as hours,
minutes and seconds. Write a function called elapsedTime that takes two arguments, the start
time and the end time. The function should return a Time structure containing the time elapsed
between the two arguments. Write a program to test the above function.

	 5.	 A point in plane in Cartesian system can be represented by its coordinates x and y. We can create
a structure to represent a point in plane as shown below:

struct POINT
{
 int x;
 int y;
};

		 Write a function that accepts the structure representing a point and returns an integer value 1,
2, 3 or 4 indicating the quadrant in which the point is located. Write a program to test the above
function.

264  |  Programming for Problem Solving

	 6.	 Define a structure that contains three members – the name of country, name of the capital, and
per capita income. Using this structure, write a program to list the countries along with their
capitals in the decreasing order of their per capita income.

PRACTICALS
	 1.		 Write a program to simulate a digital clock (in 24 hours format) using a structure to represent

the time.

 Listing 8.8
 #include <stdio.h>
 /* typedefined structure to represent clock time */
 typedef struct {
 int hh;
 int mm;
 int ss;
 } CLOCK;
 int main()
 {
 CLOCK myClock = { 12, 40, 55 };
 int i;
 printf(″\nPress any key to stop the clock\n″);
 while (!kbhit())
 {
 /* increment clock */
 (myClock.ss)++;
 if (myClock.ss == 60) {
 myClock.ss = 0;
 (myClock.mm)++;
 if (myClock.mm == 60) {
 myClock.mm = 0;
 (myClock.hh)++;
 if (myClock.hh == 24) {
 myClock.hh = 0;
 }
 }
	 }
	 /* show clock */
 printf(″%02d:%02d:%02d\n″,
 myClock.hh, myClock.mm, myClock.ss);
 }
 return 0;
 }

Structures  |  265

 Test Run
 Press any key to stop the clock

 12:40:56
 12:40:57
 12:40:58
 12:40:59
 12:41:00
 12:41:01
 12:41:02

	 2.	 Write a program to find the difference between start time and stop time (in 12 hours format)
using a structure to represent the time.

 Listing 8.9
 #include <stdio.h>
 typedef struct {
 int hh;
 int mm;
 int ss;
 } TIME;

 /* function prototype */
 TIME differenceTime(TIME t1, TIME t2);

 int main()
 {
 TIME startTime, stopTime, diffTime;
 printf(″Enter the start time in format hh mm ss : ″);
 scanf(″%d %d %d″, &startTime.hh, &startTime.mm, &startTime.ss);
 printf(″Enter the stop time in format hh:mm:ss : ″);
 scanf(″%d %d %d″, &stopTime.hh, &stopTime.mm, &stopTime.ss);
 /* functiona call */
 diffTime = differenceTime(startTime, stopTime);
 printf(″\nTime Difference: %d:%d:%d\n″, diffTime.hh,
 diffTime.mm, diffTime.ss);
 return 0;
 }
 /* function that return difference between time periods */
 TIME differenceTime(TIME t1, TIME t2)
 {

266  |  Programming for Problem Solving

 TIME temp;
 if (t1.ss > t2.ss) {
 --t2.mm;
 t2.ss += 60;
 }
 temp.ss = t2.ss - t1.ss;
 if (t1.mm > t2.mm) {
 --t2.hh;
 t2.mm += 60;
 }
 temp.mm = t2.mm - t1.mm;
 temp.hh = t2.hh - t1.hh;
 return temp;
 }

 Test Run
 Enter the start time in format: hh mm ss : 5 20 30
 Enter the stop time in format: hh mm ss : 7 15 10
 Time Difference: 1:54:40

KNOW MORE
The structure is a user-defined type. There are many problems where the basic types and arrays derived
from basic types are not able to model real-life problems. In that case we need to create a new data type,
called user-defined type, which is a structure in C.

In most of the real-life applications that need to record information about entities in real-life, use of
structure is the only way. That signifies the importance of structures in solving real-life problems.

The teacher is expected to develop an understanding of the concepts of structures and demonstrate
the use of use of structures by taking suitable examples possibly from real life.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to pointers. Pointers represent one of the important topics of C
language. The real power of C language can be exploited by the judicious use of pointers. This unit
explains various aspects of pointers and demonstrates their use with suitable examples.

RATIONALE
Under normal circumstances, every C program is allocated memory for storage of data and the program
instructions. The amount of memory required for the storage of both is determined at the time of
compilation, and it is fixed and cannot be changed during execution of the program.

Practically, the memory required for the instruction remains fixed every time you execute the
program, however, the size of the data can vary from one problem instance to another.

This issue of varying size of data, dynamic nature of data, can only be resolved by making
modification to declaration of data items of the program, and building the program again.

In case, you don’t have access to source code, then this approach will not work.
The pointers provide a better alternate to handle this issue, as by using pointer, memory can be

allocated for data items as per the actual requirement at execution time.
In addition, use of pointers offers benefits in following circumstances:

	 l	 Passing arguments to a function efficiently.
	 l	 Called function can return more than one value to the calling functions via arguments.
	 l	 Program can access any memory location of the installed memory as well any device connected

which is addressable.
	 l	 Building complex data structures to model complex real-life problems.

	In the nutshell, we can say pointers are one of the most distinct and exciting features of C language.
It provides power and flexibility to the language.

This unit will help the student to understand the various aspects related to pointers and develop
programs using pointers to solve real-life problems efficiently.

PRE-REQUISITES
	 –	 Basic data types
	 –	 Operators
	 –	 Arrays and String
	 –	 Functions
	 –	 Structures

9 Pointers

268  |  Programming for Problem Solving

Unit OUTCOMES
Upon completion of the unit, students will be able to

U9-O1: comprehend the world of pointers, one of the decadent feature of C language
U9-O2: declare and initialize pointers
U9-O3: access the data by dereferencing a pointer
U9-O4: explain the permissible operations on pointers
U9-O5: explain the usefulness of pointers in passing arguments to a function
U9-O6: explain the concept of dynamic memory allocation
U9-O7: write efficient programs using pointers to solve variety of problems

Unit 9
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8
U9-O1 - - 1 - - - - -

U9-O2 - - 1 - - - - -

U9-O3 - - 1 - - - - -

U9-O4 - - - - - 2 - -

U9-O5 - - - - 2 - - -

U9-O6 - - - - - 2 - -

U9-O7 - - - - - 3 - -

9.1  INTRODUCTION
Pointers are one of the most important features of C language. Pointers, by most people, are regarded as
one of the most difficult topics in C. Let me tell you frankly, it is more a myth than a fact. I would prefer
to say that pointers are one of the most delicate aspects of C language, and you know; delicate things
need cautious handling. Therefore, pointers need careful handling.

There are many reasons for using pointers; some of them are enumerated below:
	 l	 A pointer allows a function or a program to access a variable (better we say memory location)

outside the preview of function or a program. Using a pointer, your program can access any
memory location in the computer’s memory.

	 l	 Since using return statement, a function can only pass back a single value to the calling function,
pointers allows a function to pass back more than one value by writing them into memory
locations that are accessible to the calling function.

	 l	 Using pointers, arrays and structures can be handled in more efficient way.
	 l	 Without pointers, it will be impossible to create complex data structures, such as linked lists,

trees and graphs.

Pointers  |  269

	 l	 To communicate with operating system about memory. For example, the operator new returns
the location of free memory block by using a pointer and the operator delete returns the memory
block pointed to by a pointer to the operating system.

In totality, we can say that the real power of C language lies in the judicious use of pointers. Therefore,
every reader of C must learn and master the art of using pointers.

In this unit, we will learn about various aspects related to pointers in C language.

9.2  IDEA OF POINTERS
Computer’s memory is organized as
a linear collection of bytes or words.
For Intel processors, memory is
byte-organized whereas for most of
the non-Intel processors, memory is
word-organized. In byte-organized
memory, each memory location
is one byte, whereas in word-
organized, each memory location is
of one word. Each memory location
is assigned a unique number called
location number or address. Fig. 9.1
shows the schematic of memory
organization.

We know that one byte is equal
to 8 bits, whereas one word may be
made up of two or more bytes. A
word measures the capacity of
processor in terms of the size of
operands that it can process (i.e. add,
subtract, multiply, divide, compare,
etc.) in single operation. When we
say that a processor is a 16-bit
processor, its word size is 16-bits (2
bytes) and it can process 16-bit
operands in single operations. For
large size operands, it needs more
operations.

A memory cell is either of one byte/word
or more contiguous bytes/words. Each cell can
store one value at a given time. The address of a
cell is always the address of the first byte/word.

When you give a command to run a
program, the operating system first finds a free
block of requisite size from computer (main)
memory, and then loads the program into that

0

1

2

3

4

5

6

7
.
.
.
.
.
.
.
.
.
.
.

MAX

Memory locations Addresses

Fig. 9.1: Memory Organization

2125

code

1500

Variable

Value/Operand

Address

Fig. 9.2: Representation of a variable in memory

270  |  Programming for Problem Solving

block. Even in that block, usually, the program’s code is loaded in one part and the program’s data in
another part of the block. Each of the data operand is stored in a cell and the system associates each of
the variables with these addresses. This is illustrated in Fig. 9.2.

To access the data operand either we use either variable name or use the memory cell’s address.
Since these addresses are simply positive integer numbers, they can also be assigned to some variables
stored in memory, like any other variable. Such variables that hold addresses are known as a pointer. A
pointer is, therefore, nothing but a variable that contains address of another variable in memory.

Since pointer is a variable, its value is also stored in memory in another address. Suppose we assign
the address of variable code to a variable ptr. The link between the variable ptr and code can be visualized
as shown in Fig. 9.3.

2125

1500

code

ptr

1500

2000

Variable Value Address

Fig. 9.3: Pointer as a Variable

Since the value of the variable ptr is the address of the variable code, we can access the value of
variable code by using the value of variable ptr. Therefore, we say that the variable ptr points to the
variable code, and hence ptr gets the name pointer.

9.3  ACCESSING ADDRESS OF A VARIABLE
The actual address of a variable is a system dependent. During compilation and linking, addresses are
assumed to be relative to some base address, usually 0. When the operating system loads the program in
a free block, all the address are transformed with relative to address of the first memory location of the
free block. Hence, we do not know the address of a variable. Therefore, a question arises — how can we
determine the address of a variable? This is done with the help of address of operator (&).

Consider the following statement
 ptr = &code;

It will assign the number 1500 (address of variable code) to the variable ptr.
The following restrictions must be observed:

	 1.	 The address of operator can only be used with variables or an array element. The following are
illegal use of address of operator:

	 (a)	&1200	 (pointing at constant expression)
	 (b)	&(a/b)	 (pointing at expression)
	 2.	 Pointer variable can be initialized only with the use of address of operator or by assigning the

value of another compatible pointer variable. The following way of initializing a pointer variable
ptr is illegal:

ptr = 1500;

		 Though, the number 1500 happen to be the address of variable code.

Pointers  |  271

9.4  DECLARING A POINTER
Declaring a pointer variable is similar to the declaration of a standard variable but the name of pointer
variable is prefixed with * symbol.

The syntax for declaring a pointer variable
 datatype *pointerVariableName

For example, the statement
 int *ptr;

declare a pointer variable ptr that that can be used to store address of any integer variable.

9.5  ASSIGNING ADDRESS TO A POINTER
Once a pointer has been declared, it must be assigned address of a variable. Like standard variables, a
pointer variable will take a garbage value once declared. Therefore, before use, a pointer variable must
be assigned the address of a variable.

The syntax for assigning address to a pointer variable
 pointerVariableName = &variableName;

For example, the statement
 int a, *ptr;

declares a as a normal integer variable and ptr is an integer pointer variable.
To assign the address of variable a to pointer variable ptr, we use the following statement
 ptr = &a;

Here we say that pointer variable ptr is pointing to variable a.

9.6  ACCESSING VARIABLE USING a POINTER
Once a pointer variable has been assigned the address of a variable, the question remains - how to access
the value of a variable using the pointer variable. This is done by prefixing * with the pointer variable.

The syntax for accessing variable using a pointer variable
 *pointerVariableName

 Listing 9.1
 /*
 Program to illustrate the use of pointer variable
 */
 #include<stdio.h>
 int main()
 {
 int *ptr, x = 10;
 ptr = &x;
 printf(«Value of variable x = %d\n», x);
 printf(«Value of variable pointed to by ptr = %d\n»,*ptr);

272  |  Programming for Problem Solving

 printf(«Address of variable x = %u\n», ptr);
 return 0;
 }

 Test Run on Turbo C++ Complier
 Value of variable x = 10
 Value of variable pointed to by ptr = 10
 Address of variable x = 65524

9.7  POINTER ARITHMETIC
The C language is very consistent in its approach to pointer arithmetic. The integration of pointers,
arrays, and pointer arithmetic is one of the strengths of the C language. In this section, we will briefly
describe the various operations permissible on pointers.

The following operations are permitted on pointers.
	 1.	 Addition of a number to a pointer variable.
		 Suppose p is a pointer variable pointing to an element of integer type, then the

statement
			 	 p++; or ++p;
		 increments the value of p by a factor of 2, so that it points to the following location that holds

another value of integer type. This increment factor will be 1 for character, 4 for long
integer and float, and 8 for long float. The statement

		 	 p += i;

		 where i is either a positive integer constant or an integer variable having positive value,
increments p such that it points to the ith location beyond the location to which it is
currently pointing.

	 2.	 Subtraction of a number from a pointer variable.
		 Suppose p is a pointer variable pointing to an element of integer type, then the

statement
				 p--; or --p;
		 decrements the value of p by a factor of 2, so that it now points to the location

preceding the current location. The statement
			 p -= i;
		 where i is either a positive integer constant or an integer variable having positive value,

decrements p such that it points to the ith location before the location to which it is
currently pointing.

	 3.	 Subtraction of one pointer variable from another.
		 One pointer variable can be subtracted from another provided both point to the same data type.

The difference of the two indicates the number of bytes separating the corresponding elements.
In addition to these arithmetic operations, pointer variables can be compared with one another,

provided they are compatible, i.e., point to variables of same data type.

Pointers  |  273

The following arithmetic operations on pointers are not permitted.
	 l	 Addition of two pointer variables.
	 l	 Multiplication of a pointer variable by a number.
	 l	 Division of a pointer variable by a number.

9.8  POINTERS AS FUNCTION ARGUMENTS
In Chapter 6, we had mentioned that the arguments to a function could be passed using either call by
value or call by address mechanism. When we use call by value mechanism, the formal arguments of the
function are declared as simple variable. At execution time the values of the actual arguments are copied
into formal arguments (formal arguments are local to the function), and the execution of the function
begins.

However, when we use call by reference mechanism, the formal arguments are declared as pointers.
At execution time, the addresses of the actual arguments are copied into formal arguments and the
function’s execution begins.
 Listing 9.2
 /*
 Program to illustrate pointers as function arguments
 */
 #include<stdio.h>
 /* function prototype */
 void swap(int *x, int *y)
 int main()
 {
 int a = 10, b = 20;
 /* function prototype */
 void interchange(int *, int *);
 printf(″\nValue of a = %d and b = %d″, a, b);
 printf(″ before function call\n″);
 /* function call */
 swap (&a, &b);
 printf(″\nValue of a = %d and b = %d″, a, b);
 printf(″ after function call\n″);
 return 0;
 }
 /* function definition */
 void swap(int *x, int *y)
 {
 int temp;
 temp = *x;
 *x = *y;
 *y = temp;
 }

274  |  Programming for Problem Solving

 Test Run on Turbo C++ Complier
 Value of a = 10 and b = 20 before function call
 Value of a = 20 and b = 10 after function call

9.9  POINTERS AND STRUCTURES
As we can use pointers with other data types, we can also use pointers for structure variables. Consider
the following declarations
 typedef struct
 {
 int code;
 char name[20];
 int dept_code;
 float salary;
 } EMPLOYEE;
 EMPLOYEE emp, *ptr;

These declarations create and user-defined data type and given it name EMPLOYEE and declares
emp as variable of type employee and ptr as pointer variable to type EMPLOYEE.

The following statement
 ptr = &emp;

can be used to assign the address of variable emp to pointer variable ptr. Now we can access the members
of the structure variable emp using pointer variable ptr.

The elements of structure are accessed using arrow operator ‘->’ which combines two characters,
hyphen ‘-’ and greater-than ‘>’.

The syntax for accessing members of structure using arrow operator is:
 ptr->vname

where ptr is pointer variable pointing to a structure, and vname is an element of the structure.
Using arrow operator, the elements of structure of type employee pointed to by pointer variable ptr

can be accessed as
 ptr->code ptr->name	 ptr->dept_code ptr->salary

9.9.1  Self-referential Structures
A self-referential structure is a structure that includes at least one element that is a pointer to its own
type. These structures find their application in building complex data structure such as linked lists, trees
and graphs. Following is one such application of self-referential structure.

 1200 1201 1202 1203 x

Next pointer field of second node
Information field of second node

head

Fig. 9.4: Linear linked list of integer values with nodes 4

Pointers  |  275

To represent the above linear linked list in memory, we need following declarations
 struct NODE
 {
 int info;
 struct NODE *next;
 };
 struct NODE *head;

9.10  DYNAMIC MEMORY ALLOCATION
The memory requirements for the instructions are always fixed. However, there may be situation when
the exact memory requirements for the data may not be known in advance. The data requirements may
vary from one program execution to another program execution, i.e., memory requirements for the data
are dynamic.

In such cases when the amount of memory is not known before hand for a particular data item(s),
then it is always better to allocate memory at the execution time, i.e., when the program is running. Thus,
the memory allocation at execution time is known as dynamic memory allocation.

Every program is provided with a pool of unallocated memory that it can utilize during execution.
This pool of unallocated memory is known as free store. Therefore, whenever the memory of the requisite
size (amount) is required by the program, it is taken from the free store. When the previously allocated
memory is not required further, it is returned to the free store.

The C language provides library functions, called dynamic memory management functions, to
allocate and de-allocate memory at execution time, i.e., dynamically.

Table 9.1: Memory Management Functions

Function Name Description
malloc Allocates memory from free store.
free Deallocates a previously allocated.

By allocation, we mean that your program can obtain as much memory as required by your program
even during execution of your program.

By de-allocation, we mean that the memory acquired dynamically can be released at any time
during your program execution.

It is important to note that memory allocated dynamically, must be de-allocated before your program
finishes its execution. Otherwise, even if your program terminates, memory allocated dynamically is
never released automatically, and from operating system point of view that memory is still in use.

Therefore, if you run the same program many times, many users are using your program concurrently,
the operating system may run out of memory.

9.10.1  Allocating Memory
The malloc() function takes one argument that specifies the size of the block in bytes. The function
allocates the memory of requisite size from heap and returns a pointer to the allocated memory on
success or a NULL pointer (0) in case of failure. In case of failure, the program should make a safe exit.

276  |  Programming for Problem Solving

The pointer returned is of type void which need to be casted into a pointer of desired type. The
memory allocated is left un-initialized, i.e., all locations get the garbage value.

The syntax for use of malloc() function is
 datatype *ptr
 ptr = (datatype *) malloc(n * sizeof (datatype));

where n is the number of elements.
For example,
 int *ptr
 ptr = (int *) malloc(10 * sizeof(int));
 if (ptr == NULL)
 {
 printf(″\nMemory allocation failed\n″);
 return 1;
 }

Since the size of int is 2-bytes for 16-bit C Compiler and 4-bytes for 32-bit C Compiler, therefore,
this statement will allocate block of 20/40 bytes of memory. And, the pointer ptr holds the address of the
first byte in the allocated memory.

9.10.2  De-allocating Memory
The free() function de-allocates a dynamically allocated block of memory. The syntax for use of free()
function is
 free(ptr);

It takes one argument that specifies the pointer to the allocated block. It is important to note that
only the allocated block is de-allocated, the pointer variable is not deleted.

 Listing 9.3
 /*
 Program to illustrate the allocation of memory dynamically
 for one-dimensional array at execution time.
 Program takes an array of arbitrary size as input and finds the
 Largest element of the array
 */
 #include<stdio.h>
 #include<stdlib.h>
 int main()
 {
 int *a, n, i, max;
 printf(″\nEnter size of 1D array : ″);
 scanf(″%d″, &n);
 /* dynamically allocate memory for array */
 a = (int *) malloc(n*sizeof(int));

Pointers  |  277

 if (a == NULL)
 {
 printf(″\nMemory allocation failed.\n″);
 return 1;
 }

 printf(″\nEnter %d elements of array\n″, n);
 for (i = 0 ; i < n ; i++)
 scanf(″%d″, &a[i]);

 max = a[0];
 for (i = 1; i < n; i++)
 {
 if (a[i] > max)
 max = a[i];
 }
 printf(″\nLargest element of array = %d\n″, max);
 /* de-allocate memory */
 free(a);
 return 0;
 }

 Test Run
 Enter size of 1D array : 10
 Enter 10 elements of array
 10 35 12 9 45 11 50 20 44 32
 Largest element of array = 50

ILLUSTRATIVE EXAMPLES

Example 9.1: Write a program to print the elements of array using pointers.

 Listing 9.4
 #include<stdio.h>
 #include<stdlib.h>
 int main()
 {
 int a[5] = { 1, 2, 3, 4, 5 };
 int i, *ptr;
 ptr = a;
 printf(″\nElements of array\n\n″);

278  |  Programming for Problem Solving

 for (i = 0; i < 5; i++)
 printf(″%d ″, *(ptr+i));
 printf(″\n\n″);
 return 0;
 }

 Test Run
 Elements of array
 1 2 3 4 5

Example 9.2: Write a program to demonstrate passing of 1D array to a function using pointer.
 Listing 9.5
 #include<stdio.h>
 #include<stdlib.h>
 void fun(int *, int); /* function prototype */
 int main()
 {
 int a[10] = { 5, 2, 1, 7, 9, 10, 4, 6, 8, 3 };
 /* call to function */
 fun(a,10);
 return 0;
 }
 /* function definition */
 void fun(int *p, int n)
 {
 int i;
 printf(″\nElements of array\n\n″);
 for (i = 0; i < n; i++)
 printf(″%d ″, p[i]);
 printf(″\n\n″);
 }

 Test Run
 Elements of array
 5 2 1 7 9 10 4 6 8 3

UNIT SUMMARY
In this chapter, we have learned that

	 q	 Pointer is a variable that holds an address of an operand.
	 q	 Pointers offers many advantages such as returning more than one value from a function, building

complex data structures, communicating with the H/W, etc.

Pointers  |  279

	 q	 An addition operation on pointers is permitted. A subtraction operation is permitted in the
restricted sense that it must give positive difference. Multiplication and division operation is not
permitted.

	 q	 Pointers are used to pass arguments by address, mechanism better known as call by reference.
	 q	 A self-referential structure is a structure that includes at least one element that is a pointer to

itself.
	 q	 Memory allocation can be done in two ways – statically and dynamically.
	 q	 Static memory allocation is that which is done at compilation time.
	 q	 Dynamic memory allocation is that which is done at execution time.
	 q	 Every program is provided with a pool of unallocated memory that it can utilize during execution.

This pool of unallocated memory is known as heap or free store.
	 q	 The process of managing the memory at execution time is known as dynamic memory

management.
	 q	 The malloc() is used to allocate memory dynamically.
	 q	 The free() is used to de-allocate previously allocated memory by malloc() function.
	 q	 An initialized pointer is referred to as dangling/wild pointer, as it can end up pointing anywhere

in memory.
	 q	 Whenever there is attempt to write on zero address (also known as Null pointer) or the system

will flag and a message “Null pointer assignment” on termination of the program.
	 q	 Memory leak is a kind of situation when memory is allocated in a called function but it is

not deallocated in that function after it use. As a result, when the called function completes
its execution, the pointer variable is destroyed and there is no means to reach that allocated
memory block.

	 q	 Allocation failure is a situation when the system is not able to find a requisite block of free
memory. The system indicates this situation by returning a NULL pointer.

EXERCISE

Subjective Questions

	 1.	 How can we get the address of a variable?
	 2.	 What is a pointer variable?
	 3.	 How is a pointer variable declared?
	 4.	 How can the values pointed to by a pointer variable be accessed?
	 5.	 What are the various types of pointers?
	 6.	 What are the operations permissible on pointers?
	 7.	 What are the operations, which are not permissible on pointers?

280  |  Programming for Problem Solving

Multiple Choice Questions
	 1.	 The address of a variable can be obtained using ___ operator.
	 (a)	 *	 (b)	 &	 (c)	 ?	 (d)	 ->
	 2.	 Which of the following operator is known as indirection (dereference) operator?
	 (a)	 &	 (b)	 <<	 (c)	 ^	 (d)	 *
	 3.	 Which of the following operator is known as address of operator?
	 (a)	 &	 (b)	 *	 (c)	 ->	 (d)	 **
	 4.	 Identify the correct declarations of pointer variables ptr1, ptr2.

	 (a)	int ptr1, *ptr2;	 (b)	 int *ptr1, ptr2;
	 (c)	int ptr1, ptr2;	 (d)	 int *ptr1, *ptr2;
	 5.	 The operators exclusively used with pointers are
	 (a)	 * and /	 (b)	 & and *	 (c)	 & and ^	 (d)	 * and +
	 6.	 The operand of addressof operator can be a/an	
	 (a)	 constant	 (b)	 array element	 (c)	 expression	 (d)	 None
	 7.	 Pointer variables may be assigned

	 (a)	address value represented in hexadecimal notation
	 (b)	address value represented in octal notation
	 (c)	address of another variable	
	 (d)	 address value represented in binary notation
	 8.	 Operand of indirection (dereference) operator is
	 (a)	 pointer variable	 (b)	 ordinary variable		 (c) integer constant	 (d)	 none of above
	 9.	 Identify the operator that is not used with pointers
	 (a)	 ->	 (b)	 &	 (c)	 *	 (d)	 >>
	 10.	 When addressof operator (&) is prefixed to a variable, it yields
	 (a)	 variable’s value	 (b)	 variables data type
	 (c)	 variable’s address	 (d)	 none of above
	 11.	 Which of the following operation is not permitted on pointers?
	 (a)	 incrementing a pointer variable
	 (b)	 adding a number to a pointer variable
	 (c)	 division of a pointer variable by a number
	 (d)	 difference of two pointer variables
	 12.	 What is the value of x after executing the following segment?

	 int x = 5, *p;
	 p = &x;
	 *p = 7;

Pointers  |  281

	 (a)	 5	 (b)	 7

	 (c)	 Undefined	 (d)	 None	
	 13.	 What will be the output of the following segment?

int a[5] = {1,2,3,4};
	 int *p = a;
	 printf(″%d″,*(p+2));

	 (a)	 4	 (b)	 0	 (c)	 3	 (d)	 2	

	 14.	 Consider the following program segment:
int *p, a[] = { 1, 2, 3, 4, 5 };
p = &a[2];
printf(″%d″, p[-1]);

		 Which of the following is correct about above program segment?

	 (a)	 Compiler time error because p is not an array

	 (b)	 Output will be 2

	 (c)	 Compiler time error because subscript cannot be negative

	 (d)	 None of above

	 15.	 Consider the following program segment:
const int i = 5;
int *p;
i = 20;
p = &i;
printf(″\n%d, %d\n″, *p, i);

		 Which of the following is correct about above program segment?

	 (a)	 Output will be 20, 20

	 (b)	 Output will be 5, 20

	 (c)	 Output will be 20, 5

	 (d)	 Compile time error because the value of variable i cannot be changed.

ANSWERS
1. (b) 2. (d) 3. (a) 4. (d) 5. (b) 6. (b) 7. (c) 8. (a)
9. (d) 10. (c) 11. (c) 12. (b) 13. (c) 14. (b) 15. (d)

Programming Problems
	 1.	 Write a program to copy one array to other using pointers.
	 2.	 Write a program to reverse an array using pointers.
	 3.	 Write a program to find length of string using pointer.
	 4.	 Write a program to find reverse of a string using pointers.

282  |  Programming for Problem Solving

	 5.	 Write a program to compare two strings using pointers.
	 6.	 Write a function that return smallest element, largest element, and average of elements of a given

array using pointers. Demonstrate the use of this function.
	 7.	 Write a function that receives a floating point number and return its integral part and fractional

part using pointers. Demonstrate the use of this function.
	 8.	 Write a program to find whether the array is having duplicate elements or not using pointers.
	 9.	 Write a program to remove duplicate elements from an array using pointers.
	 10.	 Write a program to demonstrate the handling of a structure using a pointer.
	 11.	 Write a function replace() whose prototype is given as
			 int replace(char *str, char c1, char c2);

		 that replace every occurrence of character c1 with character c2, and returns the total replacements
made. Write a program to test the above function.

	 12.	 Consider the following structure definition:
struct BOX
{
 char make[25];
 float length, breadth, height;
};

		 Write a function that takes address of the BOX structure and returns its volume.
	 13.	 Consider the following declaration:

struct EMPLOYEE
{
 int code;
 char name[31];
 float salary;
};

		 Given that there are n (<50) employees in an organization. Write a program, using pointer
notation to access the data of an employee that output the details of the employee having highest
salary.

	 14.	 Consider the following declaration:
 char *names[]={ ″Vimal″,″Amit″,″Anuj″,″Rohit″,″Abhijit″ };

		 Write a program to produce the following output using pointers.
 char *names[]={ ″tijihbA″,″tihoR″,″junA″,″timA″,″lamiV″ };

	 15.	 Write a function substr() whose prototype is given as
 char *substr(char *str1, char *str2);

		 that scan the first string for the occurrence of a second string, and returns a pointer to the
element in the first string where the second string begins. However, if the second string does not
occur in the first string, the function should return NULL. Write a program to test the above
function.

Pointers  |  283

PRACTICALS
	 1.	 Write a program to implement linear linked lists with limited number of operations.

 Listing 9.6
 /*
 Program to demonstrate the use of pointers and structures
 by implementing a linear linked list, where the insertion
 and deletions operations are limited to beginning of the l
 inked list,for simplicity.
 Program used separate function to perform each operation.
 */
 #include <stdio.h>
 #include <stdlib.h>
 typedef struct nodeType
 {
 int info;
 struct nodeType *next;
 } NODE;
 /*------- function prototypes -------*/
 void traverse(NODE *);
 void search(NODE *, int);
 NODE *insert(NODE * int);
 NODE *delete(NODE *);
 int main()
 {
 NODE *head = NULL;
 int choice, element, after;
 while (1)
 {
 printf(″\n\n Options available \n″);
 printf(″+++++++++++++++++++++++++++++++++ \n\n″);
 printf(″ 1. Insert\n″);
 printf(″ 2. Delete\n″);
 printf(″ 3. Search\n″);
 printf(″ 4. Traverse\n″);
 printf(″ 5. Exit\n\n″);
 printf(″Enter your choice (1-5) : ″);
 scanf(″%d″, &choice);
 switch (choice)
 {

284  |  Programming for Problem Solving

 case 1 : printf(″\nEnter element : ″);
		 scanf(″%d″, &element);
		 head = insert(head, element);
		 break;
 case 2 : head = delete(head);
 break;
 case 3 : printf(″\nEnter element to search : ″);
		 scanf(″%d″, &element);
		 search(element);
		 break;
	 case 4 : if (head == NULL)
		 printf(″\nList is empty ... ″);
		 else
		 traverse(head);
		 printf(″\nPress any key to continue...″);
		 getch();
		 break;
 case 5 :
 printf(″\nProgram terminated on success\n″);
 return 0;
 }
 }

} /****** end of main function ******/

/*
 function to traverse and print elements of the linked list
*/
void traverse(NODE *head)
{
 NODE *ptr = head;
 printf(″\n\nLinked list\n\n″);
 printf(″\thead″);
 while (ptr != NULL)
 {
 printf(″ -> %d″, ptr->info);
 ptr = ptr->next;
 }
}

Pointers  |  285

 /*
 function to search a given element in the linked list
 */
 void search(NODE *head, int item)
 {
 NODE *ptr = head;
 while (ptr != NULL)
 {
 if (item == ptr->info)
 {
 	 printf(″\nElement %d found in linked list\n″, item);
 	 return;
	 }
 ptr = ptr->next;
 }
 printf(″\nElement %d not found in linked list\n″, item);
 }
 /*
 function to insert node in the beginning of the linked list
 */
 NODE *insert(NODE *head, int item)
 {
 NODE *ptr;
 ptr = (NODE *) malloc(sizeof(NODE));
 ptr->info = item;
 ptr->next = head;
 head = ptr;
 return ptr;
 }
 /*
 function to delete node from the beginning of the linked list
 */
 NODE *delete(NODE *head)
 {
 NODE *ptr;
 if (head == NULL) {
 printf(″\nList is empty ... ″);
 return; 	
 }

286  |  Programming for Problem Solving

 printf(″\nElement %d deleted from list\n″, head->info);
 ptr = head;
 head = head->next;
 free(ptr);
 return head;
 }

 Test Run
 Options available
 +++++++++++++++++++++++++++++++++

 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 1
 Enter element : 1

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 1
 Enter element : 15
 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 1
 Enter element : 10
 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search

Pointers  |  287

 4. Traverse
 5. Exit
 Enter your choice (1-5) : 1
 Enter element : 25

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 4
 Linked list
 	 head -> 25 -> 10 -> 15 -> 1
 Press any key to continue ...

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 3
 Enter element to search : 15
 Element 15 found in linked list

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
Enter your choice (1-5) : 2
 Element 25 deleted from list

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search

288  |  Programming for Problem Solving

 4. Traverse
 5. Exit
 Enter your choice (1-5) : 4
 Linked list

head -> 10 -> 15 -> 1
 Press any key to continue ...

 Options available
 +++++++++++++++++++++++++++++++++
 1. Insert
 2. Delete
 3. Search
 4. Traverse
 5. Exit
 Enter your choice (1-5) : 5
 Program terminated on success\n″);

KNOW MORE
Pointers are one of the most distinct and exciting features of C language. It provides power and flexibility
to the language. In the beginning, use of pointers may appear a little confusing and complicated, but once
you understand the concept, you will be able to do a lot with C language.

The teacher is expected to understand the concepts of pointers, and the various aspects related to
handling of pointers in C language.

The teacher should also demonstrate the use of pointer by taking appropriate examples and create
C programs to solve them with the participation of students.

REFERENCES & SUGGESTED READINGS
	 1.	 R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
	 2.	 E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi..
	 3.	 Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
	 4.	 Byron Gottfried, Programming with C, Schaum’s Outlines.
	 5.	 https://onlinecourses.nptel.ac.in/noc21_cs01/preview
	 6.	 https://ocw.mit.edu/courses/intro-programming/
	 7.	 https://www.programiz.com/c-programming
	 8.	 https://www.javatpoint.com/c-programming-language-tutorial

UNIT SPECIFICS
This unit discusses the topics related to files. Files provide a means for long term storage of data. Data
can be read from file or written to a file using few commands. This unit explains various aspects of files
and demonstrates their use with suitable examples.

RATIONALE
In real-life problems, we have to deal with any of the following situations:
	 l	 The volume of input data is enormous.
	 l	 Same data may need to be processed multiple times
	 l	 The output of one program may have to use as input for another program
	 l	 Data may be machine-generated, which is not in human-readable

In all these situations, the traditional way of entering data from the keyboard and producing the results
on the computer screen during the program execution is almost impractical.

The better solution is that input data can be stored in a file, called a data file, and then the program can
be directed to read data from that file. Likewise, the program can also be directed to write the output of a
program to a data file.

These all operations dealing with the files are referred to as file handling.
This unit will help the student understand the various aspects of files and develop programs using files

to solve real-life problems.

PRE-REQUISITES
	 –	 Standard Input/Output
	 –	 Unformatted and formatted input/output
	 –	 Predefined files/steams

UNIT OUTCOMES
Upon completion of the unit, students will be able to

U10-O1: explain the concept of the data file and its usefulness
U10-O2: demonstrate the opening and closing of files
U10-O3: perform read and write operations on files
U10-O4: write efficient programs for file handling

10 File Handling

290  |  Programming for Problem Solving

Unit 10
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 CO-7 CO-8

U10-O1 1 - - - - - - -

U10-O2 - - 1 - - - - -

U10-O3 - - 1 - - - - -

U10-O4 - - - - - 2 - -

10.1  INTRODUCTION
A file is a collection of related data. The primary purpose of the file is to keep a record of data. Since
computer memory is volatile (i.e., memory contents are lost when the computer is shut down), we need
to store the data for later use. In addition, the volume of data can be significant to reside entirely in
memory at a given time. Therefore, our programs must have the ability to read and write a portion of the
data while the rest of the data remain in the file.

Files to be used by the programs are generally stored on the hard disk. When the program reads, the
data is moved from file to memory; it moves from memory to file when it writes. This data moved data
uses a particular work area known as a buffer, i.e., a buffer is a temporary storage area that holds data
while moving to or from memory.

A program in the C language can read and write files in a variety of ways. Each of these ways is
straightforwardly described in this unit and illustrated with well-designed programming examples.

10.2  TYPES OF FILES
There are two types of files in C – text file and binary file.
	 l	 Text File - A text file stores data in alphabets, digits, and other special symbols by storing their

ASCII values and are in a human-readable format. When you open these files, you can see all
the contents within the file as plain text. You can easily edit or delete the contents. These files
take minimum effort to maintain, are easily readable, provide the least security, and take bigger
storage space.

	 l	Binary File - A binary file store data as a sequence of bytes which are not in a human-readable
format. They can only be created by using programs. They can hold a large amount of data, are
not readable easily, and provides better security than text files.

Table 10.1: Text File VS Binary File

Text File Binary File

Data is stored using human-readable characters. Data is stored in the same format as it is stored
in memory.

Each line of data ends with a newline character. There is no newline character.
There is a unique character called end-of-file (EOF)
at the end of the file.

There is an end-of-file marker at the end of the
file.

File Handling  |  291

00110010 00110101 0000000000110101 1111111101000001 01000001
225 225A A

A552

Text File Binary File

int x = 255; char ch = ′A′

Fig. 10.1: Illustration of storage of data in files

10.3  STEPS IN PROCESSING A FILE
The processing of a file involves the following steps:
	 l	 Opening a file – The first step in file processing is to open the file in an appropriate mode. If

you want to read from a file in your program, the file must be opened in the read/input mode.
Similarly, if you want to write the output of your program to a file, the file must be opened in the
write/output mode. However, when you want to read from and write onto the same file; then,
the file must be opened in read-write mode.

	 l	Reading from or writing onto a file – Once a file is opened successfully, data can be read from
a file or written to a file in various ways.

	 l	Closing the file – This is the final step in file processing. Once we have completed the reading
and writing of the files, each file must be closed.

10.3.1  Opening a File
Before a program can write to a file or read from a file, the program must open it. Opening a file establishes
an understanding between the program and the operating system. This provides the operating system
with the file’s name and the mode in which the file is to be opened, i.e., whether for reading, writing, or
appending.

Communication areas are set up between the file and the program. One of these areas is a structure
of type FILE, declared in header file stdio.h that holds information about the file.

We need to declare one file pointer for every file using the following declaration

 FILE *fp;

Next, we can open the file using fopen() function as
 fp = fopen(″filename″, ″mode″);

The fopen() function request the operating system to open a file named filename in given mode. It returns
a pointer to FILE structure if the request is granted; otherwise returns a NULL pointer.

Therefore, a program can check the value returned by the fopen() function to determine whether
the file is opened successfully or not. Hence, it is always better to write a program segment responsible
for opening a file as.

292  |  Programming for Problem Solving

 fp = fopen (″filename″, ″mode″);
 if (fp == NULL)
 {
 printf(„\nUnable to open file.\n″);
 return 1;
 }

Each file opened will have its own FILE structure, with a pointer to it. Any program can open any
number of files.

Table 10.2: File opening modes

Mode Description
r Open a text file for reading. The file must already exist.

w Open a text file for writing. If the file already exists, its contents are overwritten. If it does
not exist, it will be created.

a Open a text file for append. Data will be added to the end of the file. If the file does not
exist, it will be created.

r+ Open a text file for both reading and writing. The file must already exist.

w+ Open a text file for both reading and writing. If the file exists, its contents are overwritten.
If it does not exist, it will be created.

a+ Open a text file for both reading and appending. If the file does not exist, it will be created.
rb Open a binary file for reading. The file must already exist.

wb Open a binary file for writing. If the file already exists, its contents are overwritten. If it
does not exist, it will be created.

ab Open a binary file for append. Data will be added to the end of the file. If the file does not
exist, it will be created.

rb+ Open a binary file for both reading and writing. The file must already exist.

wb+ Open a binary file for both reading and writing. If the file exists, its contents are overwritten.
If it does not exist, it will be created.

ab+ Open a binary file for both reading and appending. If the file does not exist, it will be
created.

10.3.2  Closing a File
When a program has finished with the reading/writing of a file, it must be closed. This task is carried out
by using the fclose() library function, whose syntax is
 fclose(fp);

Where fp is a file pointer associated with a file that is to be closed.
Closing a file explicitly has two effects. These are
	 l	Any data remaining in the buffer is written to the file. It may be noted that the buffer used is

invisible to the programmer.
	 l	Frees the communication areas used by the particular file so that they are available for other

files. These areas include the FILE structure and the buffer itself.

File Handling  |  293

10.3.3  Reading and Writing of Text Files
There is a variety of ways of reading data from and writing data to a text file. These are

 Character I/O functions fgetc(), fputc()	

 File I/O Functions String I/O functions	 fgets(), fputs()
			

 		 Formatted I/O functions fscanf(), fprintf()

10.3.3.1  Reading and Writing using Character I/O Functions
Using character I/O functions, data can be read or written one character at a time. This is analogous to
the way functions putchar(), and getchar() write data to screen and read data from the keyboard.

Writing to a file
Once the program has established a line of communication with a particular file by opening
it, it can write to it. The syntax of function that writes one character at a time is
 fputc(ch, fp);

Where ch is a character variable or constant, and fp is a file pointer.
The following listing shows the example of a program that accepts a line of text from the keyboard,

one character at a time, and writes into a disk file named file1.dat.
 Listing 10.1
 /*
 Program to demonstrate writing of one character at a time to file
 */
 #include<stdio.h>
 int main()
 {
 FILE *fp;	
 char ch;
 fp = fopen(″file1.dat″, ″w″);
 if (fp == NULL) {
 printf(″\nUnable to open file1.dat\n″);
 return 1;
 }
 printf(″\nType a line of text, when finished″);
 printf(″, when finished hit Enter key\n″);
 while ((ch = getche()) != ′\r′)
 fputc (ch, fp);
 fclose(fp);
 return 0;
 }

294  |  Programming for Problem Solving

When the above program is executed, it prompts the user to type a line of text. When you have finished,
you hit the Enter (↵) key to terminate the program.
 Test Run
 C is a powerful procedural language. It provides both low-level as well
 as high-level features. ↵

Reading from a file
If the program can write to a file, it should also be able to read from a file. The syntax of the function that
reads and returns one character at a time is
 ch = fgetc(fp);

Where ch is a character variable, and fp is a file pointer.
The fgetc() function returns the character read from the file or the end-of-file (EOF) character if it

has reached the end of the file.
The following listing shows the example of a program that reads one character from a file and writes

onto the screen.
 Listing 10.2
 /*
 Program to demonstrate reading of character at a time from a file
 */
 #include<stdio.h>
 int main()
 {
 FILE *fp;	
 char ch;
 fp = fopen(″file1.dat″, ″r″);
 if (fp == NULL) {
 printf(″\nUnable to open file1.dat\n″);
 return 1;
 }
 printf(″\nContens of file are:\n\n″);
 while ((ch = fgetc (fp)) != EOF)
 putchar(ch);
 fclose(fp);
 return 0;
 }

When the above program is executed, it reads the contents of file file1.dat, one character at a time,
and writes onto the screen till it encounters the end-of-file (EOF).

 Test Run
 Contents of the file are:
 C is a powerful procedural language. It provides both low-level as well
 as high-level features.

File Handling  |  295

10.3.3.2  Reading and Writing using String I/O functions
Using string I/O functions, data can be read or written in the form of a string of characters. Reading and
writing strings of characters is as easy as individual characters.

Writing to a file
The syntax of the function that writes a string of characters at a time is
 fputs(str, fp);

Where str is an array of characters or a string constant, and fp is a file pointer.
The following listing shows the example of a program that accepts a series of strings from the

keyboard and writes them onto a disk file.
 Listing 10.3
 /*
 Program to demonstrate writing of strings to a file
 */
 #include<stdio.h>
 #include<string.h>
 int main()
 {
 FILE *fp;	
 char str[81];
 fptr = fopen(″file2.dat″, ″w″);
 if (fp == NULL) {
 printf(″\nUnable to open file2.dat\n″);
 return 1;
 }
 printf(″\nEnter a set of strings, press just″);
 printf(″ Enter key to finish\n″);
 while (strlen(gets(str)) > 0)
 {	
 fputs(str, fp);
 fputs(″\n″, fp);
 }
 fclose(fp);
 return 0;
 }

 Test Run
 C is a powerful procedural language. ↵
 It is a middle-level language. ↵
 All Programs are tested using Turbo C Compiler. ↵
 ↵

296  |  Programming for Problem Solving

When the above program is executed, it accepts a set of strings terminated by hitting Enter key.
When you have finished, hit the Enter key initially without entering anything, which is taken as a string
of length 0, i.e., null string, to terminate the program.

In the above program, we have set up an array of characters to store the string. The fputs() function
then writes the contents of the array to the disk. Since the fputs() function does not automatically add a
newline character to the end of the string, we must explicitly make it easier to read the string back from
the file.

Reading from a file
The syntax of the function that reads strings from a file is
 fgets(str, n, fp);

Where str is an array of characters and specifies the address where the string is stored, n is the
maximum length of the input string, and fp is a file pointer.

The fgets() function returns a NULL value when it reads end-of-file EOF.
The following listing shows an example of a program that reads one string at a time from a file and

writes onto the screen.
 Listing 10.4
 /*
 Program to demonstrate reading of strings from a file
 */

 #include<stdio.h>
 #include<string.h>
 int main()
 {
 FILE *fp;	
 char str[81];
 fp = fopen(“file2.dat”, “r”);
 if (fp == NULL) {
 printf(“\nUnable to open file2.dat\n”);
 return 1;
 }
 printf(“\nContens of file are:\n\n”);
 while (fgets(str, 80, fp) != NULL) {
 puts(str);
 }
 fclose(fp);
 return 0;
 }

When the above program is executed, it reads the contents of file3.dat one string at a time and writes
them onto the screen till it encounters EOF.

File Handling  |  297

 Test Run
 Contents of the file are:

 C is a powerful procedural language.
 It is a middle-level language.
 All Programs are tested using Turbo C Compiler.

10.3.3.3  Reading and Writing using Formatted I/O functions
So far, we have considered reading and writing characters, strings, and integer numbers. What about
the real numbers? And What about the mixed type of data? For example, suppose that we want to store
information about an agent comprising his name (a string), code number (an integer number), and
height (a natural number). We want to create a data file for a given list of agents. This can be done using
formatted I/O functions.

Writing to a file
The syntax of the function that writes formatted data to a file is
 fprintf(fp, ″format-string″ , ditems);

Where fp is a file pointer, and ditems is a list of variables to be written to a file. The fprintf() is similar
to the printf() function; the only difference is that printf() function writes formatted data onto the screen.

 Listing 10.5
 /*
 Program to demonstrate writing of formatted data to a file
 */

 #include<stdio.h>
 int main()
 {
 FILE *fp;
 char yes_no;
 char name[41];
 int code;
 float height;
 fp = fopen(″file3.dat″, ″w″);
 if (fp == NULL) {
 printf(″\nUnable to open file3.dat\n″);
 return 1;
 }
 while(1)
 {
 printf(″\nEnter name, code number, height″);
 scanf(″%s,%d,%f″, name, &code, &height);

298  |  Programming for Problem Solving

 fprintf(fp,″%s,%d,%f″, name, code, height);
 printf(″Any more input y/n?: ″);
 yes_no = tolower(getche());
 fflush (stdin);
 if (yes_no == ′n′)
 break;
 }
 fclose(fp);
 return 0;
 }

 Test Run
 Enter name, code number, height

 Geetu, 10, 160.25
 Any more input y/n?: y
 Enter name, code number, height
 Shivani, 11, 158.5
 Any more input y/n?: y
 Enter name, code number, height
 Vijay, 12, 165.5
 Any more input y/n?: y
 Enter name, code number, height
 Gurpreet, 13, 166.25
 Any more input y/n?: n

The above information is now in a file named file3.dat. If we attempt to look at it using the TYPE
command, the entire output will be on the same line as there are no newlines in the data. To format the
output more conveniently, we can write a program specifically to read the above file using formatted
input.

Reading from a file
The syntax of the function that reads formatted data to a file is
 fscanf(fp, ″format-string″ , ditems);

Where fptr is a file pointer, and ditems is a list of addresses where the values read from a file are to
be stored.
 Listing 10.6
 /*
 Program to demonstrate writing of formatted from a file
 */

 #include<stdio.h>

 int main()

File Handling  |  299

 {
 FILE *fp;
 char yes_no, char name[41];
 int code;
 float height;
 fp = fopen(″file3.dat″, ″r″);
 if (fp == NULL) {
 printf(″\nUnable to open file3.dat\n″);
 return 1;
 }
 printf(″\nContens of file are:\n\n″);
 while(fscanf(fp,″%s,%d,%f″, name, &code, &height) != EOF) {
 printf(″%s %d %f\n″, name, code, height);
 }
 fclose(fp);
 return 0;
 }

 Test Run
 Contents of file are:
 Geetu 10 160.25
 Shivani 11 158.5
 Vijay 12 165.5
 Gurpreet 13 166.25

10.3.4  Reading and Writing of Binary Files
The C language provides record I/O, sometimes called block I/O, functions to read and write data to
binary files.

Record I/O writes numbers to disk files in binary format so that integers are stored in two bytes;
long integers are stored in four bytes, single-precision floating-point numbers in four bytes, and double-
precision floating-point numbers in eight bytes — the same format used to store numeric data in memory.

Record I/O also permits reading and writing of data simultaneously; the process is not limited to
a single character or string or a few values. Arrays, structures, the array of structures can be read and
written as a unit.

Writing to a file
The syntax of the function that writes a block of data at a time is
 fwrite(ptr, m, n, fp);

Where ptr is an address of an array or a structure to be written, m is the size of an array or a
structure, n is the number of such arrays or structures to be written, and fp is a file pointer of an opened
in binary mode for writing.

300  |  Programming for Problem Solving

After writing the block, the fwrite() function returns the number of data items actually written. If
the number of items written is less than requested, it means some error has occurred.

Writing Arrays
Suppose we want to store an integer array having 10 elements to a file named file4.dat.
 Listing 10.7
 /*
 Program to demonstrate writing of an entire array to a file

 */

 # include <stdio.h>
 int main()
 {
 FILE *fp;
 int i, a[10];
 fp = fopen(″file4.dat″, ″wb″);
 if (fp == NULL) {
 printf(″\nUnable to open file4.dat\n″);
 return 1;
 }
 printf(″\nEnter ten values\n″);
 for (i = 0; i <= 10; i++)
 scanf(″%d″, &a[i]);
 fwrite(a, sizeof(a), 1, fp); /* write entire array to file */
 fclose(fp);
 return 0;
 }

When executed, this program will prompt the user to enter ten integer values and then writes the
entire array to the disk file named file4.dat.

Writing Structures
Suppose we want to write a structure named agent whose elements are — name (maximum of 40
characters), code (maximum of 5 characters), and height (a real number) to a disk file named file5.dat.
 Listing 10.8
 /*
 Program to demonstrate writing of an entire structure to a file

 */

 #include<stdio.h>
 struct
 {
 char name[41];

File Handling  |  301

 char code[6];
 float height;
 } agent;
 int main()
 {
 FILE *fp;
 char yes_no, numstr[40];
 fp = fopen(″file5.dat″, ″wb″);
 if (fp == NULL) {
 printf(″\nUnable to open file5.dat\n″);
 return 1;
 }
 while (1) {
 printf(″\nEnter name : ″);
 gets(agent.name);
 printf(″\nEnter code number : ″);
 gets(agent.code);
 printf(″\nEnter height : ″);
 gets(numstr);
 agent.height = atof (numstr);
 fwrite(&agent, sizeof(agent), 1, fp);
 printf(″Any more input y/n?: ″);
 yes_no = tolower(getche());
 fflush(stdin);
 if (yes_no == ′n′)
 break;
 }
 fclose(fp);
 return 0;
 }

When executed, this program will prompt the user to enter the particulars of an agent, stores them in a
structure, and then writes this structure to the disk file named file5.dat in a single write operation.

Instead of a structure variable, an agent is an array of structures with n elements, and we want to
write the entire array in a single write operation.

This task can be accomplished by writing the fwrite() function as
 fwrite(agent, sizeof(agent[0]), n, fp);

The above program demonstrates another way of performing input of numeric data. The numeric
data can also read as a string and converted later on to the appropriate value. The library function atoi()
converts an integer string to an integer value, whereas the function atof() converts a real string to a real
number. Their counterparts are itoa() and fcvt(), which convert an integer value and a real value to the

302  |  Programming for Problem Solving

appropriate string. These functions are defined in header files stdlib.h. The question may arise — Why
are these conversions required?
There are two reasons for this.
	 l	 Sometimes we may need to combine a numeric value with a string, and this will be possible only

if the numeric value is converted into a string.
	 l	The C system is very inconsistent with the input of real numbers with the scanf() function.

Sometimes it gives an error message — floating point format not linked.
Another function used in the above program is fflush() function. This function is used to flush

the undesired data that may be left in the keyboard buffer. You may have observed that sometimes the
system did not stop for a particular input in response to a call to some input function. This is because
of some undesired data that is left in the keyboard buffer. So we can flush it before taking the next input
using the fflush() function.

Reading from a file
The syntax of the function that reads a block from a file is
 fread(ptr, m, n, fp);

Where ptr is an address of an array or a structure where the block will be stored after reading, m is
the size of an array or a structure to be read, n is the number of such arrays or structures to be read, and
fp is a file pointer of a file opened in binary mode for reading.

The fread() function returns the number of actual data items read. The usage of this function is
illustrated in the following program.
 Listing 10.9
 /*
 Program to demonstrate reading of entire structure from a file
 */

 #include<stdio.h>

 struct
 {
 char name[41];
 char code[6];
 float height;
 } agent;

 int main()
 {
 FILE *fp;
 int record_no = 0;
 fp = fopen(″file5.dat″, ″rb″);
 if (fp == NULL)
 {
 printf(″\nUnable to open file5.dat\n″);
 return 1;

File Handling  |  303

 }

 while (fread(&agent,sizeof(agent),1,fp) > 0)
 {
 printf(″\nRecord #%d\n″, record_no);
 printf(″\nName : %s″, agent.name);
 printf(″\nCode number : %s″, agent.code);
 printf(″\nHeight : %.2f″, agent.height);
 record_no++;
 printf(″\n\nPress any key to see next record...″);
 getch();
 }
 fclose(fp);
 return 0;
 }

The above program reads the data file created by the program listing 10.8. It reads one structure at a time
and displays it onto the screen. The while loop will terminate when the fread() function returns value 0,
which means it cannot read a block. This indicates the end of the file.

10.4  FILE POSITIONING FUNCTIONS
The C language provides the following functions to handle file positioning operations:
	 l	 Function rewind() to set the file pointer to the beginning of the file.
	 l	Function ftell() to know the current position of the file pointer in the file.
	 l	Function seek() to change the position of the file pointer in the file.

10.4.1  Rewind File: rewind() Function
One way of positioning the file pointer to the beginning of the file is to close the file and then re-open
it again. However, we can accomplish the same task without closing the file using the rewind() function.
This function positions the file pointer at the beginning of the file. This function sounds very much like
rewinding the audio or video cassette in order to listen or watch the cassette from the beginning.

The syntax of rewind() function is

 rewind(fp);

where fp is a file pointer for the currently opened file.

10.4.2  Current Location: ftell() Function
In some situations, it may be required to find the current location of the file pointer within the file. The
ftell() function lets us know the current position of the file pointer.

The syntax of the ftell() function is

 long k = ftell(fp);

304  |  Programming for Problem Solving

where fp is a file pointer for the currently opened file, note that the ftell() function returns a long
integer. This is necessary because many files may have more than 32767 bytes of data.

Recall that the C I/O system considers files as streams of bytes of data. It measures the position in
the file by the number of bytes relative to zero, i.e., from the beginning of the file. When the file pointer
is at the beginning of the file, the ftell() function returns 0. If the file pointer is at the second byte, the
ftell() function returns value 1.

10.4.3  Set Position: fseek() Function
To read a data item from anywhere in a file, we have to move the file pointer to the beginning of that data
item. To accomplish this task, we can use the fseek() function.

The syntax of the fseek() function is
 fseek(fp, offset, wherefrom);

The fseek() function takes three arguments, where the first argument fp is a file pointer, the second
argument offset is a variable of type long integer that specifies the number of bytes by which file pointer is
to move. The third argument wherefrom specifies from which position the offset is measured.

The various values for argument wherefrom are listed in Table 10.3.

Table 10.3: Various Values of wherefrom for fseek() function

Mode Offset is measured from
SEEK_BEG Beginning of the file

SEEK_CUR Current position of the file

SEEK_END End of the file

Table 10.4: Some examples illustrating the use of the fseek() function

Seek Call Action performed

fseek(fp, 0, SEEK_BEG);
Moves the file pointer fptr to the beginning of the file. If the file
pointer is currently at the beginning of the file, it results in no action.

fseek(fp, n, SEEK_BEG);
Moves the file pointer fptr forward by n bytes, i.e., moves the file
pointer to (n+1) the bytes in the file.

fseek(fp, -n, SEEK_CUR);
Moves the file pointer fptr backward by n bytes from the current
position.

fseek(fp, 0, SEEK_END);
Moves the file pointer fptr to the end of the file. If the file pointer is
currently at the end of the file, it results in no action.

fseek(fp, 0, SEEK_END);
Moves the file pointer fptr to the end of the file. If the file pointer is
currently at the end of the file, it results in no action.

fseek(fp, n, SEEK_CUR);
Moves the file pointer fptr forward by n bytes from the current
position.

fseek(fp, 1, SEEK_CUR); Moves the file pointer fptr to the next byte.
fseek(fp, -1, SEEK_CUR); Moves the file pointer fptr to the previous byte.

fseek(fp, m, SEEK_END);
Moves the file pointer fptr backward by m bytes from the end of
the file.

File Handling  |  305

10.5  FILE STATUS FUNCTIONS
The C language provides the following functions to handle file status queries:
	 l	 Function feof() to test end of the file.
	 l	Function ferror() to test error.
	 l	Function clearerr() to clear error.

10.5.1  Test End of File: feof() Function
The feof() function is used to check if the end of the file has been reached. If the file pointer is at the end,
i.e., all data have been read, the function returns 1. If the end of the file is not reached, it returns value 0.

The syntax of feof() is
 feof(fp);

where fp is a file pointer for the currently opened file.

10.5.2  Test Error: ferror() Function
The ferror() function is used to test the error status of the file. As mentioned earlier, errors can be created
for many reasons, ranging from bad media (disk, CD, etc.) to illegal operations such as reading a file in
the write state.

Suppose the ferror() function returns 1 if an error has occurred after a file operation. If no error has
occurred, the file ferror() returns value 0.

The syntax of ferror() is
 ferror(fp);

where fp is a file pointer for the currently opened file.
It is important to note here that testing for an error does not reset the error condition. Once an error

has occurred, it can only return to the standard read or write state after clearing the error state using the
clearer() function described next.

13.5.3  Clear Error: clearerr() Function
When an error occurs, the subsequent calls to the ferror() function return 1 until the error status of the
file is reset. The clearerr() function is used for this purpose.

The syntax of clearerr() is
 clearerr(fp);

where fp is a file pointer for the currently opened file.
It is important to note here that we have not necessarily cured the problem even though we have

cleared the error. We may find that subsequent read or write operations may return to the error state.

ILLUSTRATIVE EXAMPLES
Example 10.1: Program to find the size of a given file, where the user provides the file’s name.
To know the size of the specified file, position the file pointer at the end of the file using the fseek()
function and access the value of the file pointer using the ftell() function that gives the size of the file.

306  |  Programming for Problem Solving

 Listing 10.10
 /*
 Program to find the size of a given file
 */
 #include <stdio.h>
 int main()
 {
 FILE *fptr;
 char fname[30];
 printf(″\nEnter name of file : ″);
 gets(fname);
 fptr = fopen(fname, ″r″);
 if (!fptr) {
 printf(″\nFile %s does not exist\n″, fname);
 return 1;
 }
 fseek(fptr, 0L, 2);
 printf(″\nSize of file = %ld bytes.\n″, ftell(fptr));
 fclose(fptr);
 return 0;
 }

 Test Run
 Enter name of file : fsize.c
 Size of file = 443 bytes.

The above test run shows that the size of the program file (source code) created in Listing 10.7 is
443 bytes.
Example 10.2: �Write a program that reads some text from the keyboard and writes it into a TEXT file. The

program then reads this file and displays its contents on the screen.
 Listing 10.11
 /*
 Program that creates a file and then reads its contents
 and display them on the computer screen
 */
 #include <stdio.h>
 int main()
 {
 char ch;
 FILE *fp1;
 fp1 = fopen(″TEXT″, ″w″); /* open file for writing */
 if (fp1 == NULL) {
 printf(″\nUnable to open file TEXT for writing\n″);
 return 1;

File Handling  |  307

 }
 printf(″\nType some text and terminate″);
 printf(″ the input by Enter key\n\n″);
 while ((ch = getche()) != ′\r′)
 fputc(ch, fp1);
 fclose(fp1); /* close file */
 fp1 = fopen(″TEXT″, ″r″); /* open file for reading */
 if (fp1 == NULL) {
 printf(″\nUnable to open file TEXT for reading\n″);
 return;
 }
 printf(″\n\nContents of file TEXT are\n\n″);
 while (!feof(fp1)) {
 ch = fgetc(fp1);
 putchar(ch);
 }
 fclose(fp1);
 return 0;
 }

 Test Run
 Type some text and terminate the input by Entering key
 Don′t do anything with others that you wish others should not
 do with you. ↵
 Contents of file TEXT are
 Don′t do anything with others that you wish others should not
 do with you.

Example 10.3: �Write a program to copy the contents of one file to another file byte-by-byte. The user
provides the names of the files.

 Listing 10.12
 /*
 Program to copy the contents of a given file to another file.
 */
 #include <stdio.h>
 int main()
 {
 char ch;
 FILE *fp1, *fp2;
 char file1[30], file2[30];
 printf(″\nEnter name of source file : ″);
 gets(file1);
 printf(″\nEnter name of destination file : ″);
 gets(file2);

308  |  Programming for Problem Solving

 fp1 = fopen(file1, ″r″);
 if (fp1 == NULL) {
 printf(″\nUnable to open file: %s for reading\n″, file1);
 return 1;
 }
 fp2 = fopen(file2, ″w″);
 if (fp2 == NULL) {
 printf(″\nUnable to open file: %s for writing\n″, file2);
 return 1;
 }
 while (!feof(fp1)) {
 ch = fgetc(fp1);
 fputc(ch, fp2);
 }
 printf(″\nFile copied successfully...\n″);
 fclose(fp1);
 fclose(fp2);
 return 0;
 }

 Test Run
 Enter the name of the source file: file_copy.c
 Enter the name of destination file: temp
 File copied successfully...

You can verify that the contents of file temp will be the same as that of file_copy.c.

UNIT SUMMARY

In this chapter, we have learned that

	 q	 If the volume of the input data is vast, it can be best handled using data files.
	 q	 If the data generated by some instrument is in machine-readable form (binary form), you have

to use a data file to pass on this data to your program.
	 q	 If the output volume is immense and can’t be viewed on the screen properly, it is better to write

the output to a data file that you can refer to any time without re-executing your program.
	 q	 If the output generated by one program is to be used as input for another program, again, the use

of data files will be advantageous.
	 q	 A data file can be a text file or a binary file.

File Handling  |  309

EXERCISE

Subjective Questions
	 1.	 Name the various systems for performing file I/O in C.
	 2.	 Is it is advisable to close a file explicitly opened for writing?
	 3.	 Name the function to close a file.
	 4.	 What information system gets by opening a file?
	 5.	 What do you mean by a file pointer?
	 6.	 How a file opened with the fopen() function is referred to in a program?
	 7.	 Suppose a program wants to examine every byte of a file; which mode will be more appropriate?
	 8.	 What do you mean by term offset in reference to a file?
	 9.	 What is the task performed by the fseek() function?
	 10.	 What is the task performed by the ftell() function?
	 11.	 Which value is returned by the fopen() if some error occurs in opening a file?
	 12.	 What is the difference between w+ and r+ modes?
	 13.	 What a rewind() function does?

Multiple Choice Questions
	 1.	 Which of the following is a default file pointer?
	 (a)	 stdin	 (b)	 stdout		
	 (c)	 stderr	 (d)	 All of the above
	 2.	 The function fopen () when fails to open file, then it returns value
	 (a)	 NULL	 (b)	 -1
	 (c)	 Null	 (d)	 void
	 3.	 The function flose() is, usually, used to
	 (a)	 delete a file	 (b)	 disconnect file from program
	 (c)	 read data from a file	 (d)	 write data to a file
	 4.	 Which of the following values is not a value of from in function seek(fptr,offset,from)?
	 (a)	 2	 (b)	 0
	 (c)	 1	 (d)	 EOF
	 5.	 The task performed by function fseek(fptr,0,0) is
	 (a)	 fclose (fptr)	 (b)	 ftell (fptr)
	 (c)	 search (fptr)	 (d)	 rewind (fptr)
	 6.	 Which of the following is not a valid file opening mode?
	 (a)	 r+	 (b)	 +r
	 (c)	 r	 (d)	 rb

310  |  Programming for Problem Solving

	 7.	 If letter b is suffixed with the file opening mode, what does it convey?
	 (a)	 file is to be opened for reading only	 (b)	 file is to be opened for writing only
	 (c)	 file is to be opened for both read-write	 (d)	 file is a binary file
	 8.	 Consider the following code segment
				 FILE *fp;

				 fp = fopen(″inventory.dat″, ″rb″);
		 What is the role of letter b in “rb”?
	 (a)	 Open inventory.dat file in binary mode for reading.
	 (b)	 Open inventory.dat file reading and writing.
	 (c)	 Create a new file inventory.dat for writing.
	 (d)	 Open inventory.dat file in binary mode for writing and reading.
	 9.	 Consider the following code segment
				 FILE *fp;

				 fp = fopen(″notes.txt″, ″r+″);
		 Which of the following operations can be performed on the notes.txt file?
	 (a)	 Reading	 (b)	 Writing
	 (c)	 Appending	 (d)	 All of the above
	 10.	 FILE is of type ________ .
	 (a)	 int type	 (b)	 struct type
	 (c)	 string type	 (d)	 structure type
	 11.	 If there is any error while opening a file, fopen will return _____ .
				 FILE *fp;

	 (a)	 null	 (b)	 NULL	 (c)	 Null	 (d)	 EOF
	 12.	 Which of the following library function can be used to detect end-of-file?
	 (a)	 eof()	 (b)	 isend()	 (c)	 feof()	 (d)	 end()
	 13.	 A mode which is used to open an existing file for both reading and writing is __ .
	 (a)	 +r	 (b)	 r+	 (c)	 w+	 (d)	 w
	 14.	 Which of the following function can be used to re-read a file without closing & re-opening?
	 (a)	 fseek()	 (b)	 rewind()
	 (c)	 ftell()	 (d)	 Both (a) and (b)
	 15.	 Which of the following is not a file status function?
	 (a)	 ferror()	 (b)	 ftell()	 (c)	 clearerr()	 (d)	 feof()

ANSWERS
1. (d) 2. (a) 3. (b) 4. (d) 5. (d) 6. (b) 7. (d) 8. (d)
9. (d) 10. (b) 11. (b) 12. (c) 13. (b) 14. (d) 15. (b)

File Handling  |  311

Programming Problems
	 1.	 Given a text file containing some text. Write a program that prompts the user to input the name

of a text file, reads this file, and outputs the number of vowels and number of words in the text.
	 2.	 Given a text file containing some text. Write a program that prompts the user to input the name

of a text file, reads this file, and replaces each character ‘x’ with uppercase ‘X’.
	 3.	 A beginner to the C language has typed the entire program in the uppercase letter; as you

know, the usual convention in C language is to type the source code using lowercase letters only
except for macros and defined constants. Write a program that converts the source code into the
lowercase letter. Comments should be left unchanged.

	 4.	 Write a program to read numbers from a file and write even, odd and prime numbers to separate
file.

	 5.	 Write a program to merge two files end-to-end into a third file.
	 6.	 Write a program to print source code of itself as output on the screen.
	 7.	 Write a program to count characters, words and lines in a text file

PRACTICALS

	 1.	 Write a program that reads some text from the keyboard and write it in a file named sample.
txt. The program then reads this file and displays its contents on screen without closing and
reopening the file.

		 The file is opened in “w+” mode, and once the file is created, we rewind it using rewind() to
reposition the file pointer at the beginning of the file.

 Listing 10.13
/*
 Program that creates a file and then reads its contents without
 closing and re-opening, and display them on the computer screen
 */
 #include <stdio.h>
 int main()
 {
 char ch;
 FILE *fp;
 fp = fopen(″sample.txt″, ″w+″);
 if (fp == NULL) {
 printf(″\nUnable to open file sample.txt\n″);
 return 1;
 }

312  |  Programming for Problem Solving

 printf(″\nType some text...\n\n″);
 while ((ch = getche()) != ′\r′)
 fputc(ch, fp);

 rewind(fp);
 printf(″\n\n\nContents of file...\n\n″);
 while (!feof(fp)) {
 ch = fgetc(fp);
 putchar(ch);
 }
 fclose(fp);
 return 0;
 }

 Test Run
 Type some text...
 This is a sample file.
 Contents of file...
 This is a sample file.

	 2.	 Write a C program to reverse the first n characters in a file. The user provides the file name and
value of n.

 Listing 10.14
 /*
 Program to reverse the first n characters in a file
 */
 #include <stdio.h>
 int main()
 {
 char str[80], filename[30], ch;
 int i, n;
 FILE *fp;
 printf(″\nEnter file name : ″);
 gets(filename);
 printf(″\nEnter value for n : ″);
 scanf(″%d″, &n);

 fp = fopen(filename, ″r+″);
 if (fp == NULL) {
 printf(″\nUnable to open file: %s\n″, filename);
 return 1;
 }

File Handling  |  313

 i = 0;
 while ((!feof(fp)) && (i < n))
 {
 str[i] = fgetc(fp);
 i++;
 }
 rewind(fp); /* reposition the file pointer to the beginning */
 i = n-1;
 while (i >= 0)
 {
 fputc(str[i], fp);
 i--;
 }
 fclose(fp);
 return 0;
 }

 Test Run
Enter file name: testfile.txt
Enter the value for n: 10

		 Original contents of the file were

 1234567890abcdefghijklmnopqrstuvwxyz

		 After the program execution, the contents of the file are

 0987654321abcdefghijklmnopqrstuvwxyz

		 You can verify that the file’s contents after program execution by using the type command on the
command prompt.

		 In the above program, first, the given file is opened in reading/write mode. Next, the first n bytes
of the file are copied in a dynamically allocated character array. Next, we rewind the given file,
i.e., reposition the file pointer at the beginning of the file.

		 Finally, we write the contents of the character array in reverse order onto the file. Thus, we can
accomplish the desired task.

	 3.	 Write a program that reads names and marks of n number of students from the keyboard and
stores them in a file. If the file already exists, then add the information to the file.

 Listing 10.15
 /*
 Program to store names and marks of students in file
 */
 #include <stdio.h>
 int main()
 {
 FILE *fp;

314  |  Programming for Problem Solving

 char name[50], filename[30];
 int i, n, marks;
 printf(″Enter name of file : ″);
 gets(filename);
 printf(″Enter number of students to add : ″);
 scanf(″%d″, &n);
 fp = fopen(filename, ″a″);
 if (fp == NULL) {

printf(″\nUnable to open file: %s\n″, filename);
 return 1;

 }
 for(i = 0; i < n; i++)
 {
 printf(″\nEnter data for student %d\n″, i+1);
 printf(″\nEnter name : ″);
 scanf(″%s″, name);
 printf(″Enter marks: ″);
 scanf(″%d″, &marks);
 fprintf(fp,″\nName: %s \nMarks=%d \n″, name, marks);
 }
 fclose(fp);
 return 0;
 }

KNOW MORE
The teacher is expected to understand the concepts of data files and the various aspects related to file
handling in the C language.

The teacher should also demonstrate files by taking appropriate examples and creating C programs
to process the files with student participation.

REFERENCES & SUGGESTED READINGS
1. R. S. Salaria, Problem Solving & Programming in C, Khanna Book Publishing Co(P) Ltd., New Delhi.
2. E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi.
3. Yashavant Kanetkar, Let Us C, BPB Publications, New Delhi.
4. Byron Gottfried, Programming with C, Schaum’s Outlines.
5. https://onlinecourses.nptel.ac.in/noc21_cs01/preview
6. https://ocw.mit.edu/courses/intro-programming/
7. https://www.programiz.com/c-programming
8. https://www.javatpoint.com/c-programming-language-tutorial

References for Further Learning  |  315

REFERENCES FOR FURTHER LEARNING

	 1.	 Brain W. Kernighan and Deniss M. Ritchie, The C Programming Language, 2nd Edition, Prentice Hall.
	 2.	 Herbert Schildt, C: The Complete Reference, 4th Edition, McGraw Hill.
	 3.	 R. S. Salaria, Test Your Skills in C, Khanna Book Publishing Co(P) Ltd.
	 4.	 R. S. Salaria, Cracking IT Interviews, Khanna Book Publishing Co(P) Ltd.
	 5.	 Stephen Prata, C Primer Plus, Addison-Wesley Professional.
	 6.	 David Griffiths and Dawn Griffiths, Head First C, Shroff Publishers & Distributors Pvt. Ltd.
	 7.	 Antti Laaksonen, Guide to Competitive Programming, 2nd Edition, Springer.
	 8.	 https://www.greatlearning.in/academy/learn-for-free/courses/c-programming
	 9.	 https://www.udemy.com/topic/c-programming/
	 10.	 https://www.edx.org/learn/c-programming
	 11.	 https://www.coursera.org/courses?query=c%20programming
	 12.	 https://www.learnconline.com/
	 13.	 https://www.codecademy.com/

316  |  Programming for Problem Solving

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after the
completion of the course and a correlation can be made for the attainment of POs to analyse the gap.
After proper analysis of the gap in the attainment of POs, necessary measures can be taken to overcome
the gaps.

Table for CO and PO Attainment

Course
Outcomes

Expected Mapping with Programme Outcomes
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12
CO-1

CO-2

CO-3

CO-4

CO-5

CO-6

CO-7

CO-8

The data filled in the above table can be used for gap analysis.

A
Absolute Error 172
Accessing Address 270
Ackermann Function 218, 219
Actual Arguments 189, 190, 194, 205
Address of Operator 270, 280
Algorithm 10
Arithmetic and Logic Unit 4
Arithmetic Expressions 60
Arithmetic Operators 53
Armstrong Number 22, 102, 116
Array 120
Assembler 6, 8
Assigning Address 271
Associativity 63, 67

B
Base Case 215, 219, 223
Binary File 308, 310
Binary Operators 53
Binary Search 159
Binomial Coefficient 201
Bisection Method 171
Bit-Wise Operators 53
Bodmas 63
Body Mass Index 50
Branching 75
Bubble Sort 162
Buffer 292
Bugs 34
Building Blocks 36
Built-in Data Types 39

Index

C

Call by Address 39, 273
Call by Reference 190
Call by Value 190, 273
Cast Operator 62, 63
Central Processing Unit 5
Cold Booting 10
Command Prompt 313
Compilation 8, 32
Compiler 6, 8
Complexity 164, 168
Conditional Expressions 60
Console 42
Control Statements 75
CPU 5

D

Data Type 39
Debugging 9, 34
Declaring A Pointer 271
Decode 4
Definiteness 11
Demote 62
Demotion 62
Derived Data Type 39
Difference Table 177
Direct Methods 171
Discriminant 84
Divide and Conquer 219

318  |  Programming for Problem Solving

Dry Run 65
Dynamic Memory Allocation 275

E

Effectiveness 11
End-of-File 294
Epsilon 172
Escape Sequences 37
Executable Code 33
Executable File 9
Execute 4
Execution Cycle 4
Explicit Type Conversion 62
Expression 41

F

Factorial Function 216
Fetch 4
Fibonacci Sequence 25, 217
Fields 259
File Pointer 292, 293, 294, 295, 296, 297, 298, 303,

304, 305, 309, 313
Finiteness 11
Flowchart 11
Flow Control Statements 75
Formal Arguments 185, 189, 190, 192, 204, 205
Format String 44
Free Store 275
Function Body 187
Function Header 187
Function Prototype 204, 206

G

Garbage Value 276
Gcd 104
Graphical User Interfaces 36
Greatest Common Divisor 104

H

Hard Booting 10
Hardware 6
Hcf 201, 202
Heap 275

Hierarchical Organization 184
Highest Common Factor 24
High-Level Languages 34

I

Identifier 36
Implicit Type Conversion 62
Indirection Operator 58
Input-Process-Output Cycle 3
Insertion Sort 168
Instruction Cycle 4
Instruction Set 5
Integer Arithmetic 54
Interpreter 6, 8
Iterative Logic 14
Iterative Methods 171

J

Jumping 75

K

Keyword 36

L

Language Processor 8
Language Translators 6, 8
Leap Year 79
Library Functions 9, 65, 185 189
Linear Array 120
Linear Search 158
Linked Lists 274
Literal 37, 57, 62
Location Number 269
Logical Errors 34
Logical Expressions 60
Logical Operators 53
Looping 75
Low-Level Languages 34
Low-Level Programming 35

M

Machine Cycle 4
Machine Efficiency 35

Index  |  319

Memory Cell 269
Memory Unit 4
Merge Sort 223
Method of Successive Approximations 171
Microprocessor 5
Middle-Level Language 35
Mixed-Mode Arithmetic 54
Mode 291, 309, 313
Monitor 3, 42
Motherboard 6
Multifunction Program 184

N

Newton-Raphson Method 171
Null Character 136, 138, 150
Null String 296
Numerical Differentiation 176

O

Object Code 8, 32
Offset 304, 309
Operating System 6
Os 6

P

Palindrome 21
Pdl 12
Pivot 219
Pointer 270
Power on Self Test 10
Precedence 63, 64, 67, 68
Preprocessor 31
Preprocessor Directives 27
Presentation Graphics 36
Prime Number 23, 203, 204
Processing Cycle 4
Processor 5
Program Design Language 12
Programming Efficiency 34, 35
Programming Environment 9
Promote 62
Promotion 62
Pseudo 12

Pseudocode 12
Punctuators 38

Q

Quadratic Equation 16, 84, 85

R

Real Arithmetic 54
Recursive Step 215
Regula-Falsi 171
Regula-Falsi Method 171
Relational Expressions 60
Relational Operators 53
Root Approximation 172
Round-Off Errors 171
Run File 9

S

Scientific Visualization 36
Searching 158
Secant Method 171
Secondary Storage Unit 5
Selection Logic 13
Selection Sort 174
Self-Referential Structure 274
Sequence Logic 12
Sequential Search 158
Shorthand Assignment Operators 59
Simpson’s 1/3rd Rule 180
Soft Booting 10
Software 6
Sorting 173
Source Code 8
Source File 31
Special Operators 53
Structure Tag 259
Structuring Programming 35
Subscript 120
Subscripted Variable 120
Symbolic Constant 40
Syntax Error 8, 31, 34

320  |  Programming for Problem Solving

T
Tagged Structure 243, 259
Ternary Operator 58
Test Data 34
Text Editor 31
Text File 292, 306, 308, 311
Translation Unit 32
Translator 31
Transpose 129, 130
Trapezoid 180
Trapezoidal Rule 180
Trial and Error Methods 171
Two-Dimensional Array 129, 148
Type Conversion 62, 67
Typedef 243
Type-Defined Structure 242

U
Unary Operators 53
User-Defined Data Type 39, 243
User-Defined Functions 185

V
Vdu 3
Very Large Scale Integration 5
Visibility of Variable 185
Visual Display Unit 3
Volatile 290
Volatile Memory 4

W
Warm Booting 10
Write-Back 4

