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The book titled “Physics - Introduction to Mechanics” is an outcome of the rich experience 
of our teaching of basic physics courses. The initiation of writing this book is to expose basic 

science to the engineering students to the fundamentals of physics as well as enable them to get 
an insight of the subject. Keeping in mind the purpose of wide coverage as well as to provide 
essential supplementary information, we have included the topics recommended by AICTE, in a 
very systematic and orderly manner throughout the book. Efforts have been made to explain the 
fundamental concepts of the subject in the simplest possible way.

During the process of preparation of the manuscript, we have considered the various 
standard text books and accordingly we have developed sections like critical questions, solved and 
supplementary problems etc. While preparing the different sections emphasis has also been laid 
on definitions and laws and also on comprehensive synopsis of formulae for a quick revision of the 
basic principles. The book covers all types of medium and advanced level problems and these have 
been presented in a very logical and systematic manner. The gradations of those problems have 
been tested over many years of teaching a wide variety of students.

Apart from illustrations and examples as required, we have enriched the book with numerous 
solved problems in every unit for proper understanding of the related topics. Under the common 
title “Physics” there is a set of four books covering different aspects and applications of physics 
in engineering. Out of those, the first one covers Introduction to Electromagnetic Theory, the 
second one is based on Introduction to Mechanics, the third one is related to Quantum Mechanics 
for Engineers and the fourth one is based on Oscillations, Waves and Optics. It is important to 
note that in all the books, we have included the relevant laboratory practical. In addition, besides 
some essential information for the users under the heading “Know More” we have clarified some 
essential basic information in the appendix and annexure section.

As far as the present book is concerned, “Physics - Introduction to Mechanics” is meant to provide 
a thorough grounding in applied physics on the topics covered. This part of the physics book will prepare 
engineering students to apply the knowledge of Mechanics to tackle 21st century and onward engineering 
challenges and address the related aroused questions. The subject matters are presented in a constructive 
manner so that an Engineering degree prepares students to work in different sectors or in national laboratories 
at the very forefront of technology. 

We sincerely hope that the book will inspire the students to learn and discuss the ideas behind 
basic principles of engineering physics and will surely contribute to the development of a solid 
foundation of the subject. We would be thankful to all beneficial comments and suggestions which 
will contribute to the improvement of the future editions of the book. It gives us immense pleasure 
to place this book in the hands of the teachers and students. It was indeed a big pleasure to work 
on different aspects covering in the book.

A. B. Bhattacharya, Atanu Nag
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For the implementation of an outcome based education the first requirement is to develop an 
outcome based curriculum and incorporate an outcome based assessment in the education 
system. By going through outcome based assessments evaluators will be able to evaluate whether 
the students have achieved the outlined standard, specific and measurable outcomes. With the 
proper incorporation of outcome based education there will be a definite commitment to achieve 
a minimum standard for all learners without giving up at any level. At the end of the programme 
running with the aid of outcome based education, a students will be able to arrive at the following 
outcomes:

PO-1:  Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems.

PO-2:  Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of 
mathematics, natural sciences, and engineering sciences.

PO-3:  Design/development of solutions: Design solutions for complex engineering problems 
and design system components or processes that meet the specified needs with appropriate 
consideration for the public health and safety, and the cultural, societal, and environmental 
considerations.

PO-4:  Conduct investigations of complex problems: Use research-based knowledge and 
research methods including design of experiments, analysis and interpretation of data, and 
synthesis of the information to provide valid conclusions.

PO-5:  Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modern  engineering and IT tools including prediction and modeling to complex 
engineering activities with an  understanding of the limitations.

PO-6:  The engineer and society: Apply reasoning informed by the contextual knowledge to 
assess societal, health, safety, legal and cultural issues and the consequent responsibilities 
relevant to the professional engineering practice.

PO-7:  Environment and sustainability: Understand the impact of the professional engineering 
solutions in societal and environmental contexts, and demonstrate the knowledge of, and 
need for sustainable development.

PO-8:  Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice.

PO-9:  Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings.

Outcome Based Education
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PO-10:  Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend and 
write effective reports and design documentation, make effective presentations, and give 
and receive clear instructions.

PO-11:	 	Project	 management	 and	 finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one’s own work, as a member 
and leader in a team, to manage projects and in multidisciplinary environments.

PO-12:  Life-long learning: Recognize the need for, and have the preparation and ability to engage 
in independent and life-long learning in the broadest context of technological change.

Course Outcomes 

After completion of the course the students will be able to: 

CO-1:  Describe planar, spatial and dynamical motion of rigid bodies with the help of Euler’s 
equations 

CO-2:  Explain rotational motion characteristics from the idea of torque and angular momentum 
CO-3:  Apply vector calculus and Newton's laws to fundamental level problems of mechanics 
CO-4: Apply Kepler’s laws with the aid of other conservation laws to formulate central force 

problems 
CO-5: Apply the concepts of Coriolis force in different environmental and geographical aspects 
CO-6:  Analyze different types of oscillatory and vibratory motion problems in real life 

Course 
Outcomes 

Expected Mapping with Programme Outcomes 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 

CO-1 3 2 2 2 1 - - - - - - - 
CO-2 3 1 2 1 - - - - - - - - 
CO-3 3 3 2 1 - - - - - - - - 
CO-4 3 3 3 2 1 - - - - - - - 
CO-5 3 3 2 1 1 - - - - - - - 
CO-6 3 3 3 2 1 - - - - - - -
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Guidelines for Teachers 
To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be 
enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the 
responsibilities (not limited to) for the teachers in OBE system may be as follows: 

• Within reasonable constraint, they should manoeuvre time to the best advantage of all students.
• They should assess the students only upon certain defined criterion without considering any other

potential ineligibility to discriminate them.
• They should try to grow the learning abilities of the students to a certain level before they leave

the institute.
• They should try to ensure that all the students are equipped with the quality knowledge as well as

competence after they finish their education.
• They should always encourage the students to develop their ultimate performance capabilities.
• They should facilitate and encourage group work and team work to consolidate newer approach.
• They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy 
Level Teacher should 

Check 
Student should be 

able to 
Possible Mode of 

Assessment 

Create Students ability to 
create Design or Create Mini project 

Evaluate Students ability to 
justify Argue or Defend Assignment 

Analyse Students ability to 
distinguish 

Differentiate or 
Distinguish 

Project/Lab 
Methodology 

Apply Students ability to 
use information 

Operate or 
Demonstrate 

Technical Presentation/ 
Demonstration 

Understand Students ability to 
explain the ideas Explain or Classify Presentation/Seminar 

Remember Students ability to 
recall (or remember) Define or Recall Quiz 

Guidelines for Students 
Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not 
limited to) for the students in OBE system are as follows: 

• Students should be well aware of each UO before the start of a unit in each and every course.
• Students should be well aware of each CO before the start of the course.
• Students should be well aware of each PO before the start of the programme.
• Students should think critically and reasonably with proper reflection and action.
• Learning of the students should be connected and integrated with practical and real life

consequences.
• Students should be well aware of their competency at every level of OBE.
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Electrostatics in Vacuum | 1

d 

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

 Transformation of scalars and vectors under rotation transformation;
 Forces in nature;
 Newton’s laws and its completeness in describing particle motion;
 Form invariance of Newton’s second law;
 Solving Newton’s equations of motion in polar coordinates;
 Problems including constraints and friction;
 Extension to cylindrical and spherical coordinates.

The practical applications of the topics are discussed for generating further curiosity and 
creativity as well as improving problem solving capacity.  

Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through a number of numerical problems, a list of references and
suggested readings are given in the unit so that one can go through them for practice. It is
important to note that for getting more information on various topics of interest some QR codes
have been provided in different sections which can be scanned for relevant supportive
knowledge.

  After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing the salient
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.
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RATIONALE 

This fundamental unit on mechanics helps students to get a primary idea about the transformation 

of scalars and vectors under rotation transformation and forces in nature. It explains Newton’s 

laws and its completeness in describing particle motion. All these basic aspects are relevant to 
start the mechanics properly. It then explains clearly Newton’s laws and its completeness in 

describing particle motion and the form invariance of Newton’s second law as well as Newton’s 

equations of motion in polar coordinates. All these are discussed at length to develop the subject. 
Some related problems are pointed out with an extension to cylindrical and spherical coordinates 

which can help further for getting a clear idea of the concern topics on mechanics. 

      Mechanics is an important branch of physical science that essentially deals with forces and 

energy and their effect on bodies. Mechanics started its journey by quantifying motion and then 
explaining it in terms of forces, energy and momentum. This permits one to analyze the operation 

of many day-to-day familiar phenomena around us. But at the same time it covers 

the mechanics of planets, stars and galaxies. Its practical applications are related to the 

construction, design, and operation of different type of machines and tools. 

PRE-REQUISITES 

Mathematics: Co-ordinate Systems (Class XII) 

Physics: Mechanics (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U1-O1: Describe basic vector operations 

U1-O2:  Describe the Cartesian, spherical and cylindrical coordinate system 

U1-O3:  Explain Newton’s laws in describing particle motion 

U1-O4: Realize the role of friction in constrained motion of a body 

U1-O5:  Apply vector calculus to solve complex problems 

 

Unit-1 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U1-O1 3 3 3 - 3 1 

U1-O2 1 1 2 2 1 - 

U1-O3 2 1 3 1 2 1 

U1-O4 - - 3 1 2 2 

U1-O5 3 3 3 - 3 1 
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1.1 VECTOR FUNDAMENTALS  

The major advantage of vector analysis lies in the fact that a vector is 

independent of the coordinate system. Contrary to a scalar quantity such 

as temperature, energy, volume; a vector represents both magnitude and 

direction such as displacement, velocity, force and acceleration. A 

vector is identified using an arrow for defining the direction. The vector 

magnitude is indicated by using the length of the arrow. The tail end O 

of the arrow is the initial point while the head P is the final point. A 

vector is shown by a letter with arrow on it ( A
��

), and its magnitude is 

denoted by A (Fig. 1.1).  

 

Fig. 1.1: Representation            

of a vector 

1.1.1 Components of a Vector 

Any vector A
��

 in three dimensions can be represented with initial point at the origin O of a rectangular 

coordinate system. Now, let (Ax, Ay, Az) be the rectangular coordinates of the terminal point of vector

A
��

.  

      The vectors xA iɵ , ɵ
yA j  and ɵ

zA k  are the rectangular components or simply component vectors of 

A
��

 in the three directions X, Y and Z respectively [Fig. 1.2 (a)]. 

      The sum or resultant of xA iɵ , ɵ
yA j  and ɵ

zA k  vector may be taken as A
��

.  

      So that we can write  

ɵ ɵ
x y zA A i A j A k  

��
ɵ

                                                                                              
(1.1) 

The magnitude of A
��

 is  

2 2 2
x y zA A A A  

                                                                                   
             (1.2) 

      We have  ɵA A n
�� ��

               
[where ɵn  is the unit vector along A

��
]
                                        

(1.3) 

 

Fig. 1.2: Resolution of a vector in three dimensions 

  ɵ A
n

A


��

��

                                                                                                                     

(1.4) 
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or,  
ɵ

ɵ ɵ
ɵ ɵ

2 2 2 2 2 2 2 2 2 2 2 2

x y z yx z

x y z x y z x y z x y z

A i A j A k AA A
n i j k

A A A A A A A A A A A A

 
   

       

ɵ
ɵ

 

  ɵ

2 2 2

2 2 2 2 2 2 2 2 2
1

yx z

x y z x y z x y z

AA A
n

A A A A A A A A A

     
        
                    

           

(1.5) 

      Thus it is shown that the magnitude of unit vector becomes unity, as it should be. 
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Example 1.1 For a unit vector ɵ ɵ ɵ1 1

2 3
n i m j k  ɵ ; calculate the value of m. 

Solution 

For the unit vector ɵ ɵ ɵ1 1

2 3
n i m j k  ɵ  we have ɵ 1n    


  

2 2

21 1
1

2 3
m

   
     

   
 

or,  
1

23.
6

m    

 

 

Direction cosines: Now, the cosines of the angles made by the vector A
��

 with the co-ordinate axes are 

called the direction cosines of the vector as these helps to specify the direction of A
��

 [Fig 1.2 (b)]. 

So,  
2 2 2

cos x

x y z

A

A A A


 


                                                                                    

(1.6) (a) 

where   is the angle that OA
����

 makes with the X-axis 

2 2 2
cos

y

x y z

A

A A A


 


                                                                                    

(1.6) (b) 

where   is the angle that  OA
����

 makes with the Y-axis 

and  
2 2 2

cos z

x y z

A

A A A


 


                                                                                     

(1.6) (c) 

where   is the angle that OA
����

 makes with the Z-axis 

      A unit vector is considered in the same direction as the position vector OA
����

 and is given by the 

expression   

ɵ ɵ ɵcos cos cosn i j k  ɵ   
                                                                                  

(1.7) 

or,   ɵ 2 2 2cos cos cosn       
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  2 2 2cos cos cos 1      

      The direction cosines of any vector A
��

 satisfy the equation. 

  2 2 2cos cos cos 1    
                                                                                    

(1.8) 

      So the squares of the direction cosines, when added together, become equal to 1. 

  

Example 1.2: If ɵ ɵP i j k  
��
ɵ  and ɵ ɵ2 2Q i j k  

��
ɵ , Find the magnitude and 

direction cosines of P Q
�� ��

 and P Q
�� ��

. 

Solution 

Given                  ɵ ɵP i j k  
��
ɵ  and ɵ ɵ2 2Q i j k  

��
ɵ  

Thus,  ɵ ɵ3 2P Q i j k   
�� ��

ɵ  and ɵP Q i j   
�� ��

ɵ  

So,  14P Q 
�� ��

and 2P Q 
�� ��

 

Direction cosines of P Q
�� ��

 are  

3 1 2
cos , cos and cos

14 14 14
       

or,  1 1 13 1 2
cos , cos and cos

14 14 14
         
        

     
 

Direction cosines of P Q
�� ��

 
are 

' '1 1
cos , cos and cos 0

2 2
       

or,  ' 1 ' 1 ' 11 1
cos , cos and cos 0.

2 2
       

      
   
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1.1.2 Vector Algebra  

If we walk 4 km east and then walk 3 km north we will have gone a total of 7 km, but we will be at a 

distance of 5 km from our initial starting point. The mathematical tool which helps us to describe such 

quantities is called vector algebra.  

Vector Addition: Vector addition is an operation to add two or more vectors. 

i) Vector addition is commutative: A B B A  
�� �� �� ��

 

ii) Vector addition is associative:    A B C A B C    
�� �� �� �� �� ��

 

iii) Vector subtraction in form of vector addition:  A B A B   
�� �� �� ��

  

iv) Vector addition multiplied by a scalar number is distributive:  m A B m A mB  
�� �� �� ��

 

      We may add vectors in two manners, graphically and algebraically.  
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for more on 

vector addition 

and subtraction 

for more on 

dot product 

      Graphically vector addition can be defined as shown below. 

               

                             Fig. 1.3: Graphical representation of vector addition 

Vector Product (multiplication): If vector A
��

 and vector B
��

 are 

multiplied, then the result will be either a scalar or a vector. It 

depends on how multiplications of those are made. The two types of 

vector multiplication are:  

i) Scalar product (or dot product)  

ii) Vector product (or cross product) 

Scalar or dot product: The dot or scalar product of two 

vectors A
��

 and B
��

, denoted by [ A.B
�� ��

 ( A
��

 dot B
��

)], is defined as 

the product of the magnitudes of A
��

 and B
��

 and the cosine of 

the angle θ  between them (Fig. 1.4). In symbols, 

A.B AB
�� ��

cos                                                             (1.9) 

      Note that A.B
�� ��

 is a scalar and not a vector. For example force and 

displacement are two vectors, but their product is the work done by the force 

due to the displacement and is a scalar. 

      The angle between two vectors A
��

 and B
��

 is given by, 

1 .
cos

A B

AB
   
   

 

�� ��

                                

(1.10) 

      If the dot product of two vectors A
��

 and B
��

is zero i.e., if 0A.B 
�� ��

, the angle between the 

vectors is zero ( 0  � ). 
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Example 1.3 If P Q P Q  
�� �� �� ��

, then show that P
��

 is
 
perpendicular to Q

��
. 

Solution 

We have            P Q P Q  
�� �� �� ��

 

or,              
2 2

P Q P Q  
�� �� �� ��

 

or,            2 2P.Q P.Q 
�� �� �� ��

                

or,                    4 0P.Q 
�� ��

  

So, P
��

and
 
Q
��

 are perpendicular to each other. 

 

 

 

Fig. 1.4: Vector dot product 

 

 



Introductory Mechanics | 7 

 
 

  
Example 1.4 If ɵa  and bɵ  are unit vectors and � is the angle between them, show 

that ɵ2sin .
2

a b

  ɵ   

Solution 

We have           ɵ ɵ  ɵ 2

.a b a b a b   ɵ ɵ ɵ    

                                     ɵ ɵ
2 2

22 cos 2 2cos 4sin
2

a b a b


      ɵ ɵ    


  

ɵ2sin .
2

a b

  ɵ  
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Example 1.5 If A
��

 is a vector of constant magnitude then show that 
d A

A
dt



��
��

, 

provided 0.
d A

dt


��

  

Solution 

  ɵ ɵ
x y zA A i A j A k  

��
ɵ  

Thus,  2 2 2. constantx y zA A A A A   
�� ��

 

So,   . 2 . 0
d d A

A A A
dt dt

 

��
�� �� ��

 

or,    . 0
d A d A

A
dt dt

 
 

 

�� ��
��

 

So, 
d A

dt

��

 
is perpendicular to A

��
. 
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Vector or cross product: The vector or cross product of two vectors A

��
 and B

��
, denoted by          

[ A B
�� ��

 ( A
��

 cross B
��

)], is defined by 

ɵsinA B AB n 
�� ��

                                                             (1.11) 

where θ represents the angle between the vectors. The unit vector ɵn  is in the direction normal to 

the plane due to the two vectors. 

      Now,  sinA B AB  
�� ��

 

Thus the unit vector is given by, 

ɵ A B
n

A B






�� ��

�� ��

                                                  

(1.12) 
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      Basically, A B
�� ��

 is a vector normal to the plane containing A
��

 and B
��

, the magnitude is given 

by sinA B 
�� ��

 and direction is taken following the right hand rule. It follows that 0A A 
�� ��

. 

      The cross product is neatly written down in component form as 

ɵ ɵ

x y z

x y z

i j k

A B A A A

B B B

 

ɵ
�� ��

                                      

 

where we recall that the determinant of a 3 3 matrix is given by, 

ɵ ɵ

  ɵ   ɵ  x y z y z z y z x x z x y y x

x y z

i j k

A A A i A B A B j A B A B k A B A B

B B B

     

ɵ

ɵ  

      Thus,    ɵ   ɵ  y z z y z x x z x y y xA B i A B A B j A B A B k A B A B      
�� ��

ɵ

                            
(1.13) 

      Unlike the dot product, the cross product is non-commutative and non-associative i.e., 

   and .A B B A A B C A B C        
�� �� �� �� �� �� �� �� �� ��

 

  
 E

X
A

M
P

L
E

 1
.6

 

Example 1.6 If ɵ ɵP i j k  
��
ɵ

 
and ɵ ɵ2Q i j k  

��
ɵ , obtain a unit vector which is 

perpendicular to vectors P
��

 and Q
��

.  Find also the angle made by the vectors. 

Solution 

Given vectors are ɵ ɵP i j k  
��
ɵ

 
and ɵ ɵ2Q i j k  
��
ɵ  



  

ɵ ɵ

ɵ ɵ1 1 1 3 2

1 1 2

i j k

P Q i j k    



ɵ

�� ��
ɵ  

and   3P Q 
�� ��

 

Thus the unit normal to vectors P
��

and Q
��

is ɵ ɵ ɵ 1
3 2

14

P Q
n i j k

P Q


   



�� ��

ɵ
�� ��  

If � is the angle between P
��

and Q
��

, then sinP Q P Q  
�� �� �� ��

, 



  

14 7
sin

63 4

P Q

P Q



  

�� ��

�� ��

      

[as 3P 
��

 and 4Q 
��

] 

or,  1 7
sin .

6
   
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Example 1.7 Given two vectors ɵ ɵ2 3 4A i j k  

��
ɵ

 
and ɵ ɵ2B i j k  
��
ɵ . Find the unit 

vector normal to A
��

 and B.
��

 

Solution 

Unit vector normal to A
��

 and B
��

is given by  

ɵ A B
n

A B






�� ��

�� ��  

Now,  

ɵ ɵ

ɵ ɵ2 3 4 5 2

1 2 1

i j k

A B i j k     

ɵ
�� ��

ɵ  

Thus, the unit vector normal to A
��

 and B
��

 is 

ɵ
ɵ ɵ5 2

.
30

A B i j k
n

A B

   
 



�� ��
ɵ

�� ��  
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Example 1.8 If 0a b c  
� � �

, show that a b b c c a    
� � � � � �

. 

Solution 

We have   0a b c  
� � �

 

or,  a b c  
� � �

 

or,   b a b b c    
� � � � �

 

or,  b a b b b c     
� � � � � �

 

or,  a b b c    
� � � �

 

or,   a b b c  
� � � �

 

Similarly, we can show  b c c a  
� � � �

 

Thus,  .a b b c c a    
� � � � � �
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1.1.3 Vector differentiation 

Del Operator: In general form the del operator (
��

) or vector differential operator is expressed as: 

ɵ ɵ ɵ

1 2 3

1 1 1
u v wa a a

h u h v h w

  
   

  

��

                                       

(1.14) 

In Cartesian coordinates: u = x, v = y, w = z; h1 = h2 = h3 = 1 

ɵ ɵ ɵ
x y za a a

x y z

  
   

  

��

                                    

(1.15) 

In cylindrical coordinates: u = , v = φ, w = z; h1 = h3 = 1, h2 = 
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ɵ ɵ ɵ1
za a a

z
   

  
   

  

��
                                    (1.16) 

and in spherical polar coordinates: u = r, v = , w = φ; h1 = 1, h2 = r, h3 = r sin 

ɵ ɵ ɵ1 1

sin
ra a a

r r r
   

  
   

  

��
                                    (1.17) 

Gradient of a Scalar function: We assume a scalar field V (u, v, w), which is a function of space 

coordinates. Gradient of this scalar field V represents a vector. We have:  

ɵgrad n

V
V a V

n


  


��
                                                                                          (1.18) 

      As n  is the distance along the normal and it is the shortest distance between the two surfaces 

(Fig. 1.5). Since the magnitude of ɵ. l

V
V a

l






��
depends on the direction of dl, it is named as the 

directional derivative.  

      When ,A V V
�� ��

 is named as the scalar potential function of the vector function A
��

.  
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Example 1.9 Find the directional derivative of 
2 2( , , )x y z x y xz   at (1, 1,  1) 

in the direction ɵ ɵi j k ɵ . 

Solution 

Here                    
2 2( , , )x y z x y xz    

                              2 2 2 2 2 2
i x y xz j x y xz k x y xz

x y z


  
      

  

��
ɵ ɵ ɵ  

                           
  ɵ ɵ2 22 2i xy z jx k xz   ɵ  


   

ɵ ɵ

11, 1
3 2i j k


   
��

ɵ  

The unit vector in the direction of ɵ ɵi j k ɵ  is ɵ
ɵ ɵ

ɵ ɵ1 1 1

3 3 3 3

i j k
n i j k

 
   
ɵ

ɵ  

Hence the directional derivative of 2 2( , , )x y z x y xz    at (1, 1,  1) in the 

direction ɵ ɵi j k ɵ  
 
is 

ɵ ɵ ɵ  ɵ ɵ1 1 1 2
3 2 . .

3 3 3 3
n i j k i j k

 
       

 

��
ɵ ɵ  

 

 

Divergence of a vector field: In vector fields, directed line segments are alternately known as flux 

lines or streamlines. It is the field variations as shown graphically (Fig. 1.6). The field intensity is 

directly proportional to the density of lines.  
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      As for example, the number of flux lines going through a unit surface S normal to the vector 

determines the vector field strength. The flux of a vector field can be defined as 

ɵcos . .n

s s s

A ds A a ds A ds     
�� ��

                                               

(1.19) 

      For a volume enclosed by a surface,  

.

s

A ds  
��

�
                                     

(1.20) 

      The divergence of a vector field A
��

 at any point P may be defined as the net outward flux from a 

volume enclosing P, when the volume shrinks to zero. 

0

.

div . lim s

V

A d s

A A
V 

  



�� �

�� �� ��
�

                                   
(1.21) 

Here V  is the volume that encloses P and S is the corresponding closed surface. 

 

Fig. 1.5: Gradient of a scalar function 

 

 

Fig. 1.6: Flux Lines 

Curl of a vector field: Circulation of a vector field A in a closed path may be defined as .

C

A dl
�� �

�  and 

Curl of a vector field is a measurement of the tendency to rotate about a point. Curl A
��

, also written as

A 
�� ��

, is defined as a vector whose magnitude is maximum of the net circulation per unit area when 

the area tends to zero and its direction is the normal direction to the area when the area is oriented in 

such a way so as to make the circulation maximum. Therefore, we can write: 

ɵ

0
max

curl lim .n

S
C

a
A A A dl

S 

 
     

   


�� �� �� �� �

�
                                                           

(1.22) 

      The curl of a vector function is itself a vector function. We cannot take the curl of a scalar, and in 

the same way we cannot take the divergence of a scalar which has no meaning. 

      For the geometrical interpretation of the curl, as the name implies, V 
�� ��

 is a measure of how 

much the vector function V
��

 curls around the point in question.  

Laplacian of a scalar field: Laplacian of a scalar function may be defined as, 
2 .  
�� ��

 
                       

        
2 2 2

2 2 2
x y z

   
       


                                                                                 

(1.23) 
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Example 1.10 If T F R 
�� �� ��

and ɵ ɵR xi y j zk  
��

ɵ , then prove that 
1

2
F T 
�� �� ��

 

Solution   

                           

 
ɵ ɵ

1 2 3

i j k

T F R F F F

x y z

     

ɵ
�� �� �� �� �� ��

 

        

    ɵ   ɵ

ɵ ɵ

2 3 3 1 1 2

2 3 3 1 1 2

F z F y i F x F z j F y F x k

i j k

x y z

F z F y F x F z F y F x

        

  


  

  

��
ɵ

ɵ

 

        ɵ ɵ 1 2 32 F i F j F k  ɵ
 

        

 


  

1
.

2
F T 
�� �� ��
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Example 1.11 Given v r 
� �� �

, where r
�

 is the position vector and 
��

 is a 

constant angular velocity vector, then find out v
�� �

.  

Solution               

                             v r   
�� � �� �� �



 
                                

ɵ ɵ

1 2 3

i j k

x y z

 

ɵ
��

                        

                                    

    ɵ   ɵ

ɵ ɵ

    ɵ   ɵ

2 3 3 1 1 2

2 3 3 1 1 2

1 1 2 2 3 3 2 .

z y i x z j y x k

i j k

x y z

z y x z y x

i j k

     

     

      

        

  


  

  

      

��
ɵ

ɵ

��
ɵ

 

 

 

1.2 CO-ORDINATE SYSTEMS  

To explain the spatial variations of the quantities, we need to use proper co-ordinate system. A vector 

can also be expressed in a curvilinear coordinate system. Let, the surfaces in the coordinate system is 

described by u = constant, v = constant and w = constant. In general, these surfaces are curved.  



Introductory Mechanics | 13 

 

      If ɵ ua , ɵ va and ɵwa  be the unit vectors along the u, v and w directions, then, 

ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,u v w v w u w u va a a a a a a a a     
                                  

(1.24) 

      Eq. (1.24) is dependent on specification of ɵ ua , ɵ va and ɵwa  and also holds the following relation:  

ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ. . . 0, . . . 1u v v w w u u u v v w wa a a a a a a a a a a a                         (1.25) 

      In this coordinate system any vector can be represented by its orthogonal components as, 

ɵ ɵ ɵ
u v wu v wA A a A a A a  

��

         
(1.26) 

      Generally u, v and w do not represent length and to convert into differential changes du, dv and dw 

to corresponding changes dl1, dl2, and dl3 in length those u, v and w are respectively multiplied by 

some factor of conversion h1, h2 and h3. Therefore  

ɵ ɵ ɵ ɵ ɵ ɵ
1 2 3 1 2 3u v w u v wdl dl a dl a dl a h dua h dva h dwa     

�

                                
(1.27) 

 

Fig. 1.7: Cartesian co-ordinate 

system  

      Similarly, the differential volume dV can be expressed as 

1 2 3dV h h h dudvdw and the differential surface area dS1 normal to 

ɵ
ua  can be expressed as 1 2 3dS h h dvdw . In a similar way, 

differential surface areas normal to ɵ va and ɵwa  can also be defined.  

1.2.1 Cartesian Co-ordinate System 
When considering the Cartesian coordinate system, one can write, 

(u, v, w) = (x, y, z) [Fig. 1.7]. The unit vectors satisfy the relation 

given below: 

ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,x y z y z x z x ya a a a a a a a a                   (1.28) (a) 

              ɵ ɵ ɵ ɵ ɵ ɵ. . . 0x y y z z xa a a a a a                                     (1.28) (b) 

ɵ ɵ ɵ ɵ ɵ ɵ. . . 1x x y y z za a a a a a  
                                                                              

(1.28) (c)
 

      In the Cartesian co-ordinate, we have, ɵ ɵ ɵ
x y zx y zA a A a A a A  

��
. The dot and cross product of A

��
 

and B
��

can be expressed as follows:
 

. x x y y z zA B A B A B A B  
�� ��

                                                                         
(1.29) 

and   

ɵ ɵ ɵ
x y z

x y z

x y z

a a a

A B A A A

B B B

 
�� ��

 

           ɵ   ɵ   ɵ  x y zy z z y z x x z x y y xa A B A B a A B A B a A B A B     

                    

(1.30) 

      Since x, y and z all represent lengths, h1 = h2 = h3 = 1. The differential length, area and volume are 

defined respectively as  

ɵ ɵ ɵ
x y zdl a dx a dy a dz  

�

                      
(1.31) 



14 | Physics - Introduction to Mechanics 

 

ɵ
x xdS dydza
��

                                                                                                 
(1.32) (a) 

ɵ
y yd S dxdza
��

                                                                                                 
(1.32) (b) 

ɵ
z zdS dxdya
��

                                                                                                 
(1.32) (c) 

dV dxdydz
                                                                                                        

(1.33) 

1.2.2 Cylindrical Co-ordinate System 

For cylindrical coordinate systems (u, v, w) =
  , , z  . The unit vectors satisfy the following 

relations: ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,z z za a a a a a a a a          
                                                      

(1.34) (a) 

ɵ ɵ ɵ ɵ ɵ ɵ. . . 0z za a a a a a     
                                                                            

(1.34) (b) 

ɵ ɵ ɵ ɵ ɵ ɵ. . . 1z za a a a a a     
                                                                              

(1.34) (c)
 

      For cylindrical coordinate we can write, ɵ ɵ ɵ
z zA a A a A a A    

��
. 

      The differential length, area and volume are defined respectively as (h1 = h3 = 1 and h2 =  ) 

 

Fig. 1.8: Cylindrical coordinate system 

 

Fig. 1.9: Differential volume element in  

cylindrical coordinates 

ɵ ɵ ɵ
zdl a d a d a dz     

�

                                                                                
(1.35) 

  
ɵd S d dza  

��

                                                                                             
(1.36) (a) 

ɵdS d dza 
��

                                                                                                
(1.36) (b) 

ɵ
z zd S d d a  
��

                                                                                            
(1.36) (c) 

dV d d dz  
                                                                                                    

(1.37) 
 

      Transformation between Cartesian and cylindrical coordinates is:  

cos , sinx y      and z = z                                                                          (1.38) 

      The inverse relationships are: 

2 2 1, tan
y

x y
x

      and z = z                                                                   (1.39) 
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1.2.3 Spherical Polar Co-ordinate System 

In spherical polar coordinate we can write,    , , , ,u v w r   .  

      For the unit vectors we have,   

ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,r r ra a a a a a a a a                                                                        (1.40) 

      Fig. 1.10 exhibits the orientation of the unit vectors.  

 

    Fig. 1.10: Spherical polar coordinate system         Fig. 1.11: Differential volume in spherical coordinates 

      For spherical polar co-ordinate, we have, ɵ ɵ ɵ
r rA a A a A a A    

��
.  

      In spherical polar coordinate we can write, h1 = 1, h2 = r and h3 = sinr  .  

      With reference to Fig. 1.11, the differential length, area and volume are defined respectively as 

ɵ ɵ ɵ sinrdl a dr a rd a r d     
�

                                                                        
(1.41) 

ɵ2 sinr rdS r d d a  
��

                                                                                    
(1.42) (a) 

ɵsind S r drd a  
��

                                                                                      
(1.42) (b) 

ɵd S rdrd a 
��

                                                                                               
(1.42) (c) 

and
   

2 sindV r drd d  
                                                                                           

(1.43) 

      Coordinate transformation between rectangular and spherical polar is: 

2 2z x y   

sin cos , sin sinx r y r      and cosz r                                                   (1.44) 

and conversely,  

2 2 2r x y z  
                                                                                          

(1.45) (a) 

1

2 2 2
cos

z

x y z

 
 

                                                                               

(1.45) (b)

 

and   1tan
y

x
 

                                                                                                     
(1.45) (c) 
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Example 1.12 Convert the following rectangular Cartesian coordinate (1, 3, 5) 

into an equivalent (a) cylindrical and (b) spherical coordinates.   

Solution 

(a) The conversion relationships for cylindrical coordinates are: 

2 2 1, tan
y

x y
x

      and z = z    

So, here  2 21 3 10 1.73                              

1tan 3 71.56   �

                 

and   5z   

So, the required cylindrical coordinate will be  1.73,71.56 ,5 .  �

             

(b) The conversion relationships for spherical coordinates are: 

 2 2 2r x y z   , 1

2 2 2
cos

z

x y z

 
 

 and 1tan
y

x
 

                                

So, here  
2 2 2

1 3 5 35 5.92r                               

1 5
cos 32.31

35
   �

                 

and   
1tan 3 71.56   �

 

So, the required spherical coordinate will be  1.73,32.31 ,71.56 .  � �

                                

 

 

1.3 TRANSFORMATION PROPERTIES  

1.3.1 Transformation of Vector Components  

Let A
��

 be any vector, having components xA in the xeɵ  basis and components xA   in the xe 
ɵ basis. i.e., 

x xx xA A e A e  
��

ɵ ɵ  

      Both bases being orthonormal, we have,  

. yyA A e
��
ɵ  and . yyA A e  

��
ɵ   

      We can express the components as, 

. x y xx y xy yA Ae A e e A    
��
ɵ ɵ ɵ  

. . . T
x z xx z zx z xz zA Ae A e e A A      

��
ɵ ɵ ɵ  

      We cannot give a prime on the vector itself as there is a single vector only. However, the 

components of this vector are different in different bases.  
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      In matrix form we can write these relations as  

x x

y y

z z

A A

A A

A A








   
      
   
   

                                                                                                      

(1.46) 

1.3.2 Transformation of the Scalar Product  

Let A
��

 and B
��

 be vectors with components
x

A  and 
x

B in the xeɵ  basis and components xA  and xB  in 

the xe 
ɵ  basis, Now, in the xeɵ  basis the scalar product of A

��
 and B

��

 is denoted by . x xA B A B
�� ��

 and in 

the xe 
ɵ  basis the scalar product of A

��
 and B

��

 is denoted by 

 . . .x x xy y xz k jk y k y yA B A B A B A B A B A B   
     

�� �� �� ��

                                     
(1.47) 

      The scalar product therefore becomes same when evaluated in any basis which is desired from the 

geometrical interpretation of scalar product which is independent of basis. 

1.3.3 Transformation of the Vector Product 

Consider the inversion  

[ ]x x xy xye e      ɵ ɵ           

Now,   x xA A    and x xB B   

Also,     x x xx x xA e A e A e A     
��

ɵ ɵ ɵ  

so the vectors A
��

 and B
��

 are unchanged by the transformation, as they should be. 

      However if we calculate the vector product in the new basis using the formula 

 31

x y z x y z

x y z x y z

x y z x y z

e e e e e e

C A A A A A A C

B B B B B B

  

  

  

     

ɵ ɵ ɵ ɵ ɵ ɵ

�� ��

                                                 

(1.48) 

      The explanation is that if xeɵ was a R.H. basis, xe 
ɵ now becomes a L.H. basis as λ is an improper 

transformation. For the vector product the formula holds in a right-handed basis. When considered this 

formula for left hand basis there will be a reverse direction of the vector product. As the calculation 

depends on the handedness of the basis it is termed a pseudo vector or an axial vector. 

Key points of suffix notation: We label basis vectors 1, 2, 3 thus 
3

1

xx

x

A A e



��

ɵ   

      The kronecker delta δxy can be used to define an orthonormal basis .x y xye e ɵ ɵ    

δxy has a very useful sifting property: y yz z

y z

A A   and is represented in matrix form by the 

identity matrix. 
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Key points of summation convention: By making use of summation convention we have, as for 

example, 

xxA A e
��

ɵ  and y yz zA A   

      We introduce xyz  to express the vector products of basis vectors in a uniform manner 

x y zxyze e e ɵ ɵ ɵ

                                                                                                     
(1.49) 

The vector products and scalar triple products are 

x y z

x y z

x y z

e e e

A B A A A

B B B

 

ɵ ɵ ɵ

�� ��

 

or equivalently   xyz y z
x

A B A B 
�� ��

                                                                                              
(1.50)

 

and   .

x y z

x y z

x y z

A A A

A B C B B B

C C C

 
�� �� ��

 

or, equivalently   . xyz x y z
x

A B C A B C 
�� �� ��

                                                                                      
(1.51) 

Key points of change of basis: The new basis is written in terms of the old through x yxye e ɵ ɵ  

where λ is the transformation matrix λ is an orthogonal matrix, the defining property of which is 

1 T    

and this can be written as 1T   

or,   xz yz xy  
                                                                                                          

(1.52) 

      
1   decides whether the transformation is proper or improper i.e. whether the handedness of 

the basis is changed. 

Key points of algebraic approach: A scalar is defined as an invariant number in orthogonal 

transformation. A vector is defined as an object A
��

 represented in a basis by numbers xA  to xA   

through x xy yA A    

or, in matrix form 

x x

y y

z z

A A

A A

A A








   
      
   
   

 

1.4 FUNDAMENTAL FORCES OF NATURE  

Four fundamental forces have identified in nature which are known as:  

      Gravitational force, Strong force, Weak force and Electromagnetic force.  
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Gravitational force: This is the weakest force in nature but has an infinite range. This force is always 

attractive and can act between any two object in nature. The effect of this gravitational force is 

dependent upon the mass of the two bodies and the distance between them. In comparison to the 

strength of the strong force it has strength of 6 × 10
-39

. 

Strong force: It is the strongest of the forces, but it is very short ranged. This force holds the nucleus 

of an atom together. It has a range of about 10
-15 

m. This is the mean diameter of a nucleus of medium 

sized. This force is attractive. 

Weak force: This force is weak in comparison to the strong force. It has the shortest range of 10
-18 

m 

and this is 0.1% of the diameter of a proton. It causes the radioactive decay particularly nuclear beta 

decay. All particles experience this force. 

Electromagnetic force: This is the second strongest force and acts on electrically charged particles. 

Owing to two charges this force is both attractive and repulsive. Its strength is 1/137 with respect to 

the strong force but the range is infinity. 

1.5 NEWTON’S LAWS OF MOTION  

Newton’s laws of motions are as follows – 

First law: Everybody maintain its state of rest or uniform motion in a straight line unless a force is 

applied on it. 

Second law: The rate of change of momentum of a body is directly proportional to the applied force 

and the change occurs in the direction where the force acts. 

Third law: Action and reaction are equal and opposite. 

      From first law of Newton we get the concepts of the following two physical quantities – (a) inertia 

of matter and (b) definition of force. 

Inertia of a body is the property by virtue of which it opposes the cause which tends to change the 

state of rest or that of uniform motion of the body in a straight line. 

      Inertia can be classified as – (a) inertia of rest and (b) inertia of motion. 

Force is basically the external system that alters or tends to alter the state of rest or of uniform motion 

of a body on which it acts. If external force is not applied then the body at rest will continue its status 

and similarly a body in motion with uniform velocity continues its motion along the straight line. 

      Force possesses both magnitude and direction and is the external agent which cause acceleration 

or retardation of the body. 

Dimension of force is MLT
-2

. SI unit of force is newton (N) and its CGS unit is dyne. 1 N =10
5 
dyne. 

1.5.1 Momentum 

When a body is in motion or rest then to change its state of rest or motion the force to be applied on it 

which depends on – (a) the mass of the body and (b) the velocity of the body. 

      This helps Newton to introduce a new quantity, called linear momentum of the body and may be 

defined as the product of the mass (m) of the body and its velocity (v). 

Thus, momentum  p mv
�� �

                                     (1.53) 

      It is a vector quantity and is has the same direction as that of the linear velocity.  
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      From Newton’s second law it can be stated that when a total force F
��

 is applied to a particle, its 

momentum p
��

 changes at the rate 
d p

dt

��

. Mathematically, it can be represented as, 

  2

2

d mvd p dv d r
F m m ma

dt dt dt dt
    

��� � �
�� �

                                                              (1.54) 

where m is the mass of the particle and a
�

 is the acceleration of the particle.  

Dimension and unit of momentum: Dimension of momentum is     1p mv MLT       

SI unit of momentum is kg-ms
-1 

and CGS unit of momentum is gm-cms
-1

. 
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Example 1.13 Show that the momentum of a body having mass m and kinetic 

energy E is 2 .mE  

Solution 

Kinetic energy 21

2
E mv , where v = velocity 

or,   2 2E
v

m
   

or,   
2E

v
m

    

or,   
2

2
E

mv m mE
m

   

Since mv = momentum, therefore momentum for body is 2 .mE  

 

 

Principle of conservation of linear momentum: It states that when no external force acts on a 

system of particles, the linear momentum remains conserved. 

Explanation: If two masses m1 and m2 having initial velocities u1 and u2 collide with each other such 

that their final velocities are v1 and v2 then for the conservation of linear momentum we must have, 

m1u1 + m2u2 = m1v1 + m2v2                                                            (1.55) 

      Thus, the total linear momentum before collision = that after collision. 

Establishment of laws of conservation of linear momentum from Newton’s third law: For the 

mutual interaction of two particles of masses m1 and m2 moving with initial velocities u1 and u2 for a 

time t, let the final velocities are v1 and v2. Now at the time of collision the impulsive force acting on 

the first body should be equal and opposite to that acting on the second body (according to Newton’s 

third law) i.e., F1 = – F2 

      Now if the time of action is t then the change in momentum of the first body is = F1t = m1v1 – m1u1 

and the change in momentum of the second body is F2t = m2v2 – m2u2. 

∵  F1 = – F2 
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   m1v1 – m1u1= – (m2v2 – m2u2) 

or,   m1u1 + m2u2 = m1v1 + m2v2                                                                                                                               (1.56) 

      So, the total linear momentum of the bodies before and after the collision is same and this is the 

law of conservation of linear momentum. 

1.5.2 Recoil of a Gun 

When a gun fires a shell it is moves forward with a large 

velocity and the gun moves backward with a velocity called 

the recoil velocity of the gun. This recoil velocity is due to 

the law of conservation of linear momentum. 

      Let, M = mass of empty gun, m = mass of the shell, V = 

velocity of the gun just after firing and v = velocity of the shell when fired from the gun (Fig. 1.12). 

      Now, before firing the total linear momentum of the gun and the shell is zero (0) and just after 

firing the total linear momentum of the gun and the shell becomes (MV + mv).  

      According to the law of conservation of linear momentum, MV + mv = 0  

or,  
mv

V
M

                                                                                                      (1.57) 

      Eq. (1.57) gives the expression for recoil velocity of the gun. The negative sign in this equation 

indicates that the velocity of the gun and that of the shell are opposite to each other. 

  

Example 1.14 The mass of a machine gun is 8 kg. It fires 30 gm bullet at the rate 

of 6 bullets/s with a speed of 400 m/s. What force must be applied to the gun to 

keep it in position?     

Solution  

Given, mass of bullet (m) = 30 gm = 30 × 10
-3

 kg, speed of bullet (v) = 400 m/s, 

mass of the gun (M) = 8 kg and number of bullet fires per sec (n) = 6. 

Let, V is the recoil velocity of the gun just after firing the bullet. 

Then according to the principle of timer momentum, MV + mu = 0 

or,   MV = – mu 

Hence, the backward momentum imparted to the gun per sec is F = nMV = – nmu 

or,   F = – 6 × 30 × 10
-3 

× 400 N = –72 N 

Thus, the forward force required to be applied to the gun to keep it in position is 

72 N. 
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1.6 MOTION OF TWO CONNECTED BODIES  

1.6.1 Horizontal Motion of Two Bodies  

Let two masses m1 and m2 are connected by an inextensible light string and is kept on a smooth 

horizontal table (Fig. 1.13). Let a horizontal force F is acting on the mass m2, when it produces an 

acceleration f of the system.  

 
 

Fig. 1.12: Recoil of a gun 
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      If T be the tension in the string then the equation of motion of 

mass m1 will be,  

T = m1f                                                  (i) 

and that of mass m2 is   

F – T = m2f                       (ii) 

      Adding (i) and (ii) we get,  

F = (m1 + m2) f 

  f =
1 2

F

m m
                                                                                        (1.58) 

and,   T = m1f = 1

1 2

m F

m m
                                                                          (1.59) 

1.6.2 Vertical Motion of Two Bodies  

Let two masses m1 and m2 are connected by a string subjected to a vertical force to produce an upward 

acceleration f (Fig. 1.14). If T be the tension on the string then the net force on mass m1 is  

F – m1g – T = m1f          (i) 

and the net force on mass m2 is,  

T – m2g = m2f                       (ii) 

      Adding (i) and (ii) we get, 

F – m1g – m2g = (m1 + m2) f  

or,   F  = (m1 + m2) (g + f)                                              (1.60) 

and from (ii) we get  

T = m2 (g + f)                                              (1.61) 

1.7 CONSERVATION OF MECHANICAL ENERGY  

The sum of the kinetic energy (KE) and potential energy (PE) of a body is its 

total mechanical energy. If there is no dissipative force then the total KE and 

PE of a body remains constant and this is the law of conservation of 

mechanical energy. 

1.7.1 Freely Falling Body 

Let a body of mass m is at rest at the point P as shown in Fig. 1.15. Let the 

height of the point P from the reference plane AB is h. The energy of the 

body is zero at the reference plane and is maximum (mgh) at point P. Now, 

let the body falls freely such that its velocity at point Q at a height (h – x) 

from the reference plane is v. 

Total mechanical energy at P  

PE at point P = mgh  

 
 

Fig. 1.15: Total 

mechanical energy of a 

freely falling body 

 

 

Fig. 1.14: Vertical motion 

of two bodies connected 

by inextensible string 

 

    

 

Fig. 1.13: Motion of two bodies 

connected by inextensible 

weightless string 
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for better 
understanding 

conservation        
of energy 

for calculating 

the components 

of weight 

and KE at point P = 0. 

Total mechanical energy at point P = mgh + 0 = mgh. 

Total mechanical energy at Q  

If v be the velocity at point Q then the KE at point Q is  

                                          =
1

2
mv

2
= 

1

2
m 2gx = mgx    

                                                                (∵v
2 
= 0

2
 +2gx = 2gx)  

and PE at point Q is = mg (h – x). 

Total mechanical energy at point Q = mgx + mg (h – x) = mgh. 

Total mechanical energy at R  

PE at point R is 0 

and KE at point R is = 
1

2
mv

2
 = 

1

2
2m gh = mgh. 

Total mechanical energy at R = mgh + 0 = mgh. 

Thus the total mechanical energy at P = total mechanical energy at Q = total mechanical energy at R. 

      So, the total mechanical energy of a freely falling body remains conserved and this is the law of 

conservation of mechanical energy. 

1.7.2 Body Falling Down an Inclined Plane 

 

Fig. 1.16: Total mechanical energy of 

body falling down an inclined plane 

Let a body of mass m is rest at point A on an inclined plane of 

inclination  (Fig. 1.16). Now the KE of the body at A is 0 and 

the PE is = mgh. 

Total mechanical energy at A = 0 + mgh = mgh. 

      When the body is left to fall along the inclined plane then let 

the velocity of the body is v at a distance S from A at point B. In 

this time if the displacement of the body along the vertical is x 

then from v
2 
= u

2
 + 2fS we get, 

v
2
 = 0

2 
+ 2g sin  S = 2gx  [since, x = Ssin ]  

      So, the KE of the body at B is 

21 1

2 2
.2mv m gx mgx    

and PE at B = mg (h – x) . 

Total mechanical energy at point B = mgx + mg (h – x)  

                                                      = mgh. 

      So, the total mechanical energy at A = total mechanical energy at B. 

      Thus the total mechanical energy of a body falling down a frictionless inclined 

plane remains conserved. 
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1.8 FRICTION 

Friction is a resistive force to the direction of motion. The frictional force is proportional to the normal 

force N. It is perpendicular to the surface between two objects. The proportionality constant is named 

as the coefficient of friction µ such that, 

F

N
                                                                                                               (1.62) (a) 

where F is the resistive force (frictional force) acts along the direction of motion 

      There are two coefficients of friction where the difference depends on if the object is in motion or 

at rest. The coefficient of static friction is used at the static condition. If the block is in motion, then 

we use the coefficient of kinetic friction. 

1.8.1 Laws of Friction 

 

Fig. 1.17: Angle of friction 

First law: Force of friction is proportional to the impressed load.  

Second law: Force of friction does not depend on the apparent area of 

contact.  

Third law: Kinetic friction does not depend on the sliding velocity. 

1.8.2 Angle of Friction 

The angle of friction or friction angle may be defined as: 

tan
s

F

N
                                                                                                   (1.62) (b) 

where θ is the angle from horizontal and µs is the static coefficient of friction between the objects.  
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Example 1.15 A chunk of stone of 100 kg with constant velocity of 0.5 m/s is 

pulled on a horizontal surface with a horizontal force of 200 N. Assume g = 9.8 

m/s
2
. Find the coefficient of kinetic friction. 

Solution 

Let Fr is the frictional force, N is the 

normal force, mg is the weight of the 

block and F is the force exerted to 

move the block. We choose a 

coordinate system where the horizontal 

right is the positive X-direction and the 

vertical up is the positive Y-direction. 

The body is in equilibrium since the 

velocity is constant. This means the 

total force acting on the block are equal 

to zero. 

Let us consider the forces in the X-direction.  

Then,               ΣFx = F – Fr = 0 
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So,                   F = Fr 

The friction force is equal to μk N; i.e., 

F = μk N 

Now we need to know the normal force.   

We get that from the forces in the Y-direction. 

ΣFy = N – mg = 0 

or,                     N = mg 

Substituting this normal force into the previous equation, F = μk mg  

we get,    μk= F/mg = 0.2. 
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Example 1.16 A block weighing 200 N is pushed along a surface. When it takes 

80 N for moving a block and 40 N to continue the movement of the block at a 

constant velocity, find the coefficients of static friction μs and kinetic friction μk? 

Solution 

For the coefficient of static friction, the required force to move the block is 80 N. 

Now, from  Ff = μs N 

where N is equal to the weight of the block = 200 N 

we have,  80 N = μs 200 N 

or,   μs = 0.4 

For the coefficient of kinetic friction, the required force to maintain a constant 

velocity is 40 N.  

So, from  Ff = μk N we have, 

40 N = μk  200 N 

or,   μk = 0.2 

Thus, the two coefficients of friction for this system are μs = 0.4 and μk = 0.2. 
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1.8.3 Energy Dissipation due to Friction  

When a body is moving in an inclined plane having friction then it will have to do some work against 

the frictional force. So, the energy gets dissipated in doing work against the frictional force and thus 

total mechanical energy is not conserved. Let a body of mass m is at rest at A at a height h in an 

inclined plane of angle of inclination  (Fig. 1.18). 

      So, the PE at A = mgh and the KE at A = 0. 

      Thus, the total mechanical energy at A = 0 + mgh = mgh.  

      Now, if the body falls down along the inclined plane from A to B then the force acting on the body 

is mgh and let the displacement of the body due to this is S such that the velocity of the body at point 

B is v and is given by, 

                        v 
2
 = u 

2
 + 2 f S = 0 + 2 f S = 2 f S       
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      Now, the downward force acting over the inclined plane is mg sin F   

where F is the frictional force acting opposite to the motion of the body. 

      So, the acceleration of the body along the inclined plane is 
sinmg F

f
m

 
  

 

Fig. 1.18: Dissipation of energy due       

to friction over an inclined plane 

and thus the KE of the body at 21
B

2
mv  

                                                        
1

2
2

m fS mfS  
 

                                                        
sinmg F

mS
m

 
  

                                                     sinmgS FS   
                                                        mgx FS   

      Again, the PE of the body at B = mg (h – x). 

      Thus, the mechanical energy of the body at B is = mgx – FS + mg (h – x) = mgh – FS. 

      Dissipation of energy to bring the body from point A to point B   

                      = total mechanical energy at A – total mechanical energy at B  

                      = mgh – (mgh – FS) = FS = work done against the dissipative or frictional force F. 

1.9 LIMITATIONS OF NEWTON’S LAWS 

Direct applications of Newton’s laws in solving dynamical problems find the following limitations: 

i) Newton’s laws are only valid in the Cartesian-like inertial frames of references. In case of non-

inertial frames such as a frame attached to the earth rotating with it around its axis of rotation or the 

motion of an object with respect to the earth, a transformed version of the Newton’s equations of 

motion is obtained incorporating the pseudo forces like the Coriolis force or the centrifugal force to 

make it valid in such a frame of reference. 

ii) Newton’s laws require the complete specification of all the forces acting on the body whose motion 

is under consideration. 

      So, the use of the Newton’s laws in solving dynamical problems is only restricted to Cartesian 

frames with the complete knowledge of the forces acting on the body at any particular time. 

1.10 INERTIAL REFERENCE FRAME 

The concept of absolute rest or motion as described by Newton’s law involves the concept of the 

proper choice of reference frame with respect to which the rest or motion of the particle is considered. 

In general, that frame of reference is employed in which the motion is easy to describe.  

      For example, motion of a train with respect to another train will be different from its motion with 

respect to other stationary object. Similarly the motion of a passenger in a moving bus can be 

described by taking the bus as the reference frame. 

      A reference frame which is at rest or moving with uniform speed is known as the inertial reference 

frame. Newton’s laws are valid in this reference frame. In an inertial reference frame if a body is not 

experiencing a force externally, its acceleration will be zero.  
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      If two inertial frames are moving with constant relative velocities with each other then the 

acceleration of a particle as experienced in both the reference frames will be identical. 

1.10.1 Cartesian Coordinate System 

Cartesian coordinates specify the location of a point in a plane or in a three-dimensional space. In two-

dimensions the Cartesian coordinates of a point are a pair of points (x, y) which can specify the 

position of any particle at some instant. 

      Let m be the mass of a particle moving with respect to an inertial frame of reference. Let the 

position of the particle with reference to the origin O of the reference frame is .r
�

 If ɵ,i jɵ and ɵk  be the 

unit vectors along X, Y and Z directions of the coordinate axes, then we can write, 

   ɵ ɵr ix jy kz  
�
ɵ

                                                                                                     
(1.63) 

      The velocity of the particle is thus 

ɵ ɵ  ɵ ɵd r d
v ix jy kz ix jy kz

dt dt
      

�
�

ɵ ɵɺ ɺ ɺ

                                                              
(1.64) 

      For simplicity of this expression we have assumed that the three unit vectors are constant vectors. 

If these are not constant, an additional term will arise from the product rule.  

      Similarly, we can write the particle acceleration as 

ɵ ɵ  ɵ ɵdv d
f ix jy kz ix jy kz

dt dt
      

�
��

ɵ ɵɺ ɺ ɺɺ ɺɺɺ ɺɺ

                                                             
(1.65) 

This acceleration vector is required in Newton’s second law. 

      Now, in terms of the components of the force along the X, Y and Z direction of the coordinate 

axes of the reference frame we can write  

ɵ ɵ
x y zF F i F j F k  

��
ɵ

                                                                                             
(1.66) 

where ,x yF F and zF are the components of the force along the X, Y and Z directions respectively. 

      Hence Newton’s second law in vector form will be ɵ ɵ ɵ ɵ x y ziF jF kF m ix jy kz    ɵ ɵɺɺ ɺɺ ɺɺ   

      Equating the coefficients of ɵ,i jɵ and ɵk  we have: 

xF mx ɺɺ ; yF my ɺɺ ;
 zF mz ɺɺ

                                                                                
(1.67) 

      Let us take the initial conditions on the position and velocity of the particle. We also choose 

functional representation of the force components. Then these equations of motion can be integrated 

for getting the position and velocity as functions of time.  

1.10.2 Polar Coordinate System 

This is a two-dimensional coordinate system where all the points on a plane are found by a distance 

(r) with respect to a point and the angle (θ) subtended to a reference direction (Fig 1.19). Any point is 

thus represented in polar coordinate system as (r, θ). The Cartesian coordinates (x, y) of a point is 

related to its polar coordinates (r, θ). 
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      To get a concept in two dimensions let us draw a right angled 

triangle as illustrated in Fig. 1.19. The hypotenuse is represented 

by the line segment with reference to the origin up to the point, 

and its length is denoted as r. The projection of this line segment 

on the X-axis and Y-axis are 

cosx r                                                     (1.68) 

and             siny r 
                                                   

(1.69) 

      The above equations give the relationship between the polar (r, θ) and the Cartesian (x, y) 

coordinates of a point.  

      The following formula can be used to convert from Cartesian to polar coordinates of any point: 

2 2r x y 
                                                                                                   

(1.70) (a) 

and   1tan
y

x

                                                                                                         (1.70) (b) 

      The position vector can then be written as     

ɵ �cos sinr ix jy i r j r     
�
ɵ ɵ

                                                                              
(1.71) 

      Differentiating once we find that the velocity as 

ɵ    ɵ  cos sin cos sin sin cos
d

v i r j r i r r j r r
dt

             
�

ɵ ɵ ɺ ɺɺ ɺ

                  
(1.72) 

      Differentiating the velocity, we get the acceleration as 

    ɵ  cos sin sin cos
d

f i r r j r r
dt
           

��
ɵ ɺ ɺɺ ɺ

 

         2cos 2 sin sin cosi r r r r          ɵ ɺ ɺɺ ɺɺɺ ɺ
  

                                                           ɵ  2sin 2 cos cos sinj r r r r          ɺ ɺɺ ɺɺɺ ɺ                
 
(1.73)

 

      However, note that each of the terms in the acceleration vector contains second order derivatives 

of both r and θ. Typically, polar coordinates are most useful when the forces are readily expressed in 

directions related to coordinates of a point.  

1.10.3 Polar Coordinate in a Rotating Frame 

Instead of using Cartesian coordinate system described by the mutually perpendicular unit vectors 
ɵ,i jɵ and ɵk  we use a new set of system with the unit vectors reɵ  along the radial direction, eɵ  along 

the cross-radial direction and zeɵ  which is perpendicular to both reɵ  and eɵ  such that  

z re e e ɵ ɵ ɵ . 

   �cos sinre i j   ɵ ɵ
                                                                                               

(1.74) 

and  � �cos sin sin cos
2 2

e i j i j
                 
   

ɵ ɵ ɵ

                                            

(1.75) 

    

Fig. 1.19: Polar Coordinate System 
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Then the position vector can be written as, 

  rr re
�

ɵ
                                                                                                                   (1.76) 

Thus, the velocity vector is 

    r
r r

d r d de
v re re r

dt dt dt
   

�
ɵ�

ɵ ɵɺ  

      One easily finds that  

� 
ɵ 

cos sin
sin cos

r
d i jde

i j e
dt dt



  
        
ɵɵ

ɵ ɵɺ ɺ  

Similarly, 

ɵ 
ɵ  ɵ

sin cos
cos sin

r

d i jde
i j e

dt dt


   

        
ɵɵ

ɵ ɺ ɺ  

      Thus, the velocity of the particle is 

rv re r e  
�
ɵ ɵɺɺ                                                                                                         (1.77) 

      Here 
rv r ɺ is the radial component of velocity and v r  ɺ is the cross radial component of 

velocity for the motion of a particle in a rotating frame of reference. 

      The acceleration of the particle can be obtained by taking derivative of the velocity vector as, 

 r

dv d
f re r e

dt dt
   

�
��

ɵ ɵɺɺ

 

    
r

r

de de
re r r e r e r

dt dt


        

ɵ ɵ
ɵ ɵ ɵɺ ɺɺ ɺɺɺ ɺ ɺ  

or,      2 2 2r r rf re r e r e r e r e r r e r r e                  
��

ɵ ɵ ɵ ɵ ɵ ɵ ɵɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺɺɺ ɺ ɺ ɺɺ ɺ
                     

(1.78) 

      Here  
2

r
f r r  ɺɺɺ = the radial component of acceleration and  

2f r r   ɺɺ ɺɺ = the cross radial component of acceleration  

for the motion of a particle in a rotating frame of reference. All these mathematical forms have 

importance in the solution of orbital mechanics.  

      According to Newton’s second law in polar coordinates 

   2 2r rr
e F e F m r r e r r e 

         
ɵ ɵ ɵ ɵɺ ɺɺ ɺɺɺ ɺ

                                                      
(1.79) 

Equating the coefficients of reɵ  and eɵ we have: 

 2

rF m r r  ɺɺɺ
                                                                                                    

(1.80) 

 2F m r r    ɺɺ ɺɺ
                                                                                                 

(1.81)
 

Similarly these can be calculated for cylindrical coordinates. So, summarizing we can have the 

expressions for Newton’s law in various coordinate systems as shown in Table 1.1. 
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Table 1.1: Components of force in different coordinate systems 

Cartesian Spherical polar Cylindrical 

xF mx ɺɺ   2

rF m r r  ɺɺɺ   2F m    ɺɺɺ  

yF my ɺɺ   2F m r r    ɺɺ ɺɺ   2F m    ɺɺ ɺɺ  

zF mz ɺɺ   
zF mz ɺɺ  
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Example 1.17 If the position of a particle is cos sinr i t j t  
�
ɵ ɵ , show that its 

velocity is perpendicular to r
�

and r v
� �

is a constant vector. 

Solution 

Here   cos sinr i t j t  
�
ɵ ɵ  

So, the velocity of the particle is 

                        sin cos
dr

v i t j t
dt

      

�
�

ɵ ɵ   

Thus,     . cos sin . sin cos 0r v i t j t i t j t         
� �

ɵ ɵ ɵ ɵ  

So, the velocity of the particle is perpendicular to .r
�

  

Again,   cos sin 0

sin cos 0

i j k

r v t t

t t

 



 
   

ɵ ɵ ɵ
� �

 

                                  k ɵ  

Thus, r v
� �

 is a constant vector. 
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Example 1.18 For a moving particle in a plane, the polar coordinates are given by

1sinr a t   and 
2t   . Find an expression for the polar components of the 

velocity and acceleration of the particle. 

Solution 

Here, the radial and cross radial components of velocities are 

1 1cosrv r a t   ɺ   

and
   2

v r r    ɺ  

Similarly, the radial and cross radial components of accelerations are  

 2 2 2 2 2

1 2 1 2rf r r r r r            ɺɺɺ   

and
   1 2 1

2 2 2 cosf r r r a t        ɺɺ ɺ ɺɺ ɺ                [As 0 ɺɺ ] 
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Example 1.19 Assume that a skateboard of mass m rolls without friction on a 

semicircular half pipe of radius R. Neglecting the resistance determine an 

expression for θ(t) considering that the skateboard starts from rest at an angle θ0. 

Solution 

When Newton’s laws are considered in polar 

coordinates we have, 

                                 2

rF m r r  ɺɺɺ  

and                      2F m r r    ɺɺ ɺɺ  

If implemented these to the free body system 

in figure we have, 

                                2cosg nF F m r r   ɺɺɺ                                                                                                                              

                                            [for radial direction] 

and                         sin 2gF m r r     ɺɺ ɺɺ      

                                  [for cross-radial direction] 

or,                     sinmg mr   ɺɺ                     [as r = R is constant] 

                      sin
g

R
   ɺɺ  

Let us make one assumption about the motion, that θ is always small. Then sin θ ≈ 

θ. 

                      
g

R
   ɺɺ

 

The general solution of the above equation is of the form, 

                         
(t) sin sin

g g
A t B t

R R
  

 

Now,
                 0(0)    and (0) 0 ɺ

 

Using these conditions in above equation we get
0B    and 0A   

Therefore,           
0( ) sin

g
t t.

R
   
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UNIT SUMMARY 

  
 

 Vector fundamentals 

                        Components of a vector 

                             ɵ ɵ
x y zA A i A j A k  

��
ɵ

    

                             

2 2 2
x y zA A A A  

                       

                             
ɵA A n

�� ��

    

                             
2 2 2cos cos cos 1    

                                                                                                                            
                         Vector addition 

                              Commutative law: A B B A  
�� �� �� ��

 

                              Associative law:    A B C A B C    
�� �� �� �� �� ��

 

                              A B A B   
�� �� �� ��

 

                               m A B m A mB  
�� �� �� ��

 

           Vector product (multiplication) 

                             A.B AB
�� ��

cos  

                             
ɵsinA B AB n 

�� ��
 

                         The del operator 

                               Cartesian coordinates: ɵ ɵ ɵ
x y za a a

x y z

  
   

  

��

  

                               Cylindrical coordinates:  ɵ ɵ ɵ1
za a a

z
   

  
   

  

��
                                  

                               Spherical polar coordinates:  ɵ ɵ ɵ1 1

sin
ra a a

r r r
   

  
   

  

��
  

           Gradient of a scalar function 

                 ɵgrad n

V
V a V

n


  


��
      

           Divergence of a vector field 

                               0

.

div . lim s

V

A d s

A A
V 

  



�� �

�� �� ��
�

  

 

           Curl of a vector field  

                               

ɵ

0
max

curl lim .n

S
C

a
A A A dl

S 

 
     

   


�� �� �� �� �

�
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           Laplacian of a scalar field 

                             

2 2 2
2

2 2 2
.

x y z
  

   
          

�� ��

          

 

 Coordinate systems  
          General formulation 

                             
ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,u v w v w u w u va a a a a a a a a     

                       

                             
ɵ ɵ ɵ ɵ ɵ ɵ � ɵ ɵ ɵ ɵ ɵ. . . 0, . . . 1u v v w w u u v v w wua a a a a a a a a a a a                           

                             
ɵ ɵ ɵ

u v wu v wA A a A a A a  
��

    
 

          Cartesian coordinate system 

              ɵ ɵ ɵ
x y zx y zA a A a A a A  

��
 

               ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,x y z y z x z x ya a a a a a a a a         

                             ɵ ɵ ɵ ɵ ɵ ɵ. . . 0x y y z z xa a a a a a                           

                             
ɵ ɵ ɵ ɵ ɵ ɵ. . . 1x x y y z za a a a a a  

                                                                               

                             
ɵ ɵ ɵ

x y zdl a dx a dy a dz  
�

                                      

                             
ɵ

x xdS dydza
��

   
ɵ

y yd S dxdza
��

   
ɵ

z zdS dxdya
��

                                                 

                             
dV dxdydz

                                                                                                             
          Cylindrical coordinate System 

                             ɵ ɵ ɵ
z zA a A a A a A    

��
 

               
ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,z z za a a a a a a a a          

                                                      
ɵ ɵ ɵ ɵ ɵ ɵ. . . 0z za a a a a a     

                                
ɵ ɵ ɵ ɵ ɵ ɵ. . . 1z za a a a a a     

                                                                              
ɵ ɵ ɵ

zdl a d a d a dz     
�

                                                                               

  
ɵd S d dza  

��

    
ɵdS d dza 

��

    
ɵ

z zd S d d a  
��

    

                             
dV d d dz  

      
                             cos , sinx y      and z = z 

                             2 2 1, tan
y

x y
x

      and z = z                                                                                                                                        

          Spherical polar coordinates system 

                           ɵ ɵ ɵ
r rA a A a A a A    

��
 

                           ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ, ,r r ra a a a a a a a a               

                           
ɵ ɵ ɵ sinrdl a dr a rd a r d     

�

                                                                        

                           
ɵ2 sinr rdS r d d a  

��

      
ɵsind S r drd a  

��

       
ɵd S rdrd a 

��

                                                                                                  

                           
2 sindV r drd d  
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2 2z x y   

                            sin cos , sin sinx r y r      and cosz r                                                

                             
2 2 2r x y z   , 1

2 2 2
cos

z

x y z

 
 

and 1tan
y

x
 

            
 

 Transformation properties of vectors and scalars 
           Transformation of vector components 

                               

x x

y y

z z

A A

A A

A A








   
      
   
   

 

          Transformation of the scalar product 

                 . . .x x xy y xz k jk y k y yA B A B A B A B A B A B   
     

�� �� �� ��
 

          Transformation of the vector product 

                               31

x y z x y z

x y z x y z

x y z x y z

e e e e e e

C A A A A A A C

B B B B B B

  

  

  

     

ɵ ɵ ɵ ɵ ɵ ɵ

�� ��

  

       

 

 Fundamental forces of nature  
                    Gravitational force:  6 × 10-39 times weaker than the strong force. 

                        Strong force:  It acts over a range of about 10-15 m. 

                        Weak force: It has the shortest range of 10-18 m. 

                        Electromagnetic force:  Strength is 1/137 times of strong force   

 Newton’s laws of motion 
                     First law: Everybody continues its state of rest or of uniform motion. 

                         Second law: F ma
�� �

                        

                        Third law: To every action there is an equal and opposite reaction. 

 Momentum  

            p mv
�� �

  

 Principle of conservation of linear momentum  

           m1u1 + m2u2 = m1v1 + m2v2  

           Recoil of a gun 
mv

V
M

    

 Motion of two bodies connected by inextensible weightless string 

                      
1 2

F
f

m m



           1

1

1 2

m F
T m f

m m
 


 

 Vertical motion of two bodies connected by inextensible string 

                       F = (m1 + m2) (g + f)                    

                       T = m2 (g + f) 

 Conservation of mechanical energy  
                        The sum of KE and PE of a body is its total mechanical energy. 
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 Friction 

                          Friction is a force resistive to the direction of motion.  

                         

F

N
                                                                                                                      

 Laws of friction 

                          First law: The force of friction is directly proportional to the applied load.  

                          Second law: Friction force is independent of the apparent area of contact.  

                          Third law: Kinetic friction is independent of the sliding velocity. 

 Angle of friction 

                        
tan

s

F

N
         

 Limitations of Newton’s laws 

                          i) Newton’s laws are only valid in the Cartesian-like inertial frames.  

                          ii) It requires complete specification of all the forces acting on the body. 

 Inertial reference frame 
                          A frame at rest or moving with uniform speed. Newton’s laws are valid in this 

                          reference frame. 

 Cartesian coordinates 

          x y zF mx F my F mz  ɺɺ ɺɺ ɺɺ  

 Polar coordinate system 

           2 2 1tan
y

r x y
x

   
                  

                                                                                                    

 Polar coordinates in a rotating frame 

              2 2r rv re r e f r r e r r e          
� ���

ɵ ɵ ɵ ɵɺ ɺ ɺɺ ɺɺ ɺɺ ɺ      

 

EXERCISES 

 

Multiple Choice Questions

 1.1  The angle between iɵ and ɵ2i jɵ  is?   

(a) 1 2
cos

5

  (b) 1 2
cos

5

  (c) 1 2
cos

5

  (d) 1 2
cos

5

  

1.2  If a vector field is given by 
3

sinh ( )

1 2

r
F

r




��
then F 

�� ��
 

 (a) 3r
�

     (b) zero (c) ɵ
3

cosh ( )
3

1 2

r
r

r

   
    (d) 

3

cosh ( )
3

1 2

r
r F

r

   

��
 

1.3 The angle between the vector ɵi jɵ and ɵi jɵ  is  

 (a) 90° (b) 60°  (c) 30°                           (d) 0° 
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1.4  Unit vector in the direction of A
��

is  

 (a) 
A

A

��

              (b) AA
��

                  (c) 
A

A
��

   

(d) 
1

AA
��  

1.5  The value of .r
�� �

is    

 (a) 0  (b) 1  (c) 3    (d) 2 

1.6  The value of r
�� �

 is equal to    

 (a) 1 (b) 0   (c)   (d) 2 

1.7  When the magnitude of A
��

 is constant which one of the following is true? 

 (a) 0
d A

dt


��

 
(b) . 0

d A
A

dt


��
��

              (c) 0
d A

A
dt

 

��
��

 
(d) 0

d A

dt


��

 

1.8 The volume element in spherical polar coordinate is                                      

 (a) sinr drd d  
 

(b) 2 sinr drd d  
     

(c) sin drd d  
 

(d) 2 2sinr drd d    

1.9  A ball of mass 5 kg strikes a wall with a speed of 10 m/s and rebounds with the same speed. 

The change of the momentum of ball is  

(a) zero  (b) 50 kg-m/s  (c) 100 kg-m/s  (d) none of these 

1.10  A truck and a motor car are moving with same momentum. Same force acts separately against 

them to make them stop. Which one will cross lowest distance? 

(a) truck   (b) motor car   

(c) both   (d) they will not stop at all 

1.11  Newton’s laws of motion is applicable for 

(a) frame of rest  (b) inertial frame  (c) non-inertial frame  (d) dynamical frame 

1.12  If a bullet is fired into a window made of glass, then place of target makes a hole because of  

(a) inertia of rest   (b) inertia of motion  

  (c) change of momentum  (d) none of these 

1.13  A body of mass m1 collides elastically with a rest body of mass m2, calculate the fraction of KE 

that is transformed into the body of mass m2 from m1  

(a) m1/m2  (b) m2/m1  (c) 
 

1 2

2

1 2

2m m

m m
  (d) 

 
1 2

2

1 2

4m m

m m
 

1.14  If the normal reaction is doubled, then the change of coefficient of friction will be 

(a) doubled  (b) halved  (c) unchanged  (d) none of these 

1.15  Conservation of linear momentum may be obtained from 

(a) Newton’s 1st law of motion  (b) Newton’s 2nd law of motion 

(c) Newton’s 3rd law of motion  (d) law of conservation of mass 

1.16  A boy in a train which in moving with constant velocity threw a ball vertically upward in that 

compartment, then the ball 

1
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  (a) will reach the boy’s hand  (b) will reach in front of the body  

  (c) will fall on behind him  (d) will stay in air 

1.17  The working principle of jet is  

(a) law of conservation of mass  (b) law of conservation of energy 

(c) law of conservation of linear momentum  (d) law of conservation of angular momentum 

1.18  If m is the mass of a body and E its kinetic energy increases 

(a) m E   (b) mE   (c) 2 mE  (d) 2mE  

1.19  When mass and speed are doubled, the kinetic energy increases 

(a) 4 times  (b) 2 times  (c) 16 times  (d) 8 times 

1.20  If the kinetic energy of a given body is doubled, its momentum will 

(a) become 1/2  (b) remain unchanged  (c) become 2 times  (d) doubled 

1.21  Two bodies of masses m1 and m2 are with equal kinetic energy. The ratio of their linear 

momentum p1, p2 is 

(a) m1 : m2  (b) 1 2
:m m   (c) m2 : m1  (d) m1

2
 : m2

2
  

1.22  A car moving with uniform velocity over a rough horizontal surface. According to Newton’s 

first law of motion 

(a) the kinetic energy of the car will increase (b) the engine will apply no force  

(c) acceleration be produced 

(d) the force produced by engine will balance the frictional force 

1.23  Rocket propulsion is based on the principle of conservation of   

(a) linear momentum    (b) mass (c) kinetic energy  (d) none of these 

1.24  A gun of mass 10 kg fires a bullet of mass 40 gm with a speed of 400 m/s. The recoil velocity of 

the gun is 

 (a) 1.6 m/s  (b) 0.16 m/s                (c) 160 m/s  (d) 16 m/s 

1.25  A  frame moving relative to an initial frame with uniform velocity 

 (a) must be inertial                                            (b) must be non-inertial        

  (c) cannot be inertial                                         (d) may or may not be inertial 

 

Answers of Multiple Choice Questions 

1.1 (b), 1.2 (b), 1.3 (a), 1. 4 (a), 1.5 (c), 1.6 (b), 1.7 (b), 1.8 (b), 1.9 (c), 1.10 (a), 1.11 (b), 1.12 (a),  

1.13 (d), 1.14 (c), 1.15 (c), 1.16 (a), 1.17 (c), 1.18 (d), 1.19 (d), 1.20 (c), 1.21 (b), 1.22 (c), 1.23 (b), 

1.24 (a), 1.25 (a) 

Short and Long Answer Type Questions 

 

Category I 

1.1  Explain scalar and vector fields with example.                      

1.2  Define curl of a vector field.                              
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1.3  Show that the total energy is conserved for the free fall of a body. 

1.4  Explain the law of conservation of energy. 

1.5  Establish Newton’s third law from second law. Use the principle of conservation of linear 

momentum. 

1.6 Find the relation between the Cartesian coordinates (x, y, z) of a point in terms of its cylindrical 

counterparts. 

1.7  Explain the principle of conservation of linear momentum. 

1.8  Establish the principle of conservation of linear momentum from Newton’s 2
nd

 law and 3
rd

 law. 

1.9  A particle is acted upon by two constant forces ɵ ɵ4 3i j k ɵ
 
and ɵ ɵ3i j k ɵ , so that it is 

displaced from the point ɵ ɵ3 3i j k ɵ  to the point ɵ ɵ4 5i j k ɵ . Find the total work done. 

1.10  Prove that for the motion of a particle in a plane  

       rv re r e  
�

ɵ ɵɺɺ   and    2 2rf r r e r r e      
���

ɵ ɵɺ ɺɺ ɺɺɺ ɺ  

where the symbols have their usual significance. 

1.11 Show that the velocity of a particle moving in a three dimensional space is  

sin
.

rv re r e r e     
�
ɵ ɵ ɵɺɺ  where the symbols have their usual meaning. 

Give the physical significance of each term. 

1.12 Write down the Cartesian coordinates (x, y, z) in terms of spherical polar coordinates ( r, θ, ). 

1.13 State the principle of conservation of linear momentum for a single particle. 

 

Category II                                         

1.14  a) A heavy body and a lighter body possess equal momentum. Which one has greater kinetic 

energy? 

b) Show that lane of conservation of energy and illustrate it by discussing the energy changes 

that occur when a body is allowed to fall freely from a height h. 

c) A man moves up in a lift carrying a suitcase in his hand. Explain if any work is the man on 

suitcase. 

1.15  a) Explain the conservation of energy. Prove that in a freely falling body conservation of energy 

is followed. 

b) What is inclined plane? How you can measure energy of a body falling through inclined 

plane. 

1.16  Use the expression for gradient in the spherical coordinate system to find the normal to the 

surface sin 1r   .     

1.17 Define unit vectors rɵ  and ɵ  in planar motion in terms of their Cartesian counterparts iɵ  and ɵ ,j  

hence show that  

ɵdr

d
 



ɵ
 and 

ɵd
r

d


 


ɵ . 
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Numerical Problems  

1.1  A body is pulled with constant velocity over a rough horizontal surface through 5 m by 

applying a force of 20 N at an angle of 30
0
 with the horizontal. Find the work down by the force 

the frictional force the frictional force and work down by a frictional force. 

1.2  The momentum of two bodies of masses M1 and M2 are same. What will be the ratio of their 

kinetic energy? 

1.3  A bullet of mass 0.03 kg moving at a speed of 500 ms
-1

 penetrates 12 cm into a fixed block of 

wood. Calculate the average force exerted by the wood on the bullet. 

1.4  A bullet moving with a velocity of 100 m/s can penetrate 1 m into a target. If an another bullet 

of same type penetrates into a same type target of thickness 0.5 m then calculate the velocity 

after penetration. 

1.5  How much work is to be done to drag a body of mass 200 kg through a distance of 80 m on a 

leveled road, the co-efficient of friction between the road and the body being 0.25?   

                                                                                                                                             [Ans: 39200 J] 

1.6  A bullet of mass 20 gm moving with a velocity of 200 ms
-1

 is stopped within 40 cm of the 

target. Calculate the force offered by the target on the bullet. 

1.7  A train weighing 106 kg is moving up an inclined plane rising 1 m, at a uniform speed of 72 

kmh
-1

. If the frictional resistance amounts to 0.4 kg per metric ton, find the power of the engine. 

                                                                                                                                       [Ans: 1058.4 kW] 

1.8  A 8 gm bullet is shot from a 5 kg gun with a speed of 400 m/s. Find the recoil velocity of the 

gun.                                                   [Ans: 64 cm/s] 

1.9  A 50 kg crate is being pushed on a horizontal floor at constant velocity. Given that the 

coefficient of kinetic friction between crate and floor is μk = 0.1. What is the required push force 

F?                                                                                                                                   [Ans: 49 N] 

1.10 Show that the plane polar coordinates are orthogonal. 

1.11 Apoint moving in a plane has coordinates (3, 4) and has components of speed (5, 8) at some 

instant of time.  Find the components of speed in terms of (r, θ) along the directions ( ɵr, ɵ ). 

1.12 The polar coordinates of a point is ( 8 30 45, ,
� � ). Find the Cartesian coordinates of the same 

point.                                                                                                            [Ans: 2 3 2 2 4 3, , ] 

1.13 Assuming the expressions for the radial and the cross radial components of accelerations  in two 

dimensional polar coordinates,  show that a body in circular motion with a constant angular 

velocity will experience an acceleration v
2
/r towards the centre only. 

 

PRACTICAL 

Experiments on an Air-Track 

Aim 

Investigate motion of an accelerated glider on an air track to see the dependence of acceleration on the 

mass of the glider and the tilt angle 
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Apparatus 

Air track, Gliders, Air pulley, Slotted weights, Proper magnetic recording tape, Spark recording tape, 

Riser blocks 

Theory 

When set in motion on a level track a glider moves with very little friction and therefore effectively 

moves with nearly constant velocity. If a force is applied on the glider, it can be accelerated.  

      This can be achieved by attaching proper length of mylar magnetic recording tape passing over an 

air pulley to the glider at one end of the track, and attaching small slotted weights to the other (free) 

end. This weight must be small compared to the weight of the glider so that the velocity of the glider 

can be kept very small at all times.  

      The tension in the mylar tape is  

( )T m g a                                          
(i) 

where m is the hanging mass and a is the acceleration of 

the glider. 

      So, the force exerted by the tape on  glider can be 

taken as the tension in the tape, i.e.,       

                          ( )T Ma m g a                                
(ii) 

Thus, the glider’s acceleration is 

 

Fig. (i) 

mg
a

M m


                                                                                                                
(iii) 

where M is the mass of the glider. The relation between a and m is therefore not strictly linear. 

Procedure 

1. First investigate the relation between the glider acceleration and force applied to observe whether it 

is in agreement with Newton’s second law (F = ma). The applied force F is very nearly equal to the 

weight of the hanging mass ( ~F W ). 

2. Take data for a number of different glider masses, m. For each mass m, use different weights, W, 

and measure the acceleration, a. Take reading for at least 5 different glider masses, and 5 different 

weights. 

3. For each case using W = ma calculate the expected acceleration theoretically. Compare this with the 

experimentally measured acceleration for each case and note the discrepancy between theory and 

experiment.  

4. Plot a graph between W and a for each glider. This graph will be a straight line with a slope 1/m. 

For every glider there will be different slopes. These can be plotted on a single graph paper. Calculate 

the slope of each of the lines on the graphs.  

      Now, on another graph paper, plot these slopes against the corresponding mass m. This can be 

used to explain the agreement between theory and data. Alternatively you can plot all of the data for a 

single W and draw a graph between a and 1/m.  

      If graph for all W are plotted on a single paper, there will be different straight line for each W.  
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5. Now, place riser blocks of varying thickness below the leg at one side of the track for making a 

small tilt angle. The glider will accelerate on the tilted track as the force of gravity on the glider will 

have a component parallel to the track.  

      No other accelerating force will be used in this part of the experiment. Measure the glider 

acceleration for different tilt angles for each value of the glider mass.  

6. Record four tracks of data on each tape. Conserve the data tape keeping four different records on 

each of the tape. You have to do it slightly bending the spark wire on glider for locating the same at 

any one of the four parallel tracks in the direction of the waxed tape.  

      Thus you will need only four lengths of tape for this part of the experiment. 

 

KNOW MORE 

 

At the fundamental level, most of the phenomena in the world are based on physics and many parts of 

physics are based on mechanics. This permits us to analyze the operation of majority of familiar 

phenomena around us like planets, stars and galaxies. In fact, all of the physics as well as different 

branches of engineering are mapped into the procedures and diagnostics where the mechanics are to widely 

use and in the data tables.   

      Interestingly, during the seventeenth century, classical mechanics was developed with Sir Isaac 

Newton’s laws of motion in ‘Philosophiae Naturali Principia Mathematica’. He was the first to unify the 

three laws of motion, viz., the law of inertia, his second law and the law of action and reaction. He proved 

successfully that these laws govern both earthly and celestial objects.  

Activity 

Classical physics is largely concentrated on the study of motion, 

pulleys, projectiles and the planets. Primarily it deals with the 

movement of heavy objects through space at comparatively low 

speeds. Basically, classical physics gives priority to the mechanics 

when the motion of an object comes into play in response to a force. 

Due to this, classical physics is frequently referred to simply as 

mechanics or kinematics. Classical mechanics gives extremely 

accurate results when considered large objects which are not extremely 

massive and also the speed not approaching to the speed of light. 

When the objects have about the size of an atom diameter, it required 

to implement other major sub-field of mechanics related to quantum 

mechanics.  Sir Isaac Newton 

      To explain velocities not small compared to the speed of light, special relativity is essential. On the 

other hand, when objects become extremely massive, general relativity becomes applicable.  

Interesting facts 

One day at his time, Sir Isaac Newton saw an apple to fall on the ground and he figured out that the same 

force which makes the apple to fall also can govern the motion of the Moon and the planets.  
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      In 1687 he published his three laws of motion in the “Principia Mathematica Philosophiae Naturalis” 

which explains how the concepts of force and motion work. 

      Sir Isaac Newton wrote more about the Bible and on the religion rather than about Mathematics, 

Physics or Astronomy. Mainly he studied the Bible to extract the inherent scientific information in the 

Bible. In 1704, Newton wrote a manuscript, which contained different scientific notes based on the Holy 

Bible.  

Analogy 

Engineering mechanics is mainly associated with the application of mechanics for solving problems which 

are involved in common engineering elements. It is important to note that the goal of the Engineering 

Mechanics is to emphasize problems in mechanics as mostly applied to plausibly real-world scenarios.  

      Within the field of practical sciences, applied mechanics is most useful to formulate new ideas and 

theories, discovering and interpreting phenomena as well as developing experimental and computational 

tools.  

      When we examine the field of the application of the natural sciences we find that mechanics is said to 

be complemented by thermodynamics, the study of heat and more generally to the areas of energy 

and electro-mechanics. Though the classical mechanics is largely compatible with other theories of 

classical physics like classical electrodynamics and thermodynamics, some serious problems were noted in 

the late 19th century. These problems could only be resolved by more modern physics.  

      When combined with the classical thermodynamics it was found that the classical mechanics leads to 

the Gibbs paradox where entropy is not a well-defined quantity. The attempt to resolve these types of 

problems led to the development of quantum mechanics. In a similar way, the variety of behaviors of 

classical electromagnetism and classical mechanics under velocity transformations led to the development 

of theory of relativity. 

History 

The ancient Greek philosophers, Aristotle in particular, were among the first to propose that abstract 

principles govern nature. Aristotle argued, in On the Heavens, that terrestrial bodies rise or fall to their 

natural place and stated as a law the correct approximation that an object’s speed of fall is proportional to 

its weight and inversely proportional to the density of the fluid it is falling through. 

Timelines 

1687: Isaac Newton published Philosophiae Naturalis Principia Mathematica, where he discussed laws of 

motion and laws of universal gravitation. 

1691: Johann Bernoulli showed that a freely suspended chain from two points will form a catenary. 

1691: James Bernoulli showed that the catenary curve has the lowest center of gravity of any chain hung 

from two fixed points. 

1694: Leibniz used the word “coordinate” in its modern usage 

1747: Maupertuis considered the Principle of Least Action and defined as a variable having the same 

dimensions as length times momentum or energy times time.  
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1776: John Smeaton published a paper on experiments associated with power, work, momentum, kinetic 

energy supporting the conservation of energy. 

1789: Antoine Lavoisier stated the law of conservation of mass. 

1813: Peter Ewart supports the idea of the conservation of energy through his paper “On the measure of 

moving force”. 

1834: Jacobi n-fold integrals and volumes of n-dimentional spheres. 

1834: Hamiltonian formulated the principle that the path taken by a physical system minimizes the integral 

   -35  of the difference between kinetic and potential energy.  

1841: Julius Robert von Mayer wrote a paper on the conservation of energy but his lack of academic 

training leads to its rejection. 

1847: Hermann von Helmholtz formally stated the law of conservation of energy. 

1881: Gibbs modifies vector analysis. 

1915: Emmy Noether proved Noether’s theorem, from which conservation laws were deduced. 

1983: Mordehai Milgrom proposed Modified Newtonian dynamics. 

Applications (Real Life / Industrial)  

For most of the practical applications we are interested in the position or the velocity of the particle as a 

function of time. However, Newton’s laws will only tell us its acceleration.  So, for all practical purposes 

scientists established equations that relates the position, velocity and acceleration.  

      The mathematical formulation and proof of the unified mechanics theory is based on the unification of 

Newton’s laws and the laws of thermodynamics. It presents formulations and experimental verifications of 

the theory for thermal, mechanical, electrical, corrosion, chemical and fatigue loads and explains the 

original universal laws of motion proposed by Isaac Newton in 1687.  

      It provides many concrete examples, such as how Newton’s second law, F = ma, gives the initial 

acceleration of a soccer ball kicked by a player but does not tell us how and when the ball would come to a 

stop.  

      Unified mechanics theory with extensive experimental validation provides many finite element 

implementation using real world examples. It draws the connections to the thermodynamics of degradation 

in solids from mathematical and micro-structural perspective. 

Case Study (Environmental / Sustainability / Social / Ethical Issues) 

The development in applied mechanics exhibits wide application in many fields of study. Some of the 

special areas which put the subject into practice are Mechanical Engineering, Materials Science, Civil 

Engineering, Aerospace Engineering, Bio-engineering and many more. Applied mechanics thus bridges the 

gap between the physical theory and its various applications in technology.  

      The phase space in classical mechanics permits a natural description as a symplectic manifold. It 

is indeed a cotangent bundle in most of the cases of physical interest and symplectic topology. This can be 

thought of as the study of global issues of Hamiltonian mechanics. Since the 1980s this has become a 

fertile area of mathematics research. 
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Stepan Prokopovych Tymoshenko,           

Father of modern engineering 

mechanics 

Inquisitiveness and Curiosity Topics 

Modern applied mechanics is based on Isaac Newton’s laws of 

motion while the modern practice of their applications can be traced 

back to Stephen Timoshenko, who is considered as the father of 

modern engineering mechanics.  

      At the end of the 20th century, classical mechanics 

in physics was no longer an independent theory. With 

classical electromagnetism, it has become embedded in quantum 

field theory or relativistic quantum mechanics. It now defines 

clearly the non-relativistic and non-quantum mechanical limit for 

massive particles. For mathematicians, classical mechanics has got 

a source of inspiration.  
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UNIT SPECIFICS 

This unit is focussed on the following main aspects: 
 Potential energy function and relationship with force;   
 Equipotential surfaces and meaning of gradient;  
 Conservative and non-conservative forces, curl of a force field; 
 Central forces; 
 Conservation of angular momentum;  
 Energy equation and energy diagrams;  
 Elliptical, parabolic and hyperbolic orbits;  
 Kepler problem, satellite manoeuvres.  

The applications of the topics are discussed for generating further curiosity and creativity as well 
as improving problem solving capacity.  
      Besides giving a large number of multiple choice questions as well as questions of short and 
long answer types marked in two categories following lower and higher order of Bloom’s 
taxonomy, assignments through a number of numerical problems, a list of references and 
suggested readings are given in the unit so that one can go through them for practice. It is 
important to note that for getting more information on various topics of interest some QR codes 
have been provided in different sections which can be scanned for relevant supportive 
knowledge. 
      After the end of the unit, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

22            CCoonnsseerrvvaattiioonn  PPrriinncciipplleess    
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Rationale 

 

This unit on Conservation Principles will help our students to get a clear idea about the potential 

energy function, equi-potential surfaces and meaning of gradient as well as Conservative and 

non-conservative forces. It establishes some theoretical relations showing curl of a force field, 
central forces, conservation of angular momentum and energy equation and energy diagrams. In 

addition to these theoretical approaches elliptical, parabolic and hyperbolic orbits, as well as 

Kepler problem and various applications including Satellite manoeuvres are illustrated 

      The principle of energy conservation states that energy can be neither created nor destroyed. 

Only it may transform from one type to another. Some of the common forms of energy include 

thermal, mechanical, electrical, chemical, kinetic and potential. It is said that the sum of all types 
of energy is constant. The laws of conservation of energy, momentum and angular momentum all 

can be derived from the classical mechanics. From the conservation principles we get that some 

quantity, quality or aspect remains constant through change.  

PRE-REQUISITES 

Mathematics: Vector Calculus (Class XII) 

Physics: Mechanics, General Properties of Matter (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U2-O1:  Describe conservative and non-conservative forces 

U2-O2:  Define central force and central orbit 

U2-O3:  Explain conservation of momentum, energy and angular momentum 

U2-O4:  Explain the reduction of two bodies Kepler problem to a one body problem  

U2-O5:   Apply energy and momentum conservation laws to central force motion problems 

U2-O6:   Analyze energy diagrams in different energy level solutions 

 

Unit-2 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U2-O1 1 2 2 3 3 3 

U2-O2 - 2 1 3 2 - 

U2-O3 2 3 2 2 2 1 

U2-O4 - 1 1 3 - - 

U2-O5 - 2 1 3 1 - 

U2-O6 - - 1 3 - - 
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2.1 INTRODUCTION 

We are familiar with a number of conservation laws in physics. These laws include i) conservation of 

energy, ii) conservation of linear momentum, iii) conservation of angular momentum etc. These laws 

are very useful to solve different problems in physics which are the general consequence of specific 

underlying symmetry of the Universe.  

      Johannes Kepler was the first to formulate the laws of planetary motion which can be used to 

solve the planetary equation of motion. Such problems are known as the Kepler problems. As for a 

three body problem, like the motion of the moon which gravitationally interacts with the Earth and the 

Sun, it is difficult to solve by exact method. Further investigations on the three body problem, were 

put forward by Leonhard Euler to arrive at the question that can provide the feeble contribution of 

gravitational interaction from the planets making the planetary system unstable. 

2.2 CONSERVATIVE AND NON-CONSERVATIVE FORCES  

2.2.1 Conservative forces  

If in a force field the work done for the displacement of a particle from first point to the second point 

does not depend on the path along which the particle is displaced but only depends on the initial and 

final position of the particle, then such force is known as the conservative force; e.g., gravitational 

force, electrostatic force etc. 

      The amount of work done in the conservative force field is path independent and the total 

mechanical energy for a conservative force field remains always constant. 

      The amount of work done in a non-conservative force field is path dependent. 

      In Fig. 2.1 the particle is taken from A to B along two different paths AMB and ANB. If in each 

time the amount of work done by the force is same, then this force is conservative. Hence for a 

conservative force 

(P ath ) (P ath )

. .

B B

A A
AMB ANB

F dr F dr 
�� � �� �

 

      Here, AMB and ANB are any two arbitrary paths joining the points A and B. The region of the 

conservative force is called conservative force field. In such a force field work done over a closed path 

is zero i.e.,  

              

. 0
C

F d r 
�� �

�  

      Now, using Stokes’ theorem we have 

              

. .
C S

F d r F d S   
�� � �� �� ��

�  

where, S is a surface bounded by C. Hence for a 

conservative force field we should have 

              

. 0
S

F d S  
�� �� ��

 

 

 

 

             Fig. 2.1: Path integral of force in                          

                     conservative force field 
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      As it is applicable to any closed path, so for a conservative force field,  

0F 
�� ��

                                                                                                                (2.1) 

      Now we define a scalar quantity V which is a function of the co-ordinates in the force field. Since 

0F 
�� ��

 the force F
��

of Eq. (2.1) may be expressed as gradient of some a scalar function. Hence we 

put F
��

as,  

F V 
�� ��

                                                                                                                 (2.2) 

      Potential function V defined by Eq. (2.2) is meaningful only for a conservative field and can 

always be defined in such a conservative field. The potential function V is a scalar quantity. It can 

easily provide the components of force F
��

 at any point as below,  
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
                                                                                                         

(2.3) (a)
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
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                                                                                                         (2.3) (b) 

and,  z

V
F

z


 


                                                                                                         (2.3) (c) 

      In spherical polar form, however, we have 
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(2.4) (a)
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                                                                                                      (2.4) (b) 

and,  
1

sin

V
F

r
  


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
                                                                                              (2.4) (c) 

      Like all vectors, the gradient has both the magnitude and direction. To have an idea about gradient 

properly let us take the dot product of say V
��

with dr
�

such that 

ɵ ɵ ɵ ɵ . .V dr i j k V idx jdy kdz
x y z

   
         

�� �
ɵ ɵ  

           
V V V

dx dy dz dV
x y z

  
   

  
                                                            (2.5) (a) 

where V = V(x, y, z) represents a scalar function of positional coordinates (x, y, z) of a particle. Now, 

we can write, 
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. . cosV dr V d r   
�� � �� �

                                                                                     (2.5) (b) 

where θ is the angle between V
��

and dr
�

. So, if we fix the magnitude of dr
�

 and vary θ, then the 

maximum change of V will occur when θ = 0. Hence for a fixed distance ,dr
�

dV is greatest when one 

moves in the same direction as .V
��

 So, V
��

points along the direction of maximum increase of V. 

This is the effective meaning of gradient and the surfaces situated at fixed distances from the origin 

are known as the equi-potential surfaces. 

      For, any conservative force the general characteristics are as follows: 

a)  work done by a conservative force does not depend on the path followed in the force field, 

b)  the total work done over a closed path is zero in the conservative field and 

c)  the magnitude of the conservative force may be taken as a gradient of a scalar function. 

Work energy theorem: If the total external force that acts on a particle is a function of its position 

i.e., ( )FF r
�� �

, then the work done due to the force on the particle in moving it from its initial position 

to some final position is given by the line integral,  

.

f

if

i

W F d r 
�� �

                                                                                                           (2.6) 

      This integral is known as the path integral of the force and represents the cumulative effect of a 

force over the whole space. We can show, by evaluating the integral that it produces a change in 

kinetic energy (KE) of the particle on which it acts. 

      Let us now evaluate the path integral of force. 

 2
. . . .

2

f f f f f

if

i i i i i

dv m
W F d r m dr mv dv mv dv d v

dt
        

�
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or,    2 2

2
if f i f i

m
W v v T T                                                                                        (2.7) 

      This implies that the work done is equal to the difference in the kinetic energies of the particle 

between the initial and final positions. Eq. (2.7) is known as the work-energy theorem. 

(i)  If f iT T ; 0ifW 
 
and the work done is done by the force on the particle and its KE 

increases. 

(ii)  If however f iT T ; 0ifW  , i.e., the work done is done by the particle against the force and 

its KE decreases. 

(iii)  When f iT T ; the speed of the particle is constant, then 0ifW   and no change in its KE will 

occur.  

      Due to this reason, in any uniform circular motion the centripetal force does not work since there 

the force and the velocity of the particle at every point of motion are at perpendicular to each other. A 

force acting perpendicular to the motion only makes a change in the direction and not the magnitude 

of the velocity and hence always there is zero work done as in case (iii) above. 
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2.2.2 Non-conservative Forces 

If the total mechanical energy of a force field is not a constant then the force field is called a non-

conservative force field and the force acting on that force is known as the non-conservative force. For 

the non-conservative force the work done in displacing a particle from one point to the other depends 

on the path along which the particle is displaced but is independent of the initial and final positions, 

e.g., frictional force, viscous force etc. 

      A body may be acted upon by both the conservative and non-conservative forces. One such 

example is the sliding of a body down an inclined plane with friction under gravity, where the friction 

is non conservative force and gravity is a conservative force. So, the total force acting on the body is 

given by, 

F GF F F 
�� �� ��

 

where GF
��

 and FF
��

respectively denotes the conservative force due to gravity and dissipative forces 

due to friction. 

      The work energy theorem is true for all kind of forces: conservative or dissipative. So, the total 

work done by the total force when the body moves from some initial position to a final position is 

given by,  

. . . ( )
if

f f f

F
F Gif i f

i i i

W F dr F d r F d r V V W       
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where V is the potential function associated with the conservative force GF
��

 and
if

FW  is the  work done 

due to dissipative force FF
��

. So, the well known ‘work energy theorem’ assumes the following form, 
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or,     
if

F

f f i iT V T V W     

or,  
if

F

f iE E W                                                                                                           (2.8) 

where E = T + V is total mechanical energy of the system which, in a  dissipative system,  is no longer 

constant but depends on the state of the system. The mechanical energy is conserved, only when

0
if

FW  , i.e., when the dissipative forces will do no work.  

2.3 POTENTIAL ENERGY 

The potential energy (PE) of a particle may be considered as the energy stored in it owing to its 

position. In a conservative force field the PE of a particle is measured by the amount of work that the 

particle can do when it moves from its early position to some final position. Generally, the final 

position is taken to be situated at infinity. If the early position is represented by a vector r
�

and its final 

position by a vector 0r
��

we have the PE of the particle as, 
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      If the final position be at infinity then we have 0r  
��

 
and so, 

.
r

U F dr



 
�

�� �
                     

      Conversely if the initial position be at infinity and PE at infinity will be zero, then PE of the 

particle at a distance r
�

 will be, 

.

r

U F d r


 
�

�� �
                                                                                                            (2.9) 

      Hence in the central force field (e.g., gravitational field, electrostatic field etc.), energy of a 

particle at a specified point is given by the amount of work done to move it from infinity up to the 

point. 

      Usually, final position is taken as a point where no force acts on the particle. For example in the 

case of a spring, when its length is equal to its unstretched length, no force acts on the spring. At this 

condition, PE of the spring is zero. Again, in case of gravitational or electrostatic field, no force acts 

on the particle at infinity. So, in such a field, potential at infinity is taken to be zero.  Sometimes, in 

the case of earth, PE on its surface is also taken to be as zero. 

2.4 FORCE AND POTENTIAL RELATIONSHIP 

In a conservative force field it can be shown that the force acting on a particle is equal to the negative 

gradient of the PE i.e., F V 
�� ��

. To show this let us take the PE of the particle at a distance r
�

 in a 

force field as given in Eq. (2.3) as, 
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      Differentiating partially with respect to x, y and z we get, 
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      Thus conservative force can be expressed as the negative gradient of the potential.  
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Now,  

ɵ ɵi j k

F U
x y z

U U U

x y z

  
       

  

  

  

ɵ

�� �� �� ��
 

or,  ɵ ɵ
2 2 2 2 2 2U U U U U U

F i j k
y z z y z x x z x y y x

          
                           

�� ��
ɵ  

or,   0F 
�� ��

         [as for U to be a perfect differential 

2 2
U U

u v v u

 


   
] 

      So, the curl of conservative force vanishes.      

  
 E

X
A

M
P

L
E

 2
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Example 2.1 Show that the force   ɵ ɵ  2 3 2 3 2 2 26 2 3 6F i y z xz j xyz k xy z x z    
��
ɵ

is conservative. If the force acts on a particle and displaces it from (0, 2, 1) to (2, 

5, 4), calculate the work done. 

Solution 

Here                   ɵ ɵ  2 3 2 3 2 2 26 2 3 6F i y z xz j xyz k xy z x z    
��
ɵ  

So,                   

ɵ ɵ

2 3 2 3 2 2 2
6 2 3 6

i j k

F
x y z

y z xz xyz xy z x z

  
 

  

 

ɵ

�� ��

 

or,                    2 2 2 3
3 6 2F i xy z x z xyz

y z

  
       

�� ��
ɵ

 

          

ɵ    

ɵ    

2 3 2 2 2 2

3 2 3 2

6 3 6

2 6

j y z xz xy z x z
z x

k xyz y z xz
x y

        

  
    

 

or,             0F 
�� ��

 ; so the force field is conservative. 

When the force   ɵ ɵ  2 3 2 3 2 2 26 2 3 6F i y z xz j xyz k xy z x z    
��
ɵ

 
acts on a 

particle and displaces it from (0, 2, 1) to (2, 5, 4), the work done will be, 

                        

(2,5,4) (2,5,4)

(0, 2,1) (0,2,1)

. ( )
x y z

W F dr F dx F dy F dz    
�� �
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or,    
(2,5,4)

2 3 2 2

(0,2,1)

3W d xy z x z           

or,    
 

(2,5,4)
2 3 2 2

0,2,1
3W xy z x z           

                                 2 3 2 22 5 4 3 2 4 0        

                                3200 192 3008 unit.  
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Example 2.2 Show that the force   ɵ ɵ2 22 2F i xy z jx k xz   
��
ɵ

 
is conservative. 

Hence find the corresponding potential. 

Solution  

Here     ɵ ɵ2 22 2F i xy z jx k xz   
��
ɵ

                                     
(a) 

So,          

ɵ ɵ

2 3
2 2 2

i j k

F
x y z

xy z xyz xz

  
 

  



ɵ

�� ��

 

or,           ɵ    2
2 2 2F i xz x j xy z xz

y z z x

                  

�� ��
ɵ

 

ɵ    2 2
2k x xy z

x y

  
     

       

or,   0F 
�� ��

  

So the force field is conservative. 

Now for a conservative force field we have,  

ɵ ɵV V V
F V i j k

x y z

  
     

  

�� ��
ɵ

                               (b) 

Comparing (a) and (b) we get, 

 22
V

xy z
x


  


    2 2

1
or, V x y xz C     

2V
x

y


 


                  2

2
or, V x y C    

2
V

xz
z


 


                2

3
or, V xz C    

So, combing all the possible values of potential we get,  

2 2
V x y xz C     

which gives the required potential. 
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2.5 CENTRAL FORCE  

A central force is a force which at every point of its field is directed either towards a fixed point or 

away from a fixed point (the centre of force) in the field and the magnitude of which at a point is a 

function of the distance (r) of the point from the fixed origin only. The path traced out by a particle 

under the action of a central force is called a central orbit. 

      The central force may be mathematically represented as, 

( ) ( )F r F r r
�� �

ɵ
                                                                                                        

(2.10) 

where rɵ  is the unit vector along the position vector r
�

 and ( )F r is a function of r only. 

2.5.1 Characteristics of Motion  

A particle in motion under central force has a number of important characteristics as stated below. 

i)  A central force is conservative in nature. 

ii)  The angular momentum is a constant of motion. 

iii)  The motion is planar, i.e., the motion of the particle is confined to a fixed plane. 

iv)  The areal velocity of the radius vector i.e., the line joining the particle with the centre is 

constant. 

2.5.2 Nature of Orbit  

As, the angular momentum is the moment of the corresponding linear momentum we have, 

 L r p r mv   
�� � �� � �

                                                                                                
(2.11) 

  r mv
� �

= a constant vector in central motion. 

      The direction of L
��

 is thus always normal to the plane containing the vector r
�

 and v
�

.  

      Hence the path of the particle in a central force field must always lie in one fixed plane, the plane 

containing the vector r
�

and v
�

. 
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Example 2.3 The position vector for a particle of mass 10 g is ɵ5 2i jɵ  cm and its 

velocity is 3iɵ cm/s. Calculate the angular momentum about the origin.  

Solution 

Angular momentum will be, 

ɵ  ɵ10 5 2 3 60L r p r mv mr v i j i k         
�� � �� � � � �

ɵ ɵ g-cm
2
/s. 

 

 

2.5.3 Conservation of Angular Momentum  

Let O be the fixed point to which the force is always directed, r
�

 the position vector of the particle P 

at any instant t (Fig. 2.2). Let, v
�

 be the particle velocity which is acting tangentially to the orbit. So, 

the applied torque on the particle at that instant is, 
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( ) 0    N r F r rF r
��� � �� �

ɵ
                                        

(2.12) 

where F
��

is acting along the direction of r
�

. But, since the torque 
d L

N
dt

��
���

, 

where L
��

 represents angular momentum vector of the particle, we have  

0
d L

dt

��

 

So,   L
��

= constant 

      Thus angular momentum vector ( L
��

) of a particle in a central force field 

always remains constant and hence it is a constant of motion. 

2.5.4 Areal Velocity 

Let m be the mass of the particle and r
�

 the instantaneous position 

vector at P with the centre of force O as the origin. Let the position 

vector changes to r dr
� �

at Q in time dt . 

   PQ    r dr r dr
� � � �

 

      The area swept by the radius vector r
�

 in time dt  is the area of 

OPQ  [Fig. 2.3] and is given by, 

1

2
 d A r d r
�� � �

 

      The rate at which the radius vector sweeps the area is defined as the areal velocity. So, here the 

areal velocity of the mass motion will be, 

1 1 1
constant

2 2 2 2
       

d A dr d r L
r r m r mv

dt dt m dt m m

�� � � ��
� � � �

                             
(2.13) 

      Since L
��

 is a constant of motion and m is necessarily constant, so under a central force the areal 

velocity of the radius vector of a particle is a constant. 

2.6 GENERAL EQUATION OF A CENTRAL ORBIT 

We have already explained that the motion of a particle under central force is confined to a plane. It 

may thus be conveniently represented by plane polar coordinates  ,r . Since the force is radial, 

being always directed to (or away from) the centre, the radial acceleration rf  only exists and cross-

radial acceleration f  
is zero. 

 We have  21
0  

  
 

d
f r

r dt

i

                                                                                      

(2.14) (a) 

and   
2

( )
   r

F r
f r r

m

ii i

                                                                                    
(2.14) (b) 

 

Fig. 2.2: Angular                
momentum conservation 

 

    

Fig. 2.3: Areal velocity 
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where ( )F r is the magnitude of the radial force. The negative sign corresponds to force directed to the 

origin and positive sign corresponds to force directed away from the origin. Now from Eq. (2.14) (a) 

we have, 2 r
i

= constant = h (say) 

      Introducing for convenience, the reciprocal coordinate u defined as 
1

r
u

 we have, 

2

1


 
   

du du
r h

d du

i i

 

and
   

2 2
2 2

2 2


 
   

d u d u
r h h u

d d

ii i

 

We have from Eq. (2.8)  

2 2
2 2

2 4

( )1
.


   

F rd u h
h u

u md r
 

or,   
2

2 2 2

(1 )


 

F ud u
u

d mh u
∓  

or,   
2

2 2 2

(1 )


 

f ud u
u

d h u
∓      ( /f F m = the acceleration)                                   (2.15) (a) 

      Since 
2 2,  h r mh mr
i i

= the angular momentum L , Thus, using this the above equation can 

be written as, 

2

2 2 2

(1 )


 

mF ud u
u

d L u
∓

                                                                                    
(2.15) (b) 

This is the alternative form of the differential equation of the orbit. 

2.7 ENERGY IN CENTRAL FORCE FIELD 

If any force acting on a particle has the following two properties, viz., (i) from a fixed point the force 

is always directed toward or away and (ii) the magnitude of the applied force depends only on the 

distance from the centre of force, then the forces having these two properties are known as central 

forces. 

      Let, a particle of mass m is acted upon by a central force and moves with an angular momentum 

 . ,L r  being its polar co-ordinates. Introducing the reciprocal co-ordinate
1

r
u

 , we get 

2

2

1
 

 
 

     
 

du L du L
r r

d m d mu

i i i

∵

                                                

(2.16)  

      Now, the total mechanical energy of the particle in plane polar coordinates is  

2 2
2 21 1

( ) ( )
2 2


 

      
 

E mv V r m r r V r
i i

, where ( )V r is the PE. 
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  
22

2

2

1
( )

2 

          
     

L du L
E m r V r

m d mr

22
2

( )
2 

  
    

   

L du
u V r

m d
           

(2.17)  

which is the required expression for the energy in a central force field. 

2.7.1 Conservation of Energy in Central Motion 

In plane polar coordinates, the radial and the cross-radial accelerations are given respectively by 
2

and 2rf r r f r r   
ii i ii i i

    

  

2

( ) 
 

    
 

F r m r r
ii i

 radial force 

and  ( ) 2   
   

 
F m r r

ii i i

cross radial force 

      Now, the central motion is radial so that only ( )F r exists and ( )F = 0. 

      To prove this let us consider the magnitude of the angular momentum
2 .L L mr 
i��
  

  22 2 0    
     

 

d L
mr r mr mr r r

dt

i i ii i i ii
��

 

      Since L
��

 is a constant of motion in a central force field, substituting 
2

 
L

mr

i

 we obtain  

2

3
( )  

L
F r m r

mr

ii

 

      Also, a central force is conservative and may thus be expressed as the negative gradient of 

potential (energy) function V as,  ( ) .F r V 
��

 

  
2

3
( )   

L dV
m r F r

drmr

ii

 

or,   
2

22

 
    

 

d L
m r V

dr mr

ii

 

      Multiplying both sides of the above relation by ,r
i

we get 

2

22

 
    

 

d L
m r r V r

dr mr

i ii i

 

or,   

2 2 2

2 2

1

2 2 2

     
                   

d d L dr d L
m r V V

dt dr dt dtmr mr

i

 

or,   

2 2

2

1
0

2 2

 
    

 

d L
m r V

dt mr

i
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or,   
2 2

2

1

2 2
   

L
m r V E

mr

i

const.                                                                           (2.18)  

or,  

2 2
21

const.
2


 

     
 

m r r V E
i i

    
2( )L mr
i

∵  

or,   21
const.

2
 mv V  

So,   const. T V  

where 21

2
T mv = KE. 

      Thus, in a central field the total energy  E T V  is another constant of motion and conservation 

of energy holds in central motion. 
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Example 2.4 A planet revolves around a star in an elliptic Orbit. The ratio of 

longest distance to the shortest of the planet from the star is 4. Find the ratio of KE 

of the planet at longest to the closest position. 

Solution  

Gravitational force is central and hence the angular momentum L of the planet 

remains constant during its revolution. 

Kinetic energy  
2

22


L
T

mr
 

or,   
2

1
T

r
 

So,   
2

2 1

2
1 2


T r

T r
 

or,   

2

2

1

1 1

4 16

 
  
 

T

T
 

This is the ratio of the kinetic energies of the planet at the farthest to the closest 

position. 

 

 

2.8 REDUCTION OF TWO-BODY PROBLEM  

Here we will show the way of motion of two different bodies interacting in a gravitational force field 

which is equivalent to the movement of one body with an equivalent reduced mass. Consider two 

bodies having masses m1 and m2 interact with each other such that by Newton’s third law the force on 

body 2 due to body 1 is equal in magnitude and opposite in direction to the force on body 1 due to 

body 2 (Fig. 2.4). Mathematically it is given by, 

12 21F F 
�� ��

                                                                                                            (2.19) 
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Fig. 2.4: Two body problem 

 

      Now, applying Newton’s second law to the individual bodies we get, 
2

1
12 1 2

d r
F m

dt


�
��

 

and
   

2
2

21 2 2

d r
F m

dt


�
��

 

      Rearranging we get, 

2
12 1

2

1

F d r

m dt


�� �

                      

(2.20) 

and  
2

21 2

2

2

F d r

m dt


�� �

                      

(2.21) 

      Subtracting Eq. (2.21) from Eq. (2.20) we get, 

2 2
12 21 1 2

2 2

1 2

F F d r d r

m m dt dt
  

�� �� � �

           

                   
2

2

d r

dt


�

                                                                                                

(2.22) 

      Using Eq. (2.19), Eq (2.22) becomes 

2

12
2

2 2

1 1 
  

 

d r
F

m m dt

�
��

 

or,  

 

2
12

2


F d r

dt

�� �

 
where   is the reduced mass and is given by   

2 2

1 1 1


 

m m
 

or,  1 2

1 2

 


m m

m m
                                                                                                         

(2.23) 

So  
 

2

12
2


d r

F
dt

�
��

                                                                                                         
(2.24) 

      This expression for 12F
��

 can be interpreted specially using Newton’s second law. In Eq. (2.24)   

be the reduced mass of a reduced object with position vector r
�

 with respect to the origin O due to an 

attractive gravitational force directed toward the origin. 

      So, the basic two-body gravitational problem is reduced to single-body problem with reduced 

mass   by the influence of a central force 12F
��

 with r
�

 as the distance between the reduced body 

and the origin.  

      Here in this reformulation, not a body is located at the origin. Whereas, r
�

 in the two-body 

problem is the relative distance between the original two bodies.  
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2.9 ENERGY AND ANGULAR MOMENTUM  

Consider the reduced body with reduced mass, orbiting about a fixed point under the influence of a 

radially attractive force. About the origin O both the energy (E) and the angular momentum (L) of the 

motion for the equivalent single-body problem are constants. E is a constant because there are no 

external forces acting on the reduced body, and L about O is constant because the only force is 

directed towards the origin, and hence the torque about the origin due to that force is zero (Fig. 2.5). 

Since, L is a constant; the orbit of the reduced body is situated in a plane with L vector pointing at 

right angle to this plane. 

      Consider  ,r  as the polar coordinates of the reduced body with respect to O and note that, 

 12 gravityF F
�� ��

                                                                                                      (2.25) 

      Since the force is conservative, the PE is given by 
1 2( )  

Gm m
U r

r
 with the choice of potential at 

infinity as  ( ) 0. U    

      The total energy is the sum of the KE and the PE and is given by 

2 1 21

2
 

Gm m
E v

r            
(2.26) 

where KE is, 21

2
v ,   is reduced mass and v is the  

relative speed of the two bodies and is given by  

2 2

2 2 2



         
   

r

dr d
v v v r

dt dt
   

here 
r

dr
v

dt
 is the radial component of velocity and 




d
v r

dt
is the cross-radial component of 

velocity.  

      So,  

2 2 2 2

21 2 1 21 1

2 2


  
                 
       

Gm m Gm mdr d
E r r r

dt dt r r

i i

                   

(2.27) 

      The magnitude of the angular momentum with respect to the centre of mass will be 

2 2




     

d
L rv r r

dt

i

                                                                                 
(2.28) 
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Example 2.5 A particle follows a spiral orbit is given by r = cθ
2
 under an 

unknown force. Prove that such an orbit is possible in a central field. Also find the 

form of the force law. 

Solution 

The equation of spiral orbit is given by, 

2

1 1


 u

r c
 

 

 

 

 

Fig. 2.5: Motion of the reduced body in polar 
coordinate system 
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where u is the reciprocal co-ordinate. 

So,  
3

2

 
 

du

d c
 and 

2

2 4

6

 


d u

d c
 

Under central force, the differential equation of the orbit is, 

2

2 2 2

(1 )


  

mF ud u
u

d L u  

or,  
2 2 2

2
(1 )



 
    

 

L u d u
F u u

m d
 

or,  
2 2

4 2

6 1
(1 )

 
 

   
 

L u
F u

m c c
 

or,  
2

2 4 2

6 1
( )

 
 

   
 

L
F r

mr c c
 

or,  

   
2 2

4 3 4 3
2 2

6 1 6 1
( )

 

 
             

L c L c
F r

m m r rc c

 

which is the required form of the force law. As the force F (r) depends on r only, it 

represents a central force. 
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X
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M
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L
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2.10 EQUATION FOR THE ORBIT OF REDUCED BODY 

From Eq. (2.15) we get the equation for the orbit of the reduced body as 

2
1 2

2 2




 
Gm md u

u
d L                                                                                              

(2.29) 

      Eq. (2.29) is mathematically equivalent to the harmonic oscillator equation with a constant at the 

right hand side. The solution of Eq. (2.29) will have two parts:  

i)  the angle-independent inhomogeneous  solution 1 2
0 2

Gm m
u

L


  representing a circular orbit,  

ii)  a sinusoidally varying homogeneous solution like  1 0( ) cos   u A ; where A and 0  

are constants which can be evaluated from the nature of the orbit.  

      As   
0

0

1
u

r
  

  

2

0

1 2



L

r
Gm m

                                                                                                        

(2.30) 

      This is called the semi latus rectum of the orbit. The complete solution of Eq. (2.29) may thus be 

   0 1 0 0 0

0 0

1 1
cos 1 cos            u u u A r A

r r
                           (2.31) (a) 
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or,   
 

0

0 0
1 cos  


 

r
r

r A
                                                                                  

(2.31) (b) 

      Let us choose 
0

A
r


                                                                                                                   (2.32) 

where   
 

2 2
0

2 2

1 2

2 2
1 1

Er EL

L Gm m





   

                                                                  

(2.33)

 

is the eccentricity and 0 .   

      So, Eq. (2.31) (b) can be written as, 

 
0

1 cos

r
r

 



                                                                                                      (2.34) 

      Again in terms of 0r  from Eq. (2.30) we have the angular momentum as,  

 
1

2
1 2 0L Gm m r                                                                                                  (2.35) 

and in terms of 0r  and , from Eq. (2.33) and Eq. (2.35) we have the energy as, 

 2

1 2

0

1

2

Gm m
E

r

 


                                                                                              

(2.36)

 
      Eq. (2.34) represents a general conic section and with the aid of Cartesian coordinate 

transformation cosx r  and siny r  , along with 2 2 2
r x y  , the orbit equation can be rewritten 

as,   0 cosr r r    

or,    
1

2 2 2
0

x y r x      

or,   2 2 2 2 2

0 0
2x y r xr x       

or,  2 2 2 2

0 0
(1 ) 2x xr y r    

                                                                                 
(2.37) 

      This is the general expression of a conic section with axis along the X-direction. For a given

0 0,r  corresponding to a given non-zero L as in Eq. (2.30), there are different cases determined by 

the value of  .  

Case 1: When min1, 0E E     and 0r r , Eq. (2.37) will be reduced to,  

2 2 2

0
x y r  ; this represents the equation for a circle.

 

Case 2: When min0 1, 0E E    , Eq. (2.37) describes an ellipse as given by,  

  2 2
y Ax Bx k   ; where A > 0 and k is a positive constant.

 

Case 3: When 1, 0E   , Eq. (2.37) describes a parabola as given by,  

2

0

02 2

ry
x

r
   
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Case 4: When 1, 0E   , Eq. (2.37) describes a hyperbola as given by,  

2 2
y Ax Bx k   ; where A > 0 and k is a positive constant. 

2.11 ENERGY EQUATION AND ENERGY DIAGRAMS  

From Eq. (2.27), we have   

2 2 2
2 2 21 2 1 21 1 1

2 2 2

Gm m Gm m
E r r v r

r r
    
 

      
 

i i i

                        

(2.38) (a) 

Again, using Eq. (2.22), we have
  

2 .L r
i

 
     

      So, the total energy will be, 
2

2 1 2

2

1

2 2

Gm mL
E v

rr



  

eff eff
K U 

                                                     
(2.38) (b)

      
where the effective PE is given by,  

2

1 2

22
eff

Gm mL
U

rr
 

                                                                                          

(2.39) 

and the effective KE is  

21

2
eff

K v
                                                                                                          

(2.40)
                                                  

      The variation of Ueff with r, is shown in Fig. 2.6. 

The extreme upper curve varies as 
2

1

r
 and the 

extreme lower varies as 
1

r
 . The sum Ueff is 

represented by the middle curve. 

      The minimum value of Ueff will occur at r = r0.  

Whenever Keff = 0, the total energy is equal to the 

effective PE, 
2

1 2

22
eff

Gm mL
E U

rr
  

      

(2.41) 

      Now, the PE is defined to be the negative integral 

of the work done by the force. 

 

Fig. 2.6: Variation of effective                             

potential energy 

      For the reduction to the one-body problem, using this Ueff, we can introduce an effective force 

effF
��

such that  . .
eff eff

B B

B A
eff r eff

A A

U U F d r F dr     
�� �

 

Again,   
eff eff

B
effB A

A

dU
U U dr

dr
    
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      Comparing we find that the radial component of effF
��

 is the negative of the derivative Ueff, i.e., 

  eff

r eff

dU
F

dr
                                                                                                    (2.42) 

      The resulting PE gives the PE for a reduced body travelling in single dimension. It is a function of 

r only and does not depend on θ. 

 
2 2

1 2 1 2

2 3 22

eff

r eff

dU Gm m Gm md L L
F

dr dr rr r r 
 

       
 

                               

(2.43) 

      So, there are two forces acting on the reduced body,      r r reff g c
F F F    

where the effective centrifugal force is  
2

3r c

L
F

r


 

and the gravitational force is   1 2

2r g

Gm m
F

r
  . 

2.11.1 Circular, Elliptic, Parabolic and Hyperbolic Orbits  

Case 1: Circular Orbit (E = Emin) 

The lowest energy state, Emin, corresponds to the minimum of the effective PE, i.e.,  

Emin =  
mineffU  

When this condition is satisfied the effective KE is zero i.e.,  

2
1

0
2

eff

dr
K

dt
    
 

  

      Hence, the radial velocity vr is zero, so the distance r from the central point is a constant, which is 

the condition for a circular orbit. The condition for the minimum of the effective PE is, 

2

1 2

3 2
0

effdU Gm mL

dr r r
     

which when solved we get,  

2

0

1 2

L
r r

Gm m
                                                                                                      (2.44) 

Case 2: Elliptic Orbit  min 0E E    

When 0
eff

K  , the mechanical energy is 
eff

E U . Now, 
dr

dt
= 0 corresponds to a point of closest or 

furthest approach (Fig. 2.6). This condition represents the maximum value as well as the minimum 

value of r for an orbit elliptical in nature. 

      Now, rewriting 
2

1 2

22

Gm mL
E

rr
   we get the quadratic type of equation for the distance r as, 
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2

2 1 2 0
2

Gm m L
r r

E E
  

                                                                                     

(2.45) 

      The two roots of the equations are, 

 

1
2 22

1 2 1 2

2 2 2

Gm m Gm m L
r

E E E

   
     

   
  

or,   
 

1

22

1 2

2

1 2

2
1 1

2

Gm m EL
r

E Gm m

 
   

     
   

 

                                                             

or,   
1 2 (1 )

2

Gm m
r

E
                               [using Eq. (2.33)]                                      (2.46) 

      So,   

   

2 2

0 1 2 1 2

2 2
2

2
2

1 2
1 2

21 22
1 1

L L

r Gm m Gm m

EL EL E

Gm mGm m

 




   
  

  
  

                             (2.47) 

      Substituting Eq. (2.47) into Eq. (2.46) we get an expression for the points of closest and furthest 

approach as,  

0

2
(1 )

1

r
r 


 


                                                                                                  (2.48) 

The plus sign corresponds to the distance of closest approach,  

0

min
1

r
r r


 


                                                                                                      (2.49) 

and the minus sign corresponds to the distance of furthest approach,  

0

max
1

r
r r


 


                                                                                                      (2.50) 

Case 3: Parabolic Orbit (E = 0) 

If E = 0, the effective PE approaches zero ( 0
eff

U  ) at the situation when the distance r approaches 

to infinity ( r  ). Since the total energy is zero, when r   the KE also approaches zero, 

0
eff

K  . This corresponds to a parabolic orbit. Now, for a body to escape from a planet, the body 

must have a total energy E = 0 (we set 0
eff

U   at infinity). This escape velocity condition 

corresponds to a parabolic orbit. 

      For a parabolic orbit, the body also has a distance of closest approach. This distance 
par

r  can be 

obtained by solving   

   
2

1 2

2
0

2
eff

Gm mL
E U

rr
   

                                                                             

(2.51) 
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as,   
2

1 2 0

1

2 2
par

L
r

Gm m r
                                                                                           (2.52) 

the fact that the minimum distance to the origin i.e., the focus of a parabola is half the semi-latus 

rectum is one fundamental property of a parabola. 

Case 4: Hyperbolic Orbit (E > 0)  

When E > 0, in the limit r  , Keff > 0. This corresponds to a hyperbolic orbit. Here the closest 

approach condition is similar to Eq. (2.51) except E is now positive suggesting only one positive 

solution of Eq. (2.45). The distance of closest approach for this hyperbolic orbit will be,  

0

1
hyp

r
r




                                                                                                             
(2.53) 

      The constant 0
r  is independent of the energy and from Eq. (2.33) as the reduced body energy 

increases, there will be an increase of eccentricity and so the distance of nearest approach 
hyp

r reduces.  

2.12 LAWS OF PLANETARY MOTION 

Kepler studied the motion of the planets in great detail and formulated his findings in the form of three 

important laws, known as the laws of planetary motion. These laws give a rather simple but accurate 

description of the planetary motion and it is by way of explaining the laws that Newton discovered his 

famous law of gravitation. 

2.12.1 Kepler’s First Law  

All planets move in elliptic orbits round the sun that occupies one of the foci of the ellipse. 

      When E < 0, from Eq. (2.33) it is obvious that, 0 1  . These orbits are either circles or ellipses. 

Elliptic orbit laws are true only when there is single central force and the gravitational interactions 

owing to other bodies in the universe have no importance. 

2.12.2 Kepler’s Second Law 

From the sun to any planet, the radius vector sweeps out same areas in the same interval of time. Now, 

the sum of the areas of the triangles in Fig. 2.7 in the limit of small  is given by, 

 1

2 2

r
A r r r





      

      So, the average rate of the change of this area in time t is, 

1

2 2

A r r r
r

t t t

    
 

  
 

As 0, 0t     , and   

21

2

dA d
r

dt dt




                                                                                                        
(2.54)

 

Again we have, 
2

d L

dt r




  

 
Fig. 2.7: Illustration of Kepler’s 2

nd
 law 
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for more on 

Kepler’s law 

So,   
2

dA L

dt 


                                                                                                               

(2.55) 

      As L and µ are constants, the time rate of change of area is a constant i.e., equal areas are swept 

out in equal interval of time.  

2.12.3 Kepler’s Third Law 

Square of the planet’s revolution time period is proportional to the cube of the semi-major axis of the 

elliptic orbit  2 3T a .  

      From Eq. (2.55) we can write it in the form, 2
dA

L
dt

   

Integrating we get, 
0

2

T

C

dA Ldt    

or,  
2 ab

T
L




                                                                                                           
(2.56) 

where T is the period of the orbit. For an elliptical orbit, A ab ; where a and b are the semi-major 

axis and semi-minor axis respectively.  

      Now, 

2 2 2 2
2

2

4 a b
T

L

 


 

Again using Eq. (2.35) we have, 

2 2

1 2 0 1 2
(1 )L Gm m r Gm m a            

Hence,  
 

2 2 2 2
2

2

1 2

4

1

a b
T

Gm m a

 

 



 

      Again, the semi-minor axis is given by  

2

1 2

aL
b

Gm m
  

Hence,  
2 2 3 2 3

2

1 2 1 2

4 4

( )

a a
T

Gm m G m m

  


 


 [using Eq. (2.23)]                                                 (2.57) 

2.13 SATELLITE MANEUVERS  

We consider that a satellite of mass ms is initially in a circular orbit of radius r around the earth of 

mass Me and radius Re. Let Me >> ms.  

      The magnitude of the acceleration for the circular orbit is 

2
v

r
, and so the force equation for the 

motion of the satellite will be obtained by balancing the gravitational force with the centripetal force.  
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Thus,    

2

2

s s em v Gm M

r r
  

     So,   e
GM

v
r

                                                                                                             (2.58) 

      Hence, the total mechanical energy is, 

21

2 2

e s e s

s

GM m GM m
E m v

r r
    

        
[Let

 
( ) 0U r  as r  ]                   (2.59)

 

      Let, us now consider that the satellite trajectory is changed to an elliptical orbit as a result of an 

orbital maneuver. This can be done by rocket firing for an interval of short time and thereby 

enhancing the satellite’s tangential speed. Let, the farthest distance from earth also known as apogee 

of the elliptical orbit is three times the closest approach i.e., perigee of the elliptical orbit. So, 

3 3
a p

r r r           

      Now, from the conservation of the angular momentum we have, rpvp = rava  

or,  rvp = 3rva 

      So,   va = vp/3   

      The condition that the mechanical energy is constant then becomes, 

2

2 21 1 1

2 2 2 3 3
p

ps e s e s e

s s a s

a

vGm M Gm M Gm M
m v m v m

r r r

 
     

 
 

or,   
2 24

9 3
p

eGM
v

r
    

or,   
3

2

e

p

GM
v

r


                                      

(2.60) 

      So,   vp > v.  

      After burning of the rocket, the final mechanical energy is, 

21

2

e s

f s p

GM m
E m v

r
     

       
3

4

e s e sGM m GM m

r r
    

or,   
4

s e s e

f

Gm M Gm M
E

r A
                                                                                     (2.61) 

where A = r + 3r  is the major axis of the ellipse. 

 

 

 

 
Fig. 2.8: Satellite                       

maneuvers 
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UNIT SUMMARY 

  

 

 Conservative and non-conservative forces 

                         0F 
�� ��

              F V 
�� ��

 

 Potential energy 

           

.

r

U F dr


 
�

�� �
 

 Relationship between conservative force and potential energy 

           F V 
�� ��

 

 Central force: central orbit 

           ( ) ( )F r F r r
�� �

ɵ  

 Characteristics of motion under central orbit 

               i) A central force is conservative in nature. 
               ii) The angular momentum is a constant of motion. 
               iii) The motion is planar. 
               iv) The areal velocity of the radius vector is constant. 

 General equation of a central orbit 

           

2

2 2 2

(1 )d u mF u
u

d L u
  ∓  

 Energy in a central force field 

           

2 2

2

2

1
( )

2

L du L
E m r V r

m d mr

    
       

     

22
2

( )
2

L du
u V r

m d

  
    

   
 

 Conservation of energy in central motion 

           

21
const.

2
mv V   

 Reduction of two-body problem into one-body problem 

           

1 2

1 2

m m

m m
 


                            

2

12
2

d r
F

dt


�
��

 
       Energy and angular momentum 

                

2 1 21

2

Gm m
E v

r
 

 

                

2 2d
L rv r r

dt



     

i

 
       Equation for the orbit of the reduced body 

                

2

1 2

2 2

Gm md u
u

d L




 
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0

1 cos

r
r

 


  
        Energy equation 

                               

2
2 1 2

2

1

2 2

Gm mL
E v

rr



  

 
eff eff

K U 
                                                                                                      

        Circular, elliptic, parabolic and hyperbolic orbits 

                      Circular orbit (E = Emin) 

2

0

1 2

L
r r

Gm m
                                                                                                         

                      Elliptic orbit  min 0E E  . 0

2
(1 )

1

r
r 


 


                

                      Parabolic orbit (E = 0) 
2

1 2 0

1

2 2
par

L
r

Gm m r
                                                                                            

        Hyperbolic orbit (E > 0) 0

1
hyp

r
r




                     
 

 Kepler’s laws of planetary motion 
         First law: All planets move in elliptic orbits round the Sun. 

         Second law:

 

Arealvelocity constant
2

dA L

dt 
    

         Third law:

 

2 3T a  

 Satellite maneuvers 

                        2

e sGM m
E

r
 

       

3

2

e
p

GM
v

r


        4

s e
f

Gm M
E

r
        

 

EXERCISES 

 

Multiple Choice Questions

 2.1  What will be the time taken by a planet to sweep 2 million km
2
 if the time taken by the same 

planet to cover 1 million km
2
 is 36 hours? 

(a) 18 hours                       (b) 36 hours                     (c) 72 hours                  (d) 144 hours 

2.2 For circular planetary orbit the eccentricity is   

(a)   ˃ 1                           (b)   ≥ 1                          (c)   ˂ 1                       (d)   = 0 

2.3  When a planet orbits the Sun, one of the foci of the elliptical orbit should be at  

(a) the axis                        (b) the perihelion             (c) the centre                 (d) the Sun 

2.4  Which of the following has an eccentricity of zero? 

(a) a straight line               (b) a large ellipse             (c) a circle                    (d) a small ellipse 

2.5  Kepler’s second law is also called as  

(a) the law of orbits          (b) the law of areas           (c) the law of periods  (d) the law of gravity 
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2.6 Kepler’s second law deals with 

(a) the shape of the planet’s orbits                            (b) the speed/area the planet travels 

(c) the length of time it takes the planet to orbit the Sun              

(d) time of travel 

2.7 Kepler’s third law is also called as  

(a) the law of orbits          (b) the law of areas          (c) the law of periods   (d) the law of gravity  

2.8 Mathematical form of Kepler’s third law is  

(a) T 
3
 = a 

2
                       (b) T 

3 
= a 

3
                      (c) T 

2
 = a 

2
                   (d) T 

2
 = a 

3
 

2.9 Kepler’s first law states that the orbits of the planets are oval in shape of  

(a) ellipses                        (b) perfect circles             (c) squares                    (d) triangles 

2.10 The Kepler’s first law is known as  

(a) the law of orbits          (b) the law of areas          (c) the law of periods   (d) the law of gravity  

2.11 In a central force field, the angular momentum is 

(a) zero                             (b) not conserved             (c) infinity                    (d) conserved 

2.12 The areal velocity of the particle in a central force field is  

(a) zero                             (b) conserved                   (c) infinity                    (d) not conserved 

2.13 At the turning point in an arbitrary potential field the radial velocity is  

(a) zero                              (b) 1                                (c) infinity                     (d) 1/2  

2.14 For hyperbolic orbit the values of energy E and eccentricity   are  

(a) E = 0 and   ˃ 1          (b) E ˃ 0 and   ˃ 1        (c) E ˃ 0 and   = 1       (d) E ˃ 0 and  = 0  

2.15 For parabolic orbit the values of energy E and eccentricity  are  

(a) E = 0 and   = 1          (b) E ˃ 0 and   ˃ 1        (c) E ˃ 0 and  = 1        (d) E ˃ 0 and   = 0  

2.16 For elliptical orbit the values of energy E and eccentricity  are   

(a) E = 0 and   ˃ 1          (b) E ˃ 0 and  ˃ 1         (c) E ˂ 0 and  ˂ 1        (d) E ˃ 0 and   = 0 

2.17 A particle is moving on elliptical path under inverse square law force of the form F(r) =  k/r
2
. 

The eccentricity of the orbit is   

(a) a function of total energy                                    (b) independent of total energy  

(c) a function of angular momentum                        (d) independent of angular momentum 

Answers of Multiple Choice Questions 

2.1 (c), 2.2 (d), 2.3 (d), 2.4 (c), 2.5 (b), 2.6 (b), 2.7 (c), 2.8 (d), 2.9 (a), 2.10 (a), 2.11 (d), 2.12 (b),        

2.13 (a), 2.14 (a), 2.15 (a), 2.16 (c), 2.17 (a) and (c).  

 

Short and Long Answer Type Questions 

Category I 

2.1 Explain conservative force with examples.  
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2.2 Elaborate the idea of non-conservative force with examples. 

2.3 With an example mention the role of central force. 

2.4 Show that in case of conservative force work done over a closed path is zero. 

2.5 Show that a conservative force can be represented by the relation F V 
�� ��

and curl of it is 

always zero. 

2.6 Show that in non conservative force field mechanical energy is not conserved.   

2.7 Show that for a non dissipative system .

f

if f i

i

W F dr T T  
�� �

 where Tf and Ti are the initial and 

the final kinetic energy. 

2.8 Explain Kepler’s second law of planetary motion. 

2.9 Discuss the motion of a particle in a central force field and prove the conservation laws of linear 

momentum and total energy. 

2.10 Prove that the total energy of a particle moving through a central force is a constant of motion. 

2.11 Show that angular momentum of a particle moving in a central force field is conserved. 

2.12 Derive the polar equation of elliptical orbit. 

2.13 Derive the Kepler’s third law of planetary motion. 

 

Category II                                         

2.14 Which force is required to obtain circular motion of the particle around the centre of the force? 

2.15 Show that for a particle moving through inverse square law forces, areal velocity remains 

constant. 

2.16 A particle moving in a force field has the equation of its orbit r = aθ. Find the laws of force. 

2.17 For which type of force, its curl is zero? 

2.18 A force F Cix 
��

ɵ
 acts on a particle. Show that 0.F 

�� ��
  

          In your above finding can you conclude about the nature of the force? 

 

Numerical Problems 

2.1  A particle moves in a circular orbit obeying the inverse square law. Show that for orbits of 

different radii, the angular momentum of the particle about the center of mass varies as the root 

of the radius and the total energy varies inversely as the radius. 

2.2  A particle moving under a central force field described by the orbit r = ae
bθ

. Find the laws of 

force. 

2.3   A particle moving under a central force field described by the orbit r = a (1+ cosθ). Show the 

nature of the force graphically. 

2.4  A planet revolves around a star in an elliptic orbit. The ratio of farthest distance to the closest 

one of the planet from the star is 2. Find the ratio of the kinetic energies of the planet at the 

farthest to the closest position.                                                                                        [Ans: 1: 4] 
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KNOW MORE 

 

The law of conservation of energy in mechanics states that in an isolated system the total amount of energy 

remains constant. On the basis of this law, scientists concluded that in an isolated system, energy is neither 

created nor destroyed but it can change from one form to other. As an example, potential energy can be 

converted to kinetic energy and the kinetic energy can become thermal energy. 

Activity 

There is an easy to customize and extend open source Java program Central force workbench that can be 

used in the classroom to simulate the motion of a particle (or a two-body system) under central forces. It 

may be useful to illustrate problems in which the analytical solution is not available.  

Interesting facts 

With the formulation of the special theory of relativity Albert Einstein proposed one component of an 

energy-momentum 4-vector. Out of these four components, one is energy and three are momentum vector, 

separately conserved in any given inertial reference frame. Further, conserved is the vector length, the so 

called Minkowski norm, which is the rest mass. The relativistic energy of a single massive particle involves 

its rest mass in addition to its kinetic energy of motion. In the limit of zero kinetic energy the total energy 

of particle or object is associated with its rest mass. In the general theory of relativity, conservation of 

energy-momentum can be expressed with the aid of a stress-energy-momentum pseudo tensor. 

Analogy 

In the twentieth century, experimental observations led to a detailed knowledge of the large-scale properties 

of the universe. Newton’s universal law of gravitation was not able to accurately model the observed 

universe and so there was a necessity to replace it by general theory of relativity. By the end of twentieth 

century and at the very beginning of the twenty first century, some new finding, e.g., the accelerated 

expansion of the Universe have demanded introduction of new concepts like dark energy. This concept 

leads once again to a fundamental rethinking of the basic concepts of physics for proper interpretation of 

the observed phenomena.  

History 

Early days philosophers took the support of the conservation of some underlying substance of which 

everything is made. As for example, Thales of Miletus thought it was water. In 1638, Galileo published his 

work including the celebrated “interrupted pendulum” which can be explained using modern language as 

conservatively converting potential energy to kinetic energy and vice versa. But Galileo did not define the 

process in modern terms and so cannot be credited with the crucial insight. It was Gottfried Wilhelm 

Leibniz during 1676–1689 who first attempted to develop a proper mathematical formulation of the kind of 

energy connected with motion. 

Timelines  

1619: Kepler’s laws. 

1710:  Jakob Hermann showed that Laplace-Runge-Lenz vector is conserved for the inverse-square central 

force. 

1803:  Louis Poinsot developed idea of angular momentum conservation.  
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Applications (Real Life / Industrial)   

Understanding the subject at depth, engineers can design machines which can be used energy to produce 

work. For example, thermal energy or the heat produced by burning a fuel can be utilized to drive a turbine, 

used to generate electricity. Based on this law, one can say that perpetual motion machines can operate only 

if they deliver no energy to their surroundings. However, from Albert Einstein’s formulation of the special 

theory of relativity scientists now consider the conservation of energy as part of a larger law known as the 

conservation of “mass-energy”. 

Case Study (Environmental / Sustainability / Social / Ethical Issues) 

When we are designing a control system, we need to detect the motion of the system and a large number of 

arrays of different sensors are available.  As an example, GPS is used to  determine the position on the 

earth’s surface measuring the time for electromagnetic waves to travel from satellites in known positions in 

space to the sensor.    

Inquisitiveness and Curiosity Topics 

In 1705 Halley identified the ‘Halley’s Comet’ with the comets of 1531 and 1607 and predicted its return in 

1758, considering the general theory of motion as proposed by Newton in line with the motion of two 

bodies in central interaction. 

Reference for Inquisitiveness and Curiosity Topics 

Aguirregabiria, Juan. (2015). Simulating central forces in the classroom 
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UNIT SPECIFICS 

We have emphasized the following aspects in this unit: 
 Non-inertial frames of reference;  
 Rotating coordinate system;  
 Five-term acceleration formula;  
 Centripetal accelerations;  
 Coriolis accelerations;  
 Applications: Weather systems; 
 Foucault pendulum.  

The applications of the topics are discussed for generating further curiosity and creativity as well 
as improving problem solving capacity.  
      Besides giving a large number of multiple choice questions as well as questions of short and 
long answer types marked in two categories following lower and higher order of Bloom’s 
taxonomy, assignments through a number of numerical problems, a list of references and 
suggested readings are given in the unit so that one can go through them for practice. It is 
important to note that for getting more information on various topics of interest some QR codes 
have been provided in different sections which can be scanned for relevant supportive 
knowledge. 
      After the end of the unit, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 
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RATIONALE 

This fundamental unit on dynamics of particles will help students to get a primary idea about the 
Non-inertial frames, rotating coordinate system, acceleration formula including centripetal and 

Coriolis accelerations. On the basis of this knowledge they will be able to understand the basics 

of particle dynamics. It further describes some important relations and applications which are 

useful for solving many fundamental problems. 

      Any influence that is responsible for a body to accelerate is called a force. Study of the 

motion of particles in terms of forces related to that motion is known as particle dynamics. A 

body gets a constant velocity unless it is acted on by a net force.  

      Dynamics of mechanical systems was first stated by Isaac Newton in his Principia and so 
Newton's laws form the basis for the derivation of the equations of motion for particles. The use 

of particle mass for representing a body is an idealized concept which provides the simplest 
model in dynamics. In general, dynamics is associated with the motion of material objects in 

relation to the physical factors which affect them. 

PRE-REQUISITES 

Mathematics: Differential Calculus (Class XII) 

Physics: Mechanics (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U3-O1:  Describe inertial and non-inertial frame of reference 

U3-O2:  Explain Coriolis force and centrifugal force with expression 

U3-O3:  Explain the role of fictitious forces in rotating frame of references 

U3-O4:  Describe the effect of centrifugal force on gravity 

U3-O5:  Apply the concepts of Coriolis force in different natural phenomenon 

 

Unit-3 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U3-O1 2 2 1 - 3 - 

U3-O2 - 1 1 2 3 - 

U3-O3 2 1 1 - 3 - 

U3-O4 - 1 1 1 1 - 

U3-O5 - 1 1 - 3 - 
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3.1 INTRODUCTION 

A reference frame in which Newton’s laws are valid is called inertial frame of reference. All 
uniformly moving reference frames with respect to inertial reference frame will also be inertial. Up to 
that we would study the motion of the bodies, unless otherwise studied, in inertial frames. But, when a 
reference frame gets acceleration with respect to inertial frame, the form of physical laws such as the 
Newton’s second law becomes different. This type of frame of reference having acceleration relative 
to inertial reference frame is called as a non-inertial reference frame.   

3.2 NON-INERTIAL REFERENCE FRAME 

The frame of reference which is accelerated with respect to an inertial reference frame is known as the 
non-inertial frame of reference. Due to the acceleration in non-inertial reference frame a pseudo force 
arises. Newton’s laws are no longer applicable in these reference frames. Let a reference frame S 
move with a constant acceleration 0f  relative to an inertial reference frame S. If f and f be the 

acceleration of a particle relative to S and S  frames respectively then 0f f f    

or,   0mf mf mf    

or,   0mf F mf    

or,   0F mf
f

m


 

                                                                                                          
(3.1) 

which gives the acceleration of the particle in S  frame of reference. 

      The above equation shows that Newton’s law 
F

f
m

   
is not valid in non-inertial frame of 

reference. In order to make Newton’s law valid in non-inertial frame of reference an extra term 0mf

is to be added with the actual force acting on the particle. This is known as the pseudo force or the 
fictitious force. It is the force which arises only due to the acceleration of the frame. 

3.3 CENTRIPETAL AND CORIOLIS ACCELERATIONS  

Rotating reference frame may be considered as a very special case of non-inertial reference 
frame which rotates with respect to an inertial reference frame. A very common example of a rotating 
frame of reference is the surface of the earth. Let us now derive expressions for velocity, acceleration 
and force on a particle in a uniformly rotating frame with respect to an inertial reference frame. Let, a 
fixed inertial frame S and a rotating non-inertial frame S  are represented by coordinates X, Y, Z and 

X ,Y ,Z   . Let, S  frame is rotating with an angular velocity 
��

 with respect to the S frame. Now, the 

magnitude of any vector A
��

 observed in the S and S frames will be the same, though their magnitudes 
may differ. The positions of a particle with respect to the S and S  frames will be, 

  ɵ ɵ
fixed

r ix jy kz r   
� �
ɵ                                                                                            (3.2) 

and  ɵ ɵ
rotation

r i x j y k z r
       

� �
ɵ

                                                                                 
(3.3) 
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where ( x, y,z ) and ( x , y , z   ) are the positional coordinates of the particle with respect to the S and 
S frames respectively. Obviously,  

fixed rotation
r r
� �

 

or,  
fixed rotation

d r dr

dt dt


� �

 

 

      Now, ɵ ɵ

fixed

dyd r dx dz
i j k

dt dt dt dt
  

�

ɵ  

and,  ɵ ɵ
ɵ ɵ

rotation

dy d jd r dx dz d i d k
i j k x y z

dt dt dt dt dt dt dt

            

�
ɵ

ɵ  

or,   ɵ ɵ ɵ ɵ
ɵ ɵdy dy d jdx dz dx dz di dk

i j k i j k x y z
dt dt dt dt dt dt dt dt dt

              
ɵ

ɵ ɵ  

or,  
ɵ ɵ

S S

d jd r d r d i d k
x y z

dt dt dt dt dt


    
           

   

� �
ɵ

 

      Now,  
d i

i
dt


  

ɵ ��
ɵ , 

ɵ
ɵd j
j

dt


 

��
and 

ɵ
ɵd k
k

dt


 

��
 

  ɵ ɵ

S S

d r dr
x i y j z k

dt dt


                          

� �
��

ɵ  

or,   
S S

d r dr
r

dt dt


   
        

   

� �
�� �

                                                                                        

(3.4) 

or,   0v v r v v
     

� � �� � � �

                                                                                            (3.5) 

where 0v
�

 is the linear velocity due to rotation of the particle, v
�

and 
v
�

 are the velocities of the particle 
in S and S  frames respectively.  

      So, the rotation with respect to any inertial frame of reference may be represented with the help of 
the following operator relation: 

S S

d d

dt dt 

        
   

��

                                                                                              
(3.6) 

Applying this operator relation to the velocity vector v
�

 we get 

S S

dv dv
v

dt dt


   
        

   

� �
�� �
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or,   



                         
 
 

S

S

d v r
dv

v r
dt dt

� �� �
�

�� � �� �
 

or,    
S S S

S

dv dv d d r
r v r

dt dt dt dt
 



                                  

� � �� �
� �� �� � �� �� �

 

or,    
S S

S

dv dv d
r v v r

dt dt dt




                           

� � ��
� �� � �� � �� �� �

 

or,    2




                        S S
S

dv dv d
r v r

dt dt dt

� � ��
� �� � �� �� �

 

or,    2
S S

S

dv dv d
r v r

dt dt dt




                        

� � ��
� �� � �� �� �

                                         

(3.7) 

where f
��

 and f
�� are the accelerations of the particle in S and S frames respectively. The term 2 v


�� �

is the Coriolis acceleration and the term  r  
�� �� �

represents the centripetal acceleration and the 

term 
S

d
r

dt


 
  

 

��
�

is the acceleration due to the variation of angular velocity 
��

 with time. 

      If 0
d

dt




��

 then  2f f v r .
     

�� �� �� � �� �� �
 

Again multiplying both sides of Eq. (3.7) by m we get 

   2


           
 S

d
m f m f m v m r m r

dt

��
�� �� �� � �� �� � �

 

or,    2


           
 S

d
m f m f m v m r m r

dt

��
�� �� �� � �� �� � �

 

or,     02
S

d
F F m v m r m r F F

dt


             
 

��
�� �� �� � �� �� � � �� ��

                                 

(3.8) 

where F
�� and F

��
 are the forces acting on the particle in the S and S frames respectively. F

�� can be 

regarded as the effective force acting on the particle which is the sum of the true force F
��

and the 
fictitious force in the non-inertial frame given by, 
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to view the 
Coriolis effect 
on the Earth’s 

surface 

 0 2
S

d
F m v m r m r

dt


          
 

��
�� �� � �� �� � �

                                                     

(3.9) 

      For constant 
��

 we have  

 0 2F m v m r
     

�� �� � �� �� �
= Coriolis force + Centrifugal force

 

Coriolis force is the fictitious force proportional to 
��

 and v
� , perpendicular to both 

��
 and v

� and can 
act on a particle when it is in motion relative to a rotating frame.   

      Centrifugal force is the fictitious force that acts on a particle at rest relative to a rotating reference 
frame. Its magnitude is 2m r and is numerically equal to the centripetal force but directed away from 
the axis of rotation. 

3.4 CORIOLIS FORCE DUE TO EARTH’S ROTATION 

  

Fig. 3.1: Coriolis force due 

to the rotation of the Earth 

In classical mechanics, Coriolis force is an inertial force proposed in 
1835 by Gustave-Gaspard Coriolis. Due to the earth’s rotation on its 
axis, air is deflected left in southern hemisphere and right in northern 
hemisphere. This circulating deflection of air is known as the Coriolis 
effect. Let a point mass m is located at a point P on the surface of the 
earth at a latitude λ [Fig. 3.1]. Let the inertial coordinate system (x, y, z) 
have its origin rigidly fixed to the earth’s surface at P with the Z-axis 
along the vertically upward direction (along the radius of the earth). The 
angular velocity vector is parallel to the axis of rotation of the earth and 
is in the Y-Z plane given by, 

ɵ ɵcos sinj k   
��

                                                                                           (3.10) 

      Now, for the horizontal projection of the particle with a velocity v
�

 we have 

 
ɵ ɵ ɵv xi y j zk xi y j    

�
ɵ ɵɺ ɺ ɺ ɺɺ           [as 0z ɺ ]                                                        (3.11) 

Now, the Coriolis force acting on the particle will be, 

  2F m v  
�� �� �

ɵ ɵ

2 0 cos sin

0

i j k

m

x y

     

ɵ

ɺ ɺ
 

                               

ɵ ɵ 2 sin sin cosm y i x j x k        ɵɺ ɺ ɺ
                     

(3.12) 

      The horizontal and vertical components of this force are respectively, 

ɵ 2 sin sinm y i x j     ɵɺ ɺ  

and   ɵ2 cosm x k ɺ  

      The magnitude of the Coriolis force is thus,  
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 1 22 2 22 sin
/

F m y x   
��

ɺ ɺ
                                                                                  

(3.13) 

with components along the horizontal and vertical directions as,  

 1 22 22 sin 2 sin
/

m x y m v     ɺ ɺ  

and   2 cos 2 cosxm x m v .    ɺ
 

 

  

Example 3.1 A rocket is moving with a velocity of of 1.5 km/s at λ = 500 S. 
Calculate the magnitude of the Coriolis acceleration. 

Solution 

The Coriolis force is given by 2 cosF m v .    

Hence the Coriolis acceleration is given by 2 cosf v .    

Here λ = 500, v = 1.5 km/s and 
2

rad/s.
24 3600


 


 

So,  22
2 cos 2 1500 cos 50 0 14m/s

24 3600
f v . .


       

     
  E

X
A

M
P

L
E

 3
.1

 

 

3.5 CORIOLIS FORCE ON A FREELY FALLING BODY  

On the earth’s surface, let a point mass m is located at a point P at a latitude λ and altitude h [Fig. 3.1]. 
We assume that the inertial coordinate system (x, y, z) have its origin rigidly fixed to the earth’s 
surface at P with the Z-axis along the vertically upward direction (along the radius of the earth).   

      The angular velocity vector is parallel to the axis of rotation of the earth and is in the Y-Z plane 
given by, 

                         
ɵ ɵcos sinj k   

��

 

Now, for the vertical fall of the particle with a velocity v
�

we have  
ɵ ɵ ɵv xi y j zk zk   

�
ɵɺ ɺ ɺ ɺ                                  [ 0 0x , y ɺ ɺ∵ ] 

Now, the Coriolis force acting on the particle will be, 

  2  F m v
�� �� �

ɵ ɵ

2 0 cos sin

0 0

     

i j k

m

z

ɵ

ɺ
 

                                

2 cos 2 cos      m z i m v iɵ ɵɺ                                                                              (3.14) 

since the body is falling vertically downward,  z vɺ .  

      The Coriolis force will therefore be along the positive X-axis acting towards east in the northern 
hemisphere.  

      The magnitude of the acceleration on the particle due to this force will be,  
2 cos 2 cos     x v gtɺɺ  
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Fig. 3.2: Effect of centrifugal               
force on gravity due to the                  

rotation of the Earth 

      Integrating twice with respect to t we get,  
  2cos  x gtɺ                   [as 0xɺ  during the start of the motion]                      (3.15) 

and  31
cos

3
  x gt                 [as x = 0 during the start of the motion]                       (3.16) 

      This will be the displacement of the body at a time t along the positive X-axis towards east. 

      Now for a freely falling body from a height h we have, 21

2
h gt  

or,  
2


h

t
g  

   

3

1 2 2 2
cos cos

3 3

 
       

 

h h
x g h

g g                                                               
(3.17) 

This gives the displacement of the body at a time t along the positive X-axis towards east in the 
northern hemisphere in terms of h. 

   
E

X
A

M
P
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E

 3
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Example 3.2 Find the deflection of a freely falling body from a height of 50 m at 
300 N latitude. 

Solution 

The deflection is given by 
3

1 2
cos

3

h
x g .

g

 
    

   
Here, h = 50 m and λ= 300 N. 

So,   

3 3

1 2 1 2 981 2 5000
cos cos30

3 3 24 60 60 981

h
x g

g

    
                

                               =0.67 cm. 
 

 

3.6 EFFECT OF CENTRIFUGAL FORCE ON GRAVITY  
Centrifugal force is an inertial force acts on all objects when 
observed in a rotating reference frame. This force is moving away 
from the axis parallel to the rotation axis and going through the 
origin of the coordinate system. When the rotation axis goes through 
the origin, the centrifugal force moves radially outwards from the 
axis. 

      Let the earth is rotating with angular velocity 
��

 so that the 
reference frame fixed to it is a rotating frame. Let, a particle of mass 
m is located at a point P (with latitude λ) and is at rest [Fig. 3.2].  
      So, there will not be any Coriolis acceleration acting on the 
particle and only the effect of centrifugal acceleration is there. Now, 

if 
��

 is acting along the Y-axis then we have, 
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ɵj
��

                                                                                                                  (3.18) 

      Now, the components of the acceleration due to gravity (g) along the X and Y directions will be, 

  gcos i ɵ  and ɵgsin j   

Such that  ɵgcos gsing i j    
��

ɵ  

      Now, the observed value of acceleration due to gravity (g) at P with latitude λ due to the 
centrifugal force will be,  

 g g r    
�� �� �� �� �

                                                                                             
(3.19) 

where r
�

is the distance of the point P with respect to the axis of rotation. 

  cosr R i 
�

ɵ       [R being the radius of the earth] 

So,  ɵ ɵ ɵ gcos gsin cosg i j j j R i           
��

ɵ ɵ   ɵ2g cos gsinR i j        
ɵ

 

or,   
1 222 2 2 2g cos g sin

/

g R
        

1 2
2

2 22
g 1 cos sin

/

R

g

  
      

  

2

1
R

g

 
 
 
∵ ≪         

or,   
2

2 2 2g 1 cos cos
R

g g R
g



 
      

 
≃

                                                              
(3.20) 

      Thus due to the rotation of the earth, the value of g at a latitude λ will be decreased by 2 2cosR  . 

At equator, λ = 0o and hence 2
equator

g g R                                                                                   (3.21) 

At poles, λ = 90o and hence poleg g                                                                                               (3.22) 

      So, the effect of centrifugal force due to the earth’s rotation is maximum at the equator and nil at 
the poles and the difference is, 

2
2 2

6400000
24 60 60

R
      

0 0337. m/s2. 

  

Example 3.3 If the earth were to cease rotating about the axis, what will be the 
change in the value of g at a place having λ = 500? (assume earth’s radius = 6400 
km) 

Solution 

Here λ = 500, R= 6400 km = 6400000 m and 
2

rad/s.
24 3600


 


 

Using,   2 2cosg g R    
                                                                     

 

we get,   
2

2 2 22
cos cos 50

24 3600
6400000g g R

              
                                        21 4cm/s. .
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3.7 APPLICATIONS OF CORIOLIS FORCE  

Though the relative magnitude of the Coriolis acceleration is small as compared to the real 
acceleration but it plays an important role in many terrestrial phenomena. Some of the geographical 
effects of Coriolis  force  due to the rotation of the earth are the deflection in the rotatory effect in 
cyclones,  direction of trade winds,  erosion of the right bank of river etc. 

Rotatory effects in cyclones: In the atmosphere presumably due to different heating of air a low 
pressure region develops. Such developed low pressure regions, with roughly concentric isobars are 
known as the cyclones. If in the northern hemisphere, a low pressure region develops the air from all 
other directions of the surrounding region rushes towards that low pressure region at right angles to 
the isobars.  

      This rushing air is then deflected towards the right due the Coriolis force and this causes an anti-
clockwise circulation (cyclone) of the air around the low pressure region. This type of circulation goes 
on till the thrust due to pressure gradient is balanced by that due to Coriolis force. In the southern 
hemisphere the direction of the cyclone is clockwise. At the equator (λ = 0), the horizontal component 
of Coriolis force is 2 sinm v  which effectively causes a zero deflection of the wind. That is why no 
cyclone occurs on the equator.  

Deflection of trade wind:  As the earth’s surface at the equator gets heated up by Sun rays, the air in 
contact is also heated and rises up. But the rushing air does not follow the north south direction in the 
northern hemisphere. Due to the Coriolis force, it gets deflected towards the west. The angular 

velocity vector in the expression for the Coriolis force [ 2m v 
�� �

] is directed along the axis of the 
earth upward from the north pole.  

      The wind flows from the north to south, tangential to the surface of the earth and there is a 
velocity component perpendicular to the axis and directed away from it. By using vector algebra, we 
can say that this force will deflect the moving particles to their right i.e., the particles will be deflected 
towards the west direction in the northern hemisphere giving rise to the north-west trade wind. In a 
similar way, the rushing air from the south will be deflected to the right i.e., the particles will be 
deflected to the east direction in southern hemisphere giving rise to the south-east trade wind. 

Erosion of right bank of rivers: The water of rivers during their course from north to south (or from 
south to north) experience Coriolis force towards its right due to the rotation of the earth. Thus the 
right bank of river gets eroded more rapidly as compared to the left bank. In a similar manner, the 
right bank is also getting steeper than the left bank.  

      In the northern hemisphere for a river flowing from north to south, the right bank is to the west 
and for a river flowing from south to north; the right bank is to the east. The effect of Coriolis 
acceleration during the flight of a guided missile assumes considerable significance as the velocity and 
the time of flight are considerably large. 

3.8 FOUCAULT PENDULUM  

It is a pendulum moves under the influence of gravity, suspended from a long cable with tension T. It 
can detect even the slow rotation of the earth. The equation of motion is 

ɵ 2T mgk m v m f   
�� �� � ��

                                                                                     (3.23) 

where the centrifugal force makes only a slight change in the magnitude and direction of g, 
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  2 cosv r    
�� �� �

                                   
(3.24) 

with direction away from the axis of rotation. Let the angle of 
oscillation of the pendulum be very small (and the supporting cable 
very long) so that the arc of the pendulum is sufficiently close to 
horizontal motion. The net external force is the combined effect of 
the tension and gravity, equal to a restoring force, mg sinθ, so 

sin
mg

mg mg L
L

    

giving an effective Hooke’s law force with spring constant mg/L. 
The restoring force is therefore 

ɵ ɵ cos sin
mg

T mgk i j
L

    
��

ɵ≃
                  

(3.25) 

where   2 2x y                                                                                                          (3.26) 

and motion in the ɵk  direction is negligible. The velocity and angular velocity at latitude λ are 

ɵv ix jy 
�
ɵɺ ɺ  

ɵ ɵcos sinj k   
��

 

and the equation of motion becomes 

ɵ ɵ  ɵ  ɵ ɵ  ɵ cos sin 2 cos sin
mg

m ix jy kz i j m j k ix jy
L

              ɵ ɵ ɵɺɺ ɺɺ ɺ ɺɺɺ  

or,  ɵ ɵ ɵ ɵ ɵ2 cos 2 sin 2 sin
g g

ix jy kz x i y j xk x j yi
L L

             ɵ ɵ ɵɺɺ ɺɺ ɺ ɺ ɺɺɺ  

      Equating like components we get, 

2 sin
g

x x y
L

    ɺɺ ɺ

                                                                                       
(3.27) (a)

 

2 sin
g

y y x
L

    ɺɺ ɺ

                                                                                      
(3.27) (b)

 

and  2 cosz x  ɺɺɺ                                                                                                    (3.27) (c)
 

      The Z-direction may be ignored since any acceleration in this direction acts only as a mild 
perturbation on the acceleration of gravity [ xɺ << g.]. Then we have 

2 sin
g

x x y
L

   ɺɺ ɺ

                                                                                          
(3.28) (a)

 

2 sin
g

y y x
L

    ɺɺ ɺ

                                                                                       
(3.28) (b) 

      So, the equations of motion will be, 

2 sin
mg

mx x m y
L

    ɺɺ ɺ
 

   

Fig. 3.3: Foucault pendulum 
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2 sin
mg

my y m x
L

    ɺɺ ɺ  

      Hence, the angular velocity of oscillation of the pendulum is, 0

g

L
   

and thus the period of the pendulum is 2
L

.
g

    

      Now Eq. (3.28) can be re-written as, 
2
0 2 sinx x y    ɺɺ ɺ

                                                                                                        
 

and
  

2
0 2 siny y x    ɺɺ ɺ

                                                                                                          

      Now let,  u x iy 
�

                                                                                                              (3.29) 

so that  2
02 sin 0

.. .

u i u u     
� � �

 

or,  2
02 0z

.. .

u i u u    
� � �

 

or,   2 2
02 0zD i D u    
�

 

or,  2 2
02 0    zD i D          [As, 0]u 

�
 

   2 2
0 1z z z

D i i i          ∓
 

where,   2 2 2
1 0z      

      So, the general solution of Eq. (3.29) will be, 

 z 1 z 1 z 1 1(ω - ω ) (ω + ω ) ω ω ωi t i t i t i t i tu Ae Be e Ae Be      
�

                                          (3.30) 

where A and B are two arbitrary constants. 

      As, 0z    we can write,    

2 2
1 0 1 0        

Thus,  0 0ω ωi t i tu Ae Be 
�

                                                                                               (3.31) 

which effectively describes the elliptical trajectory traced out by the bob of the pendulum. The factor 
zωi te in Eq. (3.30) imparts a rotation on the ellipse about the vertical Z-axis with an angular velocity, 

sinz     

      So, the period of rotation about the vertical axis will be, 

2 2

sin
z

T
 

 
  

                                                                                                   

(3.32) 
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for more on 
Foucault 

pendulum 

At the equator 0  	 , hence T is infinite. 

At the pole 90  	 , hence 
2 2

24
2

24

T
 

  


h.  

      This means that the plane of oscillation at the poles makes complete revolution 
in 24 h. For any other  , T > 24 h. When viewed from the top, in the northern 
hemisphere, the rotation of the plane of oscillation is clockwise while in the 
southern hemisphere it is anti-clockwise. This relative angular shift of the plane of 
oscillation directly emphasizes the rotation of the earth about its own axis. So, we 
cannot strictly consider the earth as an inertial reference frame. 
 

  

Example 3.4 Find the rotational rate of the plane of oscillation of a pendulum at λ 
= 500 and hence calculate the time taken by it when it is turned at right angle.   

Solution 

The period of rotation will be, 
2 2

24 2 h.
2sin sin45
24

T
 

  
  

 

So, the rate of rotation of the plane of oscillation will be, 
2

rad/ h rad/ h.
24 2 12 2

 
    

and the time taken by it to turn through a right angle is, 
2

6 2 h.
12 2

/
t

/


 
  
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Example 3.5 Foucault’s pendulum oscillates along north-south direction where the 
latitude is 300. What time will be elapsed before the pendulum starts to oscillate 
along northeast-southwest direction?      

Solution 

Period                  
2 2

48h.
2sin sin30
24

T
 

  
  

 

So, the rate of rotation of the plane of oscillation will be,  
2

rad/ h rad/ h.
48 24

 
    

and the time taken by the pendulum to start oscillate along northeast-southwest 

direction              
4

6 h.
24

/
t

/


 

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UNIT SUMMARY 

  

 

 Non-inertial frames of reference 

                           

0
 

F mf
f

m   
 

 Rotating frame of reference: Centripetal and Coriolis accelerations 

              0v v r v v
     

� � �� � � �

 

              

 2


           
 S

d
f f v r r

dt

��
�� �� �� � �� �� � �

 
           Coriolis force 

                           
 0 2F m v m r

     
�� �� � �� �� �

 

                                  
= Coriolis force + Centrifugal force

 
 Coriolis force due to the rotation of the earth 

                          2F m v  
�� �� �
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 Coriolis force acting on a freely falling body 
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 Effect of centrifugal force on gravity due to the rotation of the earth 
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EXERCISES 

 

Multiple Choice Questions

 3.1 All the frames of reference that are rotating relative to a fixed frame of reference are the 
___________ frame of reference  

(a) inertial                      (b) non-inertial                  (c) real                            (d) imaginary 

3.2 In a cyclone the wind whirls in the _________ sense in the southern hemisphere  

(a) upwards                    (b) downwards                  (c) clockwise                  (d) anticlockwise  

3.3 A slider sliding at 10 cm/s on a link which is rotating at 60 r.p.m. is subjected to Coriolis 
acceleration of magnitude 

(a) 40π 2 cm/s2                (b) 0.4π cm/s2                    (c) 40π cm/s2                   (d) 4π cm/s2 

3.4 A body in motion will be subjected to Coriolis acceleration when that body is  
(a) in plane rotation with variable velocity             (b) in plane translation with variable velocity 
(c) in plane motion which is a resultant of plane translation and rotation  
(d) restrained to rotate while sliding over another body 

3.5  The Coriolis effect is caused by  

(a) gravity                      (b) the sun’s radiation       (c) the rotation of the earth 
(d) the revolution of the earth around the sun 

3.6 Because of the Coriolis effect, winds and other moving fluids are deflected to which direction in 
the southern hemisphere? 

(a) right                          (b) east                             (c) left                            (d) west                

3.7 The Foucault pendulum provides evidence that the earth 

(a) rotates on its axis      (b) has a spherical shape (c) is inclined in its axis     

(d) revolves around the sun 

3.8  The best evidence that the earth rotates is provided by 

(a) a freely swinging Foucault pendulum          (b) the different phases of moon           

(c) the rising and setting of stars                           (d) the changing season 

 

Answers of Multiple Choice Questions 

  3.1 (b), 3.2 (c), 3.3 (c), 3.4 (d), 3.5 (c), 3.6 (c), 3.7 (a), 3.8 (a)  

 
Short and Long Answer Type Questions 

Category I 

3.1  Calculate the total force and fictitious force acting on a body in a non-inertial reference. Give 
example. 

3.2  Derive the expression for the force in a uniformly rotating frame of reference. 
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3.3 Describe the construction of a Foucault’s pendulum. Show that the bob of the pendulum 
describes an ellipse that rotates with an angular velocity sin  , where the symbols are of their 

usual significance. 

3.4  Give some nature examples what happen due to the Coriolis force. 

3.5 What do you mean by a real force? What is the difference of real force with fictitious force? Cite 
some example to explain your answer. 

3.6 What do you mean by inertial reference frame? What is the difference of inertial reference frame 
with non-inertial reference frame? Explain with examples. 

3.7 A reference frame rotates with respect to another reference frame with an angular velocity
��

. 
Calculate the acceleration of a particle in the rotating frame. Explain the significance of each 
term in the expression. 

3.8  Assuming the earth to be a rotating reference frame, explain the role of centrifugal force to 
change the value of g. Show that g is maximum at the equator and minimum at the poles. 

3.9 Calculate the vertical deviation suffered by a body while dropped from rest from a given height 
due to Coriolis force. Will there be any change in this deviation in the northern and the southern 
hemispheres? 

 
Category II                                         

3.10 Write down the mathematical expressions for Coriolis force and centrifugal force. When a 
merry-go-round is just started, a force other than the Coriolis force and centrifugal force is 
experienced. What is the force due to? Write down its mathematical expression. 

3.11 What will be the direction of the realized Coriolis in the northern and the southern hemispheres? 

3.12  Why no cyclones occur at the equator? 

3.13 Why the right banks of rivers are found to be eroded more than the left bank in both the 
hemispheres? 

3.14 Under what conditions is the Coriolis acceleration present? Discuss the geographical effect of 
Coriolis force due to the earth’s rotation. 

3.15 What is Coriolis force? Under which circumstances it is zero? When it can be maximum? 

 
Numerical Problems 

3.1 Calculate the time required for the plane of vibration of a Foucault’s pendulum to rotate once at 
latitude of 450. How much time will it take to rotate to 600 at the same place and at a place of 
latitude 600.                                                                                           [Ans: 24√2h, 4√2h, 8/√3h] 

3.2 Find the rate of rotation of the plane of oscillation of a Foucault’s pendulum at latitude of 300 and 
hence calculate the time it will take to turn through 900.                               [Ans: π/24 rad/h, 12h] 

3.3 A particle is thrown downward with an initial speed v0. Show that after a time t it is deflected 
east of the vertical by an amount  

         2
0

1
sin sin

2
v t gt     . 
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3.4 Find the deviation suffered by a body dropped from a height of 100 m at 600 N, at the equator 
and at the north pole.                                                                                       [Ans: 0.011, 0.022, 0] 

 
 

KNOW MORE 

 

A ‘Particle’ is considered as a point mass at some point in space. A particle can move about but has no 
characteristic orientation but is characterized by its mass. The dynamics of mechanical systems was first 
pointed out by Isaac Newton in his Principia of 1687. Use of particle mass for representing a body is an 
idealized concept which provides the simplest model in dynamics. When the laws of Newton are to be 
applied for a rotating reference frame, there should be an inclusion of an inertial force. For clockwise 
rotation it should act left of the motion of the body and for anti-clockwise rotation it should act right of the 
motion of the body.    

Activity 

In physics, the Newtonian dynamics can be well understood as the dynamics of a particle or as a small 
body according to Newton’s laws of motion. Study of dynamics can be divided into categories; linear 
dynamics and rotational dynamics. Linear dynamics are associated with the objects moving in a line and 
covers topics like force, mass, inertia, displacement, velocity, acceleration and momentum.  

      Rotational dynamics, on the other hand, are rotating or moving in a curved path and covers topics like 
torque, moment of inertia, rotational inertia, angular displacement, angular velocity, angular 
acceleration and angular momentum. 

Interesting facts 

In 1668 the first experimental study for the demonstration of the Coriolis 
force was done by Giovanni Borelli, when he considered the falling 
body problem on the rotating Earth. In his theoretical observation, he 
found that during their fall the bodies will undergo a little deflection 
along the east. 

      During the same time, more experiments were carried out on freely 
falling bodies. One such famous experiment was conducted by 
Ferdinand Reich in a mine pit. On a total of 106 experiments he noticed 
an average 2.8 cm deflection along the east in agreement with the 
theoretical value.  

 
Ferdinand Reich mine pit                

experimental plot 

Analogy 

Dynamics is a very important branch of physical science and subdivision of mechanics which is associated 
with the motion of material objects in relation to various physical factors which affect them, e.g., force, 
mass, momentum, energy. In fact, the dynamics of a particle involve the forces acting on the particle which 
is resulted in an acceleration of the particle. Study of the dynamics of a particle is also reasonably referred 
to as kinetics. 

      Foucault had derived a simple equation, known as his sine law. This gives the time it would take for a 
pendulum at any given latitude for completing a rotation. At the equator, the pendulum’s plane of 
oscillation would never move but at the north pole, the plane of the pendulum would complete a 360 degree 
rotation in 24 hours. In Paris, this pendulum would turn 270 degrees in a day. 
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History 

Newton developed the fundamental physical laws which help to govern 
dynamics in physics. By getting a knowledge Newton developed on different 
systems of mechanics, one can clearly get an idea of dynamics. In fact, 
dynamics is widely related to Newton’s second law of motion. But it is true that 
all the three laws of motion are to be taken into account as these are interrelated 
in any given experiment or observation. 
      The work of Gustave-Gaspard Coriolis, in 1835 on the derivation for an 
expression of the force acting in a rotating system was revolutionarily inspired 
by rotating devices like industrial waterwheels.  

 
Gustave-Gaspard Coriolis 

      However, the Earth is one of the rotating devices that have always been with us. Perhaps, well before 
Coriolis all the earliest studies to investigate the behavior of moving objects in a rotating system were 
realized by encompassing the diurnal rotation of the Earth.  

Timelines  

1668:  First detailed study on a manifestation of the ‘Coriolis’ force by Giovanni Borelli. 

1749:  Coriolis acceleration equation was derived by Leonhard Euler. 

1778: Pierre-Simon Laplace described the effect of Coriolis acceleration in tidal equations. 

1798:  Laplace’s work on the deflection of projectiles. 

1831:  Results of 106 experiments on freely falling balls in a mine pit by Ferdinand Reich. 

1835:  Development of the expression of force acting in rotating system by Gustave-Gaspard Coriolis. 

1851:  Léon Foucault showed the Earth’s rotation with a huge pendulum, the well known Foucault 
pendulum.  

1856:  William Ferrel adopted Laplace’s tidal theory and introduced them in meteorology. 

Applications (Real Life / Industrial)   

Coriolis effect has great impact in astrophysics and stellar dynamical properties. It is indeed a controlling 
factor in the directions of rotation of the sunspots. It has also significant impact in several aspects of 
meteorology and oceanography where the motions over the surface of the Earth, which is considered to be 
a rotating reference frame, are subject to acceleration. 

      In electrodynamical studies of the generated instantaneous voltage in a rotating electrical machine can 
be divided into an induced voltage and a generated voltage. This is basically a relative consequence and 
depends on the choice of reference frames. Depending on the relative velocity of the frames it can be 
entirely or partially induced and or generated. Due to the rotation of the reference frame with a different 
velocity from that of the rotor there is a developed voltage analogous to the Coriolis force and is referred as 
the Christoffel voltage. 

Case Study (Environmental / Sustainability / Social / Ethical Issues) 

Generally speaking, scientists involved in the study of dynamics concentrate mainly on how a physical 
system might be developed or can be altered over time. One priority area of the researchers is to study the 
causes of the changes of the physical systems. The Coriolis force appears significantly in studies of the 
atmospheric dynamics, hydrosphere and ballistics. In case of atmospheric dynamics it affects prevailing air 
circulation and the rotation of storms, in hydrosphere it affects the rotation of the oceanic currents and in 
ballistics it can specifically effect in the launching and orbiting of space vehicles. 
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Inquisitiveness and Curiosity Topics 

One night at about 2 AM in early January 1851, Foucault realized that if he could devise a way to hang a 
pendulum from the ceiling in such a manner that the pendulum was free to swing in any direction, he would 
be able to observe the effect of Earth’s rotation. It would appear that the pendulum’s path was shifting 
slowly but the pendulum’s plane of oscillation would stay fixed while Earth turned beneath it. He realized 
the pendulum had to be designed very carefully wherein the bob must be perfectly symmetrical.  

      When starting the pendulum swinging, it had to be released gently as the slightest push would ruin the 
demonstration. It was the first clear and dramatic demonstration of the Earth’s rotation by him. After 
successfully completing the experiment in his basement, he was ready to demonstrate the same on a larger 
scale. On February 2, 1851, Foucault sent a notice to the scientists in Paris, saying “You are invited to see 
the Earth turn.” 

 
Engraving of Leon Foucault’s pendulum which demonstrated the Earth’s rotation in the Pantheon, Paris in 1851                   

(Courtesy: Photography by Pictorial Press) 

      The next day, in the Meridian Room of the Paris Observatory, the scientists assembled there did indeed 
witness the Earth turn and thus the first pendulum demonstration was a success. Napoleon III, who was 
also an amateur scientist and supportive of Foucault, arranged for him to hold the position of Physicist 
attached to the Imperial Observatory, where he made significant improvements to the telescopes. But the 
French Academy of Science was reluctant to elect Foucault the membership. However after applying 
several times, Foucault was finally elected in 1865 but he died in Paris on February 11, 1868, only at age 
49. The public continues to be fascinated with the Foucault pendulums, which can be seen in science 
museums and at many other public spaces around the world. 

References for Inquisitiveness and Curiosity Topics 

1. P. S. Laplace, Traité de Mécanique Céleste, Vol. 1. Crapelet, Paris (1798).  
2. G. Coriolis, Sur les équations du mouvement relatif des systèmes de corps. J. Éc. Polytech. Paris, 

Cahier XXIV, Tome XV, 142 (1835).  
3. M. Brillouin, Mémoires originaux sur la circulation générale de l’atmosphère. Carré et Naud, Paris 

(1900).  
4. J.G. Hagen, La rotation de la terre, ses preuves mécaniques anciennes et nouvelles. Tipografia 

Poliglotta Vaticana, Roma (1911). 
5. https://www.britannica.com/science/Coriolis-force 
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UNIT SPECIFICS 

We have discussed the following topics in this unit: 
 Characteristics of simple harmonic motion; 
 Solution of the differential equation of motion of simple harmonic motion; 
 Harmonic oscillator;  
 Damped harmonic motion;  
 Critically damped and lightly-damped oscillators;  
 Logarithmic decrement, relaxation time and quality factor associated with damped 

harmonic motion; 
 Forced oscillations and  
 Resonance in forced vibrations. 

The practical applications of the topics are discussed for generating further curiosity and 
creativity as well as improving problem solving capacity.  
      Besides giving a large number of multiple choice questions as well as questions of short and 
long answer types marked in two categories following lower and higher order of Bloom’s 
taxonomy, assignments through a number of numerical problems, a list of references and 
suggested readings are given in the unit so that one can go through them for practice. It is 
important to note that for getting more information on various topics of interest some QR codes 
have been provided in different sections which can be scanned for relevant supportive 
knowledge. 
      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

44            OOsscciillllaattiioonnss    
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RATIONALE 

This unit on oscillations will help students to get a clear idea about harmonic oscillator including 
damped harmonic motion and over-damped condition. It will help to develop some important 

ideas on oscillatory motion. The explanation on forced oscillations and resonance are topics 

whose understandings help in different applied areas. Some related phenomena are also outlined 
as supporting topics with large area of applications. 

      Oscillation generally means the repeated to-and-fro motion of some objects between two 
positions or states. A single oscillation is considered as a complete movement, whether up and 

down or side to side, over a period of time. In broadest sense, oscillation can occur in anything 

from a person's decision-making process to tides and the pendulum of a clock. For example, in a 
pendulum-driven clock, the oscillation is the back and forth movement of the pendulum. 

Waves can also be considered as oscillations, or vibrations, about a rest position. 

Sound wave causes air particles to vibrate back and forth. Ripples cause water particles to vibrate 

up and down. 

PRE-REQUISITES 

Mathematics: Trignometry (Class XII) 

Physics: Simple harmonic Motion, Waves (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U4-O1:  Describe the relationship between displacement, velocity and acceleration for a mass 
moving in simple harmonic manner 

U4-O2:  Explain different types of damped vibratory motion with the idea of damping constant 

U4-O3:  Explain steady states and variable state in forced vibratory motion 

U4-O4:  Discuss velocity, energy resonance and sharpness of resonance 

U4-O5:  Apply differential equation of simple harmonic motion to calculate time period of an 

oscillatory motion 

 

Unit-4 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U4-O1 - - 2 - - 3 

U4-O2 - - 1 - - 3 

U4-O3 - - 1 - - 3 

U4-O4 - - 1 - - 3 

U4-O5 - - 1 - - 3 

 



Oscillations | 97 

 

4.1 INTRODUCTION 

The repeated nature of any motion at a regular interval of time is known as periodic motion. Motion of 

a pendulum, oscillation of an object on a spring, earth’s diurnal motion etc are examples of such 

motion. If a particle in course of its periodic motion follows to-and-fro movement about equilibrium 

or the mean position, then this type of motion is named as oscillatory motion. Motion of a simple 

pendulum and those of a spring are examples of such motion. All the oscillatory motions are periodic 

but all periodic motions are not oscillatory. 

      Number of oscillation made by an oscillating body per unit time is termed as frequency (n) and the 

time required to complete one oscillation is called the time period (T) of the motion. The relationship 

between these two is given by: 

1
n

T
                                                                                                                     (4.1) 

      When a body performs steady vibration with its natural angular frequency, it experiences a 

number of dissipative forces or frictional forces which decreases the amplitude of vibration of the 

body with time and ultimately the motion of body is stopped. Such vibration of the body with 

decaying amplitude is called damped vibration. The amplitude of oscillation of a body undergoing 

damped vibration goes on decreasing with time due to loss of energy to overcome the resistive or 

dissipative forces. When an external periodic force is applied to the system to make up for the losses, 

the amplitude of vibration does not decay with time and the body vibrates regularly under the action 

of the periodic force. This vibration of the body under the action of the periodic forces is termed as the 

forced vibration. 

4.2 SIMPLE HARMONIC MOTION 

In both physics and mechanics, simple harmonic motion (SHM) is considered as a special case of 

periodic motion. In this type of motion, the restoring force acting on any moving object is directly 

proportional to the magnitude of the displacement of the object and acts towards the equilibrium 

position of the object 

      When a particle moves to-and-fro in such a way that the acceleration of it 

is always directed towards a fixed point in its path of motion and is 

proportional to the displacement from the mean position, the motion of a 

particle is termed as SHM, e.g., motion of a simple pendulum [Fig. 4.1]. The 

distance traversed by a particle at any instant from the mean position is termed 

as the displacement of the particle and the maximum displacement on either 

side from the mean position is the amplitude of the motion. 

      If a particle of mass m executes SHM about a mean position such that at 

any time t the displacement from the mean position is x then the acceleration of 

the particle can be written as: 

f kx                                                                   (4.2) 

Here k is a constant of proportionality. 

      So the force experienced by the particle at that instant is given by,  

 

Fig. 4.1: Motion of a     
simple pendulum 
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 F mf mkx x                                                                                              (4.3) 

μ is the proportionality constant and is termed as the resorting force per unit displacement of the 

particle. 

4.2.1 Characteristics of SHM 

The characteristics of SHM are the following: 

 (a) The motion is oscillatory, 

 (b) The motion is linear, and 

 (c) From the mean position, the acceleration of the body is proportional to the displacement 

and with reference to the mean position it is always directed away. 

4.3 ANALOGY OF SHM WITH CIRCULAR MOTION 

SHM is a special case of circular motion. To understand this; let us consider a particle moving along 

circle of radius a with centre at O. Let at t = 0 it is at X and it goes to P at any instant t making an 

angle θ with OX [Fig. 4.2].  

      Here θ = ωt, where ω is the uniform angular velocity of the particle. Now, if a perpendicular PM 

is drawn from P to OX then it will give the displacement y of the particle at that instant t. This 

corresponds to a point Pon the displacement-time curve on the right hand side of Fig. 4.2.  

 

Fig. 4.2: SHM along with its reference circle 

      Similarly, the displacement of a particle, when it is at A, B, C, D and E in its circular motion, may 

be represented respectively by A , B , C , D    and E on the displacement-time curve. Thus after 

completing a cycle in its circular path the graph on the right side indicates that the motion may be 

looked upon as simple harmonic. The circle is called the reference circle. From Fig. 4.2 we have, 

  sin
PM y

OP a
   

or,  sin siny a a t  
                                                                                              

(4.4) 

      If the particle is not at O initially, but at some other point then the equation for the displacement at 

any instant t is given by, 

   siny a t  
   

[where   is the initial phase]                                                 (4.5) 

      Rate of change of displacement of the particle is called its velocity and is given by, 
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 cos
dy

v a t
dt

    
 

  
2

2 2

2
1

y
a a y

a
                                                                                       (4.6) 

So, at the mean position of the motion y is zero and thus the velocity will be maximum.  

      Now, the rate of change of velocity of the particle is called its acceleration and is given by, 

2 sin( )
dv

f a t
dt

                     

   
2

y                                                                                                         (4.7) 

Thus, at the extreme position of the motion y is maximum and so the acceleration will be maximum 

and directed towards the mean position. 

Example 4.1 Given that the displacement of a particle of mass 0.5 kg under simple 

harmonic motion is 5cos
3 6

y t
    

 
m. Calculate the 

i) amplitude, angular velocity, time period of the particle; 

ii) displacement, velocity and acceleration after 1 s; 

iii) the kinetic and potential energy when displacement is 0.04x  m; and 

iv) the total energy of the particle. 

Solution 

The equation of a SHM is given by,   y a cos t               (a) 

Here 5cos
3 6

y t
    

 
                                                             (b) 

 (i) Comparing Eqs. (a) and (b) we get, the amplitude of SHM is a = 5 m, the 

angular velocity rad/s
3


  and the time period 

2
6 s.T  




  

(ii) At t = 1 s the displacement is  

                       
3

5cos 5cos 5
3 6 6 2

y m
   

    
   

                             

= 4.33 m.  

At any instant, the velocity of the particle is,  

                      5 sin
3 3 6

dy
v t

dt

       
 
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Thus at t = 1 s,  

                      5 sin 5 sin 2.62 m/s.
3 3 6 3 6

v
       
 

    

 

Again the acceleration of the particle is given by,  

                       

2

5 cos
3 3 6

dv
f t

dt

           
     

Thus at t = 1 s,  

                       

2 2
25 cos 5 cos 4.74 m/s

3 3 6 3
.

6

dv
f

dt

                
     

    
  

(iii) Now the kinetic energy of the particle is given by, 

                        2 2 2 21 1
KE

2 2
mv m a x    

At 0.04 mx  ,  
2

2 21
KE 0.5 5 0.04 6.845 J.

2 3

      
 


 

and the potential energy of the particle is  

                        2 21
PE

2
m x  

At 0.04 mx  ,  
2

2 41
PE 0.5 0.04 4.38 10 J.

2 3

       
 


 

(iv) The total energy of the particle is  

                          
2

22 21 1
0.5 5 6.846 J.

2 2 3
m a

      
 


  

 

 

4.4 DIFFERENTIAL EQUATION OF SHM  

For a particle undergoing oscillatory motion, if the acceleration is directed to a fixed position along its 

path and is always proportional to the displacement from that position then the particle motion will be 

simple harmonic. For a particle of mass m executing SHM; if x be the displacement of the particle 

from the mean position then the force acting on the particle is given by, 

2

2

d x
m x

dt
   

or,   

2

2

d x
m x

dt
    

where μ is the restoring force per unit displacement. 
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for a tutorial          

on SHM 

or,    

2

2
0


 

d x
x

mdt
 

or,    

2
2

2
0

d x
x

dt
 

                                                                                                       

(4.8) 

where,   2

m





  

or,   
2

m   

      Eq. (4.8) is the basic differential equation of a particle executing SHM. 

Solution of the equation: Multiplying both sides of Eq. (4.8) by 2
dx

dt
 we get, 

  

2
2

2
2 2 0

dx d x dx
x

dt dtdt
   

or,   

2
2 2

0
d dx

x
dt dt


       
   

 

or,   

2
2 2 K

dx
x

dt
    

   

where K is the integration constant. 

      Now x = a,  0
dx

dt
   

  
2 2K a  

So,   

2
2 2 2 2dx

x a
dt

     
 

 

or,   

2
2 2 2( )

dx
a x

dt
    

 
 

or,   2 2dx
a x

dt
   

or,   
2 2

dx
dt

a x




 

      Integrating both sides we get, 

2 2

dx
dt

a x




 
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for more on 

harmonic 

oscillator 

or,   1sin  =  + 
x

t
a

   

or,    sin
x

t
a

  
 

or,
   sinx a t  

                                                                                                   
(4.9) 

which is the required solution. 

4.5 HARMONIC OSCILLATOR 

It is a vibrating system with its vibration in a simple harmonic manner consisting a mass m attached to 

a spring of spring constant k as shown in Fig. 4.3. Let the mass m is displaced to point P by a distance 

x and then released. The restoring force developed will act in the negative direction of x and is given 

by   F x  

or,  F kx                

where k is the force constant. 

or,   
2

2

d x
m kx

dt
 

                                      
(4.10) 

or,  
2

2

d x k
x

mdt
 

                                                                                                         
(4.11) 

      So, the motion of the body is simple harmonic. Comparing Eq. (4.11) with the general differential 

Eq. (4.8) of SHM we get,   

2 k

m
  

or,    
k

m
    

  2
k

T
m


                                                                    

(4.12)

     

 

This gives the time period of the harmonic oscillator. 

4.6 DAMPED VIBRATION 

In practice it is found that the amplitude of vibration of any vibrating body when left to itself, 

gradually diminishes and ultimately the amplitude becomes zero. Since it is resisted by different 

external or internal forces or both, the medium withdraws energy from the vibrating body and the 

resisting force becomes proportional to the velocity of the particle. Such vibration of particle resisted 

by damping forces is called damped vibration. This type of vibration is experienced by a body in 

presence of dissipative forces or frictional forces.  

4.6.1 Differential Equation  

Let a particle of mass m has the displacement x executing damped vibration from its initial position of 

rest at any instant t. The particle experiences forces which may be written as:  

Fig. 4.3: Harmonic Oscillator 
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(i)  the force of inertia on the body by virtue of its motion and is given by
2

2

d x
m

dt
, 

(ii)  force of restitution tending to bring the particle to its initial position of rest and is given by 

μx; μ being the restoring force per unit displacement, and 

(iii)  resisting or dissipative force due the damping and is proportional to the velocity of the 

particle given by
dx

b
dt

. 

      Thus at equilibrium the force equation of the particle will be,   

   
2

2

d x dx
m x b

dtdt
    

or,   
2

2
0

d x b dx
x

m dt mdt


  

 

or,   
2

2

2
2 0

d x dx
k x

dtdt
                                                                                          (4.13) 

where,   2
b

k
m


 

and    2

m


   

     Eq. (4.13) is the general differential equation of motion of a particle executing damped vibration. 

     Let the general solution of Eq. (4.13) to be, 

tx ae  

Differentiating twice with respect to t, we get the following two expressions: 

tdx
a e

dt

  and 
2

2

2

td x
a e

dt

  

Putting in Eq. (4.13) we have,  

2 22 0t t ta e ka e a e        

or,    2 22 0tae k        

or,   2 22 0k                        [ as 0tae  ] 

i.e.,   
2 2

2 22 4 4

2

k k
k k


 

  
      

      Thus, the general solution of Eq. (4.13) may be written as, 

2 2 2 2
2 2 2 2

1 2 1 2

k k k k
kt k t k

t t
tx A e A e e A e A e

 
 

   
     

     
     

    
 

      (4.14) 



104 | Physics - Introduction to Mechanics 

 

where A1 and A2 are two constants to be evaluated. Depending on the relative values of k and ω there 

may be three cases – 

Case 1 - Under-damped motion with light damping: When k < ω i.e., the damping force is small 

then 2 2k  is imaginary and is given by, 

2 2 2 2k i k    

      Hence Eq. (4.14) reduces to – 

2 2 2 2

1 2
kt i k t i k tx e A e A e    

  
 

 

or,      2 2 2 2 2 2 2 2
1 2 sicos si nn cosktx e A k t i k t A k t i k t         

  


  

or,      2 2 2 2
1 2 1 2c sinosktx e A A k t i A A k t         

 

Let, us assume   1 2 sinA A P  
 

and    1 2 cosi A A P    

  2 2 2 2cos sin sin coskt tx e P k P k t       
   

 

                                 2 2sinktPe k t   
                                                                              

(4.15) 

 
Fig. 4.4: Graphical illustration of             

damped oscillatory motion 

This represents the damped oscillatory motion.  

      The graphical representation is shown in Fig. 4.4. 

The amplitude of the motion is ktPe which decreases 

exponentially at a rate determined by the decay constant 

k and the time period of the motion is,  

        
2 2

2

k

T








                                

(4.16) 

From Eq. (4.15) it is clear that the presence of the damping force has the following two 

effects— 

(a) The amplitude is no longer constant but dies away according to the factor k te  . 

(b)  The frequency reduces slightly below the free natural frequency and is given by
2 2

2

2k



, 

instead of .
2




 

e.g.,  Motion of a pendulum in air, electric oscillations of LCR circuits i.e., discharge of a charged 

capacitor through an inductive coil of low inductance, oscillations of coils in ballistic 

galvanometer etc.  
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Case 2 - Over-damped motion with heavy damping (deadbeat motion):  

 

Fig. 4.5: Illustration of critically damped                                

and overdamped motion 

When k > ω i.e., the damping force is large then the 

motion will be non-oscillatory. In this case 2 2k k 
and so from Eq. (4.15) we get the displacement x of the 

body gradually decreases exponentially with time and it 

comes to its equilibrium position at t   without 

performing any oscillation. This type of motion is called 

over-damped or aperiodic or dead-beat motion. The 

motion is illustrated in Fig. 4.5. 

e.g., The motion of pendulum in a viscous liquid or 

discharging of capacitor through a resistor.  

Case 3 - Critical damping: When k = ω then we get from Eq. (4.15), 

   2 2 2 2 2 2 2 2
1 2 1 21 1kt k t k t ktx e A e A e e A k t A k t                   

   

                    
    2 2

1 2 1 2
te A A A A k t     

  



 

    tx A Bt e  
                                                                                                  

(4.17) 

where 1 2A A A   and   2 2
1 2B A A k     

      Motion of this type is termed as critically damped motion which is also illustrated in Fig. 4.5. In 

this case the damped oscillatory motion suddenly changes into a dead beat motion but the particle 

tends to move to equilibrium much more rapidly than the overdamped motion. It is also a non-

oscillatory motion. 

Example 4.2 A particle of mass 0.02 kg is acted on by a restoring force per unit 

displacement 310 10  N/m and frictional of force per unit velocity of 32 10
Nm

-2
-s. Find 

i) whether the motion is oscillatory or not, 

ii) for what value of resistive force the damping will be critical and 

iii) its time period, if the particle is displaced through 2 cm. 

Solution 

Here,                 
Resisting force

Displacement
µ  310 10  N/m,  

                         
Frictional force

Velocity
b  32 10  Nm

-1
-s,  

and                    m = 0.2 kg. 

(i)              
3

12 10
0.005 s .

2 2 0.2

b
k

m




  


 

  
  
 E

X
A

M
P

L
E

 4
.2
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E
X

A
M

P
L

E
 4

.2
 

Thus,   
3

110 10
0.22 s .

0.2m


 

    

As, k < ω the motion is oscillatory. 

(ii) For the motion to be critically damped,
 2

b

m m


   

or,    4b m  

or,    3 24 0.2 10 10 8.94 10b       Nm
-1

-s. 

(iii) Time period is given by  

                             
   2 2

2
28.57 s.

0.22 0.005

T  



 

 

 

 

  
  
  

  
  
  

E
X

A
M

P
L

E
 4

.3
 

Example 4.3 A body of mass 10 g is acted upon by a restoring force per unit 

displacement of 10 dyne-cm
-1

 and resisting force per unit velocity of 2 dyne-cm
-1

s. 

Obtain 

i) whether the motion is periodic or oscillatory, 

ii) the resisting force that makes the movement critically damped and 

iii) the mass so that for the applied force makes the motion critically damped. 

Solution 

Here,                   
Resisting force

Displacement
µ  = 10 dyne/cm,  

                            b = 
Frictional force

Velocity
= 2 dyne-cm

-1
s and  

                            m = 10 g. 

(i)    12
0.1 s .

2 20

b
k

m

    

110
1 s .

10m


     

Since, ω > k therefore the motion is oscillatory. 

(ii) For critically damped motion 
2

b

m m




 

or,    4b m  
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or,    4 10 10 20b     dyne-cm
-1

s.  

(iii)  Using  4b m  

we get,   

2 2
20

10
4 4 10

b
m


  


gm, 

which is the required mass for which the given force will make the motion 

critically damped. 

  
  
 E

X
A

M
P

L
E

 4
.3

 

 

 

Example 4.4 The equation for displacement of a point of a damped harmonic 

oscillator is, 

0.25 = 5 sin m
2

tx e t
  

 
 

. Find the velocity of the oscillating point at t =
4

T
, where 

T is the time period of oscillator. 

Solution 

Equation for displacement of the damped harmonic oscillator is, 

  

0.25 = 5 sin m.
2

tx e t
  

 
              

(a) 

Comparing the above equation with, sinktx Pe t , we get ω = π/2. 

Thus, the period is 
2 2

 =
/ 2

T
 
 

 = 4 s. 

Now differentiating Eq. (a) with respect to t, we get, 

  0.25 0.25 = 5 0.25 sin 5
2 2

co
2

st tdx
e e

dt

           
   

 

At,   
4

1 s,
4 4

T
t     

velocity, 0.25 0.25 = 1.25 sin 5 0.974
2

c
2

o
2

st tv e e
       m/s.  

So, the velocity is in the opposite direction. 

  
  
 E

X
A

M
P

L
E

 4
.4

 

 

4.7 FORCED VIBRATION 

The tendency of an object to apply force to another nearby object into vibrational motion is called 

forced vibration. In forced vibration there must be an external force acted on the system to execute the 

vibration. This external force may be harmonic, non harmonic, periodic or non-periodic. For instance 

if some objects are set into vibration at their natural frequency by somehow disturbing the object, the 

entire system begins to vibrate and forces system surrounding into vibrational motion.  
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      e.g., In musical instruments like guitar string, guitar and enclosed air are forced to vibrate. 

4.7.1 Differential Equation  

Let an external periodic force acts on a mass m and is represented by F cos pt, where F is the 

amplitude and p is the angular frequency of the applied force. Let x be the displacement of a particle 

executing forced vibration from its initial position of rest at any instant t. The forces acting on the 

particle are, 

(i) Force of inertia
2

2

d x
m

dt
 due to its motion. 

(ii) Force of restitution tending to bring the particle to its initial position of rest and is given by
x ;   being the restoring force per unit displacement. 

(iii) Damping force which is directly proportional to the velocity of the particle and is given by

d x
b

d t
, b is the resisting force per unit velocity. 

(iv) The external periodic force F cos pt. 

      Hence, we can write the equation of motion as, 

2

2
cos

d x dx
m x b F pt

dtdt
   

 

or,  
2

2
cos

d x b dx F
x pt

m dt m mdt


    

or,   
2

2

2
2 cos

d x dx
k x f pt

dtdt
  

                                                                             
(4.18) 

where,   2
b

k
m

 , 2

m


   and

F
f

m
  

      Eq. (4.18) represents the differential equation of motion of a particle of mass m undergoing forced 

vibration under the action of a periodic force F cos pt.                                                                                                  

4.7.2 Solution of the Differential Equation 

In case of forced vibration initially the system will try to vibrate with its natural period but ultimately 

it will vibrate with the period and frequency of the external periodic force and hence the solution of 

Eq. (4.18) may be written as, 

     cosx A pt  
                                                                                               

 (4.19) 

Differentiating both sides of Eq. (4.19) twice with respect to t we get the following two expressions: 

 sin
dx

Ap pt
dt

    
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and     
2

2

2
cos

d x
Ap pt

dt
    

      Using these in Eq. (4.18) we get, 

     2 2cos 2 sin cosAp pt kAp pt A pt        
        

                                                                    
 cos cosf pt f pt    

                                                                                                                         

                                                                       cos cos sin sinf pt f pt        

or,       2 2
cos 2 sinA p f pt kAp pt     

 

                                                                                                    cos cos sin sinf pt f pt        

      As this is true for all values of t the coefficients of  cos pt  and  sin pt  on both sides 

must be separately equal. Hence, 

 2 2
cosA p f  

                                                                                         
(4.20) 

and   2 sinkAp f 
                                                                                                     

(4.21) 

      Squaring and adding Eq. (4.20) and Eq. (4.21) we get, 

   2
2 2 2 2 2 2 24f A p A k p    

or,  

 
2

2

2
2 2 2 24

f
A

p k p


 
 

or,   

 2
2 2 2 2

4

f
A

p k p



 
                                                                                 

(4.22) 

      Again dividing Eq. (4.21) by Eq. (4.20) we get,  

 2 2

2
tan

kp

p






 

or,   

 
1

2 2

2
tan

kp

p






                                                                                            

(4.23)  

       Thus using Eqs. (4.22) and (4.23) solution for Eq. (4.18) may be written as, 

   
1

2 22
2 2 2 2

2
cos tan

4

f kp
x pt

p
p k p




 
       

                                     

(4.24) 
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      This gives the particular solution for the motion having the same frequency as that of the driving 

force, but lagging behind by an angle α. This is true only for steady state. But, at the beginning as the 

force sets the particle into vibration, the particle will vibrate with its natural frequency. The solution 

for the displacement is complementary solution which can be obtained by solving equation for 

damped oscillation,  

2
2

2
2 0

d x dx
k x

dtdt
    

Now, we have the solution for damped oscillation as,  

2 2sin( )ktx Pe k t     

      Hence the general solution is given by, 

   
1

2 22
2 2 2 2

2
cos tan

4

f kp
pt

p
p k p

x 
 
 
    


       

                                                                              
2 2sin( )ktPe k t             (4.25) 

4.8 DISCUSSION FOR STEADY STATES 

The displacement amplitude and velocity amplitude of a body undergoing forced vibration depends on 

the frequency of the applied external periodic force. When the displacement amplitude of a particle 

undergoing forced vibration is maximum for a particular frequency of the applied periodic force, the 

phenomena is called amplitude resonance. The frequency is termed as the resonance frequency. 

4.8.1 Amplitude Resonance  

 In steady state the amplitude of vibration is given from Eq. (4.22) as, 

 2
2 2 2 2

4

f
A

p k p



 

  

      When the amplitude becomes maximum, the amplitude 

resonance takes place. But A will be greatest when the 

denominator  2
2 2 2 24p k p    will be minimum, 

because f is fixed. In this case,   and k are constants and the 

only variable is p.  

      So, if the denominator is to be minimum, its differential 

coefficient with respect to p must be zero. 

Hence,    2
2 2 2 2

4 0
d

p k p
dp

     
 

or,   2 2 24 8 0p p k p     
Fig. 4.6: Occurrence of amplitude            
resonance at resonant frequency 
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or,   
2 22p k 

                                                                                                    
(4.26) 

      Thus, when the frequency of the driving force is 2 21
2

2
k


 , then amplitude resonance takes 

place and the maximum amplitude is given by,  

max
2 22

f
A

k k




                                                                                            

(4.27) 

Hence, the amplitude is greater when the damping factor k is lower and it is illustrated in Fig. 4.6. 

4.8.2 Velocity and Energy Resonances 

When the velocity amplitude of a body undergoing forced vibration attains a maximum value for a 

certain frequency of the applied periodic force, the phenomena is known as velocity resonance. The 

motion of a particle in the steady state under the action of a periodic force is obtained from Eq. (4.19) 

as,    cosx A pt   

Hence,    sin
dx

Ap pt
dt

    

     Thus the KE of the forced system at any instant is given by, 

 
2

2 2 21 1
sin

2 2

dx
T m mA p pt

dt
    

   

    

 

 

2 2 2

2
2 2 2 2

sin1

2
4

mf p pt

p k p








 
                                                                                

(4.28)

 

      Now, for a steady motion, the total energy of the system at any instant is equal to the maximum 

KE. Hence the total energy of the system is, 

 

Fig. 4.7: Variation of energy with 
frequency of the external force 

 
2 2

max 2
2 2 2 2

1

2
4

mf p
E T

p k p
 

 
 

or,   
2

2
2 2

1

2
4

mf
E

p
k

p


 

  
 





              

                                  

2

2 2 2

1

2 4

mf

k


 

                                   

(4.29)

 
where,   

p

p
  


                                          

(4.30) 

      Energy resonance occurs when the energy of the vibrating system is maximum.  
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Again for the vibrating system total energy becomes same as the maximum KE, which is the case 

when velocity is maximum. So, this type of resonance is known as velocity resonance. With frequency 

the variation of energy of the external periodic force is illustrated in Fig. 4.7. 

      When = , Δ 0p   the energy becomes highest for any given value of k. Thus when frequency of 

the forcing system coincides with that of the natural angular frequency f of the forced system, the 

energy of the forced system is maximum. This phenomena is called energy resonance and the energy 

at resonance is obtained from Eq. (4.29) as, 

2

max 2
8

mf
E

k


                                                                                                         
(4.31) 

From Eq. (4.31) it is clear that smaller the value of k, greater is the value of E. 

4.8.3 Sharpness of Resonance 

At resonant frequency the response of the driving body i.e., the energy taken by it from the drived 

force is maximum. But this will diminish if the frequency differs from the resonant frequency. The 

rapidity with which the response falls is a measure of sharpness of resonance. The sharpness of 

resonance is quantitatively defined as the reciprocal of Δ for which the energy is reduced to half the 

resonance value. 

      Let for Δ = Δ1, 

2

max 2

1 1

2 2 8

mf
E E

k
   

Thus, using Eq. (4.29) and putting Δ = Δ1, we have, 

  
2 2

2 2 2 2
1

1 1

2 24 8

mf mf

k k


 
 

or,   
2 2 2 2
1 4 8k k    

or,   1

2k


  

                                                                                                             
(4.32) 

      Hence sharpness of resonance  

               
1

1

2
S

k


  

                                                                                                       

(4.33) 

      From Eq. (4.33) it is clear that sharpness of resonance increases as the damping factor decreases 

and for a particular value of k it is greater as higher the value of natural frequency ω. The sharpness of 

resonance can be more rapidly represented by plotting 
max

E

E
 against ω.  

      When, ω = p, Δ = 0 we have, 
max

1
E

E
  

      It is clear from the curves that smaller the value of damping factor k, the sharper is the resonance. 
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Example 4.5 A body of mass 10 g is acted upon by a restoring force per unit 

displacement 10
7 

dyn-cm
-1

, a frictional force per unit velocity 4 10
3
 dyne-cm

-1
s 

and a driving force of 10
5 
cos pt dyne. Find the value of maximum amplitude. 

Solution 

The amplitude of a particle executing forced vibration is given by, 

  

       
2 22 22 2 2 2

/

2 2

f F m
A

p kp p kp 

 

   

 

When,   ,p 

                            

 
max 2

/

2
2

F m F
A A

kmp
kp

    

Here,   
3

2 14 10
2 10 s .

2 2 10

b
k

m


   


 

 
7

310
10

10
p

m


     s

-1
. 

Thus,  
5

max 3 3

10 /10 1
0.025 cm.

402 2 10 10
A   

  
 

  
  
 E

X
A

M
P

L
E

 4
.5
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UNIT SUMMARY 

  

 

 Simple harmonic motion (SHM) 

                       F x                                                              

       Displacement, velocity and acceleration of SHM 
              siny a t  

       

             

2 2dy
v a y

dt
             

             

2dv
f y

dt
    

 Differential equation of SHM and its solution  

                       

2
2

2
0

d x
x

dt
        

                        sinx a t  
  
 

 Harmonic oscillator: Motion of a horizontal spring 

                       
k

m
     

           

2
k

T
m

 
                                

 Differential equation of damped vibration 

                       

2
2

2
2 0

d x dx
k x

dtdt
          where  22 ;

b
k

m m
 




 
 

 Differential equation of forced vibration 

                       

2
2

2
2 cos

d x dx
k x f pt

dtdt
  

   
where 22 ; ;

b F
k f

m m m
  


  

                                               
 Solution of the differential equation of damped vibration  

                 
   

1

2 22
2 2 2 2

2
cos tan

4

f kp
pt

p
p k p

x 
 
 
    


      

                                                                                     

                                                                            
2 2sin( )ktPe k t     

 Resonances 
         Amplitude resonance  

                        

max
2 22

f
A

k k




       

 

         Energy resonance  

                        

2

2

2

2 a2 m x 2

1

2 84

mf
E

k

mf
E

k


     
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        Sharpness of resonance  

                        1

1

2
S

k


  

          

 

EXERCISES 

 

Multiple Choice Questions

 4.1 If the restoring force constant of a body is 98 Nm
-1

, then the restoring force of the body for a 

displacement of 10 cm is 

 (a) 98 N    (b) 9.8 N     (c) 0.98 N    (d) none of these 

4.2 The acceleration of a particle executing SHM is 

  (a) inversely proportional to the displacement from the mean position  

  (b) directly proportional to the displacement from the mean position  

  (c) constant   (d) none of these 

4.3 If acceleration of a particle executing SHM is maximum, displacement will be  

  (a) maximum  (b) minimum  (c) zero (d) none of these 

4.4 Simple Harmonic Motion (SHM) is a  

  (a) periodic motion  (b) circular motion  (c) both (a) and (b)  (d) none of these 

4.5  Natural angular frequency of a body executing SHM is 

  (a) ω   (b) ω/2π   (c) 2π/ω    (d) none of these 

4.6   Time period of a horizontal spring (force constant k) can be expressed as, 

   (a) 2 /T k m   (b) 2 /T m k   (c) /T k m   (d) none of these 

4.7  Time-period (T) of a particle executing SHM with displacement x and acceleration f is   

  (a) 2
f

x
    (b) 2 xf

   
(c) 2

x

f
     (d) none of these 

4.8  The effect of the damping force on a harmonic oscillator is to  

 (a) reduce angular frequency and amplitude of vibration 

 (b) increase amplitude and angular frequency of vibration 

 (c) reduce angular frequency and increase amplitude of vibration 

 (d) increase angular frequency and reduce amplitude of vibration 

4.9 For oscillatory motion of damped oscillator (damping constant  and natural frequency 0 ) 

 (a) 02     (b) 02     (c) 02    (d) 0   
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4.10  The time period of a damped vibration is 

 (a) 2 22 k     (b) 2 22 2k    (c) 
2 2

2

k



 
 (d) 

2 2

2

2k



  

4.11  For critical damping, the motion of a damped vibration will be non-oscillatory when  

 (a) 2 2k     (b) 2 2k     (c) ω = k  (d) none of these 

4.12   Motion of a system in critical damped condition is 

 (a) damped oscillatory  (b) oscillatory  (c) harmonic  (d) non-oscillatory 

4.13   In case of damped vibration the damping force is proportional to its – 

 (a) velocity   (b) displacement  (c) acceleration  (d) none of these 

4.14  In case of critical damping the system is – 

 (a) non-oscillatory  (b) oscillatory   (c) vibratory  (d) none of these 

4.15  Example of weakly damped harmonic oscillator is   

 (a) dead-beat galvanometer   (b) tangent galvanometer 

 (c) ballistic galvanometer  (d) discharge of a capacitor through a resistance 

4.16 The phase difference between external force and velocity of the forced oscillator is  

 (a) 
2


    (b) 0    (c) π     (d) none of these 

4.17 At resonance, the maximum amplitude of the forced oscillator is  

 (a) 
0F

m
    (b) 

0mF


    (c) 

0mF


     (d) 0mF   

Answers of Multiple Choice Questions 

4.1 (b), 4.2(b), 4.3 (a), 4.4 (c), 4.5 (b), 4.5 (b), 4.7 (c), 4.8 (a), 4.9 (c), 4.10 (c), 4.11 (c), 4.12 (d),       

4.13 (a), 4.14 (a), 4.15 (c), 4.16 (b), 4.17 (a) 

 

Short and Long Answer Type Questions 

 

Category I 

4.1 Establish the differential equation of a simple harmonic motion and solve the equation.                                      

4.2 Show that for a particle executing SHM, the average kinetic energy is half of the corresponding 

maximum energy. 

4.3  Derive the expression for the total energy of a simple harmonic oscillator and show that it is 

constant and proportional to the square of the amplitude.    

4.4  Find the relation between time period and frequency.  
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4.5  Distinguish between damped and forced vibration. 

4.6 Find the difference between phase and epoch in relation to SHM. 

4.7 Establish the differential equation of damped harmonic oscillator explaining each term in the 

equation.  

4.8 Clarify the term critical damping. 

4.9  Distinguish between free and damped vibration. Show graphically the variation of amplitude of 

damped oscillation with time. 

4.10 Interpret the early stage and steady state of forced vibration. Discuss the factors characterizing 

them. 

4.11 Clarify the terms resonance and resonant frequency of a forced oscillator. Give an idea of 

amplitude resonance. 

4.12 Distinguish between amplitude resonance and velocity resonance.    

4.13 Under the condition of under damping (b < ω), find the expression for displacement as a function 

of time. Draw the displacement-time graph and make your conclusions. 

4.14  (a) Write down the differential equation of forced vibration explaining each term in the equation. 

 (b) Starting from the steady state solution of forced vibration explain the phenomenon of 

amplitude and velocity resonance, deriving the value of the driving frequency in each case. 

 

Category II                                         

4.15  Write down the differential equation of a series LCR circuit driven by sinusoidal voltage. 

Identify the natural frequency of the circuit and also find the relaxation time.  

4.16 (a) Show that at velocity resonance, the maximum velocity is inversely proportional to damping 

constant and also show that the velocity of the oscillator is in phase with the driving force. 

 (b) Establish how the half power frequencies are related to sharpness of resonance Show that the 

resonant frequency is the geometric mean between the half power frequencies. 

4.17 Explain how the principle of conservation of energy hold good in case of damped vibration. 

4.18 (a) Plots the displacement amplitude and velocity amplitude against the frequency of the 

sinusoidal force driving a mechanical oscillator for the different values of damping.  

(b) Find the energy of an oscillator at velocity resonance. Elaborate the term sharpness of 

resonance. 

4.19 (a) Given that two simple harmonic oscillators of different masses oscillate separately under the 

action of same restoring force at frequencies 3 Hz and 5 Hz. Calculate the ratio of their masses. 

 (b) Find the amplitude, phase and instantaneous velocity of the vibrational motion represented by 

  3
cos cos cos cos .

2 2 4 8 2

a a a
x a t t t t

            
   

 
    

 

4.20 For a harmonic oscillator of mass m, natural frequency ω0 and driven by a force F0 sin ωt, the 

damping is proportional to 2p times the velocity of the oscillator.  



118 | Physics - Introduction to Mechanics 

 

Show that the displacement is given by  

                    

 
 0

2
2 2 2 2
0

si

4

/
n

F
x

m
t

p

 

  

 

 

; where 

 2 2
0

2
tan

p


 



 

 Using the above relation, show that at velocity resonance, the velocity is in phase with the 

driving force.  

Numerical Problems 

4.1  The displacement of any particle at any instant t is given by x = 3cos t + 4 sin t. Show that the 

motion is simple harmonic. What is the amplitude of this oscillation? Show that its kinetic 

energy oscillates with angular frequency 2ω.                   

4.2 The displacement of a simple oscillator is given by x = a sin (ωt + θ). If the oscillations started at 

time t = 0 from a position x0 with velocity v0 show that,  

                             tan θ = ωx0/v0 and a = (x0
2 
+ v0

2
/ω

2
)

1/2
. 

4.3 The displacement of a particle of mass 0·2 kg executing SHM is indicated by 

                  

10sin
3 12

y t
    

 
m.  

  Calculate the (i) amplitude, (ii) angular velocity, (iii) time period, (iv) maximum velocity and (v) 

maximum acceleration.                                  

4.4 A mass of 2 kg hangs from a spring. A 50 gm body hung below the mass stretches the spring 1 

cm further. If now the mass is removed then find the period of oscillation of the body. 

4.5  In one dimensional motion of a mass of 10 g, it is acted upon by a restoring force per unit 

displacement = 10 dyn.cm
-1

 and a resisting force per unit velocity = 2 dyn.cm
-1

s. 

(i)  Find whether the motion is aperiodic or oscillatory. 

 (ii) Find the value of resisting force which will make the motion critically damped. 

 (iii) Find the value mass for which the given forces will make the motion critically damped. 

4.6  For the motion of a damped vibratory body, the restoring force per unit displacement is 10 

dyne/cm and a resisting force per unit velocity is 2 dyne-cm
-1

s. Find whether the motion is 

oscillatory or aperiodic and also find the resisting force to make the motion critically damped. 

4.7 The displacement of a damped harmonic oscillator is given by, 2 sintx e t . Find the velocity 

of the oscillating point at t = T/2, T being the time period of the motion. 

4.8 A particle of mass 2 kg is acted on by a restoring force/unit displacement 10  10
-3 

N/m, and a 

frictional force/unit velocity 2  10
-3 

N/ms
-1

. Find whether the motion is oscillatory or non-

oscillatory. For what value of frictional (resistive) force, the damping will be critical?    

4.9 The displacement of a particle of mass 0.05 kg executing SHM is indicated by 

                  

5sin
3

y t
   
 


 m.  

  Calculate the (i) amplitude, (ii) angular velocity and (iii) time period.                                  
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PRACTICALS 

 

1. To investigate the resonance phenomena in mechanical oscillators 

Aim 

i) To make an experiment we have to demonstrate the natural frequency of resonance in a mechanical 

system 

ii) To make a comparison of the experimental data with the theory 

Theory 

Mechanical resonance is essentially tendency of any mechanical system for responding at higher 

amplitude when its oscillating frequency is in accordance with the natural frequency of vibration of 

the system. The motion of a particle or a system of particles is periodic or oscillatory if it repeats itself 

in equal time intervals. The paths of an oscillating particle are usually expressed by sine and cosine 

functions (harmonic functions). The oscillation of the particle is called harmonic motion. For simple 

harmonic motion, the position of the particle as a function of time can be expressed in the following 

form: 

 cosx A t                                                                                                         (i) 

      The constant A represents the amplitude of the motion; the constant ω is for the angular frequency 

while φ is for the phase constant of the motion. Angular frequency and linear frequency are related as, 

2 f                                                                                                                      (ii) 

      In the equation, the repetition rate of the motion (frequency) is f, whose reciprocal is the time 

period, T. In vibrating string on a musical instrument, the time period is very small and so cannot be 

measured with eye only. The oscillating frequency is then obtained using digital frequency meter 

attached to a function generator.  

      For the experiment, simple harmonic oscillator has a mass connected to ideal, mass less spring 

following Hooke’s law. The opposite end of the spring is kept at a fixed position. When the mass is at 

equilibrium position, there will be no motion. When the system is perturbed, displacing the mass to 

from equilibrium, restoring force of the spring returns the mass to equilibrium. Inertia is responsible to 

overshoot the equilibrium causing the oscillatory motion. In absence of friction, the motion would 

continue.  

      Using Eq. (ii) and Newton’s second law we can derive an expression for ω in term of the mass, m 

and the spring constant k, we can write   

k

m
 

                                                                                                                    

(iii) 

or    
1

2

k
f

m


                                                                                                              

(iv) 
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      In this experiment, we will look at a phenomenon known as resonance. If the driving force 

frequency is identical to natural frequency, the highest displacement of the mass from equilibrium will 

occur. Resonance will be attained under this condition, and this frequency is called the resonant 

frequency. 

Procedure 

First Part: Determination of the spring constant k 

Make the experimental arrangement as shown in Fig. (i). Turn on the air source to the maximum and 

then load the mass hanger with different masses. Record each mass as well as the elongation due to 

that mass, in Table 1. Add the mass of the hanger and then compute the force due to the mass (i.e., 

mg). Record those values in Table 1.  

 

Fig. (i) 

      In order to find the displacement, note the position of the equilibrium of the spring and also the 

stretched position. The displacement represents the difference between the two values. Take care not 

to displace the spring more than 3 or 4 cm from its equilibrium position as otherwise it will deform the 

spring and will alter its spring constant. 

Table 1: Data for displacement and force for different masses 

Equilibrium position: …………….. 

Mass Stretched position Displacement Force 

    

    

    

    

    

Spring constant k = ………………. 

Drawing of graph: Plot a graph of Elongation (X-axis) vs. Force (Y-axis), using the data from table 

in a graph paper. From the data and graph, determine the spring constant, k, of the spring. 

Theoretically, the curve fitted with this data should be a straight line; k is simply the slope of this 

curve. You can also calculate the slope by fitting a line to the data using Excel. 
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Second Part: Determination of resonance by experiment 

 

Fig. (ii) 

The setup for this part of the experiment is presented in Fig. (ii). Driving force represents a sinusoidal 

electronic function generator with a frequency meter to give the driving frequency. Output of the 

function generator makes a varying electric current within the coil which in turn creates a varying 

magnetic field to attract and repel a permanent magnet/glider connected to a spring. Other end of the 

spring is kept to the air track. We can get the spring constant value (k) and the mass of the 

magnet/glider directly. Natural frequency of the system can be obtained, in addition to the driving 

frequency and resonance frequency of the system. 

Procedure 

1. Turn on the air supply to highest air pressure. Then stabilize the glider and other instruments for 

turning off the record of the equilibrium position of the glider. Next, turn on the other instruments and 

before taking any data, use the frequency adjustment control to scan through a range of driving 

frequencies (1 Hz to 15 Hz). Observe the changes in the glider/magnet movements on the air track. 

Resonance of this mechanical system occurs at a frequency where the highest linear displacement of 

the glider/magnet is found. Locate this resonance point by tuning the frequency generator until the 

phenomenon is noted. 

2. Getting the knowledge of how resonance happens in the system, start recording the data and put 

those in Table 2. Vary the driving frequency slowly. Note the amplitude of the motion for each 

frequency. In the experiment we assume that the excitation signal and the motion of the magnet/glider 

assembly are symmetrical about the equilibrium.  

      For each frequency, obtain the glider distance which represents the amplitude. Note the data in 

Table 2. In order to get a better resonant frequency, take about 10 data sets at frequencies slightly 

more than the resonant frequency and similarly 10 set at frequencies slightly less than the resonant 

frequency. 

3. To guess better take the initial scanning of the driving frequencies as well as the pick frequencies 

above and below the guessed value. 

4. As the oscillating frequency of glider is very fast, to read the highest displacement by eye a good 

way is the “index card method”. For this you have to slide an index card along the air track close to 

the glider. Note the position of the card where the glider is about to hit it. The amplitude of the motion 

is then the difference between the respective position and the equilibrium point. You have to note the 

glider mass and magnet which is essential for later calculations: 
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Table 2: Data for frequency vs. amplitude 

Mass of glider and magnet: ……………….. 

Equilibrium position (same as in Table 1): …………… 

Frequency Card Position Amplitude 

   

   

   

   

   

   

   

   

   

   

   

   

   

Drawing of Graph 

Plot the measured amplitudes (Y-axis) as a function of frequency in another graph. 

Viva-Voce Questions 

1. What are the things might make the resonant frequency alter? Would it alter if the glider given was 

heavier? Would it alter if there was greater friction between the glider and the air track? Would it alter 

if the k values were not same? 

2. What are the things might alter the shape of the plotted curve? Is it mass dependent? Would it alter 

if the spring constant is not same? 

3. Explain the role of resonance that could have played in the oscillations of the bridge for damaging. 

4. Is there any frequency for getting the highest amplitude?  

5. For a given k you measured the first part of the experiment, determine the expected value of 

resonant frequency.  

6. Make a comparison of measured value of the resonant frequency with calculated value. What is the 

difference in percent between the two measurements? 

7. What is resonance?  

8. What is the difference between forced vibration and resonance? 
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2. To investigate the normal modes in coupled oscillations of two bodies 

Aim 

To find the normal modes of oscillation for two coupled pendulums and to determine the normal mode 

frequencies 

Apparatus 

Two compound pendulums, Filament bulb on stand, Screen on stand, Coupling spring, Convergent 

lens, Stop clock 

Theory 

Two similar compound pendulums are coupled using a spring. Normal mode oscillations are then 

excited to find their frequencies. In any coupled system the individual oscillators may have 

independent natural frequencies. A normal mode motion will be one where all individual oscillators 

oscillate with identical frequency, known as normal mode frequency. There is a certain phase 

relationship between the individual motions.  

      If a system has n degrees of freedom for n coupled oscillators then there are n normal modes of the 

system. The system disturbance is taken as a superposition of normal mode vibrations. When a single 

oscillator is excited, the energy is transferred eventually to all the different modes. 

      In the experiment we have to investigate some features of two compound pendulums (coupled). 

The system to be considered consists of two similar rigid pendulums, A and B and a linear spring 

couples the oscillations of the two pendulums. A schematic diagram is presented in Fig. (i).  

 

Fig. (i) 

 

Fig. (ii) 

Fig. (ii), on the other hand, illustrates the situation of the first normal mode and the second normal 

mode. The motion of the pendulum A and pendulum B can be modeled by the coupled differential 

equations. Let θA and θB are the angular displacements of the pendulums A and B while I represents 

the moments of inertia. 

Procedure 

1. Uncouple the pendulums. Set small oscillations of both pendulums individually. Record the time 

for 20 oscillations to find the average time period and the natural frequency (ω0) for free oscillation. 
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2. By hooking the spring, couple the pendulums at some position to the vertical rods. Be sure that the 

spring is horizontal and is neither extended nor hanging loose. 

3. Switch on the bulb and find the spot at the central position of the screen. 

4. By displacing both the pendulums, excite the first normal mode by equal amount in the same 

direction and then release both the pendulums from rest. The spot on the screen will oscillate in the 

horizontal direction. 

5. Record the time for 20 oscillations for getting the time period T1 and frequency ω1 of the first 

normal mode. 

6. Keeping the spring at the same position excite the second normal mode of oscillation displacing 

both the pendulums in the opposite directions by equal amount and then release them from the rest 

condition. 

7. The spot on the screen now oscillates in the vertical direction. Find the time for 20 oscillations and 

hence the time period T2 and frequency ω2. 

8. Repeat the measurements for the spring hooked at 3 more locations on the vertical rod of the 

pendulums. 

9. For some position of the spring, displace one pendulum by small amount, maintaining the other 

pendulum at its equilibrium and release it from rest. Record the subsequent motion of the pendulums 

and then qualitatively correlate the motion with the graph [Fig. (iii)]. Fig. (iii) (a) depicts the plots of 

(a) x(t) = sin (2πt) sin (50πt) vs. t and Fig. (iii) (b) depicts the plot of x(t) = cos (2πt) cos (50πt) vs. t.  

 

Fig. (iii) 

10. Determine the time period T corresponding to individual oscillations of the pendulum A and also 

the period δT. Infer the time periods T1 and T2 of the normal modes from T and δT and compare with 

previous results. 

Viva-Voce Questions 

1. Explain the normal mode frequencies for the coupled pendulum considering the motion of the two 

modes. 

2. Discuss why the frequency of the first normal mode is independent of spring position. 

3. What do you mean by the normal mode oscillations of a system?  

4. What are the number of normal modes will the system posses? 
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5. What the effect of damping on the motion?  

6. Redraw Fig. (iii) qualitatively when damping is present. 

7. Mention some more examples of coupled oscillations. 

8. Discuss the probable sources of random errors at the time of conducting an experiment. 

9. Give an interpretation of the movement of the spot on the screen when a single pendulum is 

displaced. 

 

KNOW MORE 

 

In mechanics simple harmonic motion is periodic motion and it results in an oscillation which 

without friction or any other dissipation of energy continues indefinitely. Vibration is a mechanical 

phenomenon where oscillations occur about an equilibrium point.  

Activity 

Oscillation is essentially the repetitive variation with time about a central value called equilibrium position. 

The word vibration is precisely used for describing mechanical oscillation. Well known examples of 

oscillation are swinging pendulum and alternating current. Besides mechanical systems oscillations occur 

also in dynamic systems and in many areas of science. 

      e.g., the beating of the human heart, vibration of strings in guitar and other string instruments, periodic 

firing of nerve cells in the brain, business cycles in economics, predator–prey population cycles in ecology, 

geothermal geysers in geology, and the periodic swelling of Cepheid variable stars in astronomy. 

Interesting facts 

All the real-world oscillator systems are thermodynamically irreversible, i.e., there are dissipative processes 

like friction or electrical resistance. These continually convert some of the energy stored in the oscillator 

into heat in the environment called damping. Hence oscillations tend to decay with time. An oscillating 

system may be subjected to some external force. For example, an AC circuit is connected to an outside 

power source when the oscillation is said to be driven. 

Analogy 

Some of the systems can be excited by transfer of energy from the environment which typically occurs 

where systems are embedded in fluid flow.  

      As for example, the phenomenon of flutter in aerodynamics occurs when from its equilibrium an 

arbitrarily small displacement of an aircraft wing results in an increase in the angle of attack of the wing on 

the air flow and a consequential increase in lift coefficient, leading to a greater displacement.  

At sufficiently large displacements, the stiffness of the wing dominates for providing the restoring force 

that enables an oscillation. 
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History 

Origin of the science of acoustics is attributed, in general, to the Greek philosopher Pythagoras (6th 

century BC), whose experiments on the vibrating strings produced pleasing musical intervals that led to a 

tuning system. In the 6th century AD, the Roman philosopher Boethius documented some ideas relating 

science to music. He suggested that the human perception of pitch is related to the physical property 

of frequency. 

Timelines  

2600:  In an exhibition the British Museum exhibits an 11-stringed harp with a gold-decorated, bull-headed  

   BC   sounding box. 

3000:  Stringed instruments such as harps were depicted on walls of Egyptian tombs. Our present system of     

   BC   music is largely based on ancient Greek civilization. 

4000:  Music had become highly developed and was much appreciated by Chinese, Hindus, Japanese and  

   BC  the Egyptians. They observed certain rules in connection with the art of music.  

1609: Galileo Galilei became the first man to point a telescope to the sky. His works on the oscillations of 

a simple pendulum and the vibration of strings are of fundamental significance in the theory of 

vibrations.  

1714: Brook Taylor derived the fundamental frequency of a stretched vibrating string.  

1733: Daniel Bernoulli derived the fundamental frequency and harmonics of a hanging chain.  

1734: Daniel Bernoulli solved the ordinary differential equation for the vibrations of an elastic bar.  

1739: Leonhard Euler solved the ordinary differential equation for a forced harmonic oscillator.   

1759: Leonhard Euler solved the partial differential equation for the vibration of a rectangular drum. 

1764: Leonhard Euler examined the partial differential equation for vibration of a circular drum and 

established one of the Bessel function solutions. 

Applications (Real Life / Industrial)   

Mathematics of oscillation essentially deals with the quantification of the amount that a sequence or 

function tends to move between extremes. There are some related notions, like oscillation of 

a sequence of real numbers, oscillation of a real valued function at a point, and oscillation of a function on 

an interval.  

      Typical acoustic applications include acoustic ranging, acoustic location, process control, SONAR, 

seismology, acoustic emission, vibration analysis, engine testing, ocean acoustic tomography and bio-

acoustics. 

Case Study (Environmental / Sustainability / Social / Ethical Issues) 

Environmental acoustics is associated with noise and vibration caused by railways, road traffic, aircraft, 

industrial equipment and recreational activities. The main purpose of these studies is to minimize the levels 

of environmental noise and vibration. Research work also has a focus on the positive use of sound in urban 

environments, soundscapes and tranquility.  
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      Resonance phenomena is found to occur with 

different types of vibrations producing acoustic 

resonance, nuclear magnetic resonance (NMR), 

electromagnetic resonance, electron spin resonance 

(ESR), mechanical resonance and resonance of 

quantum wave functions. Resonant systems are 

utilized for generating vibrations of a particular 

frequency or it can pick out some specific frequencies 

from a complex vibration system having many 

frequencies. The term resonance was originated from 

the field of acoustics.  

      In radio engineering and electronics engineering, 

the approximate symmetric response is popularly 

named as the universal resonance curve which is a 

concept introduced by Frederick E. Terman in 1932 for 

simplifying approximate analysis of radio circuits with 

a range of center frequencies and Q values. 

 
NMR Magnet at Birmingham, UK, with strong                       

21.2-tesla field, proton resonance is at 900 MHz 

Inquisitiveness and Curiosity Topics 

Noise and life quality are correlated. The increase of environmental noise, particularly for those living near 

railways and airports, has created conflict. Getting adequate concentration and quality sleep is very difficult 

for those who live in areas of high noise exposure. When the body is at rest, a noise stimulus is continually 

being presented in the environment. The body responds to this noise which can negatively affect sleep. 

High exposure to environmental noise can play a major role in cardiovascular disease. Noise can raise 

blood pressure, change heart rate and release stress hormones which can lead to risks for hypertension, 

arteriosclerosis and even more serious events such as a stroke or myocardial infarction. 
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UNIT SPECIFICS 

The following topics are considered in this unit: 

 Definition and motion of a rigid body in a plane;  
 Rotation in a plane;  
 Kinematics in a coordinate system rotating and translating in the plane;  
 Angular momentum about a point of a rigid body in planar motion;  
 Euler’s laws of motion, their independence from Newton’s laws, and their necessity in 

describing rigid body motion;  
 Examples of rotational motion. 

The practical applications of the topics are discussed for generating further curiosity and 
creativity as well as improving problem solving capacity.  
      Besides giving a large number of multiple choice questions as well as questions of short and 
long answer types marked in two categories following lower and higher order of Bloom’s 
taxonomy, assignments through a number of numerical problems, a list of references and 
suggested readings are given in the unit so that one can go through them for practice. It is 
important to note that for getting more information on various topics of interest some QR codes 
have been provided in different sections which can be scanned for relevant supportive 
knowledge. 
      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 
 

 

55            RRoottaattiioonnaall  MMoottiioonn  
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Rationale 

This unit on rotational motion will help our students to get a clear idea about some basic 
terminologies of rigid body. Kinematics in a coordinate system rotating and translating in the 

plane as well as the angular momentum about a point of a rigid body in planar motion  have 

special importance for all practical purposes. Euler’s laws of motion, their independence from 
Newton’s laws and their necessity in describing rigid body motion have wide area of applications 

which are also critically focussed.  

      Rotational motion is a motion of an object around a circular path but in a fixed orbit. It is 

the motion of a body where all of its particles move in a circular motion with a common angular 
velocity, about a fixed point. As for example, we can mention the rotation of Earth about its axis. 

In a circular motion, the object just moves in a circle while in rotational motion, the object rotates 

about an axis. Motion of a Ferris wheel in an amusement park is an example of rotational motion. 

PRE-REQUISITES 

Mathematics: Preliminary Geometry (Class X) 

Physics: Rotational Motion (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U5-O1:  Explain the analogy between different linear and angular quantities 

U5-O2: Describe kinematic equations for rotational motion 

U5-O3:  Describe the importance of Euler’s equation in rotational motion problems 

U5-O4:   Calculate moment of inertia of regularly shaped bodies about a fixed axis 

U5-O5:  Realize the role for rotational inertia to resist rotational motion 

U5-O6:  Apply the concept of torque and angular momentum to rotational motion problems 

 

Unit-5 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U5-O1 2 2 1 - - - 

U5-O2 1 2 1 - - - 

U5-O3 3 2 1 - - - 

U5-O4 2 2 1 - - - 

U5-O5 2 2 1 - - - 

U5-O6 2 3 1 - - - 
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5.1 INTRODUCTION 

When a particle moves round a point in a plane in such a way that the distance 

of the particle about that point remains constant, it is said to perform a circular 

motion. Here the fixed point is known as the centre of the motion and the 

distance of the particle from this fixed point is the radius of the circular path. 

When a body is performing a circular motion or a rotational motion, there is a 

fixed axis perpendicular to the plane of rotation and is called the axis of 

rotation. 

 

Fig. 5.1: Rotational 

motion 

5.1.1 Angular Displacement 

The angular displacement of a particle in a fixed interval of time undergoing circular motion is 

defined as the angle swept out by the radius vector in that interval. It is given by, 

S

r
 

                                                                                                                       
(5.1) 

where S is the linear displacement of the particle while moving from A to B (Fig. 5.1) and is given by, 

S = r θ                                                                                                                    (5.2) 

5.1.2 Angular Velocity 

It represents the rate of variation of the angular displacement of a body. This means it is the angular 

shift produced by the path of the body at the centre of the circular path per unit time. 

  Angular velocity = 
angular displacement

time
 

or,   
t


                                                                                                         (5.3) 

5.1.3 Angular Acceleration 

It represents the rate of variation of the angular velocity of a body moving in a fixed circular path. 

  Angular acceleration = 
angular velocity

time
 

or,   
t


                                                                                                                      (5.4) 

  

Example 5.1 The angular velocity of a wheel is 300 rpm. Calculate (i) time 

period, (ii) frequency and (iii) time for angular displacement of 60º. 

Solution 

(i) Angular velocity 2 2 5 10 rad / sn        (n = 5 rps). 

So, time period,  T = 
2 2

0.2 s.
10

 
 
 
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(ii) Frequency, 
1

5Hz.n =
T

  

(iii) Angular displacement = 60º = rad.
3


 

Now  t    

  
/ 3 1

s
10 30

t   
 
 

, which is the required time. 
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Example 5.2 For a clock it shows that the length of the minute hand as 50 cm. 

Calculate its angular velocity and linear velocity? 

Solution 

Its angular velocity,  

2
rad / s.

3600 1800
 

 
  

and the linear velocity of the tip of the minute hand is  

4 10.5 87 10 ms .
1800

v= rω
       

 

 

5.2 CENTRIPETAL ACCELERATION 

When a particle moves along a circular path with uniform angular velocity ( ω ) and hence with 

uniform linear velocity (v), the motion is said to be uniform circular motion. When a body is moving 

in a circular path with uniform linear velocity then the acceleration acting to the centre of its motion is 

known as the centripetal acceleration. As the velocity of the particle is acting towards the tangent of 

the circular path and the acceleration is directed towards the centre of the path so they are 

perpendicular to each other. 

 

Fig. 5.2: Centripetal 

acceleration 

      Let m be the mass of a particle rotating in a circular orbit with radius 

r and linear velocity v. Let, the particle has an angular displacement   
when it goes from its initial position A to its final position B (Fig. 5.2). 

 The particle has an angular velocity, .
t




  

      Now, the velocity of the particle at point A is acting towards the 

tangent AP and the velocity of the particle at point B is acting towards 

the tangent BQ with two components; one ( cosv  ) along BR and the 

other ( sinv  ) along BS. 

      If   is small then, sin  and cos 1.   

      Now, the velocity of the particle along AP is initially v and finally cos 1 .v v v    

Change in velocity = (v – v) = 0. 
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for viewing 

circular motion 

and centripetal 

acceleration        

as a limit 

Thus, the acceleration (f) =
change in velocity

time
= 0. 

Again, initial velocity of the body along AO is 0 and the final velocity along AO is sin .v v v      

Change in velocity will be 
0vθ vθ

= = vω= rω×ω
t t



 

                                                            

2 2
2 v v

=ω r= × r=
r r

 
 
 

 

and this is acting to the centre of the motion. Thus, the centripetal acceleration acting towards the 

centre of the circular path can be represented as, 

2
2

C

v
f = ω r =

r
                                                                            (5.5) 

5.3 CENTRIPETAL FORCE  

It is the force required to maintain the circular motion of a body in fixed circular path acting along the 

centre of the path and perpendicular to the velocity of the body. 

      Now, we know for uniform circular motion the centripetal acceleration acting 

on a body of mass m is, 

2
2

C

v
f = ω r =

r
 

      Thus, the centripetal force acting on the body is = 
2

2

C

v
m f = m m ω r

r
  

  
2

2

C

v
F = m m ω r

r
                                             (5.6) 

Examples: (i) When a piece of stone is tied with a rope and is rotated then the stone experiences a 

force of tension towards the centre and this is due to the centripetal force acting on the piece of stone. 

(ii) In case of revolution of any planet around the Sun the gravitational force on the planet by the Sun 

gives the required centripetal force. 

  

Example 5.3 A body of mass 100 g is uniformly rotating in a circular orbit of 

radius 50 cm with angular speed of 60 rpm. Calculate the centripetal force acting 

on it. 

Solution 

Here, 
60

2 2 rad / s
60

     , r = 50 cm and  m = 100 g.       

Thus, the centripetal force acting on the body is  

                           22 100 2 50CF mω r      dyne = 1.97 N. 
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134 | Physics - Introduction to Mechanics 

 

5.4 CENTRIFUGAL REACTION AND CENTRIFUGAL FORCE 

When a particle is moving in a circular path then due to the centripetal force acting towards the centre 

of the path by some external agent, the body exerts an outward force equal to the centripetal force 

along the opposite direction and this is called the centrifugal reaction.  

      In Fig. 5.3, Fc is the centripetal force and FR is the force due to 

centrifugal reaction acting in the outward direction from the centre of 

the path. 

      However, the centripetal force is acting on the body moving in the 

circular path while that of the centrifugal reaction will act on the agent 

which causes the motion of the body. Thus centrifugal reaction is 

basically the reaction force to the centripetal force. 

      Although this force is not an actual force but it is a pseudo force as it can only be experienced in 

an accelerated frame of reference and not in an inertial reference frame. 

Centrifugal force: Whenever a body is moving in a circular path with an uniform angular velocity in 

an accelerated (hence non-inertial) reference frame, then a force is acting on it in the radially outward 

direction having magnitude equal to that of the centripetal force acting on the body. This fictitious 

force which can only be experienced in an accelerated frame of reference as a reaction force of the 

centripetal force is termed as the centrifugal force and is given by, 

2
2

g

v
F m mω r

r
                                                                                                     (5.7) 

5.5 MOMENT OF FORCE  

When a rigid body is performing rotational motion about an axis of rotation with the application of a 

force then one can measure the turning effect of the applied force on the body by torque. It is basically 

the analogous rotational force in translational motion. 

Definition: Moment of force or torque about a fixed axis of rotation may be defined as the turning 

effect produced by the force and is measured by product of the force and perpendicular distance from 

the rotational axis to the line of force acting. It is acting normal to the plane containing the line of 

force acting and the position vector. 

 

Fig. 5.4: Moment of force 

      Let, a force F
��

 is applied on a rigid body at a point P and also 

let r
�

 be the position vector of the point of application of the force 

with respect to the point O on the axis of rotation (Fig. 5.4). 

      Now, the moment of force or the torque about the point O is, 

                            .OQ F
 

or,               sin .r F                                                      (5.8) 

where is the angle between r
�

and .F
��

 

      In vector notation we can write, 

                            r F 
� � ��

                                                          (5.9) 

      Moment of force or torque is a vector quantity. 

 

Fig. 5.3: Concept of 
centrifugal reaction 
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Direction or sign of torque: If due to the torque the rotation of the body goes clockwise, the moment 

is considered negative while for anti clockwise rotation, the moment is taken as positive and it is 

perpendicular to the plane of the paper. 

Principle of moments: At equilibrium of a body the sum of all anticlockwise moments (positive 

moment) should be equal to the sum of all clockwise moments (negative moment) and this is known 

as the principle of moments at equilibrium. 

5.5.1 Dimension and Units of Torque 

Dimension of torque is     2sin . .r F L MLT        

                                             2 2ML T      

So, the dimension of torque is the same as that of work or energy. 

SI unit of torque is N-m and CGS unit of torque is dyne-cm. 

5.6 COUPLE AND MOMENT OF A COUPLE 

 

Fig. 5.5: Moment of couple 

If two equal and unlike parallel forces act on a body at a certain 

distance at two different points then they will constitute a couple 

and produce similar turning effects like that in torque. The 

moment of the couple (Fig. 5.5) about any point in its plane is 

equal to the product of one force (F) forming the couple and the 

perpendicular distance (r) between the forces. It is given by,               

                    sinrF   

and in vector form it is, r F 
� � ��

  
      It possesses the same units and dimensions as that of torque. 

5.7 MOMENT OF INERTIA 

It represents a quantity to express the movement of a body for resisting angular acceleration.  

      This is obtained by the algebraic sum of the products of the mass of individual particle and the 

square of the distance from rotational axis.  

      Let us consider a rigid body which is under rotation about the axis 

AB with a constant angular velocity   as shown in Fig. 5.6. So, the 

body must possess some rotational kinetic energy. 

      Now, the linear velocity of the particle of mass m1 is 1 1
v r   and so 

its kinetic energy is, 2 2 2

1 1 1 1

1 1
.

2 2
m v m r   

      So, the total kinetic energy of the whole body is, 

E = E1 + E2 + ...... +En  

   
 2 2 2 2 2 2

1 1 2 2

1

1 1
....

2 2

n

n n i i

i

m r m r m r m r


        

 

Fig. 5.6: Moment of inertia 
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or,  21

2
E I 

                           
                                                                                  (5.10) 

where 2

1

n

i i

i

I m r


 is the moment of inertia (MI) of the body about the axis of rotation.
 

  2 2 2 2

1 1 2 2

1

....
n

i i n n

i

I m r m r m r m r


                                                                       (5.11) 

      If we compare Eq. (5.11) with the expression for kinetic energy in translational motion which is

21

2
E mv , then we can say that MI is the rotational analogue of mass in translational motion and 

plays a very important role in rotational mechanics. 

Definition: MI of a body about an axis, as already mentioned, may be defined as the sum of the 

products of masses of all the constituent particles of the body and squares of their respective 

perpendicular distances from the axis of rotation. 

      Thus,  2 2 2 2

1 1 2 2

1

....
n

n n i i

i

I m r m r m r m r


      

or, in general for a body of mass M rotating around a particular axis at a distance R from it, the MI 

about the axis of rotation is 

2I MR                                                                                                                 (5.12) 

      From Eqs. (5.11) and (5.12); we can say that the MI of a body depends on its —  

(i)  mass, 

(ii)  rotational axis, 

(iii)  shape, 

(iv)  mass distribution and 

(v)  distance from the rotational axis. 

Physical significance of moment of inertia: MI is basically the rotational analogue of mass in 

translational motion and so it is a measure of inertia of the body. 

 

Fig. 5.7: Relationship 

between torque and MI 

5.7.1 Relation between Torque and Moment of Inertia 

Let us consider that a rigid body is moving about the axis AB having 

constant angular velocity ω as shown in Fig. 5.7. Now, the moment of force 

acting on the body of mass m1, about AB is, 

                           
2

1 1 1 1 1 1m f r m r    

So, the total moment of force about the axis of rotation for the whole body is,  

                           
2 2 2

1 2 1 1 2 2... ...n n nm r m r m r             
 

or,                 2 2 2 2

1 1 2 2

1

...
n

n n i i

i

m r m r m r m r


 
      

 
     

or,                I                                                                            (5.13) 
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So,   Torque = MI × Angular acceleration.  

5.8 ANGULAR MOMENTUM 

As we are already aware of the fact that the angular momentum of a body is the rotational analogue of 

linear momentum in translational motion, as like torque which is the moment of force, angular 

momentum can be defined as the moment of linear momentum of a body. 

 

Fig. 5.8: Angular momentum            

of a rigid body 

Definition: For a body, the angular momentum about an axis 

represents moment of the linear momentum about the axis. It is 

therefore the product of magnitude of its linear momentum and the 

perpendicular distance to its line of motion from the given axis. 

      Let p
��

 
represents the linear momentum of a particle of mass m 

situated in a system of particles moving with angular velocity ω and 

r
�

 be the position vector of the particle with respect to a given point 

O (Fig. 5.8) on the axis of rotation. Then the angular momentum of 

the particle about the point O will be, 

              
sin sinL pr mvr  

                                  
(5.14) 

where   is the angle between r
�

and v
�

and m is the particle mass. 

      In vector notation we have,  

L r p 
�� � ��

                                                                                                               (5.15) 

      Angular momentum is a vector quantity and is normal to the plane of the paper and thus it 

becomes perpendicular to both p
��

 
and .r
�

 

Dimension and units of angular momentum: Dimension of angular momentum is = [ML
2
T

-1
], 

SI unit of angular momentum is kgm
2
s

-2
  

and CGS unit of angular momentum is g-cm
2
s

-2
. 

5.8.1 Relation between Angular Momentum and Moment of Inertia 

We assume that a rigid body is rotating about the axis AB with a constant 

angular velocity ω as shown in Fig. 5.9. 

      Now, the angular momentum of the body of mass m1 about AB is, 

L1 = p1r1= m1v1r1= m1(r1ω)r1 = m1r1
2
ω 

So, the total angular momentum of the whole body about the axis of rotation 

AB is,  
2 2 2

1 2 1 1 2 2... ...n n nL L L L m r m r m r           

or,    2 2 2 2

1 1 2 2

1

...
n

n n i i

i

L m r m r m r m r


 
      

 
    

or,   L I                                                                          (5.16) 

      So,   Angular momentum = MI × Angular velocity. 

 

  Fig. 5.9: Relationship 
between angular 

momentum and MI 
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5.8.2 Relationship between Torque and Angular Momentum 

We know,  

angular momentum  L I                                        (a) 

and torque        I                                        (b) 

      Now, differentiating equation (a) we get,  

dL d
I I

dt dt
 




                              
(c) 

So, from equation (b) and (c) we get, 

dL

dt
                                                                                                                   (5.17) 

which gives the relationship between angular momentum and torque and states that the rate of change 

of angular momentum is the external torque. 

5.8.3 Conservation of Angular Momentum 

We know the relationship between angular momentum and external torque is, 
dL

dt
  

Now, if 0  then 0
dL

dt
  

i.e.,   L = constant  

or,   I  = constant 

i.e.,   1 1 2 2
I I                                                                                                              (5.18) 

      So, the angular momentum of a body remains conserved when no external torque is applied. This 

is known as the conservation law of angular momentum. 

5.9 THEOREMS OF MI 

In many cases the MI can be calculated conveniently by applying the following two important 

theorems. 

5.9.1 Parallel Axis Theorem 

The MI of a body about an axis is same as its MI (I0) about a parallel axes through its centre of mass 

(CM) plus the multiplication of the mass (M) of the body under consideration and the distance square 

between the two axes. Mathematically we can express as, 
2

0I I Ma 
                                                                                                         

(5.19) 

where a is the distance between the parallel axes. 

5.9.2 Perpendicular Axis Theorem  

The sum of MI of a plane laminar body, about any two mutually perpendicular axes in its plane, is 

same as the MI of the body about a third axis perpendicular to the body and passing through the 

intersection of the first two axes. 



Rotational Motion | 139 

 

      According to this theorem if Ix and Iy represents the MI of a body about X and Y axis respectively, 

then its MI about the Z axis which is evidently perpendicular to both the X and Y axis can be 

represented as,  
                              

z x yI I I 
                                                                                                           

(5.20) 

5.10 RADIUS OF GYRATION 

Independent of the shape of the body, we can observe a point always where if the total mass of the 

body were supposed to be concentrated, the kinetic energy of rotation remains the same as that of the 

body itself about the same axis. The distance K of that point from the rotational axis is termed as the 

radius of gyration of the body about that axis. 

      If M be the total mass and K the radius of gyration of the body, then we have  

 2 2 2 2 2
rot

1 1 1
( . .)

2 2 2
K E I mx MK    

                                                   
(5.21) 

  2 2MK mx I   

or,  
I

K
M


                                                                                                         

(5.22) (a) 

We may also write 
2 2

2 2 1 2 .......x x
MK mx mn

n

  
    

 
  

where n is the number of particles, each of mass m, into which the given mass M may be divided so 

that .M mn  

  
2 2

2 1 2 .......x x
K

n

 
  

or,  

2
ix

K
n

 
                                                                                                   

(5.22) (b) 

      Hence, the radius of gyration represents the square root of the average of the square distance of the 

particles constituting of the body from the rotational axis. Radius of gyration about an axis is looked 

upon as the radius of a thin uniform ring with the centre on the axis and having the same mass as the 

given body and the same MI. Accordingly, the radius of gyration has the dimension of length [L]. 

5.11 MOMENT OF INERTIA FOR SYMMETRIC BODIES 

Let us calculate the MI for simple symmetric systems. 

Case 1: About an axis passing through the centre of mass (CM) and perpendicular to a straight 

uniform rod 

Let a mass element dm of length dx be located at a distance x from the CM of the rod. MI of the rod 

about the axis AB (Fig. 5.10) will be,  

2 22 2

2 2

l l

l l

m
I x dm x dx

l 

    
                             (mass per unit length = 

m

l
) 
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3 2
22

2
2

3

l
l

l
l

m m x
x dx

l l


 
   

 


              

   
3 3 3 2

3 8 8 12 12

m l l ml ml

l l

  
      

  
           

(5.23) 

Radius of gyration, 
12

l
K 

                                        

(5.24) 

Case 2: About an axis passing through one end and perpendicular to a straight uniform rod 

In this case (Fig. 5.11), the limits of integration will be 0 to l, instead of 
2

l
 to

2

l
. So, MI about AB is, 

 

Fig. 5.11: Axis passing                                 

through one end of the rod  

2 2

0 0

l l m
I x dm x dx

l

    
  

           

                              

3 2
2

0
0

3 3

l
lm m x ml
x dx

l l

 
   

 


                  

(5.25) 

Radius of gyration, 
3

l
K 

                             
(5.26) 

Case 3: About an axis perpendicular to a uniform circular disc 

 
Fig. 5.12: Axis passing            

through the centre and 

perpendicular to the                               

plane of the disc  

Let the disc be divided into concentric circular rings [Fig. 5.12]. Choose 

the ring of width dr and mass element dm at a distance r from the centre of 

the disc. 

       dm = area of the ring mass per unit area 
2

2
m

rdr
r

 


 

      The MI of the ring under reference about the axis is  

                   
2dI r dm  

So, the MI of the disc about O is 

                   

4

2 3

2 2

0

2 2
.

4

R
m m R

I dI r dm r dr
R R

     
                                

Moment of inertia, 21

2
I mR

                                                                                                      

(5.27)

  

and radius of gyration, 
2

R
K 

                                                                                                      

(5.28) 

Case 4: About an axis passing through CM and perpendicular to the plane of an annular ring 

The procedure would be identical with that of previous case, with the following modifications: The 

limits of integration will be 
1

R  and
2

R , and mass element  
 2 2

2 1

2 .
m

dm rdr
R R




 
  

  
 

 
Fig. 5.10: Axis passing                     
through CM of the rod 
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 The MI of the annular ring [Fig. 5.13] about the ring axis is  

2

1

3

2 2
2 1

2
R

R

m
I r dr

R R



 

  

22

11

4
3

2 2 2 2
2 1 2 1

2 2

4

RR

RR

m m r
I r dr

R R R R

 
   

   


  

                 

 
4 4

2 22 1
1 22 2

2 1

2 1

4 2

R Rm
m R R

R R


  


         

(5.29)

 
Radius of gyration,  

 2 2
1 2

2

R R
K




                                         

(5.30) 

Case 5: About the axis of a uniform cylinder  

Let the cylinder be divided into thin discs perpendicular to the axis. The MI of any 

of the discs is by Case 3 above is 21
,

2
mR where m is the mass of the disc. 

      So, the MI of the whole cylinder is 

2 2 21 1 1

2 2 2
I mR R m MR   

                                    
(5.31) 

 Radius of gyration, 
2

R
K 

                                                                       

(5.32) 

Case 6: About the axis of a uniform cylindrical shell 

Let the cylindrical shell be divided into annular rings, perpendicular to its axis. The MI of any of the 

rings is, by Case 4 above,  2 2
2 1

1

2
m R R . 

      So, the MI of the tube is 

     2 2 2 2 2 2
1 2 1 2 1 2

1 1 1

2 2 2
I m R R R R m M R R      

                                
(5.33)

 

 Radius of gyration, 
 2 2

1 2

2

R R
K




                                                                                        

(5.34) 

Case 7: About the CM and parallel to one side of a uniform rectangular lamina 

Let a and b be the sides of the rectangular lamina [Fig. 5.15] and let the axis be parallel to the side b. 

Let the lamina be divided into thin strips, each of width dx, parallel to side b. The MI of one such 

strip, distant x from the axis is 

2m
dI x dx

a


              
(∵mass per unit area = m ab , area of strip = bdx ) 

 

Fig. 5.13: Axis passing            
through the centre and 

perpendicular to the plane             
of the annular ring 

 

 

Fig. 5.14: About 
the axis of the 

cylinder 
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Fig. 5.16: About a diameter of 

a uniform solid sphere 

for simulation 

of MI 

      The MI of the whole lamina about the said axis is 

              

22 3
2 2

22

1

3 12

aa

aa

m m x
I dI x dx ma

a a


 
    

 
 

                                                      

(5.35)

 

 

Fig. 5.15: Axis through the CM and 

parallel to one side of a uniform 

rectangular lamina 

 Radius of gyration, 
12

a
K 

                                        

(5.36) 

      If the axis were parallel to the side a, then we should have                      

                              21

12
I mb

 

and                        .
12

b
K 

 

Case 8: About a diameter of a uniform solid sphere  

Let the sphere be divided into concentric spherical shells. 

Choose one such shell of radius r and thickness dr. 

      Consider a thin circular slice of width dx at a distance x from 

the center of the solid sphere (Fig. 5.16). Mass of this element is, 

 2 2dm r x dx   , where  is the density of the material.  

So, its MI about the centre O is  

   
2

2 2 2 21

2
dI r x dx r x     

     2
2 2

2
r x dx 


 

      The MI of the solid sphere about the diameter XOX is 

 2
2 2

2

r

r

I r x dx



 


 

or,   2
2 2 2

3

3 2

2 54

r

r

m
I r x dx mr

r


 
   

  



   

34

3
m r

 
 

 
∵ 

     

(5.37) 

 Radius of gyration, 
2

5
K r

                                                                        

(5.38) 

  
 E

X
A

M
P

L
E

 5
.4

 

Example 5.4 If the radius of the earth shrinks to 1/4
th
 of its previous value, 

calculate the length of a day. 

Solution 

From the conservation of angular momentum we have, 1 1 2 2
I I   

where 2

1

2

5
I MR and 

2

2

2

2 1
.

5 4 40

R
I M MR

   
 
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Thus,   2 2

1 2

2 1

5 40
MR MR     

or,   1 22

5 40


 
 

or,   2 1

2 4
16 16 rad/hr.

24 3
   

 
   

or,   2

2

2 2
1.5hr.

4

3

T   
 


 

So, the length of a day is 1.5 hours.          

  
  
 E

X
A

M
P

L
E

 5
.4

 

 

 

  

Example 5.5 Show that the kinetic energy of a thin rod of mass m per unit length 

having length l rotating about an axis through the midpoint and perpendicular to its 

length with angular velocity  is 2 21
.

24
m l  

Solution 

The moment of inertia of the rod about the given axis is  

 2 2 31 1 1
.

12 12 12
I Ml ml l ml M ml   ∵  

So, kinetic energy of rotation will be, 

                           2 3 21 1
.

2 24
I ml   

  
  
 E

X
A

M
P

L
E

 5
.5

 

 

 

  

Example 5.6 Calculate the moment of inertia for a thin circular ring of mass 150 g 

and radius 50 cm about an axis in the plane of the ring when the axis (a) passes 

through the centre and (b) is 10 cm away from the centre. 

Solution 

(a) The moment of inertia of the ring is to be taken, plainly about the diameter. 

The required moment of inertia, 

2 2 5 21 1
150 50 1.875 10 g/cm .

2 2
I mr       

(b) The moment of inertia of the ring can be calculated by using parallel axis 

theorem as         2 21

2
I mr mx 

 

                             

2 2 5 21
150 50 150 10 2.025 10 g/cm .

2
        
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5.12 EULER’S LAWS OF MOTION 

These are equation of motion which extends Newton’s laws of motion for a point mass to rigid body 

motion. In a deformable body the internal force distribution is not necessarily uniform all through the 

body leading to a variation of stress distribution from point to point. This variation is governed by 

Newton’s second law of motion and can be extended to a body of continuous mass distribution. In 

case of bodies with continuous mass distribution these laws are known as the Euler’s laws of motion 

after his formulation. The laws are stated below: 

First law: It can be stated in the following way:  

      For a body the linear momentum is same as the product of the mass of the body and the velocity, 

taking into account the centre of mass. 

      Mathematically it can be expressed as, 

 cmp mv
�� �

                                                                                                              
(5.39)

 

      The law can alternately be expressed as, 

 cmF m f
�� ��

                                                                                                            
(5.40)  

by simply taking derivative on both sides of the equation. 

Second law: It states that the time rate of change of angular momentum about a fixed point in an 

inertial frame of reference is equal to the sum of the external moments of force (or torque) acting on 

that body about that point. 

      Mathematically we can write it as, 

 
d L

dt


��
�

                                                                                                                  (5.41) 

      For, a body translating and rotating in only two dimensions it can be expressed as, 

cm cm
mr f I  

� � �� ��

 
                                                                                             

(5.42)
 

where, cmr
�

is the position of the CM with respect to the point about which moments are calculated.  

      I and 
��

  are respectively the MI and angular acceleration of the body about its CM. 
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UNIT SUMMARY 

  

 

 Rotational motion  

         Angular displacement  S = r θ  

         Angular velocity 
t




   

         Angular acceleration  
ω

α =
t

  

 Centripetal acceleration 

                               

2
2

C

v
f = ω r =

r
  

 Centripetal force  

                               
2

2

C

m v
F = m ω r

r
   

 Centrifugal reaction and centrifugal force  

                               

2
2

g

m v
F = m ω r

r
                 

 Moment of force (torque) 

                                r F 
� � ��

                                                                            

 Moment of inertia 

                                

2 2 2 2

1 1 2 2

1

....
n

n n i i

i

I m r m r m r m r


      

 Relationship between torque and moment of inertia  

                                I     

 Angular momentum  

                                
L r p 
�� � ��

      

 Relationship between angular momentum and moment of inertia  

                                L I    

 Relationship between torque and angular momentum  

                                

dL

dt
       

 Conservation of angular momentum  

                                1 1 2 2
I I             

   
 

 Parallel axis theorem 

                                
2

0I I Ma 
   

 

 Perpendicular axis theorem  

                                z x yI I I   



146 | Physics - Introduction to Mechanics 

 

 Radius of gyration  

                                

2
ix

K
n

 
                                        

 

 Moment of inertia calculations for some regular symmetric bodies 
          About an axis passing through CM and perpendicular to a uniform rod 

                                

2

12

ml
I 

                         12

l
K 

    
          About an axis passing through one end and perpendicular to a straight rod  

                                
2

3

ml
I                   3

l
K 

                         About an axis perpendicular to a uniform circular disc  

                                 

21

2
I mR

                     2

R
K   

          About the CM and perpendicular to the plane of an annular ring  

                                 

 2 2
1 2

1

2
I m R R 

       

 2 2
1 2

2

R R
K




      

 

          About the axis of a uniform cylinder  

                                 

21

2
I mR

                     
2

R
K   

          About the axis of a uniform cylindrical shell 

                                 

 2 2
1 2

1

2
I m R R 

       

 2 2
1 2

2

R R
K




   

 

          About the CM and parallel to one side of a uniform rectangular lamina 

                                 21

12
I ma

                   12

a
K 

 

                                 

21

12
I mb

                   12

b
K 

 
          About a diameter of a uniform solid sphere 

                                  

22

5
I mr

                    

2

5
K r

     

 

 Euler’s laws of motion 

                       First law  

      cmp mv
�� �

                      cmF m f
�� ��

                                                                                                                 
                       Second law 

      
d L

dt


��
�

                         

      cm cm
mr f I  

� � �� ��

 
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EXERCISES 

 

Multiple Choice Questions

 5.1 The relation between angular momentum L, moment of inertia I and angular velocity  is  

(a) 
I

L 


 (b) 2L I   (c) 
2I

L 


 (d) L I   

5.2 The dimensional formula of angular momentum is 

(a) ML
2
T

-2
  (b) ML

2
T

-1
 (c) MLT

-2
 (d) MLT

-1
 

5.3  The magnitude of centripetal force is 

(a) 2mv r  (b) 
2mv

r
 (c) 2 2mv r  (d) 

mv

r
 

5.4 When milk is charred; cream separates out because of  

(a) gravitational force (b) viscous force (c) centrifugal force (d) mechanical force 

5.5 The dimensions of angular acceleration are  

(a) [LT
-2

] (b) [LT
-1

] (c) [T
-3

] (d) [T
-2

] 

5.6 Centripetal force acts on  

(a) the body executing circular motion 

(b) the external agent which causes the angular motion 

(c) both the body and the external agent (d) none of these 

5.7 The relation between torque , moment of inertia I and angular acceleration is  

(a) 2I   (b) 
2I




 (c) 
I




 (d) I   

5.8  Centrifugal reaction acts on  

(a) the body executing circular motion 

(b) the external agent which causes the circular motion 

(c) both the body and the external agent  (d) none of these 

5.9 The SI unit of torque is  

(a) Nm
2
 (b) Nm (c) Nm

-2
 (d) Nm

-1
 

5.10 The rotational analogue of force is   

(a) torque (b) moment of inertia (c) angular momentum (d) angular velocity 

5.11  Rate of change of angular momentum of a particle is equal to 

(a) product of moment of inertia and angular velocity 

(b) product of torque and angular velocity 

(c) torque acting on it                                         (d) kinetic energy of rotation  

5.12 A mass m is moving with a constant velocity parallel to X-axis. Its angular momentum is 

(a) zero  (b) remains constant     (c) goes on increasing  (d) goes on decreasing  
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5.13 The kinetic energy of rotation of a body of mass m, angular velocity   and moment of inertia I 

is given by, 

(a)  21

2
I  (b) 21

2
I  (c) I  (d) 2I   

5.14 The angular moment of a particle of mass m, velocity v, momentum p at position r (with respect 

to the origin) is given by 

(a) mvr  (b) r × p (c) v × p (d) /mv r  

5.15 A particle moves in a circular path of radius r with a constant angular velocity . Its linear 

velocity is 

(a) r  (b) /r   (c) / r  (d) 2r  

5.16 The centripetal force is given by 

(a) 
2mv

r
 (b) 

2v

r
 (c) 2 2mr   (d) mgr 

5.17 When water in a bucket is whirled fast, overhead water does not fall out at the top of the motion 

because 

(a) the centripetal force on the water is greater than the weight of water 

(b) the centripetal force on the water is less than the weight of water 

(c) atmospheric pressure counteracts the weight 

(d) centrifugal force on water is greater than the weight of water 

5.18  Dimensions of angular velocity are 

(a) zero      (b) [LT
-1

] (c) [T
-1

] (d) [L
-1

]  

5.19 For a particle moving uniformly around a circular path of radius r (v = linear velocity,   = 

angular velocity) 

(a) 
v

r
   (b) vr   (c) 

r

v
   (d) 

2r

v
   

5.20 Angular velocity of the second hand of a clock is   

(a) 2 rad/s  (b) 
30


rad/s (c) 

3


rad/s  (d) 

6


rad/s 

5.21 A particle moves with a constant velocity parallel to X axis. Its angular momentum with respect 

to the origin 

   (a) is zero             (b)  is constant          (c)  increases            (d)  decreases 

5.22 A body is under perfect rotation. Its linear speed v is related to its angular velocity ω by ω = v/r 

where r is the distance of the particle from the axis. Then 

 (a) 
1

r
               (b) r           (c) 0             (d) ω is independent of r 

5.23 Which one must be applied to maintain the rotation of the system about a given axis?  

 (a) force                         (b) momentum              (c) velocity                    (d) torque 
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5.24 A man is sitting on a rotating circular table with his arm stretched out and suddenly he then 

folds his arms to bring them close to the body. The angular momentum about the axis of 

rotation will 

 (a)  increase            (b) decrease           (c)  remains unchanged  (d) can’t be predicted 

5.25  Moment of inertia of a circular wire (mass = M, radius = R) about its diameter is 

 (a) 1/2 MR
2
                   (b) 1/4 MR

 2
                  (c) 2 MR

 2
                        (d) MR

 2 

5.26 The moment of inertia of a semicircular wire (mass = M, radius = r) about a line normal to the 

plane of the wire through the centre is 

 (a) 21

4
Mr             (b) 21

2
Mr           (c) 22

5
Mr             (d) 2Mr    

Answers of Multiple Choice Questions 

5.1 (d), 5.2 (b), 5.3 (b), 5.4 (c), 5.5 (d), 5.6 (a), 5.7 (d), 5.8 (b), 5.9 (b), 5.10 (a), 5.11 (c), 5.12 (a),           

5.13 (b), 5.14 (a), 5.15 (a), 5.16 (a), 5.17 (d), 5.18 (c), 5.19 (a), 5.20 (b), 5.21 (c), 5.22 (a), 5.23 (d), 

5.24 (c), 5.25 (b), 5.26 (d) 

 

Short and Long Answer Type Questions 

Category I 

5.1  Find a relation between angular velocity and angular acceleration. 

5.2  Explain uniform circular motion with an illustration. 

5.3  Differentiate between (i) couple and (ii) torque. 

5.4  Elaborate the term moment of a force or torque with mathematical form and also mention the SI 

unit. 

5.5  Establish the following relationships –  

i) torque and angular momentum,  

ii) linear and angular momentum and  

iii) torque and moment of inertia. 

5.6  Show the difference between centrifugal reaction and centrifugal force. 

5.7  Explain moment of inertia and write down its SI unit. 

5.8  Write down the expression of centripetal acceleration in terms of linear speed. 

5.9 Write down the expression of centripetal force. 

5.10  Explain angular momentum and hence express its SI unit. 

5.11  Clearly explain the principle of conservation angular momentum. 

5.12  Find a relation between torque and angular momentum. 

5.13  Explain the term centripetal force acting on a rotating body. 

5.14  Calculate the moment of inertia of the following objects along their axis. 

i) a rod, ii) circular lamina, iii) spherical shell, iv) solid cylinder and v) solid sphere. 
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5.15 Calculate the angular momentum of a rigid body rotating about a fixed axis with angular 

velocity ω and explain the moment of inertia and radius of gyration. 

5.16 Prove the theorems of parallel and perpendicular axes as applied to moment of inertia. 

5.17 Calculate the moment of inertia of 

a) an annular ring about an axis i) through the centre and perpendicular to its plane and ii)  

about a diameter. 

b) a thin spherical shell about a diameter and hence of i) a solid sphere and ii) a thick  shell  

about an axis through the centre. 

 

Category II                                         

5.18  Torque is related to angular acceleration. Justify the statement. 

5.19  Centripetal force is a no work force. Justify. 

5.20 Is moment of inertia a scalar or vector quantity? Justify your answer. 

5.21  If mass of a particular body is constant, is its moment of inertia fixed? 

5.22  Why centrifugal force is called fictitious force? 

5.23  Why is the earth bulged at the equator and flattened at the poles? 

5.24 Moment of inertia is the rotational analogues to mass of a body- explain the statement. 

 

Numerical Problems 

5.1  An electric motor drill, rated 350 W has an efficiency of 35% .What torque will it produce if it is 

working at 3000 r.p.m.?                                                                        [Ans: 0.39 N-m] 

5.2  A body of mass 50 gm is uniformly rotating in a circular orbit of radius 100 cm with angular 

speed of 50 rpm. Calculate the centripetal force acting on it. 

5.3 If the radius of the earth shrinks to 1/2 of its previous value, calculate the length of a day. 

5.4  Four spheres, each of diameter 2a and mass m, are placed with their centers on the four corners 

of a square of side b.   

Calculate the moment of inertia of the system about one side of the square.    

                                                                                                                      

 2 22
: 4 5
5

Ans m a b
     

PRACTICALS 

 

1. Determination of the moment of inertia of a flywheel 

Theory 

A flywheel is basically a heavy wheel (w) capable of rotating about the horizontal axis (AB). This is 

also the axis of a long narrow wheel Q which is called as the axle. To determine the MI of the 
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flywheel about the axis AB, a cord or rope is wound on the axle several times and from the free end of 

the cord or rope a mass m is suspended and is allowed to fall down. 

      Now, as the mass is released it falls due to its own weight mg. 

The length of the cord or rope is so adjusted that when the mass 

reaches the ground the other end of the cord or rope can just leaves 

the axle, wheel is rotated for a known number of times n1 such that 

the string is wound over n1 turns on the axle without overlapping. 

Now let the mass m is at a height h from the floor. The mass is then 

permitted to descend down when it exerts a torque on the axle of 

the flywheel. By this torque the flywheel rotates making an angular 

acceleration. If  represents the angular velocity of the wheel at the 

time when the peg detaches the axle and W is the work done 

against friction for a rotation, then using the law of conservation of 

energy, 

 

Fig. (i) 

So,     2 2 2

1

1 1

2 2
mgh mr I n W                                                                                       (i) 

      Let, n2 be the number of rotations made by the wheel before it stops. Since the kinetic energy of 

rotation of the flywheel is completely dissipated when it comes to rest, we can write, 

2

2

1

2
I n W

                                                                                                              
(ii) 

Thus,     2 2 2 2 2 2 21 1

2 2

1 1 1 1
1

2 2 2 2 2

n n
mgh mr I I mr I

n n

 
      

 
       

or,     

2
2 2 2

2 1 1

2 2

2

2

1 1

mgh
mr

mgh mr
I

n n

n n


 

   
    

   

 


                                                                          (iii) 

where h = height from the floor,  

I = MI of the flywheel about the axis AB, 

           ω = its angular velocity when the mass is about to touch the ground, 

r = radius of the axle, 

m = mass suspended through string / thread, 

n1 = number of turns of string wrapped on axis and 

n2 = number of oscillation up to flywheel stopped after detaching the mass. 

      To measure the angular velocity ω, when the rope leaves the wheel, a suitable mark is given on the 

circumference of the wheel. The wheel is then allowed to continue in its rotation until it comes to rest 

due to friction. Let, n2 be the number of revolutions and t is the time taken. 

      Then the average angular velocity of the wheel = 22 n

t


 rad/s. 

      This is equal to half of the maximum angular velocity of the wheel when the rope leaves the axle. 
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So,     2 22 4
2

n n

t t
  

 
                                                                                                 (iv) 

and,                   1
2h rn 

                                                                                                                    
(v)

 

So,     

 
 

2 2
1 2 1
2 2

2 2

1 1

2 2

2 2

4 4

1 1

mg rn t ngt
mr mr r

n n
I

n n

n n

   
  

   
    

   



 
  

  
2 2

1

2 21 2
2 2

2 1

4 1 4 1

mrgt n mrgt
I

n n
n n

n n

 
   

    
   

 
          [As, 

2

1

2

2
4

ngt
r

n



]                                   (vi) 

Procedure 

1. Determine the diameter of the axle with the help of vernier calipers for different points and then 

calculate the mean.  

2. Attaching the mass with the flywheel, wrap the string or thread axle of flywheel for certain number 

of turns n1.  

3. Permit the mass to fall.  

4. After fall of the mass, note the number of oscillation of flywheel (n2) and corresponding time (t2) 

till the flywheel is stopped.  

5. Repeat last three steps for different masses (m) at fixed n1.  

 

           Fig. (ii)                                   Fig. (iii) 

6. Draw the graphs between mass m vs 2

1

1
n

n

 
 

 
 [Fig. (ii)] and between n2 vs t

2
 [Fig. (iii)]. The graph 

should be separated for each n1. 

Observation 

Table 1: Determination of the radius of the axle 

Least count of the vernier = ……. cm. 
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Sr. No. Main scale reading Vernier scale reading Total reading 

1    

2    

3    

4    

5    

6    

So, diameter of axle (D) = Mean of total reading = ………cm, 

and hence the radius of axle (r = D/2) = ……… cm. 

Table 2: Determination of n2 and t 

Sr. No. n1 n2 m t 1 + n2/ n1 t 
2
 

1       

2       

3       

4       

5       

6       

Calculation 

The MI can be calculated with the following formula:  
2

2 2
2

1

4 1

mrgt
I

n
n

n


 

 
 


  

Precautions 

1. There should be least friction in flywheel.  

2. The string length should be smaller than the height of axle from the floor.  

3. No kink should be there in the string.  

4. The string is to be taken thin and should be wound evenly.  

5. Stop watch should be started immediately detaching the loaded string.  

 

2. Determination of the moment of inertia of a rectangular bar  

Aim 

To determine the MI of a rectangular bar about an axis going through its centre and perpendicular to 

the plane 

Apparatus 

Torsional pendulum 
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Theory 

We can determine the MI of regular or irregular bodies by torsional pendulum. Simply it is a wire W 

suspended from a torsion head T, which supports a cradle [Fig. (i)]. The whole arrangement is 

enclosed in a box provided with glass windows. The arrangement is so made that the torsion wire 

passes through the centre of gravity (CG) of the cradle.  If the cradle undergoes torsional oscillation, 

the wire acts as the axis of oscillation. The wire is rigidly fixed at one end and at the other end the 

experimental body is suspended, so that the centre of mass of the body passes through the wire. When 

the lower end is twisted by a couple, then, within the elastic limit, the torque is proportional to the 

angle of twist,  

i.e.,                            

or,   C                                                                       (i) 

where C = torsional constant or torque for unit angle of twist.   

Now,              

2

2

d
I

dt





                                                                
(ii) 

or,   

2

2

d
I C

dt



  

or,   

2
2

2

d C

dt I
 


    

So, the angular acceleration is proportional to angular displacement.
 

       

  Fig. (i) 

Thus, the motion is simple harmonic. The time period of oscillation is  

2
I

T
C

                                                                                                            (iii) (a)  

a) If I1 be the MI of the cradle and T1 be its time period of oscillation then  

1

1
2

I
T

C
                                                                                                           (iii) (b) 

b) Now, take a rectangular bar. Find its mass M, length l and breadth b.  Let its MI is I2 about the axis 

passing through the centre and perpendicular to its plane. We have,  

 2 2

2
12

M
I l b                                                                                                          (iv) 

The bar is placed on the cradle such that the wire W passes through its centre. Its time period of 

oscillation T2 is measured. Then,    

1 2

2
2

I I
T

C


                                                                                                           (v) 

c) Next the bar is removed and the experimental bar is properly placed on the cradle. Its time period of 

oscillation T3 is again measured. 

So,   1 3

3
2

I I
T

C


                                                                                                          (vi) 
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Hence, from Eqs. (iii) (b), (v) and (vi) we get, 

2 2

3 2

3 22 2

2 1

T T
I I

T T





                                                                                                         

(vii) 

Procedure 

1. The mass (M) of the known body is determined by a rough balance or spring balance while its 

breath (b) and length (l) are measured by a slide calipers and ordinary metre scale respectively. If the 

length of the known body is small then it should be measured by a slide calipers. Its MI I2 is then 

calculated from relation (iv).  

2. The cradle alone is made to perform torsional oscillations with small angular amplitude and the 

time for 30 complete oscillations is noted thrice. The mean of this three observed time when divided 

by 30 we get the period, T1 of the cradle. 

3. The known body is then placed horizontally on the cradle and the period of oscillation T2 of the 

cradle and the known body together is determined as before. 

4. The known body is then replaced by the unknown body and the period of oscillation T3 of the cradle 

and the unknown body together is similarly, determined. 

Observations 

Mass of the bar = ……. kg. 

Length of the bar = 1 2 3

3

l l l
l

 
  ….. cm =….. m. 

Breadth of the bar = 1 2 3

3

b b b
b

 
  ….. cm =….. m. 

MI of the bar about the axis passing through its centre and perpendicular to its plane is, 

   2 2

2
12

M
I l b   ….. kg-m

2
. 

Table 1: Determination of the periods of oscillation 

Oscillating Body 
Time for 30 
oscillations 

Mean Time (t) in s Period T (= t/30) in s 

Cradle   = T1 

Cradle + Rectangular bar   = T2 

Cradle + Unknown bar 
  = T3 

Calculations 

By calculating T1, T2, and T3 from the above table and using the value of I2, we can calculate I3 by 

using the formula; 

2 2

3 2

3 22 2

2 1

T T
I I

T T





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Putting the values of the parameters on the right hand side, I3 can be found out in kg-m
2
. 

Viva-Voce Questions 

1. Mention the units for moment of inertia, torque and angular acceleration.  

2. What is meant by moment of inertia? Give some examples. 

3. What is radius of gyration? 

4. If the applied torque to a rigid body is doubled, what will be the moment of inertia? 

5. Compare the compensation of friction in this experiment for the purpose of friction 

compensation in Newton’s second law. 

6. How can you find the moment of inertia of a sphere? 

References for Practicals 

https://www.andrews.edu/phys/courses/p131/manual/experiment7.html 

https://vlab.amrita.edu/?sub=1&brch=74&sim=571&cnt=1 

 

KNOW MORE 

 

By the middle of the 19th century, most people knew that Earth spins on its axis, completing 

a rotation once a day. However, there was no visual demonstration of the Earth’s rotation, only 

astronomical evidence.  

      Rotational motion is a very common phenomenon everywhere. When we push a door, it rotates; when 

we pedal a bike, the wheel rotates: when we start an engine, many parts rotate; electrons rotate in an atom; 

H2O molecules rotate in a microwave and the galaxies rotate in the Universe.  

      All motion can be classified into Translation, Rotation and Vibration. A baseball translates along a 

parabolic path, rotates (spins) about its centre and vibrates when it hits a bat. The earth translates around 

the sun in an elliptical path, rotates about its axis and vibrates during an earthquake. The translation and 

rotation of N2 and O2 molecules determines the temperature and thermodynamics of the atmosphere and 

hence the weather. 

Activity 

In order to make a curve with a bicycle or a motorcycle there must be sufficient friction between the tires 

and the road. This is because the frictional force gives the centripetal force that makes the bike follow the 

curved trajectory. But at the same time the frictional force makes the rider and the bike rotate sideways in 

the direction opposite to the center of the curve.  

      For the purpose of counteracting that rotation the rider tilts with the bike, making their weights create a 

tendency to rotate in the opposite direction.  

      This tendency to rotate is created by a force, called moment. The high speeds in motorcycle races imply 

higher tilt angles and to make the motorcycle tilt more the rider first turns the wheel in the opposite sense 

of the curve, moving his body away from the motorcycle in the direction of the center of the curve. 



Rotational Motion | 157 

 

Interesting facts 

Principles of mechanics for a particle can be extended to a system of n discrete material points. Some of the 

concepts are particularly useful in the study of Lagrange’s general equations for arbitrary dynamical 

systems and the development of the moment of momentum principle for a system of particles gives a 

foundation for independent presentation of parallel results for the moment of momentum of a rigid body. 

Internal tensile stress produces the centripetal force which keeps a spinning object together.  

      A rigid body neglects the accompanying strain but if the body is not rigid this strain will make it to 

change shape. This can be defined as the object changing shape owing to the “centrifugal force”. Celestial 

bodies rotating about each other frequently follow elliptic orbits. The special case of circular orbits is 

another example of a rotation around a fixed axis which is the line through the center of mass perpendicular 

to the plane of motion.  

      The centripetal force is provided by the gravity which is applied for a spinning celestial body. A 

spinning celestial body of water must require a minimum time of 3 hours and 18 minutes to rotate 

irrespective of size. If the fluid density is more the time can be less.  

Analogy 

Study of dynamics can be divided into categories; linear dynamics and rotational dynamics. Linear 

dynamics are associated with the objects moving in a line and covers topics like force, mass, 

inertia, displacement, velocity, acceleration and momentum. Rotational dynamics, on the other hand, are 

rotating or moving in a curved path and covers topics like torque, moment of inertia, rotational 

inertia, angular displacement, angular velocity, angular acceleration and angular momentum.  

      For classical electromagnetism, Maxwell’s equations are involved in the kinematics. The dynamics of 

classical systems where both mechanics and electromagnetism are involved include the combination of 

Newton’s laws, Maxwell’s equations and the Lorentz force. 

History 

As early as Galileo’s time, scientists attempted to demonstrate Earth’s rotation by dropping objects and 

measuring how far eastward they landed. However, these efforts were so crude and inaccurate that it 

became very difficult to be conclusive. 

Timelines  

1742:   Colin Maclaurin discovered uniformly rotating self-gravitating spheroids. 

1760:   Euler 3-body problem. 

1834:   Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids. 

1834:   Louis Poinsot established an instance of the intermediate axis theorem. 

Applications (Real Life / Industrial)   

Around a fixed axis, the simplest case of rotation is that of constant angular speed when the total torque 

becomes zero. For example, the Earth rotating around its axis and there is very little friction. For a fan, the 

motor applies a torque in order to compensate for friction. Similar to the fan, equipments found in the mass 

production manufacturing industry demonstrate rotation effectively around a fixed axis. A multi-spindle 

lathe is used for rotating the material on its axis for the purpose of effectively increasing the production of 

cutting, deformation and turning.  
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Case Study (Environmental / Sustainability / Social / Ethical Issues) 

Let us consider tornadoes and their devastating nature. It has a comparable speed of the cyclone that 

engulfs the surroundings but besides the speed there is something more. A tornado is a mixture of force, 

power, and energy which govern the rotational motion of a tornado at the time when causes the 

destructions. In rotational motion, the particles of the object while moving follow a circular path. Every 

particle in the rigid body moves in a circular path along a plane perpendicular to the axis and has its centre 

on the same axis. There can be two instances of rotational motion one about the fixed axis and the other 

about an unfixed axis. The popular example of rotation around a fixed axis is the fan. 

Inquisitiveness and Curiosity Topics 

‘Particle’ represents a point mass at some position in space. It can move about but it has no characteristic 

orientation or rotational inertia.  It is characterized only by its mass. With a view to calculating the orbit of 

a satellite we have no need to know the orientation of the satellite and as we know that the satellite is very 

small compared with the dimensions of its orbit. 

 

REFERENCES AND SUGGESTED READINGS 

 
1. J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems, 4th Edition, 

Thomson, 1995. 
2. K. R. Symon, Mechanics, 3rd Edition, Addison-Wesley, 1971. 
3. R. A. Tenenbaum, Fundamentals of Applied Dynamics, Springer, 2004. 
4. W. Winn, Introduction to Understandable Physics: Volume I – Mechanics, Author House, 2010. 
5. J. Breithaupt, New Understanding Physics for Advanced Level, Nelson Thomas, 2000. 
6. B. Paul, Kinematics and Dynamics of Planar Machinery, Prentice Hall, 1979. 
7. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, 7th Edition, Hoboken, NJ: 

Wiley, 2005. 
8. A. P. French, Vibrations and Waves, Boca Raton, FL: CRC Press, 1971.  
9. F. P. Beer, E. R. Johnston Jr. and P. J. Cornwell, Vector Mechanics for Engineers: Dynamics, 

9th Edition, Boston: McGraw-Hill, 2010. 
10. L. D. Landau and E. M. Lifshitz, Mechanics, Vol 1, 2nd Edition, Pergamon Press, 1969. 
11. http://www.nptelvideos.com/video.php?id=1499 
12. https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/readings/MIT8_01F16 

_chapter21.pdf 
13. https://www2.tntech.edu/leap/murdock/books/v2chap1.pdf 
14. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir

=1&article=1146&context=physicskatz 
15. https://www.maplesoft.com/content/EngineeringFundamentals/4/MapleDocument_30/Rotation%2

0MI%20and%20Torque.pdf 
 

 



Electrostatics in Vacuum | 159 

 

d 
 
 

 

 

 

UNIT SPECIFICS 

In this unit we have considered the following aspects: 
 Three-dimensional rigid body motion in terms of 

 Angular velocity vector,  
 Its rate of change, 
 Moment of inertia tensor;  

 Three-dimensional motion of a rigid body  wherein  
 All points move in a coplanar manner, 

 Calculation of moment of inertia of symmetric bodies; 
 Ellipsoid of inertia;  
 Euler’s equation of motion. 

The practical applications of the topics are discussed for generating further curiosity and 
creativity as well as improving problem solving capacity.  
      Besides giving a large number of multiple choice questions as well as questions of short and 
long answer types marked in two categories following lower and higher order of Bloom’s 
taxonomy, assignments through a number of numerical problems, a list of references and 
suggested readings are given in the unit so that one can go through them for practice. It is 
important to note that for getting more information on various topics of interest some QR codes 
have been provided in different sections which can be scanned for relevant supportive 
knowledge. 
      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to 
the recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 
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RATIONALE 

This unit on Dynamics of a Rigid Body will help students to get a theoretical idea about the three-
dimensional rigid body motion and its rate of change and moment of inertia tensor. It also covers 

three-dimensional motion of a rigid body wherein all points move in a coplanar manner. The 

topics will develop a clear concept of the dynamics of rigid body which is considered as one of 

the very important aspects in mechanics. 

      Dynamics of rigid body is the study of the motion in space of one or many bodies wherein 

deformation is ignored. On a rigid body all lines have same angular velocity and same angular 

acceleration. Rigid motions are decomposed into the translation of an arbitrary point, followed by 
a rotation about that point. Thus there are two types of motion in a rigid body, viz., 

translational motion and rotational motion. Dimensions of the body are unimportant to the 

description of its motion, e.g., in planetary motion, the planets are considered as particles. Rigid 

body has a finite size but it does not deform. 

PRE-REQUISITES 

Mathematics: Calculus (Class XII) 

Physics: Rotational Motion (Class XII) 

UNIT OUTCOMES 

List of outcomes of this unit is as follows: 

U6-O1:  Explain the role of degrees of freedom to specify a rigid body completely 

U6-O2:  Describe rolling of an object with the help of translational as well as rotational concepts 

U6-O3:  Calculate principal moments of inertia and products of inertia of some symmetric 

bodies 

U6-O4:  Apply the concept of ellipsoid of inertia and tensor of inertia in complex rigid body 

problem 

U6-O5:   Analyze rigid body problems using Euler’s equations of motion 

 

Unit-6 

Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 

U6-O1 3 - 1 - - - 

U6-O2 3 2 1 - - - 

U6-O3 3 1 1 - - - 

U6-O4 3 2 1 - - - 

U6-O5 3 2 1 - - - 
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6.1 INTRODUCTION 

The bodies are called rigid, in general, when they do not make any deformation under the action of 

applied forces. A rigid body can be defined as one in which the distance between any two of its 

constituent particles always remains constant. A perfect rigid body is an idealization since all bodies 

are made up of atoms and molecules which are in a state of incessant motion. Further, elastic 

deformations may also occur in bodies changing their shapes and sizes. As all such microscopic 

displacements are negligibly small so any given body may be treated as rigid. A rigid body can have 

two types of motions viz. translational and rotational. The motion of a rigid body can be completely 

specified if its position and orientation are known.  

      For such specification, what we require are any three non collinear points in the body. If   however 

the body is fixed at one point, it cannot have any translational motion, but it can rotate about an axis 

passing through that fixed point. If another point of the body is also fixed, the body is capable of 

rotation about the axis through the two fixed points. In that case, the coordinates of the third point, not 

on the axis, would locate the body completely in space. Usually, any point in space is specified in 

terms of its 3 coordinates in some chosen reference frame. Therefore, for the complete specification of 

a rigid body 9 ( 3 3 ) coordinates are essential. But they are not all independent but being associated 

to the equations of constrains: 

 2

constanti jr r 
�� ��

                                                                                                
(6.1) 

where i
r
��

or ( , 1,2,3...)jr i j 
��

represents the position vector of the three points in the rigid body.  So 

there are only 6 independent coordinates. Or in other words, a rigid body is said to have 6 degree of 

freedom. 

6.2 ROTATION OF A RIGID BODY 

Rigid body is a finite object where distances between the constituent 

particles are found to be constant. If we consider a rigid body in 

pure rotational motion, body particles will rotate through a particular 

angle in course of identical time interval, thus making all particles of 

same angular velocity and angular acceleration. 

      We consider a rigid body which is rotating through a particular 

axis having a constant angular velocity
��

. Its direction is taken as 

parallel to the axis of rotation with sign as directed by right-handed 

screw rule. 

 

Fig. 6.1: Rigid body rotation 

      Any non-axis point particle P with radius vector R
��

 then describes a circle with its plane normal to 

the axis. Its linear velocity v
�

 is at right angles to both R
��

and
��

. 

  v R 
� �� ��

                                                                                                                 (6.2) 

      If the particle is of mass m, then its momentum is given by  

p mv
�� �

                           

    ( )m R 
�� ��

                                                                                                          
(6.3) 
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Fig. 6.2: Motion of a rolling wheel 

for more on 

the motion of  

a wheel 

      Angular momentum of the particle about O [Fig. 6.1] is 

   0
( ) ( ) . .L R p R m R mR R m R R R R              

��� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
 

     
 2 .m R R R    

�� �� �� ��

                                                                                         
(6.4) 

      If the origin be shifted to some other point, then the angular momentum L
��

 about that point is 

obtained by putting R r , the distance of the particle from the point under consideration. Taking the 

angle between R
��

and 
��

 as 
2


we have: 

      Angular momentum vector, 2L mr 
�� ��

 

and total angular momentum 
2mr I  
�� ��

                                                                                  
(6.5) 

where 
2

I mr , the summation extending over all the particles comprising the body.  

      Kinetic energy of the rotating body 

2 2
2 2 2 2 2 21 1 1 1 1

sin
2 2 2 2 2

T m v m R m R mr I            
� �� ��

         (6.6) 

      In linear motion, the momentum and kinetic energy of a body of mass M are respectively MV and 

21

2
MV and their analogues in rotation, the angular momentum and rotational kinetic energy, are given 

by I and 
21

2
I . 

      The quantity 
2

i iI mr is called moment of inertia (MI) of the body with reference to the 

rotational axis. 

6.3 ROLLING WHEEL 
If a wheel is designed to roll as part of a mechanism, then it 

is called rolling wheel.  Let, a wheel moves on rolling [Fig. 

6.2]. So, there will be two types of motion associated with 

the rolling wheel. These are: i) translational motion and ii) 

rotational motion. So, due to this there will be two types of 

kinetic energies associated with the body, viz., the 

translational kinetic energy
21

2
tranT mv and the rotational 

kinetic energy
21

2
rotT I .  

      Thus the total kinetic energy will be, 

  
2 2 2

2 2 2 2

2 2

1 1 1 1
1

2 2 2 2 2

v mv K
E mv I mv mK

r r


 
       

      

(6.7) 

Here, K is the radius of gyration, 2I mK and
v

r
  . 
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Example 6.1 An annular disc of mass 150 g and radii 20 cm and 25 cm rolls such 

that its centre has a velocity of 50 cm /s. Calculate its kinetic energy. 

Solution 

The total kinetic energy is the sum of the translational kinetic energy and 

rotational kinetic energy. Hence, it is given by, 

    
2

2 2 2 2 2

1 2 2

2

1 1 1 1
KE

2 2 2 4

v
mv I mv m r r

r
      

or,    
2

2 2 2 4

2

1 1 50
KE 150 50 150 25 20 34.12 10 erg.

2 4 25
           

  
  
 E

X
A

M
P

L
E

 6
.1

 

 

6.4 BODY ROLLING DOWN  

If a body is kept on an inclined plane, it attempts to slip down and so a static friction acts upwards 

which provides a torque that causes the body to rotate.  

      Let a body of radius r roll down, without slip, along an inclined plane of inclination  [Fig. 6.3]. 

Suppose it starts rolling from rest at A and reaches B after rolling over a distance l
 
along the 

inclination, acquiring a translational velocity .v  Now, the KE acquired by the body at B is the loss in 

its PE when falling from A to B, as there is no slipping there is no dissipation of energy. The KE at B 

has two parts, viz., translational and rotational and, if   be the angular velocity at B, it is given by 

2 21 1

2 2
tran rotT T mv I  

              

                  
2 2 21 1

2 2
mv mK  

                                                                              
(6.8) 

where K is the radius of gyration of the body about the axis. 

      Kinetic energy,
2

2

2

1
KE 1

2

K
mv

r

 
   

 
 v r∵

                                                                      
(6.9) 

      The loss of potential energy in rolling from A B  is  

sinmgh mgl  . 

  
2

2

2

1
1 sin

2

K
mv mgl

r


 
   

 
 

or,  
2

2

2
1 2 sin

K
v gl

r


 
   

 
 

  
2

2

2

sin
2

1

g
v l

K

r




 
 

 
                               

(6.10) 

which at once shows that the acceleration of the body rolling down is 

 

Fig. 6.3: Body rolling down                                       

an inclined plane 
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for more on 
rolling and 

sliding down         

an incline 

 

2

2

sin

1

g
f

K

r



 

 
 

                                                                                                       

(6.11) 

      The value of the radius of gyration, K is different for different bodies. The following are some of 

the important cases: 

      i) A solid sphere: 
2 22

,
5

K r  

  
5

sin .
7

f g   

      ii) A solid cylinder: 
2 21

,
2

K r  

  
2

sin .
3

f g   

      iii) A hollow cylinder: 
2 2,K r  

  
1

sin .
2

f g   
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Example 6.2 A fly-wheel of mass 100 kg and diameter 1 m makes 210 rev/m. 

Assuming the mass to be concentrated at the rim, find the moment of inertia and 

energy of the fly-wheel. 

Solution Moment of inertia of the fly-wheel is 

                            

2

2 21
I MR 100 25 kg-m .

2

     
 

 

and energy of the fly-wheel is 

                            

2

2 21 1 2 210
E I 25 J 60.4 10 J.

2 2 60




       
 
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Example 6.3 A fly-wheel of mass 100 kg and diameter 1 m is in the shape of a 

circular disc. Find the amount of work done if its speed of revolution is increased 

from 10 rps to 20 rps.  

Solution 

Here,   1 2 10 20 rad / s      and 2 2 20 40 rad / s.      

and   

2

2 21
I MR 100 25 kg-m .

2

     
 

 

So, the amount of work done if its speed of revolution is increased from 10 rps to 

20 rps is              2 2 2 2 3

2 1 2 1

1 1 25
W E E I I 160 40 14.8 10 J.

2 2 2
            
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6.5 ELLIPSOID OF INERTIA 

The MI of a body obviously varies with the position and the direction of the axis in relation to the 

body. Parallel axis theorem only discusses the variation of MI for different positions of the axis; its 

direction however remains unaltered. We shall now discuss the most general variation in MI for 

different directions of the axis. 

 

Fig. 6.4: Ellipsoid                   

of inertia 

      Let a system of rectangular Cartesian axes OXYZ be fixed with 

respect to the body and OQ be any axis through the origin O [Fig. 6.4] 

and having the direction determined by the direction cosines l, m and n. 

We shall evaluate the MI about OQ as axis. Let M (x, y, z) be any point 

on the body and a particle of mass 'm of the body be located there. 

      From Fig. 6.4, the MI of 'm about OQ is given by 

              
 2 2 2' MP ' OM OPdI m m   

 

      But, 
2 2 2 2OM x y z    

and we have 2OP = square of projection of OM on OQ =   2lx my nz 
 

      So, the MI of 'm about OQ  
is 

   2 2 2 2'dI m x y z lx my nz      
 

 

                                
     2 2 2 2 2 2' 1 1 1 2 2 2m x l y m z n lmxy mnyz nlzx         

 
 

                                
     2 2 2 2 2 2 2 2 2' 2 2 2m x m n y n l z l m lmxy mnyz nlzx         

 
 

using the well known direction cosine relation: 2 2 2 1.l m n    

      So, the MI of the entire body about OQis 

     2 2 2 2 2 2 2 2 2'{ 2 2 2 }I dI m x m n y n l z l m lmxy mnyz nlzx            

  

     2 2 2 2 2 2 2 2 2
' ' '

2 ' 2 ' 2 '

l m y z m m z x n m x y

lm m xy mn m yz nl m zx

     

  

  
  

 

or,  2 2 2 2 2 2xx yy zz xy yz zxI I l I m I n I lm I mn I nl     
                                            

(6.12) 

where    2 2'xxI m y z    MI of the body about X-axis, 

 2 2'yyI m z x  = MI of the body about Y-axis and 

 2 2'zzI m x y  = MI of the body about Z-axis. 

      Again, ' , ' , 'xy yz zxI m xy I m yz I m zx        and they are called the products of inertia 

with respect to axes X and Y, Y and Z, Z and X or simply about XY, YZ and ZX axis respectively. 
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Fig. 6.5: MI calculation              

for thin uniform rod 

 

Fig. 6.6: MI calculation              

for a rectangular lamina 
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Example 6.4 The 3 principal moment of inertia of a body at a point are given as 

200, 300 and 450 g-cm
2
. Write down the equation of the ellipsoid of inertia at that 

point. 

Solution  

The equation of ellipsoid of inertia at a point in reference to the principal axes is 

given by 
2 2 2 constantxx yy zzI x I y I z    

By the problem, we have here  

200, 300, 450xx yy zzI I I    

So, the above equation can written as 
2 2 2200 300 450 constantx y z    

or,  
2 2 24 6 9 constantx y z    

which is the required equation of the ellipsoid of inertia. 

 

 

6.6 MOMENTS AND PRODUCTS OF INERTIA  

6.6.1 Thin Uniform Rod 

For a thin uniform straight rod along Y-axis (Fig. 6.5), we have

0i ix z  . Let O be the origin, represents the centre of mass 

(CM) of the rod:  

So,  2
xx zz i iI I m y  , 0yyI 

                    
(6.13) 

      For continuous mass distribution, 

2
xx zzI I y dm  

 

2

2

2

l

l

y dy


 
    

     

2 3 2
2

2
12 12

l

l

l Ml
y dy 



                      (6.14) 

l M  = mass per unit length and l M  = the mass of the rod. 

6.6.2 Rectangular Lamina 

Let l  be the length, b be the breadth and O the CM (Fig. 6.6) of the 

rectangular lamina. The lamina being very thin, 0.z   

2 2 2( ) .xxI y z dm y dxdy      

     

2 2 2
2

2 2
12

l b

l b

Ml
y dy dx

 

  
                           

(6.15) 

      Here  = surface density, bl M  = mass of the lamina. 
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Fig. 6.7: MI calculation              

for a circular lamina 

 

Fig. 6.8: MI calculation              

for a cylinder 

6.6.3 Circular Lamina 

We take both X-axis and Y-axis in the plane of the lamina and 

the Z-axis is taken perpendicular through its centre of mass O 

(Fig. 6.7). 

      Using cylindrical coordinates: 

                            
cos , sin ,x z z      , 

elemental area,     .dS d d   ,  

elemental volume, .dV d d dz    

we get,                2 2 2( )zzI x y dm d d       

     

2 4
3

0 0

2
4

R
R

d d



       
             

     
2

2

MR


                                                                                                             

(6.16) 

and  2 2 2 2 2( ) sinxxI y z dm y dm d d           

     

2 4 2
3 2

0 0

sin
4 4

R
R MR

d d



         
                                                        

(6.17) 

      Similarly,  
2

4
yy

MR
I 

                                                                                                            
(6.18) 

6.6.4 Cylinder 

We take Z-axis as the axis of the cylinder, O being the CM (Fig. 6.8). We shall also use the cylindrical 

coordinates. So, 

2 2 2
0 0( )zzI x y dV d d dz         

     

22

3
0

0 0 2

hR

h

d d dz



   


   
 

     

4 2

0 2
4 2

R MR
h  

                                  
(6.19) 

where M = mass of cylinder, 0 = density. 

and
   

2 2
0( )xxI y z d d dz     

       2 2 2
0sin z d d dz       
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2 22 2

3 2 2
0

0 0 2 0 0 2

sin

h hR R

h h

d d dz d d z dz

 

       
 

 
  
 
 
       

           
4 2 2

0 2
4 2 12

R R h
h  

 
  

 
 

                                 
4 2

4 12

R h
M

 
  

                                                                                                  

(6.20) 

      From symmetry, yy xxI I . 

0cos sin . .xyI xydm d d dz            

     

22

3
0

0 0 2

sin cos 0

hR

h

d d dz



     


       ( ∵
 
integration =  0)                      (6.21) 

      Similarly,  0xz yzI I  . 

6.7 ANGULAR MOMENTUM OF RIGID BODY 

The angular momentum of a rotating rigid body is directed along the rotational axis. The torque 

directed along the rotational axis is given by the time rate of change of the angular momentum.   

      Let a rigid body consisting of n-particles having masses ( 1,2,3,....., )im i n
 

rotate with an 

instantaneous angular velocity
��

. Suppose one of the points is fixed, implying that there is no 

translational motion. Let us now compute the angular momentum of the body and its kinetic energy 

due to rotation. 

      So, for the i
th

 particle the linear velocity iv
��

of mass im  is .i iv r 
�� �� ��

  

      Total angular momentum L
��

 is obtained by summing up all the angular momentum of individual 

particles as, 

   2
.i i i i i i i i i i i

i i i i

L r m v m r r m r m r r           
�� �� �� �� �� �� �� ��

                          

(6.22) 

The above equation may be written in component forms and the x component of angular momentum is 

given by 

2 2( )x i i i x i i i y i i i x

i i i

L m r x m r y m r x       
                                             

(6.23) 

      Introducing the following symbols for the coefficients of , ,x y z   we can write 

2 2 2 2 2 2 2 2( ) ( ); ( ); ( )xx i i i i i i yy i i i zz i i i

i i i i

I m r x m y x I m z x I m x y            

and

   

; ;xy i i i yx yz i i i zy zx i i i xz

i i i

I m x y I I m y z I I m z x I            
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      Similarly, we obtain 

  xx xx x xy y xz zL I I I    
                                                                             

(6.24) (a) 

xy yx x yy y yz zL I I I    
                                                                            

(6.24) (b) 

xz zx x zy y zz zL I I I    
                                                                             

(6.24) (c) 

The quantities xxI , yyI  and zzI  are called the moments of inertia about X, Y and Z axes respectively. 

xyI , yzI and zxI are called the products of inertia. 

      Generalizing the above set of Eqs. (6.24) we get  

i ij j

i

L I    

  

(i = j = 1, 2, 3)                                                                             (6.25) 

The coefficients ijI  can be calculated from the distribution of the particles about the different axes. 

6.8 KINETIC ENERGY OF RIGID BODY 

The kinetic energy of an object represents the energy that it acquires due to its motion. In classical 

mechanics, if we consider a non-rotating object, the kinetic energy can be obtained by considering the 

mass of the object and its speed by a well known equation E =
1

2
mv

2
 while in relativistic mechanics it 

may be considered as a good approximation when v is too small compared to the speed of light. 

       The kinetic energy of the rigid body is given by 21

2
i i

i

T m v  

or,       2

2 .i i i i i i i i

i i i

T m v m r r m r r          
   

�� �� �� �� �� �� �� �� ��
 

 . .i i i i i i

i i

T m r r m r v       
�� �� �� �� �� �� ��

 

  2 .T L
�� ���

 

Kinetic energy: 
1 1 1

.
2 2 2

i i ij i j

i ij

T L L I     
�� ���

                                                         

(6.26) (a) 

     

2 2 21
2 2 2

2
xx x yy y zz z xy x y yz y z zx z zI I I I I I               

             
(6.26) (b) 

Special case: Let the body rotate about the Z-axis with angular velocity . 

  , 0z x y       

      So, the kinetic energy becomes  

2 21 1

2 2
zz zT I I  

                                                                                             
(6.27) 

where I  is the MI of the body about the Z-axis. 
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      The components of angular momenta, are thus given by 

, ,x xz z y yz z z zz zL I L I L I    
                                                                         

(6.28) 

  
 E

X
A

M
P

L
E

 6
.5

 

Example 6.5 Show that 
1

.
2

T L
�� ��

 

Solution  

Now,   ɵ ɵ  ɵ ɵ 1 1
.

2 2
x y z x y zL iL jL kL i j k        

�� ��
ɵ ɵ  

or, 
     

ɵ ɵ  ɵ ɵ 1 1
.

2 2
xx x yy y zz z x y zL iI jI kI i j k           

�� ��
ɵ ɵ

 
 

                                     
 2 2 21

2
xx x yy y zz zI I I T     

 

  
1

. .
2

T L
�� ��
  

 

 

6.9 INERTIA TENSOR 

The nine terms ij
I i.e., , , , , , , , ,

xx xy xz yx yy yz zx zy zz
I I I I I I I I I may be looked upon as the components of the 

MI of the rigid body. Note that each of the components is a scalar quantity and has the dimension 

[ML
2
]. Since there are in all 9 or 3 3 components, the physical quantity, MI, is a tensor of rank 2 

and is known as the inertia tensor or MI tensor symbolized by I
�

. When written in matrix notation we 

get,  

xx xy xz

yx yy yz

zx zy zz

I I I

I I I I

I I I

 
 

  
 
 

�

                                                                                               

(6.29) 

      The inertia tensor is symmetric, i.e., ij ji
I I . So, the numbers of independent components are only 

six. The equation 
i ij j

i

L I   representing the angular momentum, may now be  written as the  dot 

product of inertia tensor and the angular velocity vector, i.e.,  

.L I 
�� � ��

                                                                                                                  (6.30) 

and the equation for kinetic energy 
1

.
2

T L
�� ��

 take the form 

1
. .

2
T I 

�� � ��

                                                                                                           
(6.31)

 

6.10 EULER’S EQUATION OF MOTION 

Euler’s laws of motion, in classical mechanics, are equations extending laws of motion given by 

Newton as associated with point particles for the motion of a rigid body. All these laws were 

developed by Leonhard Euler after about 50 years of Newton laws. 
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      Let N
���

 be the torque acting on a rigid body, one point of which is fixed. Then the equation of its 

rotational motion is a fixed in space or for an inertial frame we can write, 

f

d L
N

dt

 
  

 

���
���

 

      But 
d

dt
operator in a fixed frame is related to that in a rotating frame by  

f r

d d

dt dt
        

   

��

                                                                                            

(6.32) 

operating upon vectors. 

      The rigid body rotates with an angular velocity 
��

 and fixing a frame of reference in it. We can 

write for the body frame of reference as 

rf

d L d d
N L I L I L

dt dt dt


   

                     

i
��� ���

��� �� ��� � �� ��� � �� �� ��

                           
(6.33) 

where, I
�

 is a constant relative to the body axes. If 1 2,  and 3 be the components of 
��

 along the 

principal axes and ɵ ɵ ɵ1 2 3, ,a a a  be the unit vectors along them, we have 

ɵ ɵ ɵ
1 2 31 1 2 2 3 3L I a I a I a    

���

                                                                              
(6.34) 

and   

1

2

3

0 0

0 0

0 0

I

I I

I

 
   
 
 

�

                                                                                                  

(6.35) 

The axes of the body frame are coinciding with the principal axes of the body. So, in component form 

we can write; 

 11 1 2 3 2 3N I I I    
i

                                                                               
(6.36) (a) 

 22 2 3 1 3 1N I I I    
i

                                                                              
(6.36) (b) 

 33 3 1 2 1 2N I I I    
i

                                                                               
(6.36) (c) 

      The above three simultaneous differential equations are known as the Euler’s dynamical equations 

of a rigid body. 
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UNIT SUMMARY 

  

 

 Rotation of a rigid body 

                          

2 2
2 2 2 2 2 21 1 1 1 1

sin
2 2 2 2 2

T m v m R m R mr I            
� �� ��

 

 Rolling wheel 

                          

2 2 2
2 2 2 2

2 2

1 1 1 1
1

2 2 2 2 2

v mv K
E mv I mv mK

r r


 
       

     

 

 Body rolling down an inclined plane without slip 

                          

2

2

2

sin
2

1

g
v l

K

r




 
 

 
                       

                          

2

2

sin

1

g
f

K

r



 

 
 

 

 Ellipsoid of inertia 

                           
2 2 2 2 2 2xx yy zz xy yz zxI I l I m I n I lm I mn I nl     

    
 

 Kinetic energy of rigid body 

             

1 1 1
.

2 2 2
i i ij i j

i ij

T L L I     
�� ���

 

 Angular momentum of rigid body  

                           
i ij j

i

L I      (i =j=1,2,3)                                                                                       

 Inertia tensor 

                           

xx xy xz

yx yy yz

zx zy zz

I I I

I I I I

I I I

 
 

  
 
 

�
 

 Euler’s equation of motion 

             
 11 1 2 3 2 3N I I I    

i

                                                                            
                   

              22 2 3 1 3 1N I I I    
i

                                                                             
 

                            33 3 1 2 1 2N I I I    
i
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EXERCISES 

 

Multiple Choice Questions

 6.1  A sphere cannot roll on a 

(a) smooth horizontal surface   (b) smooth incline surface          

(c) rough horizontal surface   (d) rough incline surface  

6.2 A disc, a hollow sphere and a solid sphere are placed and released from the top of a small 

incline. If all the three bodies have the same radius and mass, then most time to reach the 

bottom will be taken by 

(a) solid sphere  (b)  disc   (c) hollow sphere  (d) all reach at a time 

6.3 A solid sphere rolls down from two different inclined planes of the same heights but different 

inclinations. In each case, the ball will reach the bottom  

(a) with the same speed     (b) with different speed 

(c) with different speed but same time  (d) immediately 

6.4 A rigid body has how many degrees of freedom? 

(a) one  (b) two   (c) three   (d) six 

6.5 A hook of radius 2 m weighs 100 kg rolls along a horizontal floor so that its centre if mass has a 

speed of 20 cm/s. How much work has to be done to stop it? 

(a) 2 J  (b) 6 J    (c) 5 J     (d) 4 J 

6.6 A smooth sphere A is moving on a frictionless horizontal plane with angular speed ω and the 

centre of mass velocity is u. It collides elastically and head on with an identical sphere B at rest. 

Neglect friction everywhere. After the collision, their angular speeds are ωA and ωB 

respectively. Then 

(a) ωA < ωB          (b) ωA= ωB   (c) ωA= ω   (d) ωB = ω 

6.7 One solid sphere A and another hollow sphere B are of same mass and same outer radii. Their 

moments of inertia about their diameters are respectively IA and IB, such that 

(a) IA = IB        (b) IA > IB   (c) IA < IB   (d) IA/IB = ρA/ρB 

6.8 For the rotation of a rigid body the directions of the angular velocity and the angular momentum 

are  

(a) same        (b) different    (c) perpendicular    (d) parallel 

6.9 The rank of moment of inertia tensor is  

(a) one   (b) two   (c) three    (d) zero  

 

Answers of Multiple Choice Questions 

6.1 (c), 6.2 (d), 6.3 (a), 6.4 (d), 6.5 (d), 6.6 (c), 6.7 (c), 6.8 (c), 6.9 (b) 

 

Short and Long Answer Type Questions 

Category I 

6.1  Explain the principle of moment. 

6.2  Compare parallel and perpendicular axis theorem and prove them. 
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6.3  Clarify the following:  

i) ellipsoid of inertia and ii) tensor of inertia. 

6.4  Give comparative statements between i) parallel and ii) perpendicular axes theorems. 

6.5  A rigid body rotates about a fixed axis with angular velocity ω. Calculate the kinetic energy of 

rotation and define moment of inertia. 

6.6 Find the moment of inertia and ellipsoid of inertia of a solid sphere of radius r with centre at the 

origin O. 

6.7 Derive an expression for the linear acceleration of a sphere rolling down an incline, without slip 

and starting from rest. 

6.8 A rigid body rotates with an angular velocity ω about an axis through the origin O and having 

direction cosines (l, m, n). Show that the moment of inertia of the rigid body about the axis is  

2 2 2 2 2 2 .lmn xx yy zz xy yz zxI I l I m I n I lm I mn I nl       

6.9 Establish that the expression for the kinetic energy of rotation for a rigid body is given by

1
.

2
T L

�� ��
, where the symbols are of their usual significance. 

Category II                                         

6.10 A rigid body is rotating with angular velocity vector
��

 about an axis through the origin O 

having direction cosines (l, m, n). 

 (a) Find an expression for the kinetic energy of rotation. How the expression is modified for 

principal axes system? 

(b) Find an expression for angular momentum of the rigid body about the axis (l, m, n). How the 

expression should be modified for principal axes system? 

6.11 If the angular momentum of a body is zero about a point, is it necessary that it will also be zero 

at any other point? Justify your answer. 

6.12  Can an object be in pure translation as well as in pure rotation? Justify your answer. 

 

Numerical Problems 

6.1 A solid sphere of mass 100 g and radius 2.5 cm rolls, without sliding, with a uniform velocity of 

10 cm/s along a straight line on a horizontal table. Calculate its total energy.         [Ans: 7000 erg] 

 

 

PRACTICAL 

 

To qualitatively verify typical motions of a Gyroscope  

Aim 

i) To qualitatively observe some of the motions of a gyroscope  

ii) To verify a simple motion quantitatively 
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Theory 

A gyroscope is a rigid rotating symmetric object about one axis. The gyroscopic motion can be 

interpreted by applying a force F ma
�� �

 to all the particles with which the rigid body made. Majority 

of the forces acts between the particles to make it rigid. The overall motion is expressed as, 

d L

dt
 

��
�

                                                                                                                       
(i) 

where,   r F  
� � ��

  

is the torque due to external force .F
��

 This simple equation can be complicated when to analyze the 

resultant motion. A somewhat idealized example is shown below [Fig. (i)].  

 

Fig. (i)                                                        Fig. (ii) 

      Let us assume that the toy is spinning about its own axis with angular speed
��
 , supported by a 

frictionless bearing. In this case, gravity will make a torque about the origin as the CM is not above the 

pivot point. But there are no external forces which can make a torque under frictionless condition. This 

means that both Lz and ω are constants. Again, the total mechanical energy, in addition to the 

gravitational potential must be constant.  We choose the situation where the top is spinning fast with its 

axis horizontal. The external force being vertically downwards, the torque is horizontal.  

      Since the spin angular momentum Ls is parallel to the axis of  rotation, from  Eq. (i)  we can say  

that  dL is  perpendicular  to  Ls,  and  to  a  first  approximation  Ls+ dL is  the same length as Ls but 

pointing in a different direction. The tip of Ls traces out a circle at constant angular speed Ω [Fig. (i)]. 

This motion is said as precession. Let us hold the axis fixed to start the gyroscope and set the rate of 

spin to the required value. The axis is then shifted at the precession speed and released. The motions 

will now be a smooth precession. On the other hand, if now the axis is released from the rest position 

the tip will be able to trace out small looping motions superimposed on overall precession. This is 

known as nutation which arises owing to conservation of mechanical energy.  

      Precessional motion is representing extra kinetic energy with reference to the state with the fixed 

axis. Since ω is constant due to frictionless bearing, this extra KE must comes from a loss of 

gravitational potential. Thus the centre of mass must fall tipping the rotational axis for the top to 

precess. When the spin is fast, the drop is low and the precession is affected slightly. In general, the 

tip of the axis bounces a little up and down and the precessional speed changes slowly.  
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      If a quantitative comparison is made with Eq. (i), the angular frequency Ω of the steady precession 

can be derived, taking into account that there is no nutation. In that condition we can express the total 

angular momentum as the sum of the spin and precession angular momenta as, 

ɵ ɵ ɵ(cos sin sin sin cos )
S z z

L L L I i j k I k           
�� ��� ���

ɵ
                                    

(ii) 

where Iz is the moment of inertia about the vertical and the angles are shown in Fig. (ii). For 

steady precession, φ is constant and dθ/dt = Ω, hence we can write  

ɵ( sin sin cos sin )
d L

I i j
dt

      

��

ɵ

                                                                
(iii) 

      The vector from the pivot to the CM is given by, 

  ɵ ɵcos sin sin sin cosr r i r j r k      
�

ɵ
                                                                

(iv) 

Therefore, the gravitational torque is  

            ɵsin sin cos sinr mg rmg i rmg j       
� � ��

ɵ
                                                      

(v) 

These will satisfy Eq. (i) if 

  
rmg

I
 

                                                                                                                   
(vi) 

It demonstrates that the uniform precession is a possible solution to the equations of motion.  

Procedure 

Physical arrangement: The gyroscope we will use is a solid metal sphere supported on a cushion of 

air [Fig. (iii)]. The air cushion supports the sphere under its geometric center.     If the sphere was 

perfect there would be no torques acting at all. Actually the sphere has a rod fastened to it that 

serves to displace the CM away from the geometric center of the sphere and permit gravity to exert a 

small torque on the system.  

      A sliding weight can be fastened to the rod for adjusting the torque as desired. The rod is used 

conveniently as marker for the rotation axis and this is important for handling, manipulating the 

gyroscope. There is an availability of secondary jet of air for a rapid spin of the sphere. 

 

Fig. (iii) 

Qualitative Observations: Let us now start the work by turning on the air supply so that the sphere 

floats. It is essential to lift the sphere slightly to start the flow. If the sliding weight was left on the rod, 

keep it aside for later use. Holding vertically the rod on the bearing, can twirl the rod between the 

fingers of other hand to make the sphere spin. We have to do it for a few different angles.  
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      Next try to see the effects of releasing the rod from rest when moving at about the precession 

speed and when moving in the opposite direction. The precession corresponds to tracing a circle 

having constant latitude and the nutation is a low value of deviation from the circular path. You have 

to describe the motion of the tip of the rod for varying conditions by sketching. The slow top motion is 

distinctive which can be demonstrated spinning the sphere with a vertical rod and then releasing it. 

Start out with rapid rotation, the motion becomes slow precessions which then slow down the rotation 

by grasping the rod between fingers. Rate of spin is diminished in several stages, releasing the rod to 

see the motion after each reduced value. Give a description of the motion.  

Quantitative Part of the Experiment: In this experiment, the quantitative part is the checking of two 

predictions of Eq. (vi). We understand that Ω depends on rmg directly while it is inversely depends on 

ω. As both of these vary, we can verify the prediction. For the experiment we need to spin the sphere 

very fast and for that we use an air jet. Hold the rod in the horizontal direction, and then direct the air 

at the equator of the sphere. After a few minutes the sphere will spin rapidly. If we now set the jet 

aside and thereby release the rod, the gyroscope will precess slowly. One can measure the time for a 

complete precession using a stopwatch. Rate of spinning will diminish with time.  

      For measuring the spin velocity we use a strobe light. Position the strobe is so adjusted that it 

gives bright illumination of the sphere. If the time interval between the flashes is same as the time for 

one rotation of the sphere, then the rotational motion will appear to be ‘stopped’. This is because the 

same parts of the sphere will be in the same place at each flash. The sphere is marked with two black 

lines so that it becomes easier to note when it is stopped. Finding the time interval between flashes, 

one can determine the period of the spinning motion. 

      When the strobe is flashing very fast, the sphere will not be able to make a complete revolution 

between the flashes. We will then observe multiple images of the black markings. On the other hand, 

when the strobe flashes very slowly one can find a single image only. The flash rate is displayed on 

the strobe in flashes per minute. We need to convert it to the time interval between flashes, seconds 

per flash, to obtain the spin period Ts. 

      To test Eq. (vi) we have to determine the precession velocity for a few values of spin velocity. 

However, the quantities we find directly are the precession and spin periods, denoted as, Tp and 

Ts. We can then rewrite the Eq. (vi) as 

24
p s

I
T T

rmg




                                                                                                             

(vii) 

From this we find that the multiplication of Tp and Ts is a constant. 

      We can verify the dependence of the precession period on rmg, using the sliding weight. An extra 

weight m', kept on the rod at a distance r' from the centre of the sphere will add an extra term in the 

denominator of Eq. (vii), giving 

24
p s

I
T T

rmg r m g




 
                                                                                                 

(viii) 

      It is more informative when both sides are inverted 

 
2

1

4p s

g
rm r m

T T I
  

                                                                                           

(ix) 
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      A plot of (TpTs)
-1 vs r' will be a straight line, with an intercept at the value found with no 

additional weight.  

Precautions 

Some precautions are to be taken for avoiding problems related to the apparatus. The rod should be 

sufficiently strong for supporting heavy sphere in the vertical position. The sphere is soft metal and it 

is exactly rounded for successful performance of the experiment. It will be damaged if falls on the 

hard floor. It will climb out and damaging itself when the spinning ball contacts the supporting cup 

which may be avoided by leaving the air supply on whenever the sphere is spinning and not pushing 

into the support. The rod has a bearing at the end. This may be hold for controlling the sphere without 

slowing it down. When required to slow the rotation, gently squeeze the rod with two fingers, while 

holding onto the bearing to steady it.  

Viva-Voce Questions 

1. What is meant by gyroscope? 

2. What is meant by motion of a gyroscope? 

3. Give an idealized example of gyroscopic motion. 

4. What is meant by precession? 

5. What is nutation? 

6. Explain the quantitative part of the experiment. 

7. What are the precautions to be taken during the experiment? 

8. What is your conclusion from the graph of this experiment? 

 

KNOW MORE 

 

Dynamics is the branch of physics in classical mechanics related to the study of forces and their 

effects. Newton first formulated the fundamental laws of dynamics in classical non-relativistic physics. 

Foundations of dynamics were laid at the end of the 16th century by Galileo.  

      The dynamics of the rigid body consists of the observation of the effects of external forces and also the 

couples on the variation of its six degrees of freedom. The trajectory of any point in the body, taken as 

reference point, provides the variation of three of these degrees of freedom. 

Activity 

Euler (1727) articulated some basic ideas which were further extended in 1782 by Giordano Riccati. He 

developed the method and was able to determine elasticity of some materials, followed by Thomas 

Young. This study was then expanded by Simeon Poisson to the third dimension with the Poisson 

ratio. Gabriel Lamé continued the study for assuring stability of structures introducing the Lamé 

parameters. These coefficients helped to establish linear elasticity theory as well as it began the field 

of continuum mechanics. 
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Interesting facts  

Leonhard Euler extended all the Newton’s laws of motion from the 

consideration of particles to rigid bodies in addition to two other laws. 

After Newton, many scientists actively participated in the re-

formulations progressively allowing solution to many problems. Out 

of these, the first one was developed in 1788 by Joseph Louis 

Lagrange, an Italian-French mathematician. In the Lagrangian 

mechanics the solution considered the path of least action following 

the calculus of variations. William Rowan Hamilton again re-

formulated Lagrangian mechanics in 1833. 

 
Leonhard Euler  

      The Hamiltonian mechanics allowed a more in-depth look at the principles. In fact, a majority of 

Hamiltonian mechanics can be found in quantum mechanics. Computer simulators are almost risk free 

method to train people for handling heavy equipment in critical situations under large stress to follow a 

curved path. Examples are large forest machines, bulldozers to cable simulations in tug boats and maneuver 

belt vehicles. Driving simulators is also a good example. The simulators need to be responsive and 

sufficiently accurate to give proper predictions of the virtual equipment being handled. This is analogous to 

interactive virtual prototyping. The driving simulators are very specialized and include a number of aspects 

of virtual reality. The largest and most complex simulator today is the National Advanced Driving 

Simulator (NADS).  

Analogy 

Dynamics includes kinematics, related to the geometry of motion. Kinematics can be used to relate 

displacement to velocity to acceleration to time without any reference to originate the motion. Kinetics 

predicts the motion by given forces or to find the forces to produce a given motion.  In general, dynamics is 

the branch of mechanics which deals with the effect on the motion of the objects. On the contrary, 

statics deals with the study of forces without motion.  

      With the successful implementation of the dynamics, one can get the ability to calculate dynamic loads 

in operating structures and in their members in 2 and 3 dimensions. The ability to design and implement 

trajectories by the members of a structure and to measure the velocities and accelerations at any point of the 

structure in 2D and 3D becomes possible. In addition, the ability to combine kinematic and dynamic 

analysis at every step of the operating envelop, regardless of the potential problem approach as well as 

awareness of the fact that the dynamic loads can be calculated using the assumption of rigid body helps to 

design the dimensions properly. In fact, this knowledge is used in many subsequent courses of Mechanical 

and Aeronautical Engineering.  

History 

The foundations of dynamics were laid at the end of the 16th century when Galileo Galilei, experimenting 

with a smooth ball rolling down an inclined plane, derived the law of motion for falling bodies. He was 

also the first to show that the force is the cause of changes in the velocity of a body. 

Newton’s ‘Principia’ (1687) stands among the world’s greatest scientific and intellectual achievements but 

it does not address all the general principles of mechanics. In the book there is no theory of general 

dynamical systems for rigid bodies and also nothing on the mechanics of deformable solid and fluid 

continuum. For mass points Newton’s theory is just insufficiently general for delivering a unifying method. 
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More than half a century of research with solutions of special problems, on the general principles of 

mechanics applicable to all bodies, was established by Euler in 1750 and thereafter. 

Timelines  

1690: James Bernoulli established that the cycloid is the solution to the tautochrone problem. 

1727: Leonhard Euler extended Newton’s laws of motion from particles to rigid bodies with two 

additional laws.  

1747: D’Alembert and Alexis Clairaut published first approximate solutions to the three-body problem. 

1782: Giordano Riccati started to find elasticity of some materials; it was followed by Thomas Young 

and Simeon Poisson who expanded study to the third dimension; Gabriel Lamé drew on the study 

for assuring stability of structures and introduced the Lamé parameters.  

1828: Gauss formulated the Principle of Least Constraint to incorporate the matter of constraints on motion 

into the principles of physical dynamics. 

1843: Arthur Cayley systems of n-variables. 

1983: Mordehai Milgrom proposed modified Newtonian dynamics. 

Applications (Real Life / Industrial)   

The advantage of Hamiltonian mechanics was that its framework permitted a more in-depth look. Most of 

the framework of Hamiltonian mechanics can be found in quantum mechanics. Some difficulties were 

noted in the late 19th century which could only be resolved by modern physics. When combined with 

classical thermodynamics, classical mechanics leads to the Gibbs paradox where entropy is not a well-

defined quantity. The effort for resolving these problems led to the development of quantum mechanics.  

      In a similar way, the different behavior of classical electromagnetism and classical mechanics under 

velocity transformations led to the theory of relativity. Some of the important areas of applications are: for 

the analysis of robotic systems, for the biomechanical analysis of animals, humans or humanoid systems, 

for the analysis of space objects, for the understanding of strange motions of rigid bodies, for the design 

and development of dynamics-based sensors, such as gyroscopic sensors, for the design and development 

of various stability enhancement applications in automobiles for improving the graphics of video games 

which involves rigid bodies etc. 

Case Study (Environmental / Sustainability / Social / Ethical Issues) 

Classical mechanics is the mathematical science to study the displacement of bodies under the action of 

forces. Newton established that mathematical approach with a view to analyze physical phenomena 

wherein he stated that it was not required to introduce hypothesis having no experimental basis. This led to 

an application of the principles of Newtonian mechanics to many new problems culminating in the study of 

Euler who began a systematic study of the three dimensional motion of rigid bodies leading to a set of 

dynamical equations called Euler’s equations of motion.  

      During this time the experimental methods and mathematical tools of Newtonian mechanics were 

applied to many non-rigid systems of particles leading to the development of continuum mechanics. The 

theories of fluid mechanics, wave mechanics and electromagnetism emerged leading to the development of 

the wave theory of light. The fundamental concepts of absolute time and space, as Newton defined in the 
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Principia, were inadequate to explain a host of experimental findings. Einstein, rethinking the concepts of 

space and time as well as the relativity of motion, resolved the apparent conflicts between optics and 

Newtonian mechanics. 

      The emerging technology made it possible to use rigid body simulators as sub-parts in larger systems. 

For instance, in time critical scenarios like tracking humans or maneuvering a robot, a simulator can be 

conveniently used as a prediction tool. From a digital design viewpoint, we may define a spectrum of 

technology where at one end we find off-line simulators that may take hours or days to compute results 

while on the other hand they deliver high quality results. For movie production several similar computer 

graphics simulation methods can be utilized conveniently. If we look at the spectrum we find the fast run-

time simulators capable of delivering plausible results too fast. This type of simulator is originated from 

game physics, e.g., Bullet.  

Inquisitiveness and Curiosity Topics 

For games and movies rigid body simulation has to be plausible rather than physically realistic. For games 

the simulation needs real-time but for movies do not have the real-time constraint. However, fast 

simulation methods are always preferred, as complex scenarios are simulated for special effects and 

simulation time costs money. Iterative constraint solving methods are very popular in both the areas. Many 

games using 2D and 3D graphics rely on a rigid body dynamics engine for dealing with collision detection 

and collision response. In some situations the motion of the objects is fully driven by rigid body dynamics. 

As for example, we can mention the game Angry Birds, using the Box2D physics engine or a 3D Jenga 

game. This further introduces a big challenge of interaction between rigid bodies and kinematically 

animated objects. 
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TABLE OF PHYSICAL CONSTANTS 

Table I: Units and dimensions 

Physical 
Quantities 

Dimension CGS System SI System 

Dimension Unit Name 
Unit 

Symbol 
Name 

Unit 
Symbol 

F
u

n
d

a
m

e
n

ta
l 

q
u

a
n

ti
ti

e
s

 Length [L] l centimetre cm metre m 

Mass [M] m gram g kilogram kg 

Time [T] t second s second s 

D
e
ri

v
e
d

 
q

u
a
n

ti
ti

e
s

 

Area [L2] S, A 
square 

centimetre 
cm2 

square 

metre 
m2 

Volume [L3] V 
cubic 

centimetre 
cm3 

cubic 

metre 
m3 

Velocity [L]/[T] v 
centimetre/ 

second 
cm/s 

metre/ 
second 

m/s 

Acceleration [L]/[T2] a 

centimetre/ 

square 

second 

cm/s2 

metre/ 

square 

second 

m/s2 

Force [M][L]/[T2] F Dyne 
dyn = 

g.cm/s2 Newton 
N = 

kg.m/s2 

Energy [M][L2]/[T2] E Erg 
erg = 

g.cm2/s2 Joule 
J = 

kg.m2/s2 

Table II: Powers of ten 

Prefix Abbreviation Power Prefix Abbreviation Power 

Deka dek 101 deci d 10-1

Hecto h 102 centi c 10-2

Kilo k 103 milli m 10-3

Mega M 106 micro � 10-6

Giga G 109 nano n 10-9

Tera T 1012 pico p 10-12

Peta P 1015 femto f 10-15

Exa E 1018 atto a 10-18
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Table III: Coefficient of static friction for dry interfaces 

Material combination Coefficient of static friction 

Rubber on Concrete 0.60 – 0.90 

Stone on Stone 0.40 – 0.70

Metal on Metal 0.15 – 0.60

Metal on Wood 0.20 – 0.60

Wood on Wood 0.25 – 0.50 

Metal on Stone 0.30 – 0.70

Wood on Leather 0.25 – 0.50 

Metal on Leather 0.30 – 0.60



APPENDICES 

APPENDIX-A: Suggestive Template for Practicals 

- Aim
Explain briefly about the aim of the experiment.

- Relevance

Explain about the relevancy of the experiment in your own words.

- Requirements

List out all the required apparatus along with their proper specifications.

- Procedure, Observations and Inference

Explain the procedure of the experiment step-wise and note the observations properly. On the

basis of observations certain inference is to be made. You can use a table similar to that given

below:

Step No. Procedure Observation Inference 

1 

2 

3 

- Video / animation
If possible, you can go through some video/animation to visualize the steps physically.

- Calculations

Properly calculate all the required physical quantities essential for your experiment.

- Result and Discussion (Error measurement)

Obtain the final result and discuss about it with proper considerations of errors which can be
introduced during your experiment.

- Conclusions

Finally give your conclusion based on the obtained results.

- Validation of the topics in Experiment

Try to validate the result of the experiment in real life scenario.

- Use of ICT
You can also study using the available online resources. These are useful as there is no time

constraint at all. Some of which are listed (not limited to) below:

https://swayam.gov.in/ 

https://nptel.ac.in/ 

https://www.swayamprabha.gov.in/ 

Note for Instructor and Lab-Technicians 

Some general and specific instructions are listed separately [see Annexure V] for laboratory preparation, 

maintenance, safety aspects, etc. Laboratory Instructor and Lab-Technicians can follow those instructions 

properly to run the laboratory smoothly without any hazard. 



186 | Physics - Introduction to Mechanics

APPENDIX-B: Indicative Evaluation Guidelines for Practicals / Projects / Activities 

in Group 

Process Related Skills 

Product Related Skills 

Criteria and Level Developing Competent Proficient 

Handling the Set-up 

Recording of Data 

Time management 

Team Work 

Individual Work 

Safety Precautions 

Criteria and Level Developing Competent Proficient 

Content 

Research/Survey 

Use of latest 

Technology 

Stays on Topic 

Preparedness 

Confidence of 

Presentation 

ICT Usage including 

ppt Making Skill 

Time Management 

Group Efforts 

Individual Efforts 
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APPENDIX-C: Assessments Aligned to Bloom’s Level 

- Bloom’s Taxonomy – It has been coupled into following two categories for development

of Questions for this Book as given below:

Category I Questions 
Category II Questions 

- Higher Order Thinking Skills

Bloom’s Level 1: Remember 

Bloom’s Level 2: Understand 

Bloom’s Level 3: Apply 

Bloom’s Level 4: Analyse 

Bloom’s Level 5: Evaluate 

Bloom’s Level 6: Create 
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APPENDIX-D: Records for Practicals 

Sl 
No. 

Page 
No. 

Name of the 
Experiment 

Date 
Marks Signature 

Actual Repeat Remarks 

1. 
Experiments on an 

air-track 

2. 

To investigate the 

resonance phenomena 

in mechanical 

oscillators 

3. 

To investigate the 

normal modes in 

coupled oscillations of 

two bodies 

4. 

Determination of the 

moment of inertia of a 

flywheel 

5. 

Determination of the 

moment of inertia of a 

rectangular bar 

6. 

To qualitatively verify 

typical motions of a 

gyroscope 



ANNEXURES 

Annexure- I: Important formulas involving vector differential operator 

(i)   2F .F F    
�� �� �� �� �� �� ��

(ii)   0. F  
�� �� ��

i.e., the divergence of a curl is always zero.

(iii)   0  
�� ��

i.e., the curl of a gradient is always zero.

(iv)          F G G. F F. G .G F .F G         
�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

(v)          F.G F. G G. F F G G F          
�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

(vi)      . F G G. F F . G     
�� �� �� �� �� �� �� �� ��

(vii)      . F .F .F      
�� �� �� �� �� ��

(viii)  2V . V .V      
�� �� �� ��

(ix)  U V U V   
�� �� ��

(x)  UV V U U V    
�� �� ��

(xi) 
2

U V U U V

V V

     
 

�� ��
��

(xii) 1n nV nV V  
�� ��

(xiii)      f A f .A A. f    
�� �� �� �� �� ��

(xiv)      f A f A A f     
�� �� �� �� �� ��
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Annexure- II: Triple product of vectors 

Triple product of three vectors may be classified as: i) Scalar and ii) vector triple product 

Scalar triple product: The scalar triple product of three vectors , and may be defined as: 

The scalar triple product of three vectors , and basically represents the volume of a 

parallelepiped whose adjacent sides are , and and is given by, 

It may be positive or negative 

 
Vector triple product: The vector triple product of three vectors , and may be defined as: 

It is a vector coplanar with and . Generally, 

The following laws are valid for dot product of two vectors: 

1. Commutative law for dot products

2. Distributive law 

3. ; where m is a scalar. 

4. , 

5. If and then

If and and are not null vectors, then and are perpendicular. 

The following laws are valid for cross product of two vectors: 

1. Distributive law 

2. ; where m is a scalar. 

3. , ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ ɵ; andi j j i k j k k j i k i i k j              ɵ ɵ ɵ ɵ ɵ

4. If and then

 

If and and are not null vectors, then  and  are parallel to each other. 
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Annexure- III: Gradient, divergence and curl in Cartesian, cylindrical and spherical 

polar coordinate system 

Gradient: General Expression 

For the Cartesian, cylindrical and spherical polar coordinate system, the expressions for gradient can 

be written as:  

In Cartesian coordinates: 

In cylindrical coordinates: 

and in spherical polar coordinates: 

Divergence: General Expression 

For the Cartesian, cylindrical and spherical polar coordinate system, the expressions for divergence 

can be written as:  

In Cartesian coordinates: 

In cylindrical coordinates: 

In spherical polar coordinates: 
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Curl: General Expression 

In Cartesian coordinates: 

In cylindrical coordinates, 

In spherical polar coordinates, 
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Annexure- IV: Vector integration - line, surface and volume integrals 

Line Integral: Line integral  is the dot product of a vector with a specified C; in other words 

it is the integral of the tangential component  along the curve C. 

As shown in the Fig. A.1, given a vector  around C, we define the integral as 

the line integral of E along the curve C.  

If the path of integration is a closed path as shown in the figure the line integral becomes a closed line 

integral and is called the circulation of around C and denoted as as shown in the Fig. A.2. 

 Fig. A.1: Line Integral  Fig. A.2: Closed line Integral  Fig. A.3: Surface Integral 

Surface Integral: Given a vector field , continuous in a region containing the smooth surface S, we 

define the surface integral or the flux of  through S as 

as surface integral over surface S. 

If the surface integral is carried out over a closed surface, then we write 

Volume Integral: We define  as the volume integral of the scalar function f(function of 

spatial coordinates) over the volume V. Evaluation of integral of the form can be carried out 

as a sum of three scalar volume integrals, where each scalar volume integral is a component of the 

vector . 
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Annexure- V: Different type of errors in measurements 

Measurement and its importance in Science and Technology 

Measurements represent quantities relating to a real time system by making use of numerical values. 

Requirements for accurate measurements are:  

i) Apparatus must be accurate,

ii) Method used ought to be provable and

iii) Standard used should be defined correctly.

     In science and technology, advancement is of little significance without the availability of actual 

measured values with practical proofs. A device to determine variable is known as an instrument. It 

serves an aid for humans to measure values of unknown quantities. An instrument can be electronic, 

mechanical or electrical. Based on the degree of variation of the measured quantity with respect to 

time, an instrument can have static or dynamic characteristics. 

Errors in Measurement 

If ideal conditions are applied for measuring any parameter, the average deviations of different factors 

tend to be zero. Average of these infinite numbers of measured values is known as True Value. But 

this is hypothetical as the negative and positive deviations do not cancel each other in practice. The 

measured value obtained under ideal conditions is considered as the true value or the best-measured 

value. A difference between the actual value and the true value is called an Error. 

Types of Error 

Systematic errors are broadly of three categories; 

i) Instrumental Error,

ii) Environmental Error and

iii) Observational Error.

     Instrumental errors occur owing to shortcomings in the instruments, improper use of instruments 

or loading effect of the instrument. Improper construction, calibration or operation of an instrument 

might result in some inherent errors. Environmental errors occur due to external ambient conditions of 

the instrument which include changes in temperature, humidity, availability of dust, vibrations or 

effects of external magnetic or electrostatic fields. Random errors occur due to some small factors 

which fluctuate from one measurement to another.  

     The manufacturer of any instrument defines a certain accuracy that depends on the type of material 

and the effort to manufacture the instrument.  This accuracy is defined within a certain deviations 

from the nominal value. The limits of these deviations are termed as Limiting Errors. The ratio of 

error to the specified nominal value is called relative Limiting Error. Manual errors in reading an 

instrument or recording any measurement are known as Gross errors which occur during the 

experiments. The errors in any scientific measurement may happen from different sources which are 

presented in Fig. A.4. Observational errors may occur due to the fault study of the instrument reading 

for many sources. Environmental errors, on the other hand, happen due to the outside situation of the 

measuring instruments, mostly due to the temperature result, force, moisture, dirt, vibration.  
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Fig. A.4: Error in measurements 

There is an inherent limitation of devices due to their mechanical arrangement. 

Calculation of Error in Measurement  

These errors are categorized into three types: 

i) absolute error,

ii) relative error, and

iii) percentage error.

The absolute error is defined as the variation between the values of actual and measured quantities. 

If we denote the measured value as VA, and the exact value as VE, then we have 

 Absolute error = A EV V

 Relative Error = 
Absoluteerror

Actualerror

 A E

E

V V

V




 Percentage error (%) = 100
A E

E

V V

V


  

Example: A length was calculated as 6.8 cm but the absolute length was 6.74 cm. Find the absolute, 

relative and percentage errors. 

Ans: Given that VA = 6.8 cm and VE = 6.74 cm 

 Absolute error = A EV V = |6.8-6.74| = 0.06 cm 

 Relative Error = 
0.06

0.0089
6.74

A E

E

V V

V


   

 Percentage error (%) = 
0.06

100 100 0.89%
6.74

A E

E

V V

V


   
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Arithmetic Mean Value  

To minimize random errors, the measurements are repeated and the average value is taken as the 

correct value of the measured quantity. The arithmetic mean value would be very close to the most 

accurate reading. If the number of observation is taken ‘n’ times, the random error reduces to 
1

n

times. 

      Let a1, a2, a3… , an are the n different measured readings of a physical quantity. The most accurate 

value is its arithmetic mean value which can be obtained from,  

1 2 ..... n

mean

a a a
a

n

  


1

1 n

i

i

a
n 

 

Absolute Error 

The magnitude of the difference between the true value of the quantity and the measured value is 

known as the absolute error in the measurement. Since the true value of the quantity is not known, the 

arithmetic mean of the measured values is taken as the true value. 

 If a 1, a 2,, ….. are the measured values of a certain quantity, the errors ∆ a1, ∆ a2, ……… in the 

measurements are 

∆a1 = a mean – a1 

∆ a 2 = a mean – a2  

∆ a 3 = a mean – a3  

∆ a 4 = a mean – a4   and so on 

     The arithmetic mean of all the absolute errors is considered as the final absolute error in the 

measurement and is called mean absolute error. The value obtained in a single measurement may be in 

the range: amean  ±  ∆ amean

Relative Error 

The ratio of the absolute error to the true value of the measured quantity is known as the relative error 

or fractional error. As the arithmetic mean value is taken as the true value, the relative error can be 

expressed as, 

 Relative error, mean

mean

a
a

a





Percentage Error 

It is the relative error when expressed in percentage. Thus, we have, 

 Percentage error 100%mean

mean

a

a


   

Example: Using a screw gauge successive measured readings of the radius of a wire are 1.21 mm, 

1.19 mm, 1.20 mm, 1.18 mm and 1.17 mm respectively. Determine the absolute errors and the relative 

error in the measurement. 
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Ans: Arithmetic mean value is, 
1.21 1.19 1.20 1.18 1.17

5
meana

   
 1.19mm

Table A.1: Error in measurements 

Difference between amean and measured 

value in mm 
Magnitude of error in mm 

1.21–1.19 = 0.02 0.02 

1.19–1.19 = 0.00 0.00 

1.20–1.19 = 0.01 0.01 

1.18–1.19 = –0.01 0.01 

1.17–1.19 = –0.02 0.02 

The arithmetic mean of the absolute errors is, 
0.02 0.00 0.01 0.01 0.02

5
meana

   
  0.016mm

 Relative error, 
0.016

0.0134
1.19

mean

mean

a
a

a



  

 Percentage error 100% 1.34%mean

mean

a

a


   

Combination of errors 

If a quantity is obtained by combining a few measurements, the errors in those measurements can be 

combined in some way or other. 

Error in the sum of the quantities 

We consider two quantities A and B which have measured values A ± ∆ A and B ± ∆ B respectively; 

∆A and ∆B are the absolute errors in the measurements. 

 To determine the error ∆Z which may occur in the sum Z = A + B, we consider 

Z ± ∆Z = (A ± ∆A) + (B ± ∆B) = A + B ± ∆A ± ∆B 

 Maximum possible error in the value of Z is,  

∆Z = ∆A + ∆B. 

     Hence when two quantities are added, the absolute error in the result is the sum of the absolute 

errors in the measured quantities. 

Error in the difference of the quantities 

We consider two quantities, A and B which have measured values A ± ∆ A and B ± ∆ B respectively; 

∆A and  ∆B are the absolute errors in their measurements. 

 To determine the error ∆Z which may occur in the difference Z = A – B, we consider 

Z ± ∆Z = (A ± ∆A) – (B ± ∆B)  = A – B ± ∆A ± ∆B 
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 Hence the maximum possible error in the value of Z is given by 

∆Z = ∆A + ∆B. 

     So when two quantities are subtracted, the absolute error in the result is the sum of the absolute 

errors in the measured quantities. 

Error in the product of the quantities 

We consider two quantities, A and B which have measured values A ± ∆A and B ± ∆B respectively; 

∆A and ∆B are the absolute errors in their measurements. 

 To get the error ∆Z which may occur in the product Z = AB, we consider 

Z ± ∆Z = (A ± ∆A) (B ± ∆B) = AB ± A∆B ± B∆A ± ∆A∆B 

 Dividing left side by Z and right side by AB we have, 

 1 ± 
Z

Z


 = 1 

A B A B

A B AB

   
  

 The maximum fractional error in Z is, 

Z A B

Z A B

  
 

(As ∆A and ∆B are small, their products 
A B

AB

 
 are too small and can be ignored) 

     Hence when two quantities are multiplied, the fractional error in the result is the sum of the 

fractional errors in the measured quantities. 

Error in the quotient of the quantities 

We consider two quantities, A and B which have measured values A ± ∆A and B ± ∆B respectively; ∆A 

and ∆B are the absolute errors in their measurements. 

 To find the error ∆Z that may occur in the quotient 
A

Z
B

 , we consider

A A
Z Z

B B

 
  

 

 In a similar way, solving we have, the maximum fractional error in Z as, 

Z A B

Z A B

  
 

     Hence when two quantities are divided, the fractional error in the result is the sum of the fractional 

errors in the measured quantities. 

     It shows that the maximum percentage error in Z is the sum of the maximum percentage error in A 

and maximum percentage error in B i.e.,   

100 100 100
Z A B

Z A B

  
    
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Error when a quantity is raised to a power 

The error ∆Z which may occur when a quantity is raised to its n
th

 power is n times the fractional error

in the quantity itself i.e., if Z = A
n
 ,

Z A
n

Z A

 


 The maximum percentage error in Z can be written as, 

100
Z A

n
Z A

 
  

Systematic Errors 

Systematic errors occur due to fault in the measuring device. They are also called as Zero Error – a 

positive or negative error. These errors can be detached after correction of the measurement device. 

These errors are classified into different categories.  

 Systematic errors are categorized as: 

 Instrumental error

 Environmental error

 Observational error

 Theoretical error

Parallax Error 

This error occurs due to wrong observations of reading in the instruments. The wrong observations 

may be due to parallax. To minimize the parallax error highly accurate meters provided with mirror 

scales are essential. 

Estimating Random Errors 

There are many ways to make an estimate of the random error in a particular measurement. The 

simplest way is to make a series of measurements of a given quantity (say, x) and calculate the mean 

and standard deviation ( x and 
x ) from this data. 

 The mean x  is defined as, 

1

1 n

i

i

x x
N 

 

where, ix  is the result of the i
th

 measurements, N is the number of measurements

 The standard variation is given by, 

 2

1

1 n

x i

i

x x
N




 



200 | Physics - Introduction to Mechanics 

Annexure-VI: Some general and specific instructions when working in the 

laboratory 

General Instructions 

1. In the laboratory, work quietly and cautiously. Remember the main purpose of doing any

experiment is to make faithful measurements.

2. Always share equally all the steps of the work with your partner.

3. Presentations of data in tabular form, graphs and calculations should be done correctly and

sincerely.

4. Be always honest at the time of recording and representing the experimental data.

5. It is very important to keep in mind that never make up readings or doctor them to get a better fit

of the graph as per theory. If any reading appears incorrect, you have to repeat the measurement

again and again to find the source of error.

6. At the time of drawing the graph all the data obtained from experiment are to be properly plotted.

7. It is a fact that the objective of the laboratory is learning and also a verification of the knowledge

that you have gathered. The experiments are designed properly for the purpose of illustrating

different phenomena in all the important areas of Physics.

8. By doing the experiment with your own interest only it is possible to be familiar with all the fine

points and to expose you to measuring instruments.

9. Always perform the experiment with an attitude of learning and with your interest to verify the

theoretical knowledge that you have gathered.

10. Be very particular to arrive in time in the laboratory and always with proper preparation with a

clear knowledge about the experiment.

Specific Instructions 

1. When working in the laboratory for collecting data of your experiment, it is important to note all

the measured data neatly in the notebook.

2. The recorded data entered in the notebook have to confirm by your instructor before leaving the

laboratory.

3. All the students doing the same experiment have to maintain individual copy of the recorded data.

The laboratory notebook is required to bring in the laboratory regularly when you come for doing

the experiment.

4. Graphs are to be drawn properly at the end of each of experiment.

5. For this you need to know how to optimize on usage of graph paper. Remember all the repeated

data are to be accommodated on a single graph sheet.

6. Graphs are to be labeled properly along with the axes showing the corresponding units.

7. During the working hours in the laboratory you are supposed to fully utilize the duration and do

not leave the laboratory before the completion of the working hours. If you finish early, you may

spend the remaining time to complete the calculations and graphs drawing and for that in the

laboratory you are supposed to come equipped with calculators, pencils and scale.



REFERENCES FOR FURTHER LEARNING 

List of some of the books is given below which may be used for further learning of the subject (both 

theory and practical): 

1. C. H. Bernard and C. D. Epp, Laboratory Experiments in College Physics, John Wiely and

Sons Inc., New York, 1995.
2. D. C. Lay, Linear Algebra and Its Applications, 3rd Edition, Addison–Wesley, 2006.

3. G. Strang, Linear Algebra and Its Applications, 4th Edition, Brooks Cole, 2006.

4. S. Axler, Linear Algebra Done Right, 2nd Edition, Springer, 2002.

5. F. Vieta (1591), In rates analyticem isagoge seorsim excussa ab Opere restitutae

mathematicae analyseos, seu Algebra noua or new algebra (in Latin), Tours: apud Iametium

Mettayer typographum regium, Retrieved 2015-06-24.

6. http://math.ucdenver.edu/~wcherowi/courses/m4010/s08/lcviete, Lincoln Collins. Biography

Paper: Francois Viete.
7. G. Arfken, Mathematical Methods for Physicists, 3rd Edition, Academic press, 1985.

8. G. L. Squiers, Practical Physics, Cambridge University Press, Cambridge, 1985.

9. M. H. Shamos, Great Experiments in Physics, Holt Rinehrt and Winston Inc., 1959.

10. A. C. Melissions, Experiments in Modern Physics, Academic Press, New York, 1978.

11. J. Ziman, Reliable Knowledge, Cambridge University Press, Cambridge, 1978.

12. “Introductory Readings in the Philosophy of Science”, Edited by E.D. Klenke,R. Hollinger

and A.D. Kline, Prometheous Books, Bufallo, New York, 1988.

13. D. Haliday, R. Resnick and J. Walker, Fundamentals of Physics, John Wiley and Sons, Inc.

New York, 2001.

14. M. Alanso and E.J. Finn, Physics, Addison Wesley, 1992.

15. R. P. Feymann, R. B. Leighton and M. Sands, The Feynman Lectures in Physics, Vol. I, II

and III, Addison Wesley, 1963.

16. A. P. French, Vibration and Waves, Arnold-Heineman, New Delhi, 1972.

17. S. E. Wolf and R. F. M. Smith, Students Reference Manual for Electronic Instrumentation

Laboratories, PHI, 1990.

18. R. Dugas, A History of Classical Mechanics, New York, NY: Dover Publications Inc, 1988.

19. T. Apostol, Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra,

Wiley, 1967.

20. T. Apostol, Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications,

Wiley, 1969.

21. J. H. Heinbockel, Introduction to Tensor Calculus and Continuum Mechanics, Trafford

Publishing, 2001.

22. I. Kiyosi, Encyclopedic Dictionary of Mathematics, 2nd Edition, MIT Press, 1993.

23. R. S. Ball, Experimental Mechanics from Google books, 1871.

24. M. Ben-Chaim, Experimental Philosophy and the Birth of Empirical Science: Boyle, Locke

and Newton, Aldershot: Ashgate, 2004.

25. J. M. Knudsen and P. Hjorth, Elements of Newtonian Mechanics (illustrated ed.), Springer

Science and Business Media, 2012.



202 | Physics - Introduction to Mechanics

26. J. Agar, Science in the Twentieth Century and Beyond, Cambridge: Polity Press, 2012.

27. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5th Edition,

Belmont, CA: Brooks/Cole, 2004.

28. D. M. Jesseph, Douglas M. (1998), Leibniz on the Foundations of the Calculus: The Question

of the Reality of Infinitesimal Magnitudes, Perspectives on Science, 6.1 and 2: 6–40,

Retrieved 31 December 2011.

29. T. W. B. Kibble and F. H. Berkshire, Classical Mechanics, 5th Edition, Imperial College

Press, 2004.

30. D. Morin, Introduction to Classical Mechanics: With Problems and Solutions, 1st Edition,

Cambridge: Cambridge University Press, 2008.

31. A. B. Ivanov, Vector, Encyclopedia of Mathematics, EMS Press, 2001.
32. T. R. Kane and D. A. Levinson, Dynamics Online, Sunnyvale, California, 1996.

33. S. Lang, Introduction to Linear Algebra, 2nd Edition, Springer, 1986.

34. D. Pedoe, Geometry: A comprehensive course, Dover, 1988.

35. P. J. O'Donnell, Essential Dynamics and Relativity, CRC Press, 2015.



CO AND PO ATTAINMENT TABLE 

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after 

the completion of the course and a correlation can be made for the attainment of POs to analyze 

the gap. After proper analysis of the gap in the attainment of POs necessary measures can be 

taken to overcome the gaps. 

Table for CO and PO attainment 

Course 

Outcomes 

Attainment of Programme Outcomes 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 

CO-1

CO-2

CO-3

CO-4

CO-5

CO-6 

The data filled in the above table can be used for gap analysis. 
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Coriolis force on a freely falling body, 81 

Couple, 135 

Cylindrical coordinate system, 14 

Damped vibration, 102 

Differential equation of SHM, 100  

Differential equation of damped vibration, 102 

Differential equation of forced vibration, 109  
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206 | Physics - Introduction to Mechanics 
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