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PREFACE 
Welcome to the world of signals and systems – a cornerstone of modern engineering that lies 
at the heart of countless technological innovations shaping our world today. From 
telecommunications to medical imaging, from audio processing to control systems, the 
principles of signals and systems permeate virtually every facet of our lives. 
This book serves as a comprehensive guide to understanding the fundamental concepts, 
theories, and applications of signals and systems. Whether you are a student embarking on 
your academic journey in engineering or a seasoned professional seeking to deepen your 
understanding, this text aims to provide you with the knowledge and tools necessary to 
navigate this fascinating field. 
Throughout these pages, you will embark on a journey that explores the mathematics, physics, 
and engineering principles that underpin signals and systems. From the basic properties of 
signals to the intricacies of system analysis and design, each chapter is carefully crafted to 
build upon the previous one, offering a structured approach to learning that facilitates 
comprehension and retention. 

Furthermore, this book emphasizes the practical relevance of signals and systems by 
incorporating numerous real-world examples and applications. By grounding theoretical 
concepts in practical scenarios, readers can gain a deeper appreciation for the significance of 
signals and systems in solving real-world engineering challenges. Moreover, this text is 
designed to be accessible to readers with a range of backgrounds and expertise levels. Whether 
you are encountering signals and systems for the first time or seeking to deepen your 
understanding of advanced topics, this book strives to provide clear explanations, illustrative 
examples, and helpful insights to aid your learning journey. 
As an author, my goal is to provide a valuable resource that inspires curiosity, fosters 
understanding, and equips readers with the knowledge and skills needed to tackle the 
complexities of signals and systems. We hope that this book serves as a trusted companion on 
your exploration of this captivating subject and empowers you to make meaningful 
contributions to the ever-evolving landscape of engineering. 

Thank you for embarking on this journey with us. 
 

Prof. Sanjay L. Nalbalwar 
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OUTCOME BASED EDUCATION  
For the implementation of an outcome based education the first requirement is to develop an 
outcome based curriculum and incorporate an outcome based assessment in the education 
system. By going through outcome based assessments evaluators will be able to evaluate 
whether the students have achieved the outlined standard, specific and measurable outcomes. 
With the proper incorporation of outcome based education there will be a definite 
commitment to achieve a minimum standard for all learners without giving up at any level. 
At the end of the programme running with the aid of outcome based education, a student will 
be able to arrive at the following outcomes: 
 
PO1.    Engineering knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals, and an engineering specialization to the solution of 
complex engineering    problems. 

PO2.    Problem analysis: Identify, formulate, review research literature, and analyze 
complex engineering problems reaching substantiated conclusions using first 
principles of mathematics, natural sciences, and engineering sciences. 

PO3.    Design / development of solutions: Design solutions for complex engineering 
problems and design system components or processes that meet the specified needs 
with appropriate consideration for the public health and safety, and the cultural, 
societal, and environmental considerations. 

PO4.    Conduct investigations of complex problems: Use research-based knowledge and 
research methods including design of experiments, analysis and interpretation of 
data, and synthesis of the information to provide valid conclusions. 

PO5.   Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modern engineering and IT tools including prediction and modeling to complex 
engineering activities with an understanding of the limitations. 

PO6.   The engineer and society: Apply reasoning informed by the contextual knowledge 
to assess societal, health, safety, legal and cultural issues and the consequent 
responsibilities relevant to the professional engineering practice. 

PO7.   Environment and sustainability: Understand the impact of the professional 
engineering solutions in societal and environmental contexts, and demonstrate the 
knowledge of, and need for sustainable development. 
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PO8.   Ethics: Apply ethical principles and commit to professional ethics and responsibilities 
and norms of the engineering practice. 

PO9.   Individual and team work: Function effectively as an individual, and as a member 
or leader in diverse teams, and in multidisciplinary settings. 

PO10.  Communication: Communicate effectively on complex engineering activities with 
the engineering community and with society at large, such as, being able to 
comprehend and write effective reports and design documentation, make effective 
presentations, and give and receive clear instructions. 

PO11. Project management and finance: Demonstrate knowledge and understanding of 
the engineering and management principles and apply these to one’s own work, as a 
member and leader in a team, to manage projects and in multidisciplinary 
environments. 

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to 
engage in independent and life-long learning in the broadest context of 
technological change. 
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COURSE OUTCOMES  

By the end of the course the students are expected to learn: 

CO-1:  Analyse the spectral characteristics of continuous-time periodic and Aperiodic   

             Signal.  
CO-2:  Analyse LTI systems in the time domain. 

CO-3:  Analyse signals using Fourier series and Fourier transform.  

CO-4:  Apply DFT to analyse discrete-time systems.   

CO-5:  Analyse LTI systems using Z-Transform. 

CO-6:  Understand sampling theorem and its implications. 
 

Mapping of Course Outcomes with Programme Outcomes to be done according to the 
matrix given below: 

Course 
Outcomes 

Expected Mapping with Programme Outcomes 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 

CO-1 3 3 2 1 1 1 1 2 1 1 1 3 

CO-2 3 3 3 1 2 1 1 2 1 1 1 3 

CO-3 3 3 3 3 2 3 3 2 1 3 1 3 

CO-4 3 3 3 3 2 1 1 2 1 3 1 3 

CO-5 3 3 3 3 2 1 1 2 1 3 1 3 

CO-6 3 2 2 1 1 1 1 2 1 1 1 3 
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GUIDELINES FOR TEACHERS 

To implement Outcome Based Education (OBE) knowledge level and skill set of the students 
should be enhanced. Teachers should take a major responsibility for the proper 
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE 
system may be as follows: 

 Within reasonable constraint, they should manoeuvre time to the best advantage of all 
students. 

 They should assess the students only upon certain defined criterion without considering any 
other potential ineligibility to discriminate them. 

 They should try to grow the learning abilities of the students to a certain level before they 
leave the institute. 

 They should try to ensure that all the students are equipped with the quality knowledge as 
well as competence after they finish their education. 

 They should always encourage the students to develop their ultimate performance capabilities.   
 They should facilitate and encourage group work and team work to consolidate newer 

approach.   
 They should follow Blooms taxonomy in every part of the assessment. 

Bloom’s Taxonomy 

Level 
Teacher should 

Check 
Student should 

be able to 
Possible Mode of 

Assessment 

 Create  Students ability 
to create Design or Create Mini project 

 Evaluate  Students ability 
to justify Argue or Defend Assignment 

 Analyse  Students ability 
to distinguish 

Differentiate or 
Distinguish 

Project/Lab 
Methodology 

 
Apply 

 Students ability 
to use 

information 

Operate or 
Demonstrate 

Technical Presentation/ 
Demonstration 

 
Understand 

 Students ability 
to explain the 

ideas 

Explain or 
Classify Presentation/Seminar 

Remember 
Students ability 

to recall (or 
remember) 

Define or Recall Quiz 
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GUIDELINES FOR STUDENTS 

Students should take equal responsibility for implementing the OBE. Some of the 
responsibilities (not limited to) for the students in OBE system are as follows: 
 Students should be well aware of each UO before the start of a unit in each and every 

course. 
 Students should be well aware of each CO before the start of the course. 
 Students should be well aware of each PO before the start of the programme. 
 Students should think critically and reasonably with proper reflection and action. 
 Learning of the students should be connected and integrated with practical and real life 

consequences. 
 Students should be well aware of their competency at every level of OBE. 
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UNIT SPECIFICS  

This unit presents information related to the following topics: 

 Explore fundamentals of signals and systems; understand their significance in engineering 
and science; 

 Examine properties of signals: periodicity, integrability, determinism, stochastic character; 
 Study special signals: unit step, unit impulse, sinusoid, complex exponential, time-limited 

signals; 
 Differentiate between continuous-time and discrete-time signals; analyze their 

characteristics and representations; 
 Compare continuous and discrete amplitude signals; understand their applications; 
 Explore system properties: linearity, shift-invariance, causality, stability, realizability; 
 Discuss practical applications of signals and systems in everyday life and various fields; 
 Learning outcomes: clear understanding of concepts; ability to analyze signals and 

comprehend system properties; recognition of signal processing importance; 
 Unit provides foundational knowledge for further studies and applications in engineering 

and science. 

     This unit provides an introduction to signals and systems, focusing on their fundamental 
concepts and applications in engineering and science. Students will explore the properties of 
signals, including periodicity, integrability, determinism, and stochastic character, and 
understand how these properties relate to real-world scenarios. Special signals such as the unit 
step, unit impulse, sinusoid, and complex exponential will be studied, along with their 
characteristics and applications. 

The unit will differentiate between continuous-time and discrete-time signals, as well as 
continuous and discrete amplitude signals, and analyze their representations and 
characteristics. Students will also explore system properties such as linearity, shift-invariance, 
causality, stability, and realizability, and understand their impact on signal processing. 

1 Introduction to  
Signals and Systems 
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The practical applications of signals and systems in various fields will be discussed, 
highlighting their relevance in everyday life. Students will be encouraged to apply their 
knowledge to solve practical problems and develop critical thinking and problem-solving skills. 
Effective communication of concepts using appropriate terminology and notation will be 
emphasized. 

By completing this unit, students will have a strong foundation in signals and systems, enabling 
them to further their studies and apply their knowledge in engineering and scientific contexts. 

 
RATIONALE  

The unit on "Introduction to Signals and Systems" is to provide students with a solid foundation 
in understanding the fundamental concepts of signals and systems. This knowledge is essential 
as signals and systems are pervasive in various branches of engineering and science. 

By exploring the properties of signals, such as periodicity, integrability, determinism, and 
stochastic character, students gain insights into the behavior and characteristics of different 
types of signals encountered in real-world applications. Special signals, including the unit step, 
unit impulse, sinusoid, and complex exponential, are studied to understand their unique 
properties and applications. Differentiating between continuous-time and discrete-time signals, 
as well as continuous and discrete amplitude signals, helps students comprehend the 
distinctions and representations in both domains. Understanding system properties, such as 
linearity, shift-invariance, causality, stability, and realizability, provides insights into how 
signals interact with systems and how system properties impact signal processing. The unit also 
emphasizes the practical applications of signals and systems, highlighting their relevance in 
everyday life and across various branches of engineering and science.  By applying their 
knowledge to solve practical problems, students develop critical thinking and problem-solving 
skills. Effective communication is essential, and students are encouraged to communicate 
concepts related to signals and systems using appropriate terminology and notation. 

Overall, this unit aims to equip students with a strong foundational understanding of signals 
and systems, enabling them to pursue more advanced topics and apply their knowledge in 
engineering and scientific contexts. 

PRE-REQUISITES  

1. Mathematics: Solid understanding of calculus, algebra, trigonometry, and complex 
numbers. 

2. Physics: Basic knowledge of force, motion, energy, and waves. 
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3. Programming: Familiarity with programming languages like MATLAB or Python. 

4. Algebraic Manipulation: Proficiency in manipulating algebraic expressions and solving 
equations. 

5. Analytical Thinking: Ability to think analytically and solve problems systematically. 

6. These prerequisites are essential for students to effectively engage with the unit on 
"Introduction to Signals and Systems" and ensure a smooth transition into the study of the 
subject matter. 

UNIT OUTCOMES  

After studying this unit students will be able to: 
U1-O1: Understand fundamental concepts of signals and systems. 
U1-O2:  Identify and analyze different signal types: periodic, deterministic, stochastic. 
U1-O3:  Recognize the importance of signal properties in real-world applications. 
U1-O4: Apply special signals (unit step, unit impulse, sinusoid, complex exponential) in 

problem-solving and system analysis. 
U1-O5:  Differentiate and understand representations and characteristics of continuous-time 

and discrete-time signals; analyze system properties and their impact on signal 
processing. 

 

Unit-1 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U1-O1 3 2 1 2 2 3 
U1-O2 3 1 1 1 - 1 
U1-O3 3 1 - - - 3 
U1-O4 3 2 1 1 - 1 
U1-O5 3 3 2 1 1 2 
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1.1 Signals and systems as seen in everyday life, and in various branches of 
engineering and science 

Signals and systems are ubiquitous in everyday life and have significant applications in engineering and 
science. The term signal is generally applied to something that conveys information. Signals may, for 
example, convey information about the state or behavior of a physical system. As another class of 
examples, signals are synthesized for the purpose of communicating information between humans or 
between humans and machines. Although signals can be represented in many ways, in all cases, the 
information is contained in some pattern of variations. Signals are represented mathematically as functions 
of one or more independent variables. 

Signals can be any physical quantity that varies with time, space, or other independent variables. They can 
be represented in either the time domain or frequency domain. Examples of signals include human speech, 
electric current, and voltage. Signals can be dependent on one or more independent variables, such as time, 
temperature, position, pressure, or distance. If a signal depends on only one independent variable, it is 
called a one-dimensional signal, while a signal dependent on two independent variables is called a two-
dimensional signal. Examples include audio signals (speech, music), image and video signals, 
communication signals, biomedical signals (ECG, EEG), control systems, digital signal processing, 
electrical circuits, mechanical systems, and feedback systems. These concepts find practical use in areas 
such as audio processing, image recognition, telecommunications, medical diagnostics, robotics, power 
systems, and scientific research. Signals and systems provide the framework for analyzing, manipulating, 
and understanding information in various fields. 

1.1.1 Signal 

A signal can be realized as a physical quantity which conveys the information related to some physical 
phenomena like any voltage signal, any electromagnetic wave that is transmitted over the air from any base 
station to the mobile station and this carries the information about the communication between two 
individuals. A signal can also be predicted in terms of a video or an image carrying information. In this 
way, a signal is a carrier of data or information. 

The examples of the signal can be, when we power on the mobile handset, the electromagnetic field gets 
associated with the antenna and we receive a signal from a base station. Another example can be, when we 
listen a whistle of train passing nearby, that is a kind of signal which is identified in our brain. Basically, 
signals arise in many forms, e.g. acoustic, light, pressure, flow, mechanical, thermal, electrical etc.  

For us to study the signal theory, we consider signal as a variation or change of an entity with respect to 
time or space or any other independent variable. When time signals are considered, they are represented 
using x(t), y(t) etc., and such 1D signals which varies in time can also be extended for 2D, 3D signals. 
Signals occurring in many different physical forms are often converted in electrical form by a transducer 
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for ease of processing. For example, a microphone converts sound wave into electrical signal which is 
convenient for further processing. 

To study signals, we must see how the signals look! Below is one signal which is very commonly used 
i.e., sinusoidal signal.  

                y-axis 

 

 

           Amplitude 

                                                    Time                                        x-axis 
Fig. 1.1: Sinusoidal Signal 

Graphically, the independent variable is represented by horizontal axis (x-axis) and the dependent 
variable is represented by vertical axis (y-axis). In the Fig. 1.1, we must notice that as the time value is 
changing, the instantaneous value of amplitude (height of the signal waveform) is also changing, so the 
value plotted on y-axis are dependent on value on x-axis.  

The general expression for sinusoidal signal can be written as sin(߱ݐ), where ߱ is constant and ݐ is time 
which is value on  ݔ-axis. Thus, quantity on ݕ-axis is dependent variable and quantity on ݔ-axis is 
independent variable, as we all know that time depends on nothing and it varies independently. So, from 
the discussion the definition of Signal is any physical quantity that varies with time, space or any other 
independent variable, which conveys some information. 

Similarly, ECG signal shown in Fig. 1.2 is also a biological signal which depicts the function of heart to 
find or study any abnormalities in the heart.    

 
Fig. 1.2: ECG Signal 
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Other examples of the signals are speech signal, EEG signal, Image/Video signal, Radar signal, AM/FM 
signal etc. 

1.1.2 System 

For the examples of the signals given in section 1.1.1, a system is always associated with their generation 
and extraction of useful information. For example, any waveform like sinusoid can be generated by a 
function generator and displayed on a cathode-ray oscilloscope (CRO). Similarly, other signals like ECG, 
EEG are generated by our heart and brain, respectively. These signals are analyzed using the biological 
equipment with suitable software systems.  

From this discussion, a continuous time system accepts an input signal, (ݐ)ݔ and produces an output signal, 
 A system is often represented as an operator on the input signal. Hence, a system can be defined as .(ݐ)ݕ
any physical device that performs a certain operation or a set of operations on the input signal x(t) to result 
in a new signal y(t) as its output. Fig. 1.3 shows the system to which an input signal  (ݐ)ݔ is provided that 
is further processed to get the output (ݐ)ݕ. 

 

Fig. 1.3: Representation of signal and system 

1.2 Classification of signals 

According to the nature of independent variable, time, signals can be classified into continuous-time (CT) 
signals and discrete-time (DT) signals. 

1.2.1 Continuous time (CT) signals 

If the independent variable is continuous then signal is called as CT signal. Symbol ݐ is used to denote 
continuous time. Also the independent variable ݐ is enclosed in (.). For example, a signal can be continuous 
time signal for case, 

x(t) = sin(ݐߨ)          for all (1.1)                                   ݐ 

Above Eq. (1.1) is of sinusoidal signal, which is a continuous time signal as it is defined continuously over 
time from -∞ to +∞ or over any continuous time interval as shown in Fig. 1.4. 
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Fig. 1.4: Continuous time signal 

1.2.2 Discrete time (DT) signals 

If the independent variable has discrete time instances, then signal is called as DT signal. These instances 
can be either be positive or negative as shown by Fig. 1.5. Symbol ݊ is used to denote discrete time 
instances. Also, the independent variable ݊ is enclosed in [.]. If a signal is plotted on such discrete time 
instants the plot is called as a stem plot.  

So, stem plot contains discrete time instants also called as sequence of numbers. From Fig. 1.5 it can be 
seen that, at time instant 0, the instance is x (0) that shows the amplitude values at time 0, at time instant 
1, the instance is x (1) and so on. Hence, these x (-2), x (-1), x (0), x (1), x (2) are called as time series or 
sequence of numbers. 

For example, a signal can be discrete time signal for case, 

x[n] = sin ସగ௡
ଶ଴

           for all ݊                                   (1.2) 

 
Fig. 1.5: Discrete time signal 

1.3 Basic signals 

There are many elementary signals which must be studied to better understand the properties of both the 
signals and systems. These include unit impulse, unit step, signum, ramp, exponential and sinusoid signals. 
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1.3.1 Continuous-Time Unit Impulse ࢾ(࢚) 

The unit impulse, denoted as (ݐ)ߜ, is also known as the Dirac delta function. It is one of the most 
fundamental signals to understand various properties of the system.  

The mathematical representation of Impulse function is, 

 
Fig. 1.6: Pulse signal 

 

Consider the given signal which is a pulse from − ఌ
ଶ

ఌ ݋ݐ 
ଶ
 , hence pulse has a width of ߝ and height equals 

ଵ
ఌ
. So, area under the pulse equals ߝ × ଵ

ఌ
= 1. So, for each pulse ߜఌ(ݐ) for every ߝ, the area under the pulse 

equal to 1.  

Now, let us consider an impulse function as, 

(ݐ)ߜ = ఌ→଴(ݐ)ఌߜ 
௟௜௠                                                  (1.3) 

As, ߝ tends to 0, the width goes to 0 and height ଵ
ఌ
 to infinity, but area still remains the unity (constant).  

Hence, area under the given pulse function, 

∫ ݐ݀(ݐ)ߜ = ቄ1       ܽ < 0 < ܾ
݁ݏ݅ݓݎℎ݁ݐ݋      0

௕
௔                                (1.4) 

The representation of CT unit impulse signal is represented by Fig. 1.7. 

 

Fig. 1.7: CT Unit impulse signal 
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In general, a CT impulse function can be described as, 

(ݐ)ߜ          = ቄ∞              ݐ = 0
∫          and                        ݁ݏ݅ݓݎℎ݁ݐ݋     0 δ(t)ஶ

ିஶ dt = 1 

The arrow on the top of impulse indicates that it has infinite amplitude as shown in Fig 1.7. 

1.3.2. CT Unit Impulse Function Properties 
 

1. ∫ ݐ݀(ݐ)ߜ(ݐ)ݔ = ஶ(0)ݔ
ିஶ   

i.e., if we multiply the impulse function by any signal x(t) and integrate it, it picks the value of the 

function x(t) at t = 0 

2. ∫ ݐ)ߜ(ݐ)ݔ − ݐ݀(଴ݐ = ஶ(଴ݐ)ݔ
ିஶ  

Here, ݐ)ߜ − ݐ ଴) is basically the shifted impulse toݐ =  ଴ݐ

3. Scaling property: (ݐܽ)ߜ = ଵ
|௔|
,(ݐ)ߜ ܽ > 0 

4. Product property: (ݐ)ݔ. (ݐ)ߜ = .(0)ݔ  (ݐ)ߜ

                                   Similarly,  ࢞(ݐ). ݐ)ߜ − (଴ݐ = .(଴ݐ)ݔ ݐ)ߜ −  (଴ݐ

5.  Sifting property: ∫ ݐ)ߜ(߬)ݔ − ߬)݀߬ = ஶ(ݐ)ݔ
ିஶ  

6.  CT Unit Impulse Function is even: (ݐ−)ߜ =  (ݐ)ߜ

1.3.3 Importance of Impulse Function 
By applying impulse signal to a system one can get the impulse response of the system. From impulse 

response, it is possible to get the transfer function of the system. From the impulse response of the system, 

one can easily get the step response and ramp response by integrating it once and twice respectively. For 

a linear time invariant system, if the area under the impulse response curve is finite, then the system is said 

to be stable. 

Impulse signal is easy to generate and apply to any system. 

1.3.4 Discrete-Time Unit Impulse sequence [࢔]ࢾ 

A DT unit impulse sequence is represented by ߜ[݊] and is defined by  

݊            ,ቄ1= [݊]ߜ = 0
 (1.5)                               ݁ݏ݅ݓݎℎ݁ݐ݋    ,0

Graphically ߜ[݊] is represented by Fig. 1.8, 
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Fig. 1.8: DT Unit impulse sequence 

 
1.3.5 DT Unit Impulse Sequence Properties 

1. Product/multiplication property: 
Consider ݔ[݊] is a DT sequence multiplied with gives output ݕ[݊] 

[݊]ݕ = .[݊]ݔ [݊]ߜ =  (1.6)                             [݊]ߜ [0]ݔ
2. Sifting property: 

The product property leads to sifting property, 

∑ ஶ[݊]ݔ
௞ୀିஶ ݊]ߜ − ݇] =  (1.7)                                   [݇]ݔ

Eq. (1.7) is true when ߜ[݊ − ݇] is within the given summation limit otherwise the RHS of the 
equation becomes zero.  

 

1.3.6 CT Unit Step Function ࢛(࢚) 

The unit step signal, denoted as (ݐ)ݑ, is a fundamental signal that has a value of 0 for ݐ   less than 0 
and a value of 1 for ݐ greater than 0.  

Mathematically, it can be represented as: 

(ݐ)ݑ = ቐ
ݐ              1 > 0
ଵ
ଶ

ݐ              = 0
ݐ              0 < 0

                               (1.8) 

At ݐ = 0, we sometime define as ଵ
ଶ
.  But, at ݐ = 0, there is a discontinuity, that means it jumps from 0 

to 1. 
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Fig 1.9: Unit Step Function 

For example, consider a scenario where a light switch is turned on at time t = 0. The unit step signal 
can be used to represent this event. Before t = 0, the signal is 0 (light off), and after t = 0, the signal 
is 1 (light on). 

Let us consider the relationship between the unit impulse and unit step function: 

(ݐ)ߜ = ௗ
ௗ௧

 (1.9)                                (ݐ)ݑ

Derivative of unit step function is unit impulse function. Since, (ݐ)ݑ is discontinuous at ݐ = 0, it is 
not formally differentiable but Eq. (1.9) can be interpreted as approximation to unit step function. 

 

1.3.7 Importance of step function 

 Step signal is easy to generate and apply to the system, is used in mathematics of control system and 
signal processing as a signal which switches on at a specified time and stays switched on indefinitely. 
It is also used in mechanics with impulse function to describe different types of structural loads.  

 By differentiating the step response impulse response can be obtained.by integrating the step 
response, ramp response can be obtained. 

 Application of step signal is equivalent to the application of numerous sinusoidal signals with a wide 
range of frequencies. Step response is considered as a white noise which is drastic if the system 
response is satisfactory for a step signal; it is likely to give satisfactory response to other types of 
signals. 

 
1.3.8 DT Unit Step Sequence ࢛[࢔] 
 
A DT unit step Sequence can be represented by  
݊                     ,ቄ1 = [݊]ݑ ≥ 0

0,                    ݊ < 0                                                                       (1.10) 
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Fig. 1.10 shows the graphical representation of unit step sequence. 

 
Fig 1.10: DT unit step sequence 

 
The DT unit impulse sequence in forms of DT unit step sequence can be represented by, 

[݊]ߜ = [݊]ݑ − ݊]ݑ − 1]                  (1.11) 
Conversely, DT unit step sequence can be represented by DT unit impulse sequence as a running 
sum of impulse. As, 
 

[݊]ݑ = ෌ ݊]ߜ − ݇]ஶ
௞ୀ଴                                                  (1.12) 

[݊]ݑ = [݊]ߜ  + ݊]ߜ − 1] + ݊]ߜ − 2] + ⋯                 (1.13) 

That mean, u[n] can be recognized as a linear combination of shifted impulse sequences as shown 
by fig. 1.11 

 
Fig 1.11: u[n] represented by shifted impulse sequences 
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Example 1.1:  x[n] = {2, −4,8,2,6,2}
 ↑

 . Represent the signal  ݔ[݊] in terms of weighted shifted impulse 
functions. 

Solution: 
x[n] = ∑ x[k]δ[n − k]∞

k=0                       (1.14) 
                                        
has range -2 to 3 i.e. −2 [݊]ݔ ≤  ݊ ≤ 3 

 
[݊]ݔ = ෌ x[k]δ[n − k]ଷ

୩ୀିଶ               (1.15) 
                                        
Expanding the above equation we get 
 

x[n] = x[−2]δ[n + 2] + x[−1]δ[n + 1] + x[0]δ[n] + x[1]δ[n − 1] + x[2]δ[n − 2]

+ x[3]δ[n − 3]                     (1.16) 

 

1.3.9 CT Signum Function  
A Signum function has amplitude 1 for t> 0 and -1 for t<0. For t=0, the amplitude is  
discontinuous. The signum function is written as (ݐ)݊݃ݏ and represented by Eq. (1.13) 
As,         

(ݐ) ݊݃ݏ  =  ቄ ݐ                     ,1 > 0
ݐ                       ,1− < 0                        (1.17) 

The Signum Signal is mostly used in the communication theory. 
The Signum function can be represented in terms of unit step function as, 
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(ݐ)݊݃ݏ  = (ݐ)ݑ2   − 1  (1.18) 
Fig. 1.12 show the CT Signum function 

 
Fig 1.12: CT Signum function 

1.3.10 DT Signum Sequence 
A DT Signum sequence can be written as 

[݊]݊݃ݏ = ൝
1,       ݊ > 0
0,        ݊ = 0
−1,      ݊ < 0

 (1.19) 

 
Graphically, DT Signum sequence can be represented by Fig. 1.13 

 
Fig 1.13: DT Signum sequence 

 

A DT Signum sequence can be represented in terms of unit step sequence as, 
[݊]݊݃ݏ = [݊]ݑ −  (1.20) [݊−]ݑ

 

1.3.11 CT Ramp Function  
A CT ramp function is represented by (ݐ)ݎ and given by, 

(ݐ)ݎ = ቄݐ                   ,ݐ ≥ 0
ݐ                   ,0 < 0   (1.21) 

The graphical representation of ramp signal is shown by Fig. 1.14. 
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Fig 1.14: CT ramp function 

 

r(t) can be expressed in terms of u(t) as, 
r(t) = tu(t)                                    (1.22) 

Also, when unit step function is integrated it gives ramp function. 
 

∫ u(τ)dτ = r(t)ஶ
ିஶ  (1.23) 

1.3.12 DT Ramp Sequence  
A DT ramp sequence is represented by ݎ[݊] and given by 

ቄ = (݊)ݎ n,                     n ≥ 0
 0,                      n < 0  (1.24) 

The graphical representation of ramp sequence is shown by Fig. 1.15. 

 
Fig 1.15: DT ramp sequence 

 

1.3.13 CT Exponential signal  
It is another important type of signal which is represented by, 
 

(ݐ)ݔ =  ௧                             (1.25)∝݁ܣ
 

Depending upon the values of parameters A and α, the exponential signal is categorized  
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into two types. 
1. Real Exponential Signal 
2. Complex Exponential Signal 

1.3.13.1 Real Exponential Signal 

For this signal, A and α are real. Depending upon the value of α, the signal increases or decreases 
exponentially.  

If α > 0, (ݐ)ݔ increases exponentially with time as shown in Fig. 1.16(a).  

If α <0, (ݐ)ݔ decreases exponentially with time as shown in Fig. 1.16(b). 

For the value of  ߙ =  .is DC signal as shown in Fig 1.16(c) (ݐ)ݔ ,0

 
Fig 1.16: CT real exponential signal 

1.3.13.2 Complex Exponential Signal 
For exponential signal x(t) = Aeఈ୲, A and ߙ are complex values. 
Here, (ݐ)ݔ can be written as, 

x(t) = |A|e୨|∅|e(஢ା୨ఆబ)୲                      (1.26) 

    = |A|e஢୲e୨(ఆబ୲ା∅)            (1.27) 
              = |A|eσt[cos(0ߗt + ∅) + jsin(0ߗt + ∅)]        (1.28) 
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The complex exponential signal can be represented graphically in terms of sine and cosine waves 

depending upon value of σ in Eq. (1.28). If value of σ=0, real and imaginary parts of Eq. (1.28) 

become sinusoidal signals as shown by Fig. 1.17. 

 
Fig 1.17: CT complex exponential signal 

1.3.14 DT Exponential signal  
The discrete version of CT exponential signal is defined by DT exponential sequence as  

x[n] = Aߙ୬          (1.29) 
Depending upon values of the parameters ܣ and ߙ, the DT exponential sequence is 
categorized into two types. 
1) Real Exponential Sequence 
2) Complex Exponential Sequence 
 

1.3.14.1 Real Exponential Sequence 
For this sequence ܣ and ߙ are real. The exponential signal grows with the value of n for 
 The nature of DT real exponential sequence is shown .1>|ߙ| and decays with ݊ for 1<|ߙ| 
 in Fig. 1.18. 

 
Fig 1.18 DT complex exponential sequence 
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1.3.14.2 Complex Exponential Sequence 
As per the discussion in CT complex exponential signal, ݔ[݊] can be written as, 

[݊]ݔ =  ௡݁௝(ఠబ௡ା∅)   (1.30)|ߙ|∅௝݁|ܣ|
   

[݊]ݔ =  ௡݁௝(ఠబ௡ା∅)      (1.31)|ߙ||ܣ|
  

[݊]ݔ  = ଴݊߱)ݏ݋ܿ]௡|ߙ||ܣ| + ∅) + ଴݊߱)݊݅ݏ݆ + ∅)]             (1.32) 
         

1.3.15 CT Sinusoid Signal  
From Eq. (1.28) of CT complex exponential signal, when ߪ = 0, the real and imaginary  
parts of a complex exponential become sinusoids as shown by Fig. 1.20. 

 
Fig 1.19 CT sinusoid signal 

(ݐ)ݔ  = ݐ଴ߗ)ݏ݋ܿ]|ܣ| + ∅) + ݐ଴ߗ)݊݅ݏ݆ + ∅)]            (1.33) 
   

(ݐ)ݔ = |ܣ| ݐ଴ߗ)ݏ݋ܿ + ∅) + ݐ଴ߗ)݊݅ݏ|ܣ|݆ + ∅)]         (1.34) 
  

|A|ܿߗ)ݏ݋଴ݐ + ∅) and |ߗ)݊݅ݏ|ܣ଴ݐ + ∅) are continuous time sinusoidal signals. Where, A 
represents the amplitude value of the signal, ∅ is the phase angle. 
When σ>0, Eq. (1.28) becomes the increasing sinusoidal signal and for σ<0, Eq. (1.28) 
becomes the decaying sinusoidal signal as shown by Fig. 1.21. 



Signals and Systems | 19 

 
 

   
(a)                                                               (b)     

Fig 1.20 CT sinusoid signal (a) Increasing sinusoid signal (b) Decaying sinusoid signal 

For example, the sound produced by a tuning fork is a sinusoidal signal. As the prongs of the 
fork vibrate back and forth, they create a pure tone that can be represented by a sinusoidal 
waveform. 

1.3.16 DT Sinusoid Sequence  
From Eq. (5) of DT complex exponential sequence, when |1=|ߙ, the real and imaginary parts 
of a complex exponential sequence becomes sinusoids. 

i.e.,  ݔ[݊] = |ܣ| ଴݊߱)ݏ݋ܿ + ∅) + ݅ݏ|ܣ|݆ ݊(߱଴݊ + ∅)                (1.35) 
     

|A| cos(ω଴n + ∅) and |A| sin(ω଴n + ∅) are discrete time sinusoidal sequence where ܣ 
represents the amplitude, ω଴ is frequency in radians/sample and ∅ is phase angle in radians. 

1.4 Classification of Continuous Time and Discrete Time signals 

1.4.1 Deterministic and Random signals 

These types of signals class can be either continuous time or discrete time signals. A 
deterministic signal is completely specified that can be deterministically represented at each 
and every time instant or frequency instant. Deterministic is the fact where all the present, 
past and future values of the signal amplitude at given time instant are known. For example, 
sin(2ݐ݂ߨ), ݁௧ are the deterministic signals in the sense that at a given time instant t there is 
no ambiguity, that means given a time instant, one can exactly determine what is the signal. 
One such example is shown by Fig. 1.22.  

 (ݐ)ݔ
σ< 0 

-t t 
 

 σ> 0 (ݐ)ݔ

-t              0 t 
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Fig 1.21: CT deterministic signal 

In Fig. 1.21, (ݐ)ݔ = ଷ
(ଵା௧మ)

 for -∞<t<∞ which determines the values at different time instants. 

Other examples of deterministic signals include voltage signals, current signals, etc. 

Whereas, the random signals are random in nature that means it takes random values at 
various time instants. Mathematically, the behaviour of random signals cannot be predicted. 
For example, the outcome of a coin toss experiment can lead to a random signal. If its outcome 
is a head, it is presented by +1 and if the outcome is tail, it is presented by -1.  That means, 
signal ݔ[݊]  =  +1, if outcome equals heads or ݔ[݊] = −  1, if outcome equals tails. Since 
the outcome of the coin toss experiment is random, the signal itself is random in nature and 
this is a discrete time random signal. On the other hand, a continuous time random signal 
includes speech signal, record of temperature of the city in a particular month over a time or 
it can be interpreted as noise with too many variations along the time axis t. This noise tends 
to limit the performance of a system and hence it is important to understand the behavior of 
the noise to characterize the performance and behavior of any system. Fig. 1.22 shows the 
CT random signal. 

 

Fig 1.22: CT random signal 
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1.4.2 Even and Odd signals 

Another classification of the signals is even and odd type of the signal. For continuous time 
signal an even function is represented as, 

(ݐ)ݔ =  (1.36)                  (ݐ−)ݔ 

Or for a discrete time signal an even function is represented as, 

[݊]ݔ  =   (1.37)                [݊−]ݔ 

For example, cos(2ݐ݂ߨ) is a CT even signal as cos(2ݐ݂ߨ) = cos(−2ݐ݂ߨ) as shown in Fig. 
1.23. 

  

Fig 1.23: CT Even signal  

For continuous time signal an odd function is represented as, 

(ݐ)ݔ =  (1.38)            (ݐ−)ݔ −

Or for a discrete time signal an even function is represented as, 

[݊]ݔ =  (1.39)           [݊−]ݔ− 

For example, sin(2ݐ݂ߨ) is an odd signal as sin(2ݐ݂ߨ) = −sin(2ݐ݂ߨ) as shown in Fig. 1.24. 

 

Fig 1.24: CT Odd signal  
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Hence, it can be seen that the even signals are symmetric about 0 that means they have even 
symmetry and the odd signals are anti-symmetric about the vertical axis that means they have 
odd symmetry. 

Any real valued CT or DT unsymmetric signal can be represented in terms of its even and 
odd parts as, 

(ݐ)ݔ = (ݐ)ாݔ +  (1.40)             (ݐ)ைݔ

and 

[݊]ݔ = [݊]ாݔ +  ை[݊]              (1.41)ݔ

Where, base E represents even part of the signal and base O represents odd part of the signal. 

(ݐ)ாݔ = {(ݐ)ݔ}݊݁ݒܧ = ଵ
ଶ

(ݐ)ݔ} +  (1.42)           {(ݐ−)ݔ

(ݐ)ைݔ = {(ݐ)ݔ}ܱ݀݀ = ଵ
ଶ

(ݐ)ݔ} −  (1.43)              {(ݐ−)ݔ

[݊]ாݔ = {[݊]ݔ}݊݁ݒܧ = ଵ
ଶ

[݊]ݔ} +  (1.44)               {[݊−]ݔ

[݊]ைݔ = {[݊]ݔ}ܱ݀݀ = ଵ
ଶ

{[݊] −  (1.45)            {[݊−]ݔ

 

1.4.2.1 Important properties of Even and Odd Functions 

1.  Product of two even or odd signals is an even signal. 

Proof: Let ݔଵ(ݐ) and ݔଶ(ݐ) are even signals. If (ݐ)ݔ =  ,then (ݐ)ଶݔ (ݐ)ଵݔ

(ݐ−)ݔ = (ݐ−)ଶݔ (ݐ−)ଵݔ = (ݐ)ଶݔ (ݐ)ଵݔ =  (ݐ)ݔ

If ݔଵ(ݐ) and ݔଶ(ݐ) are odd signals. If (ݐ)ݔ =  ,then (ݐ)ଶݔ (ݐ)ଵݔ

(ݐ−)ݔ = (ݐ−)ଶݔ (ݐ−)ଵݔ = ൯(ݐ)ଶݔ−൫ ((ݐ)ଵݔ−) = (ݐ)ଶݔ (ݐ)ଵݔ =  (ݐ)ݔ

2. Product of one even and one odd signal is an odd signal. 

Proof: Let ݔଵ(ݐ) is an even signal and ݔଶ(ݐ) is an odd signal, then 

(ݐ−)ݔ− = [ଶݔ (ݐ−)ଵݔ]− = [((ݐ)ଶݔ−) (ݐ)ଵݔ]− = (ݐ)ଶݔ (ݐ)ଵݔ =  (ݐ)ݔ

3. ∫ ݐ݀(ݐ)ݔ = 2 ∫ ௕ݐ݀(ݐ)ݔ
଴  ௕

ି௕   where, (ݐ)ݔ is an even signal. 
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(0)ݔ .4 = ∫ and 0=[0]ݔ ݐ݀(ݐ)ݔ = 0௕
ି௕   where, ݔ[݊] is an odd signal. 

1.4.3 Periodic and Aperiodic signals 

A signal is called as periodic if there exist a time period T such that, 

ݐ)ݔ + ܶ) = ,(ݐ)ݔ −∞ ≤ ݐ ≤ ∞           (1.46) 

In Fig 1.25, we can see a periodic continuous time triangular wave that is repeating itself after 
every period T, 2T, 3T towards positive as well as negative direction. For any T which is the 
smallest positive value for which Eq. (1.46) holds is called the fundamental period of the 
signal. Eq. (1.47) shows the periodic CT signal where same structure is repeating and it 
follows, 

(ݐ)ݔ = ݐ)ݔ + ܶ) = ݐ)ݔ + 2ܶ) = ݐ)ݔ + 3ܶ) = ⋯ = ݐ)ݔ + ݇ܶ)              (1.47) 

for all ݐ and any integer ݇. Therefore, a periodic signal is an everlasting signal that exists over 
the entire interval −∞ ≤ ݐ ≤ ∞. However, no physical signals are actually periodic as they 
all begin at some finite time in the past and stop at some finite time in the future. 

 

 
Fig 1.25: CT periodic signal 

A regular example of periodic signal is sinusoidal signal which is written as, 

x(t) = Asin(Ω଴t + ∅) = ݐF଴ߨ2)݊݅ݏܣ + ∅)            (1.48) 

where, A represents amplitude, Ω଴ is frequency in radians/second, ∅ is the phase in radians 
and F଴ is frequency in Hertz. The fundamental period T for this signal can be written as, 

ܶ =
ߨ2
Ω଴

=
1
F଴

 

Now consider two periodic signals, ݔଵ(ݐ) and ݔଶ(ݐ), with fundamental periods ଵܶ and ଶܶ, 
respectively. The sum of two periodic signals may or may not be periodic. 

(ݐ)ଵݔ  = ݐ)ଵݔ  + ݌ ଵܶ),   ݔଶ(ݐ) = ݐ)ଶݔ  + ݍ ଶܶ)            (1.49) 
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Where, ݌ and ݍ are integers such that  

(ݐ)ݔ = ݐ)ଵݔ  + ݌ ଵܶ) + ݐ)ଶݔ  + ݍ ଶܶ)                   (1.50) 

In order for (ݐ)ݔ to be periodic with period T, 

ݐ)ݔ + ܶ) = ݐ)ଵݔ  + ܶ) + ݐ)ଶݔ  + ܶ) = ݐ)ଵݔ  + ݌ ଵܶ) + ݐ)ଶݔ  + ݍ ଶܶ)           (1.51) 

Thus,  

݌ ଵܶ= ݍ ଶܶ = ܶ              (1.52) 

or 

భ்

మ்
= ௤

௣
                       (1.53) 

The sum of two periodic signals is periodic only if the ratio of their respective periods can be 
expressed as a rational number. We can say that the fundamental period of (ݐ)ݔ is the smallest 
positive value of ܶ that is an integer multiple of both ܶ ଵ and ଶܶ and this value is called as least 
common multiple (LCM) of ଵܶ and ଶܶ. If భ்

మ்
 is an irrational number, then ݔଵ(ݐ) and ݔଶ(ݐ) do 

not have common period and  (ݐ)ݔ is aperiodic. The Fig. 1.26 shows the example of aperiodic 
signal which does not follows the conditions satisfied by the periodic signal that means 
aperiodic signals are not periodic with respect to defined fundamental period. 

 
Fig 1.26: CT aperiodic signal 

For discrete signal, 

݊]ݔ + ܰ] =  for all ݊               (1.54)  [݊]ݔ

Where ܰ is positive integer and the period of discrete time signal. It means that signal ݔ[݊] 
repeats itself every ܰ samples as shown in Fig. 1.28. The smallest ܰ for above condition 
holds is called fundamental period ଴ܰ.  
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Fig 1.27: DT periodic signal 

A discrete time periodic signal follows, 

[݊]ݔ = ݊]ݔ + ܰ] = ݊]ݔ + 2ܰ] = ݊]ݔ + 2ܰ] = ⋯ = ݊]ݔ + ܰ]          (1.55) 

for all ݊ and any integer ݇. If ݔ[݊] is periodic with period N, then it is also periodic with 
period 2ܰ, 3ܰ, …. 

A discrete time sinusoid can be written as, 

[݊]ݔ = ଴݊߱]݊݅ݏܣ + ∅]             (1.56) 

Where A is amplitude, ߱଴ is frequency in radians/sample and ∅ is phase in radians. 

When a DT sequence is not periodic with the fundamental period then it is called as DT 
aperiodic sequence.  

Example 1.2:  

Determine whether the following continuous time signals are periodic or not. If periodic, find 
the fundamental period T. 

(ݐ)ݔ .1  =  (ݐߨ50) ݊݅ܵ 
(ݐ)ݔ .2  = + ݐߨ 10) ݏ݋ܿ 20    (6/ߨ 
(ݐ) ݔ .3 = 2 cos(10ݐ + 1) – sin(4ݐ − 1) 
(ݐ)ݔ .4  = + ݐߨ60 ݏ݋ܿ   ݐߨ50 ݊݅ݏ 
(ݐ)ݔ  .5 = 3 cos ݐ4 + 2 sin  ݐߨ

Solution: 

1. Given, ࢞(࢚)  =  (૞૙࢚࣊) ࢔࢏ࡿ 

(ݐ)ݔ    =  .௢= 50 πߗ where ,(ݐߨ50) ݊݅ݏ 

  Time period T = 2 π / ߗ௢ = 2 π /50 π = 1/25. 
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2. Given, ࢞(࢚)  =  ૛૙ ࢙࢕ࢉ (૚૙ ࢚࣊ +  ࣊/૟)  

௢ߗ    = 10 π 

 T = 2ߗ /ߨ௢= 2 π / 10 π = 1/5  

,ܖ܍ܞ۵ܑ .3 ࢞ (࢚)  =  ૛࢙࢕ࢉ(૚૙࢚ + ૚) – ૝࢚)࢔࢏࢙  − ૚)  

let ݔଵ(ݐ)=2cos(10t+1) 

 sin(4t-1) =(ݐ)ଶݔ

   ଵܶ  = 2 π / 10 = π /5 and ଶܶ  = 2 π/4 = π /2 

Since, ratio ଵܶ / ଶܶ  = (π /5) / (π /2) = 2/5 is a rational number, signal x (t) is periodic with 
fundamental period 

T=LCM( ଵܶ, ଶܶ)=LCM(π /5, π /2)= π 

4. Given,  ࢞(࢚)  = + ૟૙࢚࣊ ࢙࢕ࢉ    ૞૙࢚࣊ ࢔࢏࢙ 

     T1 = 230 / 1 = ߨ60 / ߨ sec  

      T2 = 225 1 = ߨ50 ߨ sec  

      T = ܶ1 / ܶ2 = (1 / 30) / (1 /25) = 5 / 6  

      T= 6T1 = 5T2  

      T = 1 / 5 sec. 

,ܖ܍ܞ۵ܑ  .5  ࢞(࢚)  =  ૜࢙࢕ࢉ ૝࢚ +  ૛࢙࢔࢏ ࢚࣊  

     T1 = 22 /ߨ = 4/ ߨ sec  

     T2 = 22 = ߨ /ߨ sec  

     T = ܶ1 / ܶ2 = 4 / ߨ    

Since it is not a rational number the signal is not periodic. 
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1.4.4 Energy and Power signals 
Energy and power are the two physical characteristics of the signal which are considered in 
many applications. A familiar example may include, due to current ݅(ݐ), the power ݌ is 
delivered to the resistor ܴ and voltage source is (ݐ)ݒ can be written as, 

(ݐ)݌ = (ݐ)݅(ݐ)ݒ = ݅ଶ(ݐ)ܴ = ௩మ(௧)
ோ

          (1.57) 

Hence the total energy at ܴ equals, 

ܧ = න ݐ݀ (ݐ)݌ = ܴ න ݅ଶ(ݐ) ݀ݐ =
1
ܴ  න  ݐ݀ (ݐ)ଶݒ

ஶ

ିஶ

ஶ

ିஶ

ஶ

ିஶ
 

Assume, ܴ = 1Ω, then 

ܧ = න ݅ଶ(ݐ) ݀ݐ = න  ݐ݀ (ݐ)ଶݒ
ஶ

ିஶ

ஶ

ିஶ
 

Hence for any continuous signal (ݐ)ݔ, the energy E can be written as, 

ܧ = ∫ ஶݐଶ݀|(ݐ)ݔ|
ିஶ           (1.58) 

Similarly, energy of a discrete time signal ݔ[݊] can be written as, 

ܧ = ∑ ଶஶ|[݊]ݔ|
௡ୀିஶ              (1.59) 

A signal is called as energy signal if the energy is finite, i.e., 0 < ܧ < ∞. For example, 
݁ି௧(ݐ)ݑ or ݁ି௡ݑ[݊] are the energy signals. 

The power of a periodic continuous signal (ݐ)ݔ which is periodic with period T can be written 
as, 

ܲ = lim  
்→ஶ

ଵ
் ∫ ݐଶ݀|(ݐ)ݔ|

೅
మ

ି೅
మ

                      (1.60) 

 The power of a discrete time signal ݔ(݊) can be written as, 

ܲ = lim
ே→ஶ

ଵ
ଶேାଵ

∑ ଶே|[݊]ݔ|
௡ୀିே                   (1.61) 

A signal is called as power signal if the power is finite (0 < ܲ < ∞) and non-zero (ܲ ≠ 0).  

A signal with finite energy has zero power and a signal with finite power has infinite energy. 
A signal neither is an energy signal nor a power signal if it has infinite energy and zero power. 
For example, CT and DT ramp signal i.e., (ݐ)ݎ and ݎ[݊] are neither energy nor power signal. 
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Example 1.3: Determine the energy E and power P of following signals. 
(ݐ)ݔ .1 = 2݁ିఈ௧ߙ        (ݐ)ݑ > 0 

(ݐ)ݔ   .2 = భିݐ
ర ݐ)ݑ − 2)   

[݊]ݔ .3 = 3(0.5)௡  [݊]ݑ 

Solution:  

1.   Given, ࢞(࢚) = ૛ࢻ        (࢚)࢛࢚ࢻିࢋ > ૙                                                   

ܧ = ∫ ஶ(ݐ)ݔ|
ିஶ |ଶ݀ݐ=∫ 2ଶஶ

଴ ݁ିଶఈ௧݀ݐ 

= 4 න ݁ିଶఈ௧

ஶ

଴

 ݐ݀

 

= 4 ቈ
݁ିଶఈ௧

ߙ2−
቉

∞
0  

 

=
4

ߙ2−
[݁ିଶఈ௧]

∞
0  

=
4

ߙ2−
[݁ିஶ−݁ି଴] 

=
4

ߙ2−
[݁ିஶ−݁ି଴] 

 

=
4

ߙ2−
[0 − 1] =

4
ߙ2 =

2
 ߙ

 
As E value is finite, (ݐ)ݔ is an energy signal. 

ܲ = lim
்→ஶ

 
1
ܶ

න ଶ|(ݐ)ݔ|
்

଴
 ݐ݀
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ܲ = lim
்→ஶ

 
1
ܶ

න 2ଶ
்

଴
. ݁ିଶఈ௧݀ݐ 

ܲ = lim
்→ஶ

 
4
ܶ

න ݁ିଶఈ௧݀ݐ
்

଴
 

 

ܲ = lim
்→ஶ

 
4

ܶߙ2−  [݁ିଶఈ௧]଴
் 

  

ܲ = lim
்→ஶ

 
4

ܶߙ2−
[݁ିଶఈ௧ − ݁ି଴] 

   
            

                                                             = 0 
Since, P=0, (ݐ)ݔ is not a power signal. 

2. Given, ࢞(࢚) = ࢚ି૚
૝ ࢛(࢚ − ૛)  

ܧ = න ଶ|(ݐ)ݔ|
ஶ

ିஶ
= ݐ݀   න ଶିݐ

ସ ݀ݐ
ஶ

ଶ
= න ଵିݐ

ଶ
ஶ

ଶ
ݐ݀  = ቎

ݐ
ଵ
ଶ

1
2

቏
∞
2  

= ∞ 
E is infinite, (ݐ)ݔ is not an energy signal 

ܲ =  lim
்→ஶ

1
ܶ

න ଶ|(ݐ)ݔ|
்

଴
 ݐ݀ 

 

ܲ =  lim
்→ஶ

1
ܶ

න ଵିݐ
ଶ

்

଴
 ݐ݀ 

= lim
்→ஶ

1
ܶ ቎

ݐ
ଵ
ଶ

1
2

቏

ଶ

்

  

= lim
்→ஶ

2
ܶ ൤ݐ

ଵ
ଶ൨

ଶ

்
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= lim
்→ஶ

2
ܶ ൤ܶ

ଵ
ଶ − (2)

ଵ
ଶ൨  

= lim
்→ஶ

2
ܶ

ൣ√ܶ − √2൧ 

ܲ = 0 
Since, ܲ =  .is also not a power signal(ݐ)ݔ ,0

3. Given, ࢞[࢔] = ૜(૙. ૞)[࢔]࢛ ࢔ 

[݊]ݔ = 3(0.5)௡  ݑ[݊] 

ܧ = ෍ ଶ|(݊)ݔ|
ஶ

௡ୀିஶ

 

= ෍|3(0.5)௡|ଶ
ஶ

௡ୀ଴

 

= ෍ 9(0.5)ଶ௡
ஶ

௡ୀ଴

 

= 9 ෍(0.25)௡
ஶ

௡ୀ଴

 

Using, ∑ ܽ௡ஶ
௡ୀ଴ = ଵ

ଵି௔
   for |ܽ| < 1 

∴ ܧ   = 9 ൤
1

1 − 0.25൨ 

= 9 ൬
4
3൰ 

= 12 
E has finite value. Hence, (ݐ)ݔ is an energy signal. 
Now,  
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ܲ = lim
ே→ஶ

1
ܰ   ෍|ݔ(݊)|ଶ

ேିଵ

௡ୀ଴

 

= lim
ே→ஶ

1
ܰ   ෍ 9(0.25)ଶ

ேିଵ

௡ୀ଴

 

= lim
ே→ஶ

9
ܰ   ෍(0.25)௡

ேିଵ

௡ୀ଴

 

Using, ∑ ܽ௡ேିଵ
௡ୀ଴  = ଵି௔೙

ଵି௔
,    ܽ ≠ 1 

 

ܲ = lim
ே→ஶ

9
ܰ ൤

1 − (0.25)௡

1 − 0.25 ൨ 

= 0 
Since power P=0, ݔ[݊] is not a power signal. 

1.4.5 Finite (Time-limited) and Infinite Duration signals 

Finite or Time-limited signals are signals that exist only over a specific finite duration or time 
interval. These signals are typically non-zero only within a specific time range. Outside that 
range, they are considered to be zero. Time-limited signals are often encountered in practical 
applications, such as audio signals that have a definite start and end time. The examples of 
CT and DT finite duration signals are shown by Fig 1.28. 

 
Fig 1.28: Examples of finite duration signals (a) CT finite-duration signal (b) DT finite-duration signal   

Infinite duration signals are signals that exists from -∞ to ∞ i.e., for finite interval of time. 
The examples of CT and DT infinite duration signals are shown by Fig 1.29. 
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Fig 1.29: Examples of infinite duration signals (a) CT infinite-duration signal (b) DT infinite-duration 

signal   

1.4.6 Causal and Noncausal signals 

The signals that are zero for ݐ < 0 (for CT signals) or ݊ < 0 (for DT signals) are known as 
causal (right-sided) signals. Examples of such signals are shown by Fig. 1.30.  

 
Fig 1.30: Examples of causal signals (a) CT causal signal (b) DT causal signal   

The signals that are zero for ݐ ≥ 0 (for CT signals) or ݊ ≥ 0 (for DT signals) are known as 
Noncausal (left-sided) signals. Examples of such signals are shown by Fig. 1.31. 

 
Fig 1.31: Examples of noncausal signals (a) CT noncausal signal (b) DT noncausal signal   
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1.5 Some signal properties 

1.5.1 Absolute integrability:  

Absolute integrability is a property that describes the integrability of a signal over its defined 
domain. A signal is said to be absolutely integrable if the integral of its absolute value exists 
and is finite. Mathematically, if the integral of |݂ (ݐ)| from −∞ to +∞ is finite, then the 
signal is absolutely integrable. This property is important in signal processing and analysis as 
it ensures that the energy or power of the signal is well-defined. 

Suppose we have a strictly time limited signal that is a rectangular pulse, so obviously this 
curve has a finite area under it. Therefore, we can say this signal is absolutely integrable. 

1.5.2 Determinism:  

Determinism refers to the property of a signal that follows a predictable and deterministic 
pattern. 

A signal is said to be deterministic if there is no uncertainty with respect to its value at any 
instant of time or the signals which can be defined exactly by a mathematical formula are 
known as deterministic signals. Examples of deterministic signals include most mathematical 
functions, such as polynomial functions or exponential functions. 

 

Fig 1.32: Deterministic Signal 

1.5.3 Stochastic character:  

Stochastic character, also known as randomness or probabilistic behavior, refers to the 
property of a signal that exhibits randomness or uncertainty. Stochastic signals are 
characterized by having a random or unpredictable nature, and their future values cannot be 
precisely determined. Stochastic signals are often modelled using statistical techniques and 
probability distributions. Examples of stochastic signals include noise signals, stock market 
fluctuations, or weather patterns. 
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Fig 1.33: Random (stochastic) Signal 

Example 1.4: Represent the following discrete time signals graphically. (Arrow indicates 
position of ݊ = 0) 

[݊]ݔ  = {1
↑

, 2,3,4,5} 

[݊]ݔ  = {−6, −3,2, 5
↑

, 1,3,7,8} 

[݊]ݔ  = { 4,3,1,0,5, 3
↑

} 

Solution:  
1. The given sequence is ࢞[࢔] = {૚

↑
, ૛, ૜, ૝, ૞} 

As the arrow position indicates, ݊ = 0 
i.e.  [0]ݔ = 1, [1]ݔ = 2, [2]ݔ = 3, [3]ݔ = 4, [4]ݔ = 5 
So, the plot of ݔ[݊] (Amplitude) versus time is, 
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2. The given sequence is, ࢞[࢔] = {−૟, −૜, ૛, ૞
↑

, ૚, ૜, ૠ, ૡ} 

i. e. [0]ݔ = 5, [1]ݔ = 1 , [2]ݔ = 3, [3]ݔ = 7, [4]ݔ = 8, [1−]ݔ = 2, [2−]ݔ = −3, [3−]ݔ =  −6 

 

 
3. The given sequence is ࢞[࢔] = { −૝, ૜

↑
, ૚, ૙, ૞, ૜} 

    i.e. [0]ݔ = 3, [1]ݔ = 1, [2]ݔ = 0, [3]ݔ = 5, [4]ݔ = 3, [1−]ݔ = −4 

 
 

1.6 Continuous/Discrete Amplitude Signals 

1.6.1 Continuous Amplitude Signals:  

Continuous amplitude signals can take on any value within a continuous range. In other 
words, the amplitude of the signal can vary continuously over time. These signals are often 
encountered in analog systems, where the signal can have an infinite number of possible 
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amplitude values. Analog audio signals and continuous waveform signals are examples of 
continuous amplitude signals. 

1.6.2 Discrete Amplitude Signals:  

Discrete amplitude signals can only take on a finite set of values. The amplitude of the signal 
is restricted to specific levels or values. Discrete amplitude signals are commonly 
encountered in digital systems, where the amplitude is represented using a finite number of 
bits. Digital audio signals and discrete waveform signals are examples of discrete amplitude 
signals. 

Continuous-time discrete amplitude signals are basically digital signals. Discrete amplitude 
is one which we get through quantization process and it depends how many levels of 
quantization one wants. In simple words, quantization means assigning the amplitude values 
of any analog signal to certain discrete levels, equidistant of each other based on certain 
criteria. A square wave is a continuous-time discrete amplitude signal. For binary signals, 
there are only two quantization levels (0, 1). Some examples of continuous-time discrete 
amplitude signals are shown by Fig. 1.34 (a) and (b). 

 

(a) 

 

(b)   

Fig. 1.34 Continuous and Discrete Amplitude Signals 
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1.7 Continuous –Time (CT) and Discrete-Time (DT) systems 
A system can be recognized as an interconnection of the physical components or subsystems 
or software to perform the activities or tasks. It operates on the provided input signal, 
processes it accordingly and provides the output. A system that processes continuous–time 
(CT) signal and generates continuous–time (CT) signal is called continuous –time (CT) 
system. The input to output relation for CT system is given as, 

(ݐ)ݔ →  (1.62)         (ݐ)ݕ
Similarly, a system that processes discrete–time (DT) signal and generates discrete–time (DT) 
signal is called discrete–time (DT) system. The input to output relation for DT system is given 
as, 

[ݐ]ݔ →  (1.63)           [ݐ]ݕ

1.8 System properties: Linearity: additivity and homogeneity, Shift- invariance, 
Causality, Stability, Realizability. 

1.8.1 Linear and Nonlinear Systems  

A system is linear if it follows the two principles that are additivity and homogeneity.  

1. Additivity property: Additivity means that the response of the system to the sum of two 
inputs is equal to the sum of the individual responses to each input.  

Mathematically, if input ݔଵ(ݐ) produces output  ݕଵ(ݐ) and input ݔଶ(ݐ) produces output  ݕଶ(ݐ), 
then ݔଵ(ݐ) + (ݐ)ଵݕ must produce (ݐ)ଶݔ +  .(ݐ)ଶݕ
2. Homogeneity/scaling property: Homogeneity means that scaling the input signal by a 

constant scales the output response by the same constant.  
 
Mathematically, if input (ݐ)ݔ is scaled by a constant ܽ i.e., ܽ(ݐ)ݔ, then it must produce the 
scaled output ܽ(ݐ)ݕ. Hence, a system that satisfies both additivity and homogeneity property 
(combinely called as superposition principle) is called as linear system.  Mathematically, for 
CT system, if input ݔଵ(ݐ) produces output  ݕଵ(ݐ) and input ݔଶ(ݐ) produces output  ݕଶ(ݐ), then 
a linearly combined input  (ݐ)ݔ = ܽଵݔଵ(ݐ) + ܽଶݔଶ(ݐ) must produce (ݐ)ݕ = ܽଵݕଵ(ݐ) +
ܽଶݕଶ(ݐ). 
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i.e.,  ܽଵݔଵ(ݐ) + ܽଶݔଶ(ݐ) → ܽଵݕଵ(ݐ) + ܽଶݕଶ(ݐ)               (1.64) 

Mathematically, for DT system, if input ݔଵ[݊] produces output  ݕଵ[݊] and input ݔଶ[݊] 
produces output  ݕଶ[݊], then a linearly combined input  ݔ[݊] = ܽଵݔଵ[݊] + ܽଶݔଶ[݊] must 
produce ݕ[݊] = ܽଵݕଵ[݊] + ܽଶݕଶ[݊]. 

i.e.,  ܽଵݔଵ[݊] + ܽଶݔଶ[݊] → ܽଵݕଵ[݊] + ܽଶݕଶ[݊]                (1.65) 
 
1.8.2 Time-Invariant and Time-Variant Systems 
A system is called as time invariant if its behaviour does not change with respect to time. 
That means, if a system is provided an shifted input in time by ݐ଴, then the system will produce 
an output shifted by same time ݐ଴. For example in case of CT system, if input (ݐ)ݔ is delayed 
by ݐ଴ i.e., ݐ)ݔ − ݐ)ݕ ଴), then system produces delayed outputݐ −  ଴). Similarly, for DTݐ
system, if input ݔ[݊] is delayed by ݊଴ i.e., ݔ[݊ − ݊଴], then system produces delayed output 
݊]ݕ − ݊଴]. 
On the other hand, a system is called as time variant if its behaviour changes with respect to 
time. 
 
Procedure to check for time invariance: 
 

 Delay the input signal by ݐ଴ and check the response of the system ݕଵ(ݐ). 
 Delay the output of the system for unshifted input by ݐ଴. Let this delayed response is ݕଶ(ݐ). 
 Check whether ݕଵ(ݐ) =  If they are equal, system is time invariant otherwise time .(ݐ)ଶݕ

variant. 
 
Example 1.5 

Check whether the following systems are time invariant or not. 
(ݐ)ݕ .1 =  (ݐ)ݔ ݐ5 
(ݐ)ݕ .2 =  (ݐߨ10) sin(ݐ)ݔ 
(ݐ)ݕ .3  =  (ଶݐ)ݔ3 
(ݐ)ݕ .4  =  4 ݁௫(௧) 
(ݐ)ݕ .5  =  ଶݐ  

 
Solution: 
1. Given, ࢟(࢚) =  ૞࢚ ࢞(࢚) 
 
Delay the input signal by ݐ଴ 

(ݐ)ଵݕ = ݐ)ݔ ݐ5  −  (଴ݐ
 
Delay the output of the system by ݐ଴ 
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(ݐ)ଶݕ = ݐ)5  − ݐ)ݔ (଴ݐ −  (଴ݐ
Here,  
 
(ݐ)ଵݕ ≠  .hence the system is time variant ,(ݐ)ଶݕ
 
2. Given, ࢟(࢚) =  (૚૙࢚࣊) ܖܑܛ(࢚)࢞ 
 
Delay the input signal by ݐ଴ 

(ݐ)ଵݕ = ݐ)ݔ  −  (ݐߨ10) ଴)sinݐ
 
Delay the output of the system by ݐ଴ 
 

(ݐ)ଶݕ = ݐ)ݔ − (଴ݐ sin൫10ݐ)ߨ −  ଴)൯ݐ
Here,  
 
(ݐ)ଵݕ ≠  .hence the system is time variant ,(ݐ)ଶݕ
 
3. Given, ࢟(࢚)  =  ૜࢞൫࢚૛൯ 
 
Delay the input signal by ݐ଴ 

(ݐ)ଵݕ =  (଴ݐ−2ݐ)ݔ3 
 
Delay the output of the system by ݐ଴ 
 

(ݐ)ଶݕ =  (2(଴ݐ−ݐ))ݔ3
Here,  
 
(ݐ)ଵݕ ≠  .hence the system is time variant ,(ݐ)ଶݕ
 
4. Given, ࢟(࢚)  =  ૝ ࢞ࢋ(࢚) 
 
Delay the input signal by ݐ଴ 

(ݐ)ଵݕ =   (௧బିݐ)ݔ݁ 4 
 
Delay the output of the system by ݐ଴ 
 

(ݐ)ଶݕ =  (௧బିݐ)ݔ݁ 4
Here,  
 
(ݐ)ଵݕ =  .hence the system is time invariant ,(ݐ)ଶݕ
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5. Given, ࢟(࢚)  =  ࢚૛ 
 
Delay the input signal by ݐ଴ 

(ݐ)ଵݕ =   ଴ݐ−2ݐ
 
Delay the output of the system by ݐ଴ 
 

(ݐ)ଶݕ =  2(଴ݐ−ݐ)
Here,  
 
(ݐ)ଵݕ ≠  .hence the system is time variant ,(ݐ)ଶݕ
 
 
1.8.3 Causal and Noncausal Systems 

A causal system produces an output response that depends only on present and past values of 
the input signal. In other words, Causality means that the output of the system does not depend 
on future inputs, but only on past input. On the other hand, the output of a noncausal system 
depends upon present, past as well as future values of the input signal. All the physical 
systems in the real world are the noncausal systems. 

Mathematically, the output response (ݐ)ݕ at time ݐ is determined solely by the input signal 
 .ݐ ≥ for τ (߬)ݔ

Example 1.6: Determine whether the given CT and DT systems are causal or noncausal. 

(ݐ)ݕ .1 = ݐ)ݔ + 1) 
(ݐ)ݕ .2  = (ݐ)ݔ   + ݐ)ݔ  − 1) 
[݊]ݕ .3  = [݊]ݔ ݊  + ݊]ݔ  − 3] 

Solution: 

1. Given, ࢟(࢚) = ࢞(࢚ + ૚) 

When t =  0, y(0) =  x(1), which implies that, The response at t =  0, i.e. , y(0) depends 
on the future value of input x(0). 
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When ݐ =  1, (1)ݕ = = ݐ which implies that, The response at ,(2)ݔ   1, i.e. ,  depends (1)ݕ
on the future value of input (2)ݔ. 

From the above analysis we can say that for any value of ݐ, the system output depends on 
future inputs. Hence the system is noncausal. 

2. Given, ࢟(࢚)  =  ࢞(࢚)  +  ࢞(࢚ − ૚) 

When ݐ =  0, (0)ݕ = (0)ݔ  + = ݐ which implies that, The response at ,(1−)ݔ   0, i.e. ,  (0)ݕ
depends on the present input (0)ݔ and past input (1−)ݔ. 

When ݐ =  1, (1)ݕ = (1)ݔ   + = ݐ which implies that, The response at ,(0)ݔ   1, i.e. ,  (1)ݕ
depends on the present input (1)ݔ and past input (0)ݔ. 

From the above analysis we can say that for any value of ݐ, the system output depends on 
present and past value of inputs. Hence the system is causal. 

3. Given, ࢟[࢔]  = [࢔]࢞ ࢔  + ࢔]࢞  − ૜] 

When ݊ = 0, [0]ݕ  = [0]ݔ 0  + ݊ which implies that, The response at ,[3−]ݔ  = 0, i.e. ,  [0]ݕ
depends on the present input [0]ݔ and past input [3−]ݔ. 

When ݊ = 1, [1]ݕ  = [1]ݔ 1  + ݊ which implies that, The response at ,[2−]ݔ  = 1, i.e. ,  [0]ݕ
depends on the present input [1]ݔ and past input [2−]ݔ. 

From the above analysis we can say that for any value of ݊, the DT system output depends 
on present and past value of inputs. Hence the system is causal. 

1.8.4 Stable and Unstable Systems 

Stability refers to the boundedness of the system's response. A system is considered stable if, 
for bounded input signals, the output response remains bounded i.e., small inputs lead to 
output that do not diverge. For example, if we apply only little pressure to push the object, it 
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will move only a little bit. In other words, if the input signal is finite, the output signal should 
also be finite. 

On the other hand, if a small signal causes the output signal to be arbitrarily large then that 
system is called as unstable system. The examples of bounded and unbounded signals are 
shown by Fig 1.35.   

 

 

Fig. 1.35 Examples of bounded and unbounded signal 

Stability is also defined by the boundedness. The input signal (ݐ)ݔ is said to be bounded if 
there exist a constant ܯ௫  (0 < ௫ܯ < ∞), such that 

| (ݐ)ݔ| ≤ ௫ܯ      for all t 
  (1.66) 

Similarly, the output signal is bounded if it satisfies the condition |y(t)| ≤ My < ∞ 

Some of the examples of bounded input signal are step signal, decaying exponential signal 
and impulse signal. Examples of unbounded input signal are ramp signal and increasing 
exponential signal. 

Note: For a bounded signal, the amplitude is finite.  
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Example 1.7 Check for the stability of given systems. 

(ݐ) ݕ .1  = cos ((ݐ)ݔ) 
[݊] ݕ .2  = ݊]ݔ  − 1] 
(ݐ) ݕ .3  =  (ݐ)ݔݐ 
(ݐ) ݕ .4  =  ∫  ݐ݀(ݐ)ݔ

Solution: 

1. Given, ࢟ (࢚)  =  ((࢚)࢞) ܛܗ܋

The value of ܿݏ݋θ lies between 1 to +1 for any value of θ. Therefore, the output (ݐ)ݕ is 
bounded for any value of input (ݐ)ݔ. Hence the given system is stable. 

2. Given, ࢟ [࢔]  = ࢔]࢞  − ૚] 
For an arbitrary signal ݔ|  ,[݊]ݔ[݊]| ≤  ݊ ௫   for allܯ 
Then delayed input ݔ[݊ − 1] is also bounded by ܯ௫,  

݊]]ݔ| − 1]| ≤  ݊ ௫     for allܯ 
The output is 

 ௫ܯ =[݊]ݕ
Hence, the DT system is stable. 
3. Given, ࢟ (࢚)  =  ࢚࢞(࢚) 
The given system is a time variant system, and so the test for stability should be performed 
for specific inputs. There can be two cases for the existence of (ݐ)ݔ. 
Case 1: Let (ݐ)ݔ tends to ∞ or constant, as ݐ tends to infinity.  
In this case, (ݐ)ݕ  =   .will be infinity as t tends to infinity and so the system is unstable (ݐ)ݔ ݐ 
Case 2: Let (ݐ)ݔ tends to 0, as ݐ tends to infinity. In this case (ݐ)ݕ  =  will be zero as (ݐ)ݔ ݐ 
 tends to infinity and so the system is stable ݐ
 
4. Given, ࢟ (࢚)  =  ∫  ࢚ࢊ(࢚)࢞

Let the input (ݐ)ݔ be (ݐ)ݑ then 
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(ݐ)ݕ              =  ∫ ∫ but  ݐ݀(ݐ)ݑ ݐ݀(ݐ)ݑ = (ݐ)ݎ = ramp signal 

It is unbounded because the amplitude of ramp is not finite and tends to become infinite when 
t →infinite 

Hence, the system is unstable. 

1.8.5 Realizability: 

    Realizability is a property that determines whether a given system can be implemented 

physically. It considers practical considerations like available resources, physical 

constraints, and feasibility. A realizable system can be physically built and operated. 

    Consider the first system, (ݐ)ݕ = ݐ)ݔ − 1) is a causal system, because its output is a time-

delayed version of the original signal. 

On the other hand, consider the second system, (ݐ)ݕ = ݐ)ݔ + 1), is non-causal, because 

its output is a time-advanced version of the input signal. This means, that for example at 

the output time t=0, the system requires access to the value of the input signal at time t=1. 

Clearly, this is impossible in a realizable system, as nobody can predict the future. 

 
UNIT SUMMARY 
 

This this chapter, we have seen the introduction to signals and systems that covers the 

fundamental concepts and properties of CT and DT signals. It explores different signal types, 

including periodicity, determinism, and stochastic character. Special signals such as the unit 

step, impulse, and ramp are discussed. Signals can exist in continuous or discrete domains with 

continuous or discrete amplitudes. System properties, including linearity, time-invariance, 

causality, stability, and realizability are also covered. Understanding signals and systems is 

crucial for various engineering and scientific applications. 
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EXERCISES  
Multiple Choice Questions and Answers 

1. Signals and systems are relevant in which areas? 

a) Everyday life 

b) Engineering 

c) Science 

d) All of the above 

Answer: d) All of the above 

 

2. Which of the following are signal properties? 

a) Periodicity 

b) Absolute integrability 

c) Determinism 

d) Stochastic character 

e) All of the above 

Answer: e) All of the above 

 

3. Which of the following are special signals? 

a) Unit step 

b) Unit impulse 

c) Sinusoid 

d) Complex exponential 

e) All of the above 

Answer: e) All of the above 

 

4. Continuous-time signals exist in which domain? 

a) Continuous 
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b) Discrete 

c) Both 

d) None 

Answer: a) Continuous 

 

5. Discrete-time signals exist in which domain? 

a) Continuous 

b) Discrete 

c) Both 

d) None 

Answer: b) Discrete 

 

6. Linearity of a system refers to: 

a) Additivity and homogeneity 

b) Shift-invariance 

c) Causality 

d) Stability 

Answer: a) Additivity and homogeneity 

 

7. Which property ensures that a system's output remains bounded for bounded input signals? 

a) Linearity 

b) Shift-invariance 

c) Causality 

d) Stability 

Answer: d) Stability 
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8. Realizability of a system refers to: 

a) Additivity and homogeneity 

b) Shift-invariance 

c) Causality 

d) Feasibility of physical implementation 

Answer: d) Feasibility of physical implementation 

 

9. A special time-limited signal is characterized by: 

a) Periodicity 

b) Absolute integrability 

c) Determinism 

d) Time limitations 

Answer: d) Time limitations 

 

10. Which of the following signal properties relates to randomness? 

a) Periodicity 

b) Absolute integrability 

c) Determinism 

d) Stochastic character 

Answer: d) Stochastic character 
 

Short and Long Answer Type Questions  

1. Give an example of a signal exhibiting periodicity. 

2. What does it mean for a signal to have absolute integrability? 

3. Define determinism in the context of signals. 

4. Provide an example of a special time-limited signal. 
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5. Explain the concept of shift-invariance in systems. 

6. Discuss the applications of signals and systems in engineering and science. 

7. Explain the properties and characteristics of the sinusoidal signal. 

8. Discuss the importance of linearity in systems and provide examples. 

9. Explain the concept of causality in systems and its significance. 

10. Discuss the differences between continuous and discrete amplitude signals. 

Numerical Problems  
 

1. Consider a periodic signal with a period of T = 4 seconds. Find the frequency of the signal. 

2. Determine if the following signal is absolutely integrable: x(t) = e^(-2t) for t ≥ 0. 

3. Calculate the average value of the signal x(t) = 3sin(2πt) over the interval 0 ≤ t ≤ 2 seconds. 

4. Given a system with the impulse response h(t) = 2e^(-t)u(t), where u(t) is the unit step 

function, find the response of the system to the input signal x(t) = 3u(t). 

5. Determine if the system described by the difference equation y[n] = 0.5y[n-1] + x[n] is 

linear or nonlinear. 

6. Consider a discrete-time system with the input signal x[n] = {1, 2, 3, 4} and the impulse 

response h[n] = {1, -1, 2, -2}. Calculate the output signal y[n] using the convolution sum. 

7. Determine if the system described by the following difference equation is time-invariant 

or time-varying: y[n] = x[n] + x[n-1]. 

8. Test the stability of the continuous-time system with the transfer function H(s) = 1/(s + 2). 

9. Determine if the system with the transfer function H(z) = (1 - z^(-1))/(1 + z^(-1)) is stable 

in the discrete-time domain. 

10. Given a system with the input signal x(t) = 4sin(3πt) and the output signal y(t) = 2sin(3πt 

+ π/4), calculate the gain of the system. 
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KNOW MORE  
Signals and systems are fundamental concepts that permeate our daily lives and play a vital role 

in various fields of engineering and science. Signals exhibit different properties such as 

periodicity, which describes their repetitive nature, and absolute integrability, which quantifies 

the energy or power content of a signal. Signals can be deterministic, meaning they have a 

predictable behavior, or stochastic, displaying random characteristics. Special signals of 

significance include the unit step, representing abrupt changes, the unit impulse, denoting 

instantaneous events, sinusoids, fundamental periodic waveforms, and complex exponentials, 

integral to signal processing. Time-limited signals have finite duration, and they can be 

continuous or discrete in both the time and amplitude domains. Systems, on the other hand, 

possess distinct properties that govern their behavior. Linearity signifies that the response of a 

system to a sum of inputs is the sum of their individual responses, while additivity and 

homogeneity describe their scaling behavior. Shift-invariance indicates that shifting the input 

signal leads to a corresponding shift in the output response. Causality denotes that the output 

depends only on past and present inputs. Stability ensures that the system produces bounded 

output responses for bounded inputs, and realizability signifies the practical implementability 

of the system using realizable components or algorithms. Understanding these properties and 

concepts is vital in comprehending the behavior and characteristics of signals and systems, 

enabling their analysis, manipulation, and design in numerous applications across engineering 

and scientific disciplines. 

REFERENCES AND SUGGESTED READINGS  
1. Signals and Systems by Simon Haykin 

2. Signals and Systems by Ganesh Rao 

3. Signals and Systems - Course (nptel.ac.in) 
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UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 Impulse response and step response provide information about a system's characteristics 
and its response to specific inputs. 

 Convolution is used to compute the output of a system by integrating the product of the input 
and the shifted impulse response. 

 LTI systems can process aperiodic and convergent inputs, and their output can be computed 
through convolution or other techniques. 

 Cascade interconnections involve connecting multiple LTI systems in series by convolving 
their impulse responses. 

 Causality refers to a system's output depending only on past or present input values, while 
stability means the output remains bounded for any bounded input. 

 Differential equations represent continuous-time LTI systems, while difference equations 
represent discrete-time LTI systems. 

 State-space representation describes a system using first-order differential or difference 
equations, including state variables and input-output relationships. 

 State-space analysis allows for studying the behavior of systems in terms of their state 
variables and can handle multi-input, multi-output systems. 

 The state transition matrix relates the initial state to the state at any given time and is 
essential in solving state-space equations. 

 Frequency response describes how an LTI system responds to different frequencies in the 
input, and it is related to the impulse response through Fourier analysis. 

 Periodic inputs, such as sinusoidal waves, can be analyzed using the notion of frequency 
response to understand the system's behavior in the frequency domain. 

 

This unit focuses on the behavior of Continuous and Discrete-time Linear Time-Invariant (LTI) 
Systems. It covers key topics including impulse response, step response, and convolution. The 

 

Behavior of Continuous 
and Discrete-time LTI 
Systems 

2 
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unit explores how LTI systems respond to aperiodic and convergent inputs, emphasizing 
techniques such as convolution to determine the output. Cascade interconnections, where 
multiple systems are connected in series, are examined by convolving their impulse responses. 
Causality and stability in LTI systems are characterized, where causality refers to the past and 
present dependency between input and output, and stability ensures bounded output for any 
bounded input. 

The unit addresses system representation through differential equations for continuous-time 
systems and difference equations for discrete-time systems. It introduces state-space 
representation, which describes systems using first-order differential or difference equations, 
facilitating state-space analysis and the study of multi-input and multi-output systems. The role 
of the state transition matrix is explored, connecting the initial state to the state at any given 
time. The unit also covers periodic inputs applied to LTI systems, investigating the notion of 
frequency response and its relationship with the impulse response. This understanding offers 
insights into how LTI systems respond to different frequencies in the input signal. 
Overall, this unit provides comprehensive coverage of impulse response, step response, 
convolution, input-output behavior, causality, stability, system representation, state-space 
analysis, state transition matrix, periodic inputs, and the relationship between frequency 
response and impulse response. It equips learners with a solid foundation in analyzing and 
understanding the behavior of Continuous and Discrete-time LTI Systems. 

 
RATIONALE  

The unit on “Behavior of Continuous and Discrete-time LTI Systems" is to provide students 
Understanding the behavior of Continuous and Discrete-time Linear Time-Invariant (LTI) 
Systems is crucial in various engineering and scientific disciplines. This 8-hour unit is designed 
to provide students with a comprehensive understanding of LTI systems and their 
characteristics. 

Impulse response and step response are fundamental concepts in LTI systems. By studying these 
responses, students gain insights into how a system reacts to specific inputs and determine its 
dynamic behavior. Convolution is a key operation used to compute the output of a system, and 
it plays a vital role in analyzing LTI systems. 

The unit focuses on the input-output behavior of LTI systems with a particular emphasis on 
aperiodic and convergent inputs. Students learn how to analyze and determine the system's 
response using techniques such as convolution. Cascade interconnections of LTI systems are 
explored, as they are commonly encountered in real-world applications. By understanding the 
convolution of impulse responses, students can analyze and predict the behavior of 
interconnected systems. 
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Characterizing causality and stability is essential for assessing the reliability and predictability 
of LTI systems. Students examine the concepts of causality, where the output depends on past 
and present inputs, and stability, which ensures bounded output for any bounded input. These 
characterizations provide valuable insights into system behavior and performance. 

System representation is an important aspect covered in the unit. Students learn to represent 
LTI systems using differential equations for continuous-time systems and difference equations 
for discrete-time systems. State-space representation is introduced as a powerful method to 
describe and analyze complex systems. It provides a framework for studying multi-input, multi-
output systems and understanding their interactions. 

The role of the state transition matrix is explored, emphasizing its significance in relating the 
initial state to the state at any given time. This matrix plays a crucial role in solving state-space 
equations and analyzing system behavior over time. 

Periodic inputs and the notion of frequency response are examined to understand how LTI 
systems respond to different frequencies in the input. The frequency response is related to the 
impulse response through Fourier analysis, enabling students to analyze system behavior in the 
frequency domain. 

Overall, this unit equips students with the necessary knowledge and skills to analyze and 
understand the behavior of Continuous and Discrete-time LTI Systems. The concepts covered, 
such as impulse response, step response, convolution, input-output behavior, causality, 
stability, system representation, state-space analysis, state transition matrix, periodic inputs, 
and frequency response, are essential for successful engineering and scientific applications. 

PRE-REQUISITES  

1. Strong understanding of mathematics, including algebra, calculus, and complex numbers. 
2. Familiarity with basic concepts in signals and systems, such as time-domain and frequency-

domain representations, Fourier analysis, and convolution. 
3. Proficiency in solving ordinary differential equations and understanding linear algebra 

concepts. 
4. Basic knowledge of electronics and circuit analysis for understanding continuous-time LTI 

systems. 
5. Knowledge of digital signal processing concepts for understanding discrete-time LTI 

systems. 
6. These pre-requisites provide the necessary foundations to effectively engage with the 

content and concepts covered in the unit on the behavior of Continuous and Discrete-time 
LTI Systems. 
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UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U2-O1: Understand the concept of impulse response and step response. 
U2-O2: Apply convolution to analyze the behavior of LTI systems. 
U2-O3: Analyze the input-output behavior of LTI systems with aperiodic convergent inputs. 
U2-O4: Understand and apply cascade interconnections of LTI systems. 
U2-O5: Characterize the causality and stability of LTI systems. 
U2-O6: Represent LTI systems through differential equations and difference equations. 
U2-O7: Understand and apply state-space representation of systems. 
U2-O8: Perform state-space analysis of LTI systems. 
U2-O9: Analyze multi-input, multi-output systems. 
U2-O10: Understand the role and application of the State Transition Matrix. 
U2-O11: Analyze the behavior of LTI systems with periodic inputs. 
U2-O12: Understand the concept of frequency response and its relation to the impulse 

response. 

Unit-2 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U2-O1 3 3 1 2 2 3 
U2-O2 3 3 2 1 - 1 
U2-O3 3 2 2 - - 3 
U2-O4 3 3 2 1 - 2 
U2-O5 3 3 2 1 1 2 

 
"Education is the most powerful weapon which you can use to change the world."                                  

 

                                                                                                                       - Nelson Mandela 
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2.1 Introduction 
In chapter 1, we have discussed types of systems and their properties. Two properties namely 
linearity and time-invariance play very important roles in the analysis of signals and systems 
since most of the practical systems possess these two properties. We call such systems as linear 
time-invariant (LTI) systems. In our study of signals and systems, we will be especially 
interested in systems that demonstrate both properties, which together allow the use of some of 
the most powerful tools of signal processing. 
 
2.1.1 Linear Time Invariant Systems 
a) Linear Systems 

A system is said to be a linear system if the system follows the linear scaling and superposition 
principle as discussed below.  
Linear Scaling: When the input to a given system is scaled by a constant value, if the output 
of the system is also scaled by the same amount, the system is said to follow the linear scaling 
property.  It is demonstrated in Figure 2.1. 

 

 
Fig 2.1 Linear scaling 

 
In above Figure 2.1(a), the input ݔ to the linear system ܮ gives the output ݕ. If ݔ is scaled by a 
value α and passed through this same system, as in Figure 2.1(b), the output will also be scaled 
by α. 
Superposition Principle: The linear system also obeys the principle of superposition. This 

means that if two inputs are added together and passed through a linear system, the output will 

be the sum of the outputs corresponding to their individual inputs. It is demonstrated in Figure 

2.2. 
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Fig 2.2 Superposition Principle 

 
That is, if cases in Figure 2.2 (a) and (b) are true then Figure 2.2 (c) is also true for a linear 
system. The scaling property mentioned above still holds in conjunction with the superposition 
principle. Therefore, if the inputs ݔ and ݕ are scaled by factors α and β, respectively, then the 
sum of these scaled inputs will give the sum of the individual scaled outputs: 
 

 

 
Fig 2.3 Superposition Principle with Linear Scaling 
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2.1.2 Time Invariant Systems 
A time-invariant (TI) system has the property that a certain input will always give the same 
output (up to timing), without regard to when the input was applied to the system. In other 
words, if y(t) is the output of the system corresponding to its input x(t), then y(t − t଴) will be 
the output when a delayed input x(t − t଴) is applied to the system for all values of t଴ as 
demonstrated in Figure 2.4. 

 
Fig 2.4 Time-Invariant Systems 

 
In this figure, (ݐ)ݔ and ݐ)ݔ −  ଴) are passed through the system TI. Because the system TI isݐ
time-invariant, the inputs (ݐ)ݔ and  ݐ)ݔ −  ଴) produce the same output. Whether a system isݐ
time-invariant or time-variant can be seen in the differential equation (or difference equation) 
describing it. Time-invariant systems are modelled with constant coefficient equations. A 
constant coefficient differential (or difference) equation means that the parameters of the system 
are not changing over time and an input now will give the same result as the same input later. 

 
2.1.3 Linear Time Invariant Systems 
Certain systems are both linear and time-invariant, and are thus referred to as LTI systems. 

 

 
Fig 2.5 Linear Time-Invariant Systems 
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As LTI systems are a subset of linear systems, they obey the principle of superposition. In the 
figure below, we see the effect of applying time-invariance to the superposition definition in 
the linear systems section above. 

 

 
 

Fig 2.6 Superposition in Linear Time-Invariant Systems 
 

2.2 Impulse response of LTI System 
 

 
 

Fig 2.7 CT impulse response 
                              

 
 

Fig 2.8 DT impulse response 
 

2.2.1 Discrete-Time Unit Impulse Response and the Convolution 
Let ℎ௞[݊] be the response of the LTI system to the shifted unit impulse ߜ[݊ − ݇], then from the 
superposition property for a linear system, the response of the linear system to the input ݔ[݊] in 
Eq. (2.1) is simply the weighted linear combination of these basic responses: 
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[݊]ݕ                                       = ෌ h[n]௞ୀାஶ[݇]ݔ
௞ୀିஶ                                       (2.1) 

 
If the linear system is time invariant, then the responses to time-shifted unit impulses are all 
time-shifted versions of the same impulse responses: 

                                            ℎ௞[݊] = ℎ଴[݊ − ݇]                                           (2.2) 

 

Therefore, the impulse response ℎ[݊] = ℎ଴[݊] of an LTI system characterizes the system 
completely. This is not the case for a linear time-varying system: one has to specify all the 
impulse responses ℎ௞[݊] (an infinite number) to characterize the system. For the LTI system, 
equation becomes 

 

[݊]ݕ                                       = ෌ h[n[݇]ݔ − k]௞ୀାஶ
௞ୀିஶ                              (2.3) 

 
This result is referred to as the convolution sum or superposition sum and the operation on the 
right-hand side of the equation is known as the convolution of the sequences of x[n] and h[n]. 
The convolution operation is usually represented symbolically as 

[݊]ݕ                               = [݇]ݔ  ∗  ℎ[݊]                                         (2.4) 
 

2.2.2 Representation of Continuous-Time Signals in Terms of Impulses 
A continuous-time signal can be viewed as a linear combination of continuous impulses: 

(ݐ)ݔ                                    = ∫ ݐ)ߜ(߬)ݔ − ஶݔ݀(߬
ିஶ                               (2.5) 

The result is obtained by chopping up the signal (ݐ)ݔ in sections of width ܦ, and taking sum 

 

Fig 2.9 Representation of Continuous-Time Signals in Terms of Impulses 
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Recall the definition of the unit pulse δ௱; we can define a signal (ݐ)ݔ as a linear combination of 
delayed pulses of height ݔ(k௱) 

 

(ݐ)ݔ                                                        = ෌ ݐ)ߜ k௱)ݔ) − k௱))௞ୀାஶ
௞ୀିஶ Δ                        (2.6) 

 
Taking the limit as ߂ = 0, we obtain the integral of Eq. (2.6), in which when Δ =0 
(1) The summation approaches to an integral 
(2) k௱ = ߬   and x(k௱)= x(߬) 
(3) Δ=d ߬ 
(4) δ(t-k௱)= δ(t-߬) 

Eq. (2.7) can also be obtained by using the sampling property of the impulse function. If we 

consider t is fixed and t is time variable, then we have  

                             x(߬)δ(t - ߬ )= x((߬)δ (-(t - ߬)) = x(τ)δ(t - ߬).               (2.7)  
 

∫ ஶݔ
ିஶ ݐ)ߜ(߬) − ߬)݀߬ = ∫ ஶݔ

ିஶ ߬)ߜ(߬) − ߬݀(ݐ = (ݐ)ݔ ∫ ߬)ߜ − ߬݀(ݐ = ஶ(ݐ)ݔ
ିஶ              (2.8) 

 
As in discrete time, this is the sifting property of continuous-time impulse. 
 
2.3 The Unit Step Response of an LTI System 
The step response of an LTI system is simply the response of the system to a unit step. It conveys 
a lot of information about the system. For a discrete-time system with impulse response ℎ[݊], 
the step response is ݏ[݊]  = [݊]ݑ  ∗  ℎ[݊]. However, based on the commutative property of 
convolution, ݏ[݊]  =  ℎ[݊] ∗  and therefore, s[n] can be viewed as the response to input ,[݊]ݑ
ℎ[݊] of a discrete time LTI system with unit impulse response. We know that ݑ[݊] is the unit 
impulse response of the accumulator. Therefore, 

 

[݊]ݏ                                              = ෌ h[k]௡
௞ୀିஶ                                       (2.9) 

 
From this equation, ℎ[݊] can be recovered from ݏ[݊] using the relation 
                                      ℎ[݊] = [݊]ݏ  − − ݊]ݏ  1]                                     (2.10) 
 



Signals and Systems | 61 

 
 

It can be seen that the step response of a discrete-time LTI system is the running sum of its 
impulse response. Conversely, the impulse response of a discrete-time LTI system is the first 
difference of its step response. 
Similarly, in continuous time, the step response of an LTI system is the running integral of its 
impulse response, 

(ݐ)ݏ                                               = ∫ ℎ(߬)݀߬௧
ିஶ                                      (2.11) 

and the unit impulse response is the first derivative of the unit step response, 

                                               ℎ(ݐ) = ௗ௦(௧)
ௗ௧

=  (2.12)                                    (ݐ)ᇱݏ

Therefore, in both continuous and discrete time, the unit step response can also be used to 
characterize an LTI system. 

 
2.4 Convolution Integral: 
Convolution of two continuous-time signals (ݐ)ݔ and ℎ(ݐ)denoted by, 

 

(ݐ)ݕ = (ݐ)ݔ ∗ ℎ(ݐ) = ∫ ݐ)ℎ(߬)ݔ − ߬)݀߬ஶ
ିஶ                       (2.13) 

Equation (2.13) is commonly called the convolution integral. Thus, we have the fundamental 
result that the output of any continuous-time LTI system is the convolution of the input (ݐ)ݔ 
with the impulse response ℎ(ݐ) of the system. Fig. 2.10 illustrates the definition of the impulse 
response ℎ(ݐ) and the relationship of Eq. (2.13). 

 

 
Fig 2.10 Convolution operation 

 
2.4.1 Properties of the Convolution Integral: 
The convolution integral has the following properties. 
 

1. Commutative:      
(ݐ)ݔ ∗ ℎ(ݐ) = ℎ(ݐ) ∗  (ݐ)ݔ

                                    
2. Associative:       

(ݐ)ݔ} ∗ ℎଵ(ݐ)} ∗ ℎଶ(ݐ) = (ݐ)ℎଵ}(ݐ)ݔ ∗ ℎଶ(ݐ)} 
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3. Distributive: 
(ݐ)ݔ ∗ {ℎଵ(ݐ) + ℎଶ(ݐ)} = (ݐ)ݔ ∗ ℎଵ(ݐ) + (ݐ)ݔ ∗ ℎଶ(ݐ) 

                                           
2.5 Input-output behaviour with aperiodic convergent inputs 
2.5.1 Response of a continuous time system 
If an input (ݐ)ݔ is applied and then output of the system is (ݐ)ݕ 

 
                                            Fig 2.11 ࢞(࢚) input to system 

 
So, instead of (ݐ)ݔ if we apply a standard elementary signal that is known as impulse signal. If 
we apply impulse signal then the system's response will be impulse response if delta is replaced 
by Tau Delta.  

 
Fig 2.12 ࢾ(࢚) input to system 

If input is ݐ)ߜ −  so when input is delayed output will be delayed, this is time invariant ,(߬߂
system. 
 

 
Fig 2.13 Delayed input to system 

 
(ݐ)ݕ = ∫ ݐ)ℎ(߬)ݔ − ߬)݀߬ஶ

ିஶ                          (2.14) 

 
So, this equation this convolution in integral equation is very useful for calculating the 
responses of the systems 

 
2.5.2 Response of a discrete time system 
We have input ݔ[݊] and discrete time system and this discrete time system is giving output as 
 .[݊]ݕ
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Fig 2.14 ࢞[࢔] input to system 

 
If this input is an impulse signal ߜ[݊] then the system will provide the output corresponding to 
impulse signal the output corresponding to impulse signal is called impulse response ℎ[݊]. 

 

 
Fig 2.15 [࢔]ࢾ input to system 

 
If the input impulse signal is delayed by ݇,  i.e., ߜ[݊ − ݇] and it is applied to the same discrete 
time system DTS then the output will also be delayed by ݇, i.e., ℎ[݊ − ݇]. 

 
Fig 2.16 δ [n-k] input to system 

 
If another input ݔ[݇] is multiplied with ߜ[݊ − ݇] and provided to the system, because it is a 
linear time invariant system so multiplying is a scaling of input which will also result in scaling 
of the output and hence the output will become ݔ[݇]ℎ[݊ − ݇]. 
 

 
Fig 2.17 x[k] δ [n-k] input to system 

 
Dividing summation of the input from −∞ to  +∞ and then passing through the system, the 
summation will also result in the right side in terms of ݇ which is called convolution sum. 
Convolution sum is important for calculating output of the discrete time systems. 

 
[݊]ݕ                                                             = ෌ ݊]ℎ[݇]ݔ − ݇]ஶ

௞ୀିஶ                           (2.15) 
 
[݊]ݕ                                                                       = [݊]ݔ   ∗  ℎ[݊]                                (2.16) 
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2.6 Cascade interconnections 
Suppose that we have a LTI system with input ݔ, output ݕ, and impulse response ℎ. We know 
that ݔ and ݕ are related as ݕ = ∗ ݔ   ℎ. In other words, the system can be viewed as performing 
a convolution operation. From the properties of convolution introduced earlier, we can derive 
several equivalences involving the impulse responses of series and parallel-interconnected 
systems. 

 

 
                                                                                 

Figure 2.18: Equivalences for the series interconnection of continuous-time LTI systems. 
The (a) first equivalence  (b) second equivalence.  

 
Consider two LTI systems with impulse responses ℎଵ and ℎଶ that are connected in a series 
configuration, as shown on the left-side of Fig 2.18(a). From the block diagram on the left side 
of Fig. 2.18(a), we have 

= ݕ ∗ ݔ)   ℎଵ)  ∗ ℎଶ                                               (2.17) 
Due to the associativity of convolution, however, this is equivalent to 
= ݕ                                 ∗ ݔ   (ℎଵ  ∗  ℎଶ)                                               (2.18) 
Thus, the series interconnection of two LTI systems behaves as a single LTI system with 

impulse response ℎଵ  ∗  ℎଶ. In other words, we have the equivalence shown in Fig. 2.18(a).  

Consider two LTI systems with impulse responses ℎଵ and ℎଶ that are connected in a series 

configuration, as shown on the left-side of Figure 2.18(b). From the block diagram on the left 

side of Figure 2.18(b), we have 

= ݕ                                ∗ ݔ)   ℎଵ)  ∗  ℎଶ                                                 (2.19) 

Due to the associativity and commutativity of convolution, this is equivalent to 

= ݕ                                ∗ ݔ   (ℎଵ  ∗  ℎଶ)  = ∗ ݔ   (ℎଶ  ∗  ℎଵ) 
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                                     = ∗ ݔ)   ℎଶ)  ∗ ℎଵ                                           (2.20) 

Thus, interchanging the two LTI systems does not change the behaviour of the overall system 

with input ݔ and output ݕ. In other words, we have the equivalence shown in Figure 2.18(b). 

Consider two LTI systems with impulse responses h1 and h2 that are connected in a parallel 

configuration, as shown on the left-side of Figure 2.19. From the block diagram on the left side 

of Figure 2.19, we have 

= ݕ                                      ∗ ݔ   ℎଵ  + ∗ ݔ  ℎଶ                                      (2.21) 

Due to convolution being distributive, however, this equation can be rewritten as 

= ݕ                                     ∗ ݔ   (ℎଵ  + ℎଶ)                                            (2.22) 

Thus, the parallel interconnection of two LTI systems behaves as a single LTI system with 

impulse response ℎଵ  + ℎଶ. In other words, we have the equivalence shown in Figure 2.19. 

 

 
Figure 2.19: Equivalence for the parallel interconnection of continuous-time LTI 

systems 
 

 
Figure 2.20: System interconnection example 
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Similarly, from the right half of the block diagram from Figure 2.20, we can write 
(ݐ)ݕ                         = ∗ ݒ   ℎଷ                                                    (2.23) 
Substituting the expression for ݒ into the Eq. (2.23) we obtain, 
                = ∗ ݔ)  + ߜ]  ℎଵ  + ℎଶ])  ∗  ℎଷ 
                  = ∗ ݔ   [ℎଷ  + ℎଵ  ∗  ℎଷ  + ℎଶ  ∗  ℎଷ]                                (2.24) 
Thus, from Eq. (2.24) the impulse response ℎ of the overall system is 

  ℎ(ݐ)  =  ℎଷ + ℎଵ  ∗  ℎଷ  + ℎଶ  ∗  ℎଷ                           (2.25) 
 

2.7 Causality for LTI systems 
A system is causal if its output depends only on the past and present values of the input signal. 
Specifically, for a discrete-time LTI system, this requirement is ݕ[݊] should not depend on 
< ݇ for[݇]ݔ  ݊. Based on the convolution sum equation, all the coefficients ℎ[݊ −  ݇] that 
multiply values of ݔ[݇] for ݇ >  ݊ must be zero, which means that the impulse response of a 
causal discrete-time LTI system should satisfy the condition  
                 ℎ[݊] = > ݊ ݎ݋݂   ,0   0                                                       (2.26) 
A causal system is causal if its impulse response is zero for negative time; this makes sense as 
the system should not have a response before impulse is applied.  
A similar conclusion can be arrived for continuous-time LTI systems, namely  
                 ℎ(ݐ)  = > ݐ ݎ݋݂    ,0   0                                                       (2.27) 

 
Examples:  The accumulator ℎ[݊]  = [݊]and its inverse ℎ ,[݊]ݑ  = [݊]ߜ − ݊] ߜ − 1] are causal. 
The pure time shift with impulse response (ݐ) ݕ = ଴ݐ ݎ݋݂ (଴ݐ – ݐ) ݔ   >  0 is causal, but is not 
causal for ݐ଴  <  0. 

 
2.8 Stability for LTI Systems 
Recall that a system is stable if every bounded input produces a bounded output. For LTI 
system, the input ݔ[݊] is bounded in magnitude ݔ[݊]  ≤  for all ݊. If this input signal is ,ܤ 
applied to an LTI system with unit impulse response ℎ[݊], the magnitude of the output,   

 

(2.28) 
 is bounded in magnitude, and hence is stable if [݊]ݕ

                          ෌ ℎ[݇]ஶ
௞ୀିஶ ˂ ∞                                                                        (2.29) 



Signals and Systems | 67 

 
 

So discrete-time LTI system is stable is Eq. (2.29) is satisfied. The similar analysis applies to 
continuous-time LTI systems, for which the stability is equivalent to  

 

                      ∫ ℎ(߬)݀߬ஶ
ିஶ  ˂ ∞                                                                                (2.30) 

 
Example: consider a system that is pure time shift in either continuous time or discrete time. 
In discrete time, 

 
While, in continuous time, 

 
Hence, we can conclude that both systems are stable.  

 
Example: The accumulator h[n] = u[n] is unstable because 

 

2.9 System Representation through Differential Equations and Difference Equations. 

Linear, time-invariant (LTI) systems are represented by linear constant-coefficient differential 

equations in continuous-time (CT) and linear constant-coefficient difference equations in 

discrete-time (DT). 

CT LTI system through differential equations can be of form electrical circuits, mechanical 

systems etc. DT LTI system through difference equations can be described by a wide variety of 

data filtering, time series analysis, and digital filtering systems. 

 

2.9.1 Differential Equation Description of CT LTI systems 

Differential equations are used to represent CT systems, where the system variables are 

functions of continuous time, typically denoted as ݐ. These equations describe the relationship 
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between the system's input, output, and their derivatives with respect to time. The general 

structure of such a representation is given by Eq. (2.31), 

∑ ܽ௠
ௗ೘௬(௧)

ௗ௧೘ =ெ
௠ୀ଴ ∑ ܽ௡

ௗ೙௫(௧)
ௗ௧೙

ே
௡ୀ଴                    (2.31) 

Where, (ݐ)ݔ is the input to the system and (ݐ)ݕ is the response. 

Any general output (ݐ)ݕ can also be represented in terms of two signals and that are particular 

solution and homogeneous solution. 

The homogeneous solution can be given as, 

∑ ܽ௠
ௗ೘௬೓೚೘೚೒೐೙೐೚ೠೞ(௧)

ௗ௧೘ = 0ெ
௠ୀ଴                   (2.32)  

To solve the above equation, we required the M auxiliary (initial) conditions. 

The system is said to be linear when described by the above differential equation if all the initial 

conditions are equal to 0. Similarly, the system is said to be time invariant if it is at initial rest, 

i.e., if (ݐ)ݔ = 0 for ݐ ≤ (ݐ)ݕ ,଴ then assumeݐ = 0 for ݐ ≤  ଴. Hence, the initial conditionݐ

becomes, 

(଴ݐ)ݕ = ௗ௬(௧)
ௗ௧

ቚฬ
௧ୀ௧బ

=…..=ௗಾషభ௬(௧)
ௗ௧ಾషభ = 0                         (2.33) 

That means the value of the output at ݐ଴ and its derivatives up to degree (ܯ − 1) is 0. So, if the 

system satisfies both the conditions of linearity and time invariance then it is linear time-

invariant (LTI) system. 

2.9.2 Difference Equation Description of DT LTI systems 

Similar to CT LTI systems we can be represented by differential equations, a DT LTI system is 

represented by Difference equations. A general structure of difference equation is, 
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∑ ܽ௠ݕ(݊ − ݉) =ெ
௠ୀ଴ ∑ ܾ௠ݔ(݊ − ݉)ே

௠ୀ଴             (2.34) 

Where, ݔ(݉) is an input and ݕ(݉) is an output.  

2.10 State space representation of systems 

Earlier we have seen LTI systems based on input-output relationships known as external 

description of a system. Now we will examine the state space representation of systems known 

as internal description of systems. 

State space representation of systems consists of two parts, state equations and output equations. 

State equations represent set of equations relating state variables to inputs. Whereas, Output 

equations represents set of equations relating outputs to state variables and inputs. Advantage 

of state space representation is it provides new insight into the system behaviour with the use 

of matrix linear algebra. It can also handle multiple-input multiple-output (MIMO) systems. 

The state of a CT system at time ݐ଴ is defined as the minimal information that is sufficient to 

determine the state and output of a system for all times. 

State variables are the variables that contain all state information related to the memory. For 

LTI system with output signal (ݐ)ݕ with input signal (ݐ)ݑ and impulse response ℎ(ݐ). 

Therefore,  

(ݐ)ݕ  =  ℎ(ݐ)  ∗ <− (ݐ)ݑ  (ݏ)ܻ   =  (2.35)               (ݏ)ܷ (ݏ)ܪ 

This representation of the system expresses the input output relation. It does not provide us the 

internal specification of the system. State space representation not only provides information 

on I/O but also gives good view on the internal specification of the system. The states of the 

system at time to include min required information to express the system situation at time ݐ଴. 

These are the first-degree equations. CT LTI state space representation of LTI system is given 

by,  
ௗ௫
ௗ௧

= = (ݐ)ݔ̇ (ݐ)ݔܣ   +   (2.36)              (ݐ)ݑ ܤ 

(ݐ)ݕ  = (ݐ)ݔܥ   +  (2.37)               (ݐ)ݑܦ 
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Eq. (2.36) and Eq. (2.37) represents the state equations and output equations respectively. 

Where, ௗ௫
ௗ௧

= is the vector whose entries are the derivative  ௗ௫ (ݐ)ݔ̇
ௗ௧

. 

2.11 State Space Analysis 
The state of a CT system is the condition of a system at any time instant. The state variables are 
the variables that completely describe the state of a system at any given time. These variables 
at t = 0 with inputs for t > 0 completely describes the behavior of system for  ݐ ≥ 0. 

2.11.1 State equations 
Let us consider a CT system has P inputs, Q state variables and Y outputs. 
Hence, let ݍଵ(ݐ), ,(ݐ)ଶݍ … …  ,be the Q state variables (ݐ)ொݍ
,(ݐ)ଵ݌ ,(ݐ)ଶ݌ … …  .be the P input  (ݐ)௉݌
,(ݐ)ଵݕ ,(ݐ)ଶݕ … …  be the Y outputs (ݐ)௒ݕ
 
Now, the CT system can be represented by Fig. 2.21 as shown below, 
 

 
Fig. 2.21 State Space representation of CT system 

Take first derivative of state variables as a function of state variables and input to form the state 
equations. 
(ݐ)ଵݍ = ,(ݐ)ଵݍ൛ܨ ,(ݐ)ଶݍ … … ,(ݐ)ଵ݌             (ݐ)ொݍ ,(ݐ)ଶ݌ … … ൟ(ݐ)௉݌

⋮
⋮
⋮
                                                                                                       

(ݐ)ொݍ = ,(ݐ)ଵݍ൛ܨ ,(ݐ)ଶݍ … … ,(ݐ)ଵ݌             (ݐ)ொݍ ,(ݐ)ଶ݌ … … ൟ(ݐ)௉݌

  

 
Above state equation can be represented in q matrix form given by Eq.  (2.38), 
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቎
(ݐ) ଵݍ
(ݐ)ଶݍ
(ݐ)ଷݍ

቏ =  ൥
ܽଵଵ 
ܽଶଵ
ܽଷଵ

ܽଵଶ
ܽଶଶ
ܽଷଶ

ܽଵଷ
ܽଶଷ
ܽଷଷ

⋯
⋯
⋯

൩ ቎
(ݐ) ଵݍ
(ݐ)ଶݍ
(ݐ)ଷݍ

቏  +  ൥
ܾଵଵ 
ܾଶଵ
ܾଷଵ

ܾଵଶ
ܾଶଶ
ܾଷଶ

ܾଵଷ
ܾଶଷ
ܾଷଷ

⋯
⋯
⋯

൩ ቎
(ݐ) ଵ݌
(ݐ)ଶ݌
(ݐ)ଷ݌

቏                        (2.38)           

⋮
⋮

(ݐ)ܳ
                  

⋮
⋮
ܣ

                   
⋮
⋮

(ݐ)ܳ
                 

⋮
⋮
ܤ

                 
⋮
⋮

(ݐ)ܲ
   

 
Where  
 System matrix =ܣ
 Input matrix = ܤ
 State vector = (ݐ)ܳ
 Input vector = (ݐ)ܺ
 
Hence, State equation can be written as, 

(ݐ)ܳ = (ݐ)ܳܣ +  (2.39)                    (ݐ)ܺܤ
 

2.11.2 Output equations 
The output equation in terms of y can be written as, 
(ݐ)ଵݕ = ,(ݐ)ଵݍ൛ܨ ,(ݐ)ଶݍ … … ,(ݐ)ଵ݌             (ݐ)ொݍ ,(ݐ)ଶ݌ … … ൟ(ݐ)௉݌

⋮
⋮
⋮
                                                                                                       

(ݐ)௒ݕ = ,(ݐ)ଵݍ൛ܨ ,(ݐ)ଶݍ … … ,(ݐ)ଵ݌             (ݐ)ொݍ ,(ݐ)ଶ݌ … … ൟ(ݐ)௉݌

  

 
The output equations can be written in terms of matrix form as in Eq. (2.40) 

቎
(ݐ) ଵݕ
(ݐ)ଶݕ
(ݐ)ଷݕ

቏ =൥
ܿଵଵ 
ܿଶଵ
ܿଷଵ

ܿଵଶ
ܿଶଶ
ܿଷଶ

ܿଵଷ
ܿଶଷ
ܿଷଷ

⋯
⋯
⋯

൩ ቎
(ݐ) ଵݍ
(ݐ)ଶݍ
(ݐ)ଷݍ

቏ + ൥
݀ଵଵ 
݀ଶଵ
݀ଷଵ

݀ଵଶ
݀ଶଶ
݀ଷଶ

݀ଵଷ
݀ଶଷ
݀ଷଷ

⋯
⋯
⋯

൩ ቎
(ݐ) ଵ݌
(ݐ)ଶ݌
(ݐ)ଷ݌

቏       (2.40)              

⋮
⋮

(ݐ)ܻ
                  

⋮
⋮
ܥ

                   
⋮
⋮

(ݐ)ܳ
                 

⋮
⋮
ܦ

                 
⋮
⋮

(ݐ)ܲ
   

 
Where  
C = Output matrix 
D = Transition matrix 
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Q(t) = State vector 
P(t) = Input vector 
Hence,   

(ݐ)ܻ = (ݐ)ܳܥ +  (2.41)                           (ݐ)ܲܦ
 
2.11.3 State Model 
The state model of a CT system can be represented in terms of state equations and output 

equations. 
(ݐ)ܳ = (ݐ)ܳܣ +  (2.42)                  (ݐ)ܺܤ
(ݐ)ܻ = (ݐ)ܳܥ +  (2.43)                    (ݐ)ܲܦ

 
2.12 Transfer function of a Continuous Time System 
Consider the equation 
(ݐ)ܳ = (ݐ)ܳܣ +   (ݐ)ܺܤ
Take Laplace transform on both sides assuming zero initial condition. 
(ݏ)ܳݏ = (ݏ) ܳܣ +   (ݏ)ܲܤ
(ݏ)ܳݏ − (ݏ)ܳܣ =   (ݏ)ܲܤ
− ௦ܫ)(ݏ)ܳ (ܣ = .ܤ …                 (ݏ)ܲ . .  is unit matrix  ܫ
(ݏ)ܳ = .ܤ ܫݏ)(ݏ)ܲ −  ଵ                        (2.44)ି(ܣ
Now consider output equation  
Y(t) = CQ(t) +D P (t)              
Take Laplace transform on both Sides 
Y(s) = CQ (s) + D P (s)                               (2.45) 
Put Eq. (2.7) in Eq. (2.8) 
Y (s) = C [B.P(s) (sI-A)  -1 ] + D P (s) 
 Y (s) +[C.B (Is-A)-1 PC(s) 
௒(௦)
௉(௦)

= C.B. (Is-A)-1 + D                                                    (2.46) 

Hence, Eq (2.46) is called transfer function of CT system. 
 
2.13 State Transition Matrix 
The State Equation can be written as 

̇(ݐ)ܳ – (ݐ) ܳ ܣ   =  (ݐ) ܲ ܤ 
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Multiplying above equation by e –At we get, 

݁ି஺௧ൣܳ(ݐ)̇ − ൧(ݐ)ܳܣ = ݁ି஺௧(ݐ)ܲܤ 

݁ି஺௧ܳ(ݐ)̇ − (ݐ)஺௧ܳି݁ܣ = ݁ି஺௧(2.47)                            (ݐ)ܲܤ 
 
Using derivative formula of, ݀(ݒݑ) = ݒ݀ݑ +  ,in the above equation we get ݑ݀ݒ

ௗ
ௗ௧

൫݁ି஺௧ܳ(ݐ)൯ = ݁ି஺௧ܳ(ݐ)̇ +  (2.48)     (ݐ)஺௧ܳି݁(ܣ−)

Using Eq. (2.48) in Eq. (2.47) we get, 
 

ௗ
ௗ௧

൫݁ି஺௧ܳ(ݐ)൯ = ݁ି஺௧(2.49)      (ݐ)ܲܤ 

 
On integrating Eq. (2.49) we get, 

݁ି஺௧ܳ(ݐ) = ∫ ݁ି஺ఛ ܤ. ܲ(߬)݀߬ + ܳ(0)௧
଴                   (2.50) 

We have, ܳ(0) is the intitial condition vector, ߬ is the dummy variable used instead of t. 
On multiplying Eq. (2.50) by ݁஺௧ we get, 

݁஺௧݁ି஺௧ܳ(ݐ) = ݁஺௧ න ݁ି஺ఛ ܤ. ܲ(߬)݀߬ + ݁஺௧ܳ(0)
௧

଴
 

(ݐ)ܳ = ݁஺௧ ∫ ݁஺(௧ିఛ) ܤ. ܲ(߬)݀߬ + ݁஺௧ܳ(0)௧
଴                 (2.51) 

 
 
Eq. (2.51) is the time domain solution of state equations of the CT system. 
Matrix ݁஺௧ is called state transition matrix of CT System. 
 

Example 2.1: Compute the continuous convolution of the following functions: 

                     x (t) = e^(-t) * u(t) 

                     h (t) = 2 * e^(2t) * u(t) 

Solution: 

To compute the continuous convolution, we can use the integral formula: 

y(t) = ∫(x(τ) * h(t-τ)) dτ 
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Let's calculate it step by step: 

For t > 0: 

y(t) = ∫(e^(-τ) * 2 * e^(2(t-τ))) dτ 

= 2 * ∫(e^(-τ) * e^(2(t-τ))) dτ 

= 2 * ∫(e^(2t - 3τ)) dτ 

= 2 * e^(2t) * ∫(e^(-3τ)) dτ 

= 2 * e^(2t) * (-1/3) * e^(-3τ) | from 0 to t 

= -2/3 * e^(2t) * (e^(-3t) - 1) 

For t <= 0: 

y(t) = 0 

Therefore, the continuous convolution of x(t) and h(t) is: 

y(t) = -2/3 * e^(2t) * (e^(-3t) - 1) for t > 0 

0  for t <= 0 

 

Example 2.2: Compute the discrete convolution of the following sequences: 

                     x[n] = [1, 2, 3] 

                     h[n] = [2, -1, 3, 0] 

Solution: 

To compute the discrete convolution, we can use the formula: 

y[n] = ∑(x[k] * h[n-k]) 

Let's calculate it step by step: 

For n = 0: 

y[0] = (1 * 2) = 2 
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For n = 1: 

y[1] = (1 * -1) + (2 * 2) = 3 

For n = 2: 

y[2] = (1 * 3) + (2 * -1) + (3 * 2) = 5 

For n = 3: 

y[3] = (2 * 3) + (3 * -1) = 3 

For n = 4: 

y[4] = (3 * 3) = 9 

Therefore, the discrete convolution of x[n] and h[n] is: 

y[n] = [2, 3, 5, 3, 9] 

 

2.14 Multi-Input, Multi-Output Representation 

MIMO refers to systems that have multiple inputs and multiple outputs. These systems are 

characterized by their ability to handle multiple control inputs and generate multiple outputs 

simultaneously. The state-space representation for a MIMO system is an extension of the single-

input, single-output (SISO) case. In the MIMO representation, the state equations and output 

equations are modified to accommodate multiple inputs and outputs. 

Let's consider an example of a multi-input, multi-output (MIMO) system with a numerical 

representation. Suppose we have a MIMO system with two inputs (u1, u2) and two outputs (y1, 

y2). The state-space representation of the system is given by the following equations: 

State equations: 

ௗ௫
ௗ௧

= ቂ−2 0
1 −3ቃ . ݔ + ቂ1 0

0 2ቃ . ቂ1ݑ
 2ቃ                    (2.52)ݑ
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Output equations: 

൤1ݕ
2൨ݕ = ቂ 1 2

−1 0ቃ . ݔ + ቂ1 0
0 −1ቃ . ቂ1ݑ

 2ቃ                    (2.53)ݑ

 

In this representation: 

 x =ቂ1ݔ
 .2ቃ  is a 2-dimensional state vector representing the internal state of the systemݔ

 u = ቂ1ݑ
 .2ቃ is a 2-dimensional input vector representing the inputs to the systemݑ

 y = ൤1ݕ
 .2൨ is a 2-dimensional output vector representing the outputs from the systemݕ

 The state matrix A is ቂ−2 0
1 −3ቃ. 

 The input matrix B is ቂ1 0
0 2ቃ 

 The output matrix C is ቂ 1 2
−1 0ቃ 

 The feed forward matrix D is ቂ1 0
0 −1ቃ. 

To analyze this system, we can perform various analyses such as stability analysis, 

controllability analysis, observability analysis and system response analysis. 

For stability analysis, we can determine the eigenvalues of the state matrix A. In this case, the 

eigenvalues are -2 and -3, indicating that the system is stable. For controllability analysis, we 

can check if the controllability matrix Co has full rank. The controllability matrix Co is formed 

by concatenating the input matrix B with powers of the state matrix A. For observability 

analysis, we can examine if the observability matrix Ob has full rank. The observability matrix 

Ob is formed by concatenating the output matrix C with powers of the state matrix A. To 

analyze the system's response, we can simulate the state equations and output equations with 

appropriate inputs. For example, if we apply a step input ݑଵ(ݐ) = 1 and ݑଵ(ݐ) = 0, we can 
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numerically solve the state equations and output equations to obtain the time-domain response 

of the system. 

By analyzing the state variables ݔଵ(ݐ), ݔଶ(ݐ), and the outputs ݕଵ(ݐ), ݕଵ(ݐ), we can observe the 

behavior of the system, including transient response, steady-state behavior, and the interaction 

between inputs and outputs. 

 Example 2.4: Find Laplace domain and time domain state transition matrix if   

ܣ = ቀ 0 1
−2 −3ቁ  

Solution: 

 

 

The inverse of a 2×2 matrix is 

 

To find φ(t) we must take the inverse Laplace Transform of every term in the matrix 
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Using partial fraction expansion of each term we get 

 
 

2.15 Periodic Inputs to LTI system 

         When a periodic input signal is applied to a linear time-invariant (LTI) system, the response of 

the system also becomes periodic. In this scenario, the output of the LTI system exhibits the 

same periodicity as the input signal, but with potentially different amplitudes and phases.  

 

Figure 2.22: Periodic input to LTI system 

When a periodic signal with period ଴ܰ is passed through a linear, time-invariant system, the 

output is also periodic and can be expressed as a sum of complex exponential signals. 

Let's consider the input signal ݔ[݊]  = ௝ଶగ௞ /ேబ)ࢋ   ∗ ௡)   

Where ݊ is the discrete time index and k range from 0 to ܰ ଴-1. This signal represents a complex 

exponential with a frequency of 2݇ߨ/ ଴ܰ. 

According to the properties of linear, time-invariant systems, the output signal can be obtained 

by multiplying the frequency response of the system, denoted by ℎ[2݇ߨ/ ଴ܰ], with the input 

signal's complex exponential component ݔ[݇]. 
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Hence, the output for each component signal can be written as:  

[݊]ݕ = [݇]ݔ  ∗  ℎ [ଶగ௞
ேబ

]  ∗ ௝ଶగ௞ /ேబ)ࢋ   ∗ ௡)                      (2.54) 

 

Now, let's simplify the expression further.  

Since ℎ[2݇ߨ/ ଴ܰ] is a constant value for each component signal, we can combine it with the 

exponential term:  

[݊]ݕ  =   ℎ [ଶగ௞
ேబ

]  ∗ ௝(ଶగ௞ /ேబ)ࢋ  ∗ ௡ାఏ))                   (2.55) 

Here, θ represents the phase shift introduced by the frequency response of the system. 

When a periodic input signal is passed through a linear, time-invariant system, the output signal 

remains periodic and can be represented as a sum of complex exponential signals. Each 

component signal's frequency response, ℎ[2݇ߨ/ ଴ܰ], is multiplied by the input signal's complex 

exponential component, resulting in a modified exponential term in the output.  

The linearity property of the filter allows us to express the output signal as  

[݊]ݕ  =   ℎ [ଶగ௞
ேబ

]  ∗ ௝(ଶగ௞ /ேబ)ࢋ  ∗ ௡ାఏ))                       (2.56) 

Where, ℎ ቂଶగ௞
ேబ

ቃ represents the frequency response of the system. 

2.16 The Notion of frequency response and its relation to impulse response 

The notion of frequency response is an important concept in the field of signal processing. It 

provides information about how a system or a filter responds to different frequencies present in 

the input signal. It is obtained by taking the Fourier transform of the impulse response. The 
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frequency response reveals how the system responds to different frequencies, while the impulse 

response shows its response to an impulse signal. 

Let's start with the convolution sum equation: 

(݊) ݕ  = ݊)ݔ]∑  − ݉)ℎ(݉)]                            (2.57) 

Where x (n) is the input signal, h (n) is the impulse response of the system, and y (n) is the 

output signal. The convolution sum represents the mathematical operation of convolving the 

input signal with the impulse response to obtain the output signal. 

Now, let's consider a specific input signal in the form of a complex exponential function: 

(݊) ݔ  =  ݁ ௝ఠ௡ 

Where ݆ represents the imaginary unit, ߱ is the angular frequency, and ݊ belongs to the set of 

integers. 

By substituting this input signal into the convolution sum equation, we get: 

[݊]ݕ  =  ∑ ݁ ௝ఠ[௡ି௠]ℎ[݉                         (2.58) 

Next, we can simplify this expression by factoring out the term ݁ ௝ఠ௡ : 

[݊]ݕ  =  ݁ ௝ఠ௡∑ ݁ ௝ఠ[௡ି௠]ℎ[݉]                 (2.59) 

Notice that the term inside the summation, ݁  ି௝ఠ௡ , is the complex conjugate of ݁  ௝ఠ௡ . Therefore, 

we can rewrite it as: 

[݊]ݕ  =  ݁ ௝ఠ௡∑ ℎ[݉]݁ ି௝ఠ௠  
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Now, if we compare this expression to the form of the output signal when the input is a complex 

exponential with frequency ω, given as ݕ (݊)  = ௝ఠ௡ ݁(߱) ܪ  , we can conclude that: 

(߱) ܪ  =  ∑ [ℎ [݉] ݁ ି௝ఠ௡]                (2.60) 

The term ܪ(߱) in this equation is referred to as the frequency response. It represents the 

relationship between the input signal's frequency ω and the output signal's amplitude and phase 

shift. The frequency response provides information about how the system or filter amplifies or 

attenuates specific frequencies. 

Therefore, the frequency response H (ω) is obtained by taking the discrete-time Fourier 

transform (DTFT) of the impulse response h (n). The frequency response describes how the 

system or filter responds to different frequencies present in the input signal, and it is a 

fundamental concept in signal processing. 

UNIT SUMMARY  

In this unit on the behavior of continuous and discrete-time LTI systems, we covered various 

important topics. These include understanding impulse and step responses, analysing input-

output behavior with aperiodic convergent inputs, cascade interconnections, causality and 

stability characterization, system representation through differential equations and difference 

equations, state-space representation, state-space analysis, multi-input multi-output systems, 

the role of the state transition matrix, periodic inputs and the notion of frequency response. 

Overall, this unit provided a comprehensive overview of the behavior and analysis of LTI 

systems in both continuous and discrete-time domains. 
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 EXERCISES  
 
Multiple Choice Questions and Answers 
1. The impulse response of an LTI system provides information about: 
a) The system's stability 
b) The system's causality 
c) The system's input-output behavior 
d) The system's frequency response 
Answer: c) The system's input-output behavior 
 
2. Convolution is a mathematical operation used to: 
a) Compute the impulse response of an LTI system 
b) Determine the step response of an LTI system 
c) Analyze the behavior of LTI systems 
d) Calculate the transfer function of an LTI system 
Answer: c) Analyze the behavior of LTI systems 

 

3. Causality in LTI systems implies that the output of the system depends on: 
a) Future inputs 
b) Past inputs 
c) Present inputs only 
d) Both past and future inputs 
Answer: b) Past inputs 
 
4. Stability of an LTI system ensures that: 
a) The output is bounded for any bounded input 
b) The output is zero for any input 
c) The system has a linear transfer function 
d) The system has a constant impulse response 
Answer: a) The output is bounded for any bounded input 
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5. System representation through differential equations is commonly used for: 
a) Analyzing the frequency response of LTI systems 
b) Describing the input-output behavior of LTI systems 
c) Evaluating the stability of LTI systems 
d) Modeling continuous-time LTI systems 
Answer: d) Modeling continuous-time LTI systems 
 
6. State-space representation of systems involves describing the system behavior using: 
a) Impulse response 
b) Transfer function 
c) Differential equations 
d) Convolution 
Answer: c) Differential equations 

 

7. The State Transition Matrix in state-space analysis represents the: 
a) Impulse response of the system 
b) Transfer function of the system 
c) Evolution of state variables over time 
d) Frequency response of the system 
Answer: c) Evolution of state variables over time 

 

8. Multi-input, multi-output (MIMO) representation of LTI systems deals with: 
a) Systems with multiple state variables 
b) Systems with multiple inputs and multiple outputs 
c) Systems with nonlinear behavior 
d) Systems with periodic inputs 
Answer: b) Systems with multiple inputs and multiple outputs 
 
9. The frequency response of an LTI system is obtained through: 
a) Fourier transform 
b) Laplace transform 
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c) Z-transform 
d) Convolution 
Answer: b) Laplace transform 
 
10. The relationship between the frequency response and impulse response of an LTI system 
given by: 
a) Convolution theorem 
b) Parseval's theorem 
c) Nyquist criterion 
d) Plancherel's theorem 
Answer: a) Convolution theorem  

Short and Long Answer Type Questions 
1. What is the impulse response of an LTI system? 

2. How is the step response of an LTI system defined? 

3. What role does convolution play in analyzing LTI systems? 

4. How would you characterize causality in LTI systems? 

5. What does stability refer to in the context of LTI systems? 

6. How are LTI systems represented using differential equations? 

7. What are difference equations, and how are they used to represent LTI systems? 

8. What is the state-space representation of a system? 

9. What is the significance of the State Transition Matrix in state-space analysis? 

10. How do periodic inputs affect LTI systems, and what is the relationship between the 

frequency response and the impulse response? 

Numerical Problems  
1. Given the impulse response h(t) = 3e^(-2t), calculate the step response of the system. 

2. Find the convolution of the two sequences x[n] = {1, 2, 3} and h[n] = {2, -1, 0}. 
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3. Consider an LTI system with the input x(t) = 2cos(3t). If the impulse response is h(t) = e^(-

t), determine the output y(t). 

4. Analyze the stability of the difference equation y[n] = 0.5y[n-1] + x[n]. 

5. Represent an LTI system through a differential equation: y''(t) + 3y'(t) + 2y(t) = x(t), where 

y(0) = 0 and y'(0) = 1. 

6. Calculate the state-space representation of a multi-input, multi-output LTI system with two 

state variables and two inputs. 

7. Find the State Transition Matrix for a second-order LTI system described by the state-space 

equations: ẋ(t) = Ax(t) + Bu(t) and y(t) = Cx(t) + Du(t). 

8. Determine the response of a continuous-time LTI system with the impulse response h(t) = 

sin(2πt) to a periodic input signal with a frequency of 10 Hz and an amplitude of 3. 

9. Analyze the frequency response of an LTI system with the impulse response h(t) = e^(-

t)cos(2πt). 

10. Investigate the relationship between the impulse response and the frequency response of an 

LTI system using a specific example. 

 
KNOW MORE  

        The study of continuous and discrete-time LTI systems involves analyzing their behavior using 

concepts like impulse response, step response, convolution, and input-output behavior with 

periodic inputs. Understanding causality and stability is crucial for characterizing these 

systems. System representation can be done through differential equations or difference 

equations, with state-space analysis providing a comprehensive approach. Multi-input, multi-

output systems and the role of the state transition matrix are also studied. Additionally, the 

notion of frequency response and its relation to the impulse response is explored. These 

concepts form the foundation for analyzing and designing LTI systems in various applications. 

In summary, the study of continuous and discrete-time LTI systems includes analyzing impulse 
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and step responses, convolution, input-output behavior with periodic inputs, causality, 

stability, system representation through differential or difference equations, state-space 

analysis, multi-input multi-output systems, state transition matrix, and the relation between 

frequency response and impulse response. These concepts are essential for understanding and 

designing LTI systems in diverse applications. 
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UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 What is Fourier series, why it was developed?  
 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of 

Fourier 
Coefficients.  

 Fourier Transform, convolution/ multiplication and their effect in the frequency 
domain,  

 Magnitude and phase response, Fourier domain duality.  
 The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). 

 
RATIONALE  

The unit on “Fourier Series and Transform" provide students to understand the behavior of 
Continuous and Discrete-time signals. This 6-hour unit is designed to provide students with a 
comprehensive understanding of periodic and non-periodic signals along with their frequency 
domain representation. 

The unit focuses on Fourier series representation of periodic signals along with the properties. 
The students can analyze the behavior of signal by extracting the frequency components from 
the signal. The behavior will be found for both CT and DT signals.   

The concepts covered, such as Fourier series representation of periodic signals, waveform 
symmetries, calculation of Fourier coefficients, Fourier transform, convolution/ multiplication 
and their effect in the frequency domain, magnitude and phase response, Fourier domain 

Fourier Series and 
Transform 

 

3 
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duality, the Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform 
(DFT). 

PRE-REQUISITES  

1. Strong understanding of mathematics, including algebra, calculus, and complex numbers. 
 

2. Familiarity with basic concepts in signals and systems, such as time-domain and periodic, 
non-periodic signals 

 
3. Proficiency in solving ordinary differential equations and understanding linear algebra 

concepts. 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U3-O1: Be able to compute the frequency components of the signal. 
U3-O2: Be able to predict how the signal will interact with linear systems and circuits using 

frequency response methods. 
U3-O3: Be able to extract the Fourier coefficients from the signal. 
U3-O4: Be able to analyze the signal directly from its properties. 
U3-O5: Be able to analyze the magnitude and phase response of the given signal.     

Unit-3 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U3-O1 3 - 3 3 - - 
U3-O2 3 - 3 - - - 
U3-O3 3 - 3 3 - - 
U3-O4 3 - 3 3 - - 
U3-O5 3 - 3 2 - - 
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3.1 Introduction 
Earlier we have discussed the time domain representation of signals and systems. We have 
also seen the types of signals that are periodic and non-periodic. The French mathematician 
Jean Baptiste Joseph Fourier showed that any periodic non-sinusoidal signal could be 
represented in terms of linear weighted sum of harmonic sinusoidal signals. This 
representation is called as Fourier series representation.  
On the other hand, the Fourier representation of the aperiodic or non-periodic signals is 
performed by treating them as periodic signals with an infinite fundamental period. In this 
case, the non-periodic signals are represented as a function of frequency called Fourier 
Transform. Fourier domain representation of the signal is another name for Fourier 
Transform. 
The Fourier representations of the signals are used for the frequency domain analysis of 
signals. It enables us to extract the amplitude and phase of various frequency components 
present in the signal.  
Figure 3.1 shows the types of signals and their corresponding Fourier representations. 

 
Fig. 3.1 Types of signals and their Fourier representations 

 
3.2 Trigonometric Form of Fourier Series 
3.2.1 Definition 
In this form of Fourier representation, any periodic signal (ݐ)ݔ with a fundamental period T 

is represented in terms of trigonometric functions as,  
(ݐ)ݔ =  ௔బ

ଶ
+ ∑ ܽ௠

ஶ
௠ୀଵ cos ݐ଴ߗ ݉ +  ∑ ܾ௡

ஶ
௡ୀଵ sin  (3.1)             ݐ଴ߗ ݊

Where  ߗ଴ =  ଶగ
்

 and, ܽ௠ and ܾ௡ are constants. 
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It may be noted that cos ݉ ߗ଴ݐ and  sin  are orthogonal functions over one period for  ݐ଴ߗ ݊
all integer values of ݉ and ݊. This implies that ∫ cos m Ω଴t஑ା୘

஑  sin n Ω଴t dt = 0 for any 
arbitrary value of ߙ.     
Equation (3.1) can be extended as, 

(ݐ)ݔ =  ଵ
ଶ

ܽ଴ +  ܽଵ Cos  ߗ଴ݐ +  ܽଶ ߗ  2 ݏ݋ܥ଴ݐ + ⋯ +  ܾଵ Sin  ߗ଴ݐ +  ܾଶ ܵ݅݊ 2  ߗ଴ݐ + ⋯ (3.2) 

Where,  ߗ଴ = =    ଴ܨߨ2  ଶగ
்

   = Fundamental frequency in rad/sec 

F଴ = Fundamental frequency in H୸  
n Ω଴ = Harmonic frequencies  
a଴,a୬,b୬ = Fourier coefficients of trigonometric form  

Here, ୟబ
ଶ

  is a constant representing the average value or dc component of (ݐ)ݔ. 

The Fourier Coefficients in Eq. (3.1) can be expressed as, 

ܽ଴ =  ଶ
் ∫ (ݐ)ݔ

೅
మ

ି೅
మ

   or  

or          ܽ଴ =  ଶ
் ∫ ்ݐ݀(ݐ)ݔ

଴                           (3.3) 

ܽ௡ =  ଶ
் ∫ (ݐ)ݔ

೅
మ

ି೅
మ

Cos ଴ߗ ݊ = or              ܽ௡                    ݐ݀ ݐ  ଶ
் ∫ (ݐ)ݔ Cos ଴ߗ ݊ ்ݐ݀ ݐ

଴      (3.4) 

ܾ௡ =  ଶ
் ∫ (ݐ)ݔ

೅
మ

ି೅
మ

Sin ଴ߗ ݊ = or              ܾ௡                     ݐ݀ ݐ  ଶ
் ∫ (ݐ)ݔ Sin ଴ߗ ݊ ்ݐ݀ ݐ

଴       (3.5) 

The integration is over one period i.e. ି்
ଶ

  to  ்
ଶ
  or 0 to ܶ. 

 
3.2.2 Conditions for existence of Fourier series 

The following conditions called as Dirichlet’s conditions must be satisfied by the signals for 
the existence or convergence of Fourier series: 
1. The signal x(t) should be absolutely integrable over one period. 

i.e. ∫ |x(t)|୘
଴ dt < ∞ 

 
2. The signal x(t) must have finite number of maxima and minima in one period.  
3. The signal x(t) must have finite number of discontinuities in one period.  

If any signal x(t) satisfies the above Dirichlet’s conditions, the Fourier series represented by 
equation (3.1) converges i.e., the sum becomes equal to x(t) except at the point of 
discontinuities.  
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3.2.3 Equations for ܉૙,ܖ܉ and ܖ܊. 
1) Derivation equation for ܉૙ 

a଴ = ଶ
୘

 ∫ x(t)dt୘ ଶ⁄
ି୘ ଶ⁄    

  or  
  a଴ =  ଶ

୘
 ∫ x(t)dt୘

଴  

Proof:  Consider Trigonometric FS in Eq. (3.1) 

x(t) =  
a଴

2 +  ෍ a୬cos nΩ଴

ஶ

୬ୀଵ

t + ෍ b୬sin nΩ଴

ஶ

୬ୀଵ

t  

Integrate the above equation for 0 to ܶ 

න x(t)dt =  න
a଴

2

୘

଴

୘

଴

 dt +  න ෍ a୬ cos nΩ଴t dt + න ෍ b୬ sin nΩ଴t dt
ஶ

୬ୀଵ

୘

଴

ஶ

୬ୀଵ

୘

଴

 

 
                           =  ୟబ

ଶ
 ∫ dt + ∑ a୬

ஶ
୬ୀଵ

୘
଴ ∫ cos nΩ଴t dt + ∑ b୬ ∫ sin nΩ଴t dt୘

଴
ஶ
୬ୀଵ

୘
଴   

 

                             = ୟబ
ଶ

 [t]଴
୘ + ∑ a୬

ஶ
୬ୀଵ ቂୱ୧୬ ୬ ஐబ୲

୬ ஐబ
ቃ

଴

୘
+ ∑ b୬

ஶ
୬ୀଵ ቂିୡ୭ୱ ୬ ஐబ୲

୬ ஐబ
ቃ

଴

୘
 

 

= ୟబ
ଶ

 [T − 0] + ∑ a୬
ஶ
୬ୀଵ ቂୱ୧୬ ୬ ஐబ୲

୬ ஐబ
− ୱ୧୬ ୬ ஐబ ଴

୬ ஐబ
ቃ + ∑ b୬

ஶ
୬ୀଵ ቂିୡ୭ୱ ୬ ஐబ୲

୬ ஐబ
+ ୡ୭ୱ ୬ ஐబ ଴

୬ ஐబ
ቃ 

=
T
2 a଴ + ෍ a୬

ஶ

୬ୀଵ

቎
sin n 2π

T . T

n 2π
T

቏ + ෍ b୬

ஶ

୬ୀଵ

቎
−cos n 2π

T . T

n 2π
T

+
1

n 2π
T

቏ 

As,  Ω଴ = ଶ஠
୘

 , cos0 = 1, sin0 = 0. 

∴  න x(t)dt =  
T
2

୘

଴
a଴ + ෍ a୬

ஶ

୬ୀଵ

T ൤
sin n2π

n2π ൨ + ෍ b୬T ൤
− cos n2π

n2π +
1

n2π൨
ஶ

୬ୀଵ

 

=
T
2 a଴ + ෍ a୬

ஶ

୬ୀଵ

T. 0 + ෍ b୬

ஶ

୬ୀଵ

T ൤−
1

n2π +
1

n2π൨ 

න x(t)dt =  
T
2

୘

଴
a଴ 
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∴ a଴ୀ 
2
T න x(t)dt

୘

଴
 

 
2) Derivation equation for ܖ܉ 

a୬ = ଶ
୘ ∫ x(t) cos n Ω଴tdt

୘
ଶൗ

ି୘
ଶൗ         or             a୬ = ଶ

୘ ∫ x(t)cosnΩ଴
୘

଴ t dt 

Proof: Consider trigonometric FS in Eq. (3.1) 
x(t) =  ୟబ

ଶ
+ ∑ a୬

ஶ
୬ୀଵ cos nΩ଴t + ∑ b୬ sin nΩ଴

ஶ
୬ୀଵ t  

Let us multiply above equation by cosmΩ଴t 
∴ x(t)cosmΩ଴t

=
a଴

2 cos m Ω଴t + cos m Ω଴t ൥෍ a୬ cos n Ω଴t
ஶ

୬ୀଵ

൩

+ cos m Ω଴t ൥෍ b୬ sin n Ω଴t
ஶ

୬ୀଵ

൩ 

Integrate the above equation over 0 to ܶ and expand, 

∴ න x(t) cos mΩ଴t dt =  න
a଴

2

୘

଴

୘

଴
cos mΩ଴ t + න aଵ

୘

଴
cosΩ଴t. cosmΩ଴t dt + ⋯

+ න a୫

୘

଴
cosଶmΩ଴t dt + ⋯ + න bଵ

୘

଴
sinΩ଴t. cos mΩ଴tdt + ⋯

+ න b୫

୘

଴
sin m Ω଴ t. cosmΩ଴t dt + ⋯ 

In above equation all the definite integrations becomes zero except ∫ a୫cosଶ୘
଴ mΩ଴t dt  

∴ ∫ x(t) cos mΩ଴t dt = ∫ a୫
୘

଴
୘

଴ cosଶmΩ଴t dt  

= ∫ a୫
ଵାୡ୭ୱଶ୫ஐబ୲

ଶ
୘

଴ dt  

 

= ୟౣ
ଶ

 ∫ (1 + cos2m Ω଴t)dt୘
଴  

=ୟౣ
ଶ

ቂt + ୱ୧୬ ଶ୫ ஐబ୲
ଶ୫ஐబ

ቃ
଴

୘
 

= ୟౣ
ଶ

 ቂT +  ୱ୧୬ ଶ ୫ ஐబ୲
ଶ୫ ஐబ

− 0 − ୱ୧୬ ଴
ଶ୫ ஐబ

ቃ 
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= ୟౣ 
ଶ

ቈT +
ୗ୧୬ ଶ୫మಘ

౐  ୘

ଶ୫ మಘ
౐

቉ 

= ୘
ଶ 

 a୫ … … as ߨ2݉2 ݊݅ݏ =  0 for integer ݉. Hence,  

a୫ =  ଶ
୘ ∫ x(t) cos mΩ଴t dt୘

଴                                  (3.6) 

As ݉ is the ݉௧௛ coefficient, the ݊௧௛ coefficient will be, 

a୬ =
2
T

න x(t) cos n Ω଴

୘

଴

t dt  

3) Derivation Equation for ܖ܊ 

b୬ = ଶ
୘ ∫ x(t)sin nΩ଴ t

୘/ଶ
ି୘/ଶ         or           b୬= ଶ

୘ ∫ x(t) sin  nΩ଴ t
୘

଴ dt 

Proof:  Consider trigonometric FS in Eq. (3.1) 

x(t) =
a଴

2 + ෍ a୬

ஶ

୬ୀଵ

cos n Ω଴t + ෍ b୬ sin n Ω଴t
ஶ

୬ୀଵ

 

Let us multiply above equation by sin m Ω଴t 

x(t) sin m Ω଴ t =  
a଴

2 Sin mΩ଴t + sin m Ω଴t ൥෍ a୬ cos n Ω଴ t
ஶ

୬ୀଵ

൩

+ sin m Ω଴t ൥෍ b୬ sin n Ω଴ t
ஶ

୬ୀଵ

൩ 

 
Integrate above equation over 0 to ܶ and expand. 

න x(t) sin m
୘

଴

Ω଴t dt

= න
a଴

2

୘

଴

sin m Ω଴ t + න aଵ cos Ω଴t sin mΩ଴

୘

଴

t + ⋯

+  න a୫ cos ݉Ω଴t sin mΩ଴ t dt + ⋯ + න bଵ sin Ω଴

୘

଴

୘

଴

t sin m Ω଴t dt

+ ⋯ . . + න b୫ sinଶ m Ω଴t dt + ⋯
୘

଴
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In above equation all the definite integrations becomes zero except ∫ b୫
୘

଴ SinଶmΩ଴t dt  

න x(t) sin m Ω଴

୘

଴

t dt = න b୫sinଶmΩ଴t dt
୘

଴

 

= b୫ ∫ ଵିୡ୭ୱଶ୫ஐబ୲
ଶ

୘
଴  dt 

= ୠౣ
ଶ ∫ [1 − cos2mΩ଴t]୘

଴ dt 

= ୠౣ
ଶ

 ቂt − ୗ୧୬ ଶ ୫ ஐబ୲
ଶ୫ ஐబ

ቃ
଴

்
 

= ୠౣ
ଶ

ቂT − ୗ୧୬ ଶ ୫ஐబ ୘
ଶ୫ஐబ

− 0 + ୗ୧୬ ଴
ଶ୫ ஐబ

ቃ 

= ୠౣ
ଶ

ቈT −  
ୗ୧୬ ଶ ୫ మಘ

౐ ்

ଶ୫మಘ
౐

቉ 

= ୘
ଶ

 b୫…….. as sin 2m 2π = 0 for integer m. 

b୫ =  ଶ
୘ ∫ x(t) sin m Ω଴t  dt୘

଴                    (3.7) 

as m is the m୲୦ coefficient, the n୲୦ coefficient will be, 

b୬ =
2
T

න x(t)sin n Ω଴

୘

଴

t dt  

 
3.3 Exponential form of Fourier Series 
3.3.1 Definition 
A periodic signal can also be represented in terms of exponential form of Fourier Series. Let 
us consider (ݐ)ݔ be a periodic signal with period ܶ. Then we can write  

(ݐ)ݔ = ∑ ܿ௡݁௝௡ ఆబ௧ାஶ
௡ୀିஶ                   (3.8) 

where,  ߗ଴ = =    ଴ܨߨ2  ଶగ
்

   =Fundamental frequency in rad/sec 

F଴ =Fundamental frequency in H୸  
±n Ω଴ =Harmonic frequencies  
ܿ௡ =Fourier coefficients of exponential form 
The value of ܿ௡ can be evaluated as 

ܿ௡ = ଵ
் ∫ ௝௡ ఆబ௧ି݁(ݐ)ݔ

೅
మ

ି೅
మ

                       or                   ܿ௡ = ଵ
் ∫ ௝௡ ఆబ௧்ି݁(ݐ)ݔ

଴              (3.9) 
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The integration is over one period i.e. ି்
ଶ

  to  ்
ଶ
  or 0 to ܶ. 

This form consists of both positive and negative frequencies of exponential harmonic 
components. When these exponential components are added, we get real sine and cosine 
signals.  
 
3.3.2 Derivation for equation for ࢔ࢉ 
As we know the Fourier coefficient of exponential form is written as, 

ܿ௡ = ଵ
் ∫ ௝௡ ఆబ௧ି݁(ݐ)ݔ

೅
మ

ି೅
మ

or                   ܿ௡                       ݐ݀ = ଵ
் ∫ ௝௡ ఆబ௧்ି݁(ݐ)ݔ

଴  ݐ݀

Proof: Consider the exponential form of Fourier series of (ݐ)ݔ given by Eq. (3.8), 
(ݐ)ݔ = ∑ ܿ௡݁௝௡ ఆబ௧ାஶ

௡ୀିஶ = ⋯ +  ܿି௞݁ି௝௞ ఆబ௧+…+ܿିଵ݁ି௝ ఆబ௧ + ܿ଴+ܿଵ݁௝ ఆబ௧ + ⋯ +
 ܿ௞݁௝௞ ఆబ௧ + ⋯ 
Multiply the above equation by ݁ି௝௞ ఆబ௧ 
௝௞ ఆబ௧ି݁(ݐ)ݔ  = ⋯ +  ܿି௞݁ି௝ଶ௞ ఆబ௧+ … +ܿିଵ݁ି௝ ఆబ௧݁ି௝௞ ఆబ௧ +
ܿ଴݁ି௝௞ ఆబ௧+ܿଵ݁௝ ఆబ௧݁ି௝௞ ఆబ௧ + ⋯ +  ܿ௞ + ⋯ 
Now integrate the above equation over a period 0 ݋ݐ ܶ. 

∫ ்ݐ௝௞ ఆబ௧݀ି݁(ݐ)ݔ
଴ = ⋯ + ∫ ܿି௞݁ି௝ଶ௞ ఆబ௧்݀ݐ

଴  + … +∫ ܿିଵ݁ି௝ ఆబ௧݁ି௝௞ ఆబ௧்
଴ ݐ݀ +

∫ ܿ଴݁ି௝௞ ఆబ௧்
଴ ∫+ ݐ݀ ܿଵ݁௝ ఆబ௧݁ି௝௞ ఆబ௧்݀ݐ

଴  + ⋯ + ∫ ܿ௞்݀ݐ
଴  + ⋯ 

In the above equation all the definite integrations beocmes zero except ∫ ܿ௞்݀ݐ
଴ . Hence, 

∫ ்ݐ௝௞ ఆబ௧݀ି݁(ݐ)ݔ
଴ =∫ ܿ௞்݀ݐ

଴ = ܿ௞[ݐ]଴
் = ܿ௞[ܶ − 0] = ܶܿ௞ 

ܿ௞ =
1
ܶ

න ݐ௝௞ ఆబ௧݀ି݁(ݐ)ݔ
்

଴
 

Above equation is for ݇௧௛ coefficient. Hnece we can write for ݊௧௛ coefficient ܿ௡ , 

ܿ௡ =
1
ܶ

න ௝௡ ఆబ௧ି݁(ݐ)ݔ

்

଴

 ݐ݀

3.3.3 Relationship between the triginimetric and exponential form of Fourier coefficient 
The relationship between the triginimetric and exponential form of Fourier coefficient can be 
written as, 

ܿ଴ = ௔బ
ଶ

                  (3.10) 

ܿ±௡ = ଵ
ଶ

(ܽ௡ ∓
݆ܾ௡) for ݊ = ±1, ±2, ±3, …                      (3.11) 
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|ܿ௡| = ଵ
ଶ

ටܽ௡
ଶ + ܾ௡

ଶ              for all values of  ݊, except when ݊ =  0                         (3.12) 

 
3.4 Waveform Symmetires 
3.4.1 Even Symmetry 
If (ݐ)ݔ is an even signal, then it should satisfy the condition (ݐ−)ݔ =  The waveform .(ݐ)ݔ 
of an even symmetry signal is symmetric about the vertical axis or it is symmetric at ݐ = 0. 
A waveform can be represented in terms of even symmetry by folding the waveform with 
respect to vertical axis. After folding, if the shape remains same then waveform adopts even 
symmetry. 
The value of Fourier coefficient ܽ଴ is zero if the average value of one period is equal to zero. 
For an even signal ܽ଴, ܽ௡ exists but ܾ ௡ does not exist. Hnece the Fourier coefficients are given 
by, 

ܽ଴ = ସ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴                    (3.13) 

ܽ௡ = ସ
் ∫ (ݐ)ݔ cos ݐ݀ ݐ଴ߗ ݊

೅
మ

଴                  (3.14) 

 
ܾ௡ = 0                            (3.15) 

Proof 1: Consider Eq. (3.3), 

ܽ଴ =
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

ି்
ଶ

=  
2
ܶ

න ݐ݀(ݐ)ݔ
଴

ି்
ଶ

=
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ଴ =
2
ܶ

න (߬݀−)(߬−)ݔ
଴

்
ଶ

+
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

=
2
ܶ

න ߬݀(߬−)ݔ

்
ଶ

଴

+
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

=  ଶ
 ் ∫ ݐ݀(ݐ−)ݔ

೅
మ

଴ + ଶ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴  
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Since, (ݐ)ݔ is even, (ݐ−)ݔ =  ,(ݐ)ݔ

=  ଶ
 ் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴ + ଶ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴  

ܽ଴ =  
 4
 ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

Proof 2: Consider Eq. (3.4), 

ܽ௡ =  
2
ܶ

න (ݐ)ݔ
்
ଶ

ି்
ଶ

cos ଴ߗ ݊ ݐ݀ ݐ =
2
ܶ

න (ݐ)ݔ
଴

ି்
ଶ

cos ଴ߗ ݊ ݐ݀ ݐ +
2
ܶ

න (ݐ)ݔ
்
ଶ

଴
cos ଴ߗ ݊  ݐ݀ ݐ

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ௡ =
2
ܶ

න (߬−)ݔ cos (߬−)଴ߗ ݊ (−݀߬)
଴

்
ଶ

+
2
ܶ

න (ݐ)ݔ cos ଴ߗ ݊ ݐ݀ ݐ

்
ଶ

଴

 

=
2
ܶ

න (߬−)ݔ cos ଴߬ߗ ݊ ݀߬

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

=
2
ܶ

න (ݐ−)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

Since, (ݐ)ݔ is even, (ݐ−)ݔ =  ,(ݐ)ݔ

=
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

 

ܽ௡ =
4
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

Proof 3: Consider Eq. (3.5), 
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ܾ௡ =  
2
ܶ

න (ݐ)ݔ
்
ଶ

ି்
ଶ

sin ଴ߗ ݊ ݐ݀ ݐ =
2
ܶ

න (ݐ)ݔ
଴

ି்
ଶ

sin ଴ߗ ݊ ݐ݀ ݐ +
2
ܶ

න (ݐ)ݔ
்
ଶ

଴
sin ଴ߗ ݊  ݐ݀ ݐ

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ௡ =
2
ܶ

න (߬−)ݔ sin (߬−)଴ߗ ݊ (−݀߬)
଴

்
ଶ

+
2
ܶ

න (ݐ)ݔ sin ଴ߗ ݊ ݐ݀ ݐ

்
ଶ

଴

 

Since, sin(−ߠ) = − sin(ߠ), 

= −
2
ܶ

න (߬−)ݔ sin ଴߬ߗ ݊ ݀߬

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

= −
2
ܶ

න (ݐ−)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

Since, (ݐ)ݔ is even  (ݐ−)ݔ =  ,(ݐ)ݔ

= −
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

ܾ௡ = 0  

 
 
3.4.1.1 Some even symmetry signals with their Fourier series expansion 

 
Fig. 3.2 Even, Half wave, Quarter wave symmetry waveform 
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Figure 3.2 shows the waveform with even symmetry as well as half wave and quarter wave 
symmetry. Hence for this waveform, 

ܽ଴ = 0  

ܾ௡ = 0  

ܽ௡  ݂݋ ݏݐݏ݅ݏ݊݋ܿ ݏ݁݅ݎ݁ݏ ݎ݁݅ݎݑ݋ܨ ݂݋ ݊݋݅ݐܽݑݍ݁ ݀݊ܽ ݊ ݂݋ ݏ݁ݑ݈ܽݒ ݀݀݋ ݎ݋݂ ݏݐݏ݅ݔ݁ 
ݏ݉ݎ݁ݐ ݁݊݅ݏ݋ܿ ݈݈ܽ ݂݋ ݏܿ݅݊݋݉ݎℎܽ ݀݀݋  

(ݐ)ݔ = ସ୅
గ

ቂ௖௢௦ ఆబ௧
ଵ

− ௖௢௦ଷఆబ௧
ଷ

+ ௖௢௦ହఆబ௧
ହ

− ௖௢௦଻ఆబ௧
଻

+

⋯ ቃ                      (3.16) 

 

 
Fig. 3.3 Even symmetry waveform 

Figure 3.3 shows the waveform with even symmetry. Hence for this waveform, 
ܽ଴  ݁ݏݐݏ݅ݔ  

ܽ௡ ݏݐݏ݅ݔ݁   

ܾ௡ = 0  

(ݐ)ݔ = ଶ୅
గ

+ ସ୅
గ

ቂ௖௢௦ଶ ఆబ௧
ଶమିଵ

− ௖௢௦ସ ఆబ௧
ସమିଵ

+ ௖௢௦଺ ఆబ௧
଺మିଵ

− ௖௢௦଼ ఆబ௧
଼మିଵ

+ ⋯ ቃ                   (3.17) 

3.4.2 Odd Symmetry 
If (ݐ)ݔ is an odd signal, then it should satisfy the condition (ݐ−)ݔ =  The waveform .(ݐ)ݔ− 
of an odd symmetry signal is anti-symmetric about the vertical axis or it is anti-symmetric at 
ݐ = 0. 
a waveform can be represented in terms of odd symmetry by folding the waveform with 
respect to vertical axis. After folding, if the shape is exaclty opposite of the the another side 
of vertical axis then waveform adopts odd symmetry. 
The value of Fourier coefficient ܽ଴ is zero, ܽ௡ is zero but ܾ௡ exists. Hnece the Fourier 
coefficients are given by, 

ܽ଴ = 0                   (3.18) 
ܽ௡ = 0                 (3.19) 
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ܾ௡ = ସ
் ∫ (ݐ)ݔ sin ݐ݀ ݐ଴ߗ ݊

೅
మ

଴                 (3.20) 

Proof 1: Consider Eq. (3.3), 

ܽ଴ =
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

ି்
ଶ

=  
2
ܶ

න ݐ݀(ݐ)ݔ
଴

ି்
ଶ

=
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ଴ =
2
ܶ

න (߬݀−)(߬−)ݔ
଴

்
ଶ

+
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

=
2
ܶ

න ߬݀(߬−)ݔ

்
ଶ

଴

+
2
ܶ

න ݐ݀(ݐ)ݔ

்
ଶ

଴

 

=  ଶ
 ் ∫ ݐ݀(ݐ−)ݔ

೅
మ

଴ + ଶ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴  

Since, (ݐ)ݔ is odd, (ݐ−)ݔ =  ,(ݐ)ݔ−

= −  ଶ
 ் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴ + ଶ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴  

ܽ଴ =  0  

Proof 2: Consider Eq. (3.4), 

ܽ௡ =  
2
ܶ

න (ݐ)ݔ
்
ଶ

ି்
ଶ

cos ଴ߗ ݊ ݐ݀ ݐ =
2
ܶ

න (ݐ)ݔ
଴

ି்
ଶ

cos ଴ߗ ݊ ݐ݀ ݐ +
2
ܶ

න (ݐ)ݔ
்
ଶ

଴
cos ଴ߗ ݊  ݐ݀ ݐ

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ௡ =
2
ܶ

න (߬−)ݔ cos (߬−)଴ߗ ݊ (−݀߬)
଴

்
ଶ

+
2
ܶ

න (ݐ)ݔ cos ଴ߗ ݊ ݐ݀ ݐ

்
ଶ

଴

 

=
2
ܶ

න (߬−)ݔ cos ଴߬ߗ ݊ ݀߬

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴
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=
2
ܶ

න (ݐ−)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

Since, (ݐ)ݔ is odd, (ݐ−)ݔ =  ,(ݐ)ݔ−

= −
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ cos ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

 
ܽ௡ = 0  

Proof 3: Consider Eq. (3.5), 

ܾ௡ =  
2
ܶ

න (ݐ)ݔ
்
ଶ

ି்
ଶ

sin ଴ߗ ݊ ݐ݀ ݐ =
2
ܶ

න (ݐ)ݔ
଴

ି்
ଶ

sin ଴ߗ ݊ ݐ݀ ݐ +
2
ܶ

න (ݐ)ݔ
்
ଶ

଴
sin ଴ߗ ݊  ݐ݀ ݐ

Let ݐ = −߬; ∴ ݐ݀ = −݀߬ 

ܽ௡ =
2
ܶ

න (߬−)ݔ sin (߬−)଴ߗ ݊ (−݀߬)
଴

்
ଶ

+
2
ܶ

න (ݐ)ݔ sin ଴ߗ ݊ ݐ݀ ݐ

்
ଶ

଴

 

Since, sin(−ߠ) = − sin(ߠ), 

= −
2
ܶ

න (߬−)ݔ sin ଴߬ߗ ݊ ݀߬

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

= −
2
ܶ

න (ݐ−)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

Since, (ݐ)ݔ is odd  (ݐ−)ݔ =  ,(ݐ)ݔ−

=
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

+
2
ܶ

න (ݐ)ݔ sin ݐ଴ߗ ݊ ݐ݀

்
ଶ

଴

 

ܾ௡ =
4
ܶ

න (ݐ)ݔ sin ݐ݀ ݐ଴ߗ ݊

்
ଶ

଴
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3.4.2.1 Some odd symmetry signals with their Fourier series expansion 

 
Fig. 3.4 Odd, Half wave, Quarter wave symmetry waveform 

Figure 3.4 shows the waveform with odd symmetry as well as half wave and quarter wave 
symmetry. Hence for this waveform, 

ܽ଴ = 0  

ܽ௡ = 0  

ܾ௡  exists for odd values of ݊ and equation of Fourier series consists of 
odd harmonics of all cosine terms

 

 

(ݐ)ݔ = ସ୅
గ

ቂ௦௜௡ ఆబ௧
ଵ

+ ௦௜௡ଷఆబ௧
ଷ

+ ௦௜௡ହఆబ௧
ହ

+ ௦௜௡଻ఆబ௧
଻

+ ⋯ ቃ                          (3.21) 

 
Fig. 3.5 Odd symmetry waveform 

Figure 3.5 shows the waveform with odd symmetry. Hence for this waveform, 
ܽ଴ = 0  

ܽ௡ = 0  
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ܾ௡ exists for all values of ݊ and Fourier series consists both even and 
odd harmonics of sine terms

 

 

(ݐ)ݔ = ଶ୅
గ

ቂ௦௜௡ ఆబ௧
ଵ

− ௦௜௡ଶఆబ௧
ଶ

+ ௦௜௡ଷఆబ௧
ଷ

− ௦௜௡ସఆబ௧
ସ

+ ⋯ ቃ                        (3.22) 

 
3.4.3 Half Wave Symmetry 
A periodic waveform satisfying the condition of having two equal and opposite half 
period/cycle in one period/cycle are said to have half wave symmetry. 
The conditin of half wave symmetry should satisfy the below equation, 

ݔ ቀݐ ± ்
ଶ

ቁ =  (3.23)                             (ݐ)ݔ−

If any waveform satisfies the half wave symmetry condition then, the Fourier series will 
consist of odd harmonic terms alone. 
The waveform shown in Fig. 3.6 shows the example of half wave symmetry. 

 
Fig. 3.6 Half wave symmetry waveform 

(ݐ)ݔ = − ସ஺
గమ ቂܿߗݏ݋଴ݐ + ௖௢௦ଷఆబ௧

ଷమ + ௖௢௦ହఆబ௧
ହమ + ⋯ ቃ + ଶ஺

గ
ቂߗ݊݅ݏ଴ݐ + ௦௜௡ଷఆబ௧

ଷ
+ ௦௜௡ହఆబ௧

ହ
+

⋯ ቃ                                  (3.24) 

3.4.4 Quarter Wave Symmetry 
A waveform that satisfies half wave symmetry condition along with even or odd symmetry 
then that waveform is said to have quarter wave symmetry. In this type of symmetry, each 
quarter period will be of same identical shape and may or may not have opposite sign. The 
conditin of quarter wave symmetry should satisfy the below equation, 

ݔ ቀݐ ± ்
ଶ

ቁ =  (3.23)                                  (ݐ)ݔ−

Where (ݐ)ݔ has half wave symmetry and its Fourier series coefficients consists of all odd 
hrmonic terms. 
 



104 | Fourier Series and Transform  

 

If (ݐ)ݔ has even and half wave symmetry, then (ݐ−)ݔ =  and Fourier series will have odd (ݐ)ݔ
harmonics of only cosine terms. 
If (ݐ)ݔ has odd and half wave symmetry, then (ݐ−)ݔ =  and Fourier series will have (ݐ)ݔ−
odd harmonics of only sine terms. 
The waveforms shown in Fig. 3.2, 3.4 are the examples of quarter wave symmetry. 
 
3.5 Properties of Fourier Series in terms of Exponential Form 
Suppose (ݐ)ݔ and (ݐ)ݕ have the Fourier series coefficients ܿ௡ and ݀௡  in exponential form, 
respectively. 
3.5.1 Linearity:  
For continuous time periodic signal, 

 (ݐ)ݕܤ+(ݐ)ݔܣ
In terms of Fourier coefficients, 

 ௡݀ܤ+௡ܿܣ
3.5.2 Time Shifting: 
For continuous time periodic signal, 

ݐ)ݔ −  (଴ݐ
In terms of Fourier coefficients, 

ܿ௡݁ି௝௡ ఆబ௧బ  
3.5.3 Frequency Shifting 
For continuous time periodic signal, 
 

 ௝௞ ఆబ௧ି݁(ݐ)ݔ
In terms of Fourier coefficients, 

ܿ௡ି௞  
3.5.4 Time Reversal 
For continuous time periodic signal, 

 (ݐ−)ݔ
In terms of Fourier coefficients, 

ܿି௡ 
3.5.5 Multiplication 
For continuous time periodic signal, 

 (ݐ)ݕ (ݐ)ݔ
In terms of Fourier coefficients, 

෍ ܿ௞݀௡ି௞

ାஶ

࢑ୀିஶ
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3.5.6 Conjugation 
For continuous time periodic signal, 

  (ݐ)∗ݔ
In terms of Fourier coefficients, 

ܿ∗
ି௡ 

3.5.7 Time Scaling 
For continuous time periodic signal, 

ߚ where  ; (ݐߚ)ݔ > 0  
 
In terms of Fourier coefficients, 

ܿ௡ 
3.5.8 Differentiation 
For continuous time periodic signal, 

݀
ݐ݀  (ݐ)ݔ

In terms of Fourier coefficients, 
 ଴ܿ௡ߗ ݆݊

3.5.9 Integration 
For continuous time periodic signal, 

න ݐ݀(ݐ)ݔ
௧

ିஶ
 

In terms of Fourier coefficients, 
1

଴ߗ ݆݊
ܿ௡ 

3.5.10   Real and Even 
For continuous time periodic signal, 

 is real and even (ݐ)ݔ
In terms of Fourier coefficients, 

ܿ௡ are real and even 
3.5.11  Real and Odd 
For continuous time periodic signal, 

 is real and odd (ݐ)ݔ
In terms of Fourier coefficients, 

ܿ௡ are imaginary and odd 
3.5.12  Parseval’s Relation 
For continuous time periodic signal, 

Average power of signal (ݐ)ݔ is, 

ܲ =
1
ܶ

න ݐଶ݀|(ݐ)ݔ|
்
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In terms of Fourier coefficients, the average power is 
 

ܲ = ෍ |ܿ௡|ଶ
ାஶ

௡ୀିஶ

 

 
3.6 Gibb’s Phenomenon 
Consider a periodic signal (ݐ)ݔ and it’s exponential form of Fourier Series expansion 

(ݐ)ݔ = ෍ ܿ௡݁௝௡ ఆబ௧
ାஶ

௡ୀିஶ

 

 
Above expansion consists the terms as a sum of infinite series of harmonic frequency 
components. When the signal (ݐ)ݔ is to be reconstructed with some N terms from infinite 
series of harmonic frequency components, the signal displays some oscillations also called as 
ripples that have discontinuities with it. 
 

 
Fig. 3.7 Approximation of square waveform using some harmonic frequency components 
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Consider the Fig. 3.7(a) of periodic square waveform. Figure 3.7(b), (c), (d) shows the 
reconstruction using some N harmonic frequency components. It can be easily seen that the 
reconstructed signals have some ripples with it at the edge points. Also it can be observed 
that, at the points of discontinuity, the Fourier series converges to average value of the signal 
on either side of discontinuity. This phenomenon is called as Gibbs phenomenon after the 
name of great scientist, Josiah Gibbs. He had shown that as the value of N increases, the peak 
overshoot shifts towards the point of discontinuity.  

 
Solved examples on Fourier series 
Example 3.1 Determine the trigonometric form of Fourier series of the waveform shown in 
fig 3.1.1. 

 
Fig. 3.1.1. 

Solution: The waveform has even symmetry, half wave symmetry and quarter wave 
symmetry. 

ܽ଴ = 0, ܾ௡ = 0, ܽ௡ = ସ
் ∫ ݐ݀ݐ଴ߗ݊ݏ݋ܿ(ݐ)ݔ

೅
మ

଴  

Equation for square wave is written as, 

(ݐ)ݔ = ݐ for  ;ܣ = ் ݋ݐ 0
ସ
 

        = ݐ for  ;ܣ− = ்
ସ

் ݋ݐ 
ଶ
 

Now,  

ܽ௡ =
4
ܶ

න ݐ݀ݐ଴ߗ݊ݏ݋ܿ(ݐ)ݔ

்
ଶ

଴
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ܽ௡ =
4
ܶ

න ݐ݀ݐ଴ߗ݊ݏ݋ܿܣ +
4
ܶ

න(−ܣ)ܿߗ݊ݏ݋଴ݐ݀ݐ

்
ଶ

்
ସ

்
ସ

଴

 

= ସ஺
்

ቂ௦௜௡௡ఆబ௧
௡ఆబ

ቃ
଴

೅
ర - ସ஺

்
ቂ௦௜௡௡ఆబ௧

௡ఆబ
ቃ

೅
ర

೅
మ  

= ସ஺
்

ቈ
௦௜௡௡మഏ

೅ ௧

௡మഏ
೅

቉
଴

೅
ర

- ସ஺
்

ቈ
௦௜௡௡మഏ

೅ ௧

௡మഏ
೅

቉
೅
ర

೅
మ

 

= ସ஺
்

ቈ
௦௜௡ቀ௡మഏ

೅
೅
రቁ

௡మഏ
೅

− ௦௜௡଴
௡మഏ

೅
቉-ସ஺

்
ቈ

௦௜௡ቀ௡మഏ
 ೅  

೅
మቁ

௡మഏ
೅

−
௜௡ቀ௡మഏ

 ೅  
೅
రቁ

௡మഏ
೅

቉ 

=
ܣ4
ܶ ൤

ܶ
ߨ2݊ ݊݅ݏ

ߨ݊
2 − 0൨ −

ܣ4
ܶ ൤

ܶ
ߨ2݊ ߨ݊݊݅ݏ −

ܶ
ߨ2݊ ݊݅ݏ

ߨ݊
2 ൨ 

=
ܣ2
ߨ݊ ݊݅ݏ

ߨ݊
2 +

ܣ2
ߨ݊ ݊݅ݏ

ߨ݊
2 =

ܣ4
ߨ݊ ݊݅ݏ

ߨ݊
2  

݊݅ݏ ௡గ
ଶ

= 0;  
for even values of ݊ 

݊݅ݏ ௡గ
ଶ

= ±1;  
for odd values of ݊ 

∴ ܽ௡ = 0; 
  for even values of ݊ 

ܽ௡ = ସ஺
௡గ

݊݅ݏ ௡గ
ଶ

; 
 for odd values of ݊ 

(ݐ)ݔ = ෍ ܽ௡ܿߗ݊ݏ݋଴ݐ
௢ௗௗ ௡

 

(ݐ)ݔ =
4A
ߨ ൤

ݐ଴ߗ ݏ݋ܿ
1 −

ݐ଴ߗ3ݏ݋ܿ
3 +

ݐ଴ߗ5ݏ݋ܿ
5 −

ݐ଴ߗ7ݏ݋ܿ
7 + ⋯ ൨ 

 
Example 3.2 Determine the trigonometric form of Fourier series of the waveform shown in 
fig 3.1.2. 

 
Fig. 3.1.2. 
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Solution: The waveform has even symmetry. 

ܽ଴ = ସ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴ ; ܽ௡ = ସ
் ∫ ݐ݀ݐ଴ߗ݊ݏ݋ܿ(ݐ)ݔ

೅
మ

଴ ; ܾ௡ = 0 

݊݋݅ݐܽݑݍ݁ ݈݁݊݅ ݐℎ݃݅ܽݎݐݏ = ௬ି௬భ
௬భି௬మ

= ௫ି௫భ
௫భି௫మ

 = ௫(௧)ି௫(௧భ)
௫(௧భ)ି௫(௧మ)

= ௧ି௧భ
௧భି௧మ

 

,ଵݐ) ݂݋ ݏ݁ݐܽ݊݅݀ݎ݋݋ܿ ((ଵݐ)ݔ = [0, 0] and ܿݐ) ݂݋ ݏ݁ݐܽ݊݅݀ݎ݋݋ଶ, ((ଶݐ)ݔ = [୘
ଶ

,  [ܣ

∴ ௫(௧)ି଴
଴ି஺

= ௧ି଴

଴ି౐
మ

=> ௫(௧)
ି஺

= ିଶ௧
୘

=> (ݐ)ݔ =
ଶ஺௧

୘
 for ݐ = ் ݋ݐ 0

ଶ
 

Now, 

ܽ଴ = ସ
் ∫ ݐ݀(ݐ)ݔ

೅
మ

଴ = ସ
் ∫ ଶ஺

୘
ݐ݀ ݐ

೅
మ

଴ = ଼஺
்మ ∫ ݐ݀ ݐ

೅
మ

଴  = ଼஺
்మ ቂ௧మ

ଶ
ቃ

଴

೅
మ = ଼஺

்మ ቂ்మ

଼
− 0ቃ =  ܣ

ܽ௡ =
4
ܶ

න ݐ݀ݐ଴ߗ݊ݏ݋ܿ(ݐ)ݔ

்
ଶ

଴

=
4
ܶ

න
ܣ2
ܶ ݐ݀ݐ଴ߗ݊ݏ݋ܿ ݐ

்
ଶ

଴

 

= ଼஺
்మ ቈ

௧௦௜௡௡మഏ
೅ ௧

௡మഏ
೅

+
௖௢௦ ௡మഏ

೅ ௧

௡మరഏమ

೅మ

቉
଴

೅
మ

 

= ଼஺
்మ ቂ ்మ

௡ସగ
sin ߨ݊ + ்మ

௡మସగమ cos ߨ݊ − ்మ

௡మସగమቃ 

ߨ݊ ݏ݋ܿ = +1;  
for even values of ݊ 

ߨ݊ ݏ݋ܿ = −1;  
for odd values of ݊ 

∴ ܽ௡ = 0; 
 for even values of ݊ 

ܽ௡ = ଶ஺
௡మగమ cos[݊ߨ − 1] = − ସ஺

௡మగమ 
; for odd values of ݊ 

(ݐ)ݔ =
ܽ଴

2 + ෍ ܽ௡ܿߗ݊ݏ݋଴ݐ
௢ௗௗ ௡

 

(ݐ)ݔ =
ܣ
2 −

4A
ଶߨ ൤

ݐ଴ߗ ݏ݋ܿ
1ଶ +

ݐ଴ߗ3ݏ݋ܿ
3ଶ +

ݐ଴ߗ5ݏ݋ܿ
5ଶ +

ݐ଴ߗ7ݏ݋ܿ
7ଶ + ⋯ ൨ 
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Example 3.3 Given the Fourier series coefficients as a୩  determine the signalx(t): 

ܽ௞ = ݇]ߜ݆ − 1] +
݆
2 ݇]ߜ + 1] +

1
3 ݇]ߜ + 3] +

1
6 ݇]ߜ − 3] + ݇]ߜ + 4] + ݇]ߜ − 4] 

Solution:  

ܽ௞ = ݇]ߜ݆ − 1] +
݆
2 ݇]ߜ + 1] +

1
3 ݇]ߜ + 3] +

1
6 ݇]ߜ − 3] + ݇]ߜ + 4] + ݇]ߜ − 4] 

The Fourier series coefficients are identified as 

ܽ଴ = 0, ܽଵ = ݆, ܽଶ = 0, ܽଷ =
1
6 , ܽସ = 1 

ܽିଵ =
݆
2 , ܽିଶ = 0, ܽିଷ =

1
3 , ܽିସ = 1 

(ݐ)ݔ = ෍ ܽ௞݁௝௞ఆబ௧
ஶ

௞ୀିஶ

 

Substituting the values of a୩,we get  

(ݐ)ݔ = ݆݁ఆబ௧ +
݆
2 ݁ି௝ఆబ೟ +

1
6 ݁௝ଷఆబ೟ +

1
3 ݁ି௝ଷఆబ೟ + ݁௝ସఆబ೟ + ݁ି௝ସఆబ೟  

Expanding by using Euler’s relation, we get 

(ݐ)ݔ = ݐ଴ߗݏ݋ܿ)݆ + (ݐ଴ߗ݊݅ݏ ݆ +
݆
2 

(cos ݐ଴ߗ − (ݐ଴ߗ݊݅ݏ݆ +
1
6

(cos ݐ଴ߗ3 + (ݐ଴ߗ3݊݅ݏ݆

+
1
3

(cos ݐ଴ߗ3 − (ݐ଴ߗ3݊݅ݏ݆ +  ݐ଴ߗ4ݏ݋2ܿ

Simplifying, we get 

(ݐ)ݔ =
3݆
2 ݐ଴ߗݏ݋ܿ −

1
2 sin ݐ଴ߗ + ݐ଴ߗ4ݏ݋2ܿ −

݆
6 sin ݐ଴ߗ3 +

1
2  ݐ଴ߗ3ݏ݋ܿ

Example 3.4 Given the Fourier series coefficients as ܽ୩  determine the signal(ݐ)ݔ: 

(ݐ)ݔ = ଵ
ଶ

+ ݐݏ݋ܿ + ଵ
ସ

       ݐ2ݏ݋ܿ

Solution: 
Given  

(ݐ)ݔ =
1
2 + ݐݏ݋ܿ +

1
4  ݐ2ݏ݋ܿ

Now cost is periodic with period Tଵ = ଶ஠
ଵ

= 2π and cos2t s periodic with period Tଶ = ଶ஠
ଶ

=
π. 

Hence,  
It is periodic with period T = LCM൫Tଵ,Tଶ൯ = LCM(2π, π) = 2π  
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 The fundamental frequency Ω଴ 
,݊݋݅ݐ݈ܽ݁ݎݏᇱݎ݈݁ݑܧ ݃݊݅ݏܷ  ݏܽ ݊݁ݐݐ݅ݎݓ ܾ݁ ݊ܽܿ (ݐ)ݔ ݈ܽ݊݃݅ݏ ℎ݁ݐ

(ݐ)ݔ =  
1
2 +

݁௝௧ + ݁ି௝௧

2 +
1
4 

݁ଶ௝௧ + ݁ିଶ௝௧

2  

=
1
2 +

݁௝௧ + ݁ି௝௧

2 +
݁௝ଶ௧ + ݁ି௝ଶ௧

8  

=
1
2 +

1
2 ݁௝௧ +

1
2 ݁ି௝௧ +

1
8 ݁௝ଶ௧ +

1
8 ݁ି௝ଶ௧  

Since ߗ଴ = 1,  ݁ݐ݅ݎݓ ݊ܽܿ ݁ݓ

(ݐ)ݔ =
1
8 ݁ି௝ଶఆబ௧ +

1
2 ݁ି௝ఆబ௧ +

1
2 +

1
2 ݁௝ఆబ௧ +

1
8 ݁ି௝ଶఆబ௧  

We can identify the Fourier series coefficients as, 

ܽିଶ = ଵ
଼

, ܽିଵ = ଵ
ଶ

, ܽ଴ = ଵ
ଶ

, ܽଵ = ଵ
ଶ

 ܽଶ = ଵ
଼

, ܽ௞ = 0, |݇| > 2   

 
3.7 Fourier Transform (FT) 
3.7.1 Definition 
Let (ݐ)ݔ is a continuous time signal, ܺ(݆ߗ) is the Fourier transform of signal (ݐ)ݔ. The 
Fourier signal of signal (ݐ)ݔ is defined as, 

(ߗ݆)ܺ = ∫ ݐ௝ఆ௧݀ି݁(ݐ)ݔ = ∫ ାஶݐ௝ଶగ௙௧݀ି݁(ݐ)ݔ
ିஶ =ାஶ

ିஶ
Ƒ{(ݐ)ݔ}  
 (3.24) 
Where, ݂ =Cyclic frequency 
 
Condition for Fourier Transform Existence: 
The Fourier transform exists for the signal (ݐ)ݔ if it follows Dirichlet condition. 
1. Signal (ݐ)ݔ is absolutely integrable. 

න (ݐ)ݔ
ାஶ

ିஶ

ݐ݀ < ∞ 

2. The signal (ݐ)ݔ should have a finite number of maxima and minima within a finite 
duration of interval.  
3. The signal (ݐ)ݔ can have a finite number of discontinuities within a interval. 
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3.7.2 Definition of Inverse Fourier Transform (IFT) 
Inverse Fourier transform of ܺ(݆ߗ) is given by, 
 

(ݐ)ݔ = ଵ
ଶగ ∫ ௝ఆ௧ାஶ݁(ߗ݆)ܺ

ିஶ ߗ݀ = ∫ ܺ(݆݂)݁௝ଶగ௙௧ାஶ
ିஶ ߗ݀ = Ƒିଵ{ܺ(݆ߗ)}            (3.25) 

 
Signal (ݐ)ݔ and its Fourier transform ܺ(݆ߗ) makes the Fourier trasnform pair and the relation 
is given by, 

,ࢀࡲ (ݐ)ݔ ሬ⃖ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ࢀࡲࡵ  (ߗ݆)ܺ 
 
3.7.3 Magnitude and Phase Spectrum using Fourier Transform 

Let Fourier transform of ܺ(݆ߗ) is a complex function of frequency ߗ and it can be defined in 

terms of real and imaginary parts as shown below, 

(ߗ݆)ܺ = ܺ௥௘௔௟(݆ߗ) + ௜ܺ௠௔௚(݆ߗ) 

Where, ܺ௥௘௔௟(݆ߗ) = ܴeal part of ܺ(݆ߗ) 

௜ܺ௠௔௚(݆ߗ) =Imaginary part of ܺ(݆ߗ) 

The Magnitude spectrum of ܺ(݆ߗ) can be written as, 

|(ߗ݆)ܺ| = ටܺ௥௘௔௟
ଶ(݆ߗ) + ௜ܺ௠௔௚

ଶ(݆ߗ)                        (3.26) 

Magnitude spectrum has always even symmetry. 

The Phase spectrum of ܺ(݆ߗ) can be written as, 

(ߗ݆)ܺ∠ = tanିଵ ௑೔೘ೌ೒(௝ఆ)

௑ೝ೐ೌ೗(௝ఆ)
                                    (3.27) 

Phase spectrum has always odd symmetry. 

Both magnitude spectrum and phase spectrum are called as frequency spectrum. 
 
3.8 Properties of Fourier Transform (FT)  
3.8.1 Linearity 

If   ݔଵ(ݐ)  ܶܨሬሬሬሬሬ⃗    ܺଵ(݆ߗ), 
ሬሬሬሬሬ⃗ܶܨ (ݐ)ଶݔ     ܺଶ(݆ߗ) 
Then, 
(ݐ)ଵݔଵܽ}ܨ + ܽଶݔଶ(ݐ)} = ܽଵܺଵ(݆ߗ) + ܽଶܺଶ(݆ߗ)                           (3.28) 
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Proof: By definition of FT, 

(ߗ݆)ܺ = ∫ ஶ(ݐ)ݔ
ିஶ ݁ି௝ఆ௧݀ݐ  

∴  ܺଵ(݆ߗ) = ∫ ஶ(ݐ)ଵݔ
ିஶ ݁ି௝ఆ௧݀ݐ  

∴  ܺଶ(݆ߗ) = ∫ ஶ(ݐ)ଶݔ
ିஶ ݁ି௝ఆ௧   ݐ݀

Consider linear combination,   ܽଵݔଵ(ݐ) + ܽଶݔଶ(ݐ) 

∴ (ݐ)ଵݔଵܽ}ܨ   + ܽଶݔଶ(ݐ)} =  ∫ [ܽଵݔଵ(ݐ) + ܽଶݔଶ(ݐ)]ஶ
ିஶ ݁ି௝ఆ௧݀ݐ   

       = ∫ ܽଵݔଵ(ݐ)ஶ
ିஶ ݁ି௝ఆ௧ ݐ݀ + ∫ ܽଶݔଶ(ݐ)ஶ

ିஶ ݁ି௝ఆ௧   ݐ݀

       = ܽଵܺଵ(݆ߗ) + ܽଶܺଶ(݆ߗ) 
 
3.8.2 Time Shifting: 

If (ݐ)ݔ
ி
ሱ்ሮ  (ߗ݆)ܺ

Then, 
ݐ)ݔ}ܨ − {(଴ݐ = ௝ఆ௧ି݁(ߗ݆)ܺ                                (3.29) 
Proof: By definition of FT, 

(ߗ݆)ܺ = ∫ ஶ(ݐ)ݔ
ିஶ ݁ି௝ఆ௧݀ݐ  

∴ ݐ)ݔ}ܨ − {(଴ݐ = ∫ ݐ)ݔ − ଴)݁ି௝ఆ௧ஶݐ
ିஶ   ݐ݀

Let ݐ − ଴ݐ = ߬,     ∴ ݐ = ߬ + ݐ݀   ,  ଴ݐ = ݀߬  

∴ ݐ)ݔ}ܨ − {(଴ݐ = ∫ ௝ఆ(ఛା௧బ)ஶି݁(߬)ݔ
ିஶ ݀߬  

  = ∫ ௝ఆఛஶି݁(߬)ݔ
ିஶ . ݁ି௝ఆ௧బ݀߬ 

  = ݁ି௝ఆ௧బ ∫ ௝ఆఛஶି݁(߬)ݔ
ିஶ ݀߬ 

                        = 0ݐߗ݆−݁  (ߗ݆)ܺ 
 

3.8.3 Time Scaling:  

If ܶܨ(ݐ)ݔ ሬሬሬሬሬሬ⃗  (ߗ݆)ݔ
then, 

= {(ݐܽ)ݔ}ܨ ଵ
|௔|

∗ ቀ௝ ఆ
௔

ቁ                                                   (3.30) 

Proof: By definition of FT, 

(ߗ݆)ݔ = න ௝ఆ௧ି ݁ (ݐ)ݔ

ஶ

ିஶ

 ݐ݀ 
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{(ݐܽ)ݔ}ܨ = න ௝ఆ௧ି ݁(ݐܽ)ݔ

ஶ

ିஶ

 ݐ݀ 

 
Let =  ߬, ݐ = ఛ

௔ ,
 ,  dt = ௗఛ

௔
 

∴ {(ݐܽ)ݔ} ܨ =
1
ܽ න ቀ߬ߗ݆−݁(߬)ݔ

ܽቁ 
∞

−∞

 ݀߬ 

=
1
ܽ

න ௝ቀఆି݁(߬)ݔ
௔ቁఛ݀߬ 

ஶ

ିஶ

 

‘a’ can be negative or positive. Hence, in general  {(ݐܽ)ݔ}ܨ = ଵ
|௔|

∗ ቀ௝ఆ
௔

ቁ 

 
3.8.4 Time Reversal: 
If  ܶܨ     (ݐ)ݔ    ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  (ߗ݆)ܺ
then, 
{(ݐܽ)ݔ}ܨ =  (3.31)                        (ߗ݆) ݔ

 
Proof: By using the Time Scaling Property in Eq. (3.30) 

{(ݐܽ)ݔ}ܨ =
1

|ܽ| ܺ ൬
ߗ݆
ܽ ൰ 

For ܽ =  −1, 

{(ݐ−)ݔ}ܨ =  
1

| − 1| ܺ ൬
ߗ݆
−1൰ =  (ߗ ݆−)ܺ 

 
3.8.5 Conjugation: 

If ܶܨ    (ݐ)ݔ  ሬሬሬሬሬሬሬሬሬ⃗   (ߗ݆)ܺ
then, 
{(ݐ)∗ݔ}ܨ =  (3.32)                           (ߗ݆−)∗ܺ

 
Proof: By definition of FT, 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁ (ݐ)ݔ
ஶ

ିஶ

 

∴ {(ݐ)∗ݔ}ܨ = න ∗ݔ

ஶ

ିஶ

 ݐ௝ఆ௧݀ି ݁(ݐ)
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= ൥ න ݐ௝ఆ௧݀݁ (ݐ)ݔ
ஶ

ିஶ

൩

∗

 

                                                              =ൣ∫ ஶݐ௝(ିఆ)௧݀ି݁ (ݐ)ݔ
ିஶ ൧

∗
 

=  (ߗ݆−) ∗ܺ 
 

3.8.6 Frequency Shifting: 
ሬሬሬሬሬሬሬሬሬ⃗  ܶܨ     (ݐ)ݔ ݂ܫ   (ߗ݆)ܺ
then, 
ൟ(ݐ)ݔ൛݁௝ఆబ௧ܨ = ܺ൫݆(ߗ −  ଴)൯                          (3.33)ߗ
Proof: By definition of FT, 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁ (ݐ)ݔ
ஶ

ିஶ

 

 

∴ ൟ(ݐ)ݔ൛݁௝ఆబ௧ܨ = න ݐ௝ఆబ௧݁ି௝ఆ௧݀݁(ݐ)ݔ
ஶ

ିஶ

 

                                                                                       = ∫ ௝(ఆିఆబ)௧ஶି݁(ݐ)ݔ
ିஶ  ݐ݀

                                                                                         = ܺ൫݆(ߗ −  ଴)൯ߗ
3.8.7 Time differentiation 

If    ܶܨ   (ݐ)ݔ    ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   (ߗ݆)ܺ
then, 
ܨ  ቄ ௗ

ௗ௧
ቅ(ݐ)ݔ  =  (3.34)                                 (ߗ݆)ܺߗ݆

 
Proof: By definition of FT, 
 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁ (ݐ)ݔ
ஶ

ିஶ

 

 
∴ ܨ ቄ ௗ

ௗ௧
ቅ(ݐ)ݔ = ∫ ቀ ௗ

ௗ௧
ቁ(ݐ)ݔ ݁ି௝ఆ௧ஶ

ିஶ   ݐ݀ 

= න ݁ି௝ఆ௧

ஶ

ିஶ

൬
݀
ݐ݀ ൰(ݐ)ݔ   ݐ݀

,݃݊݅ݏܷ න ݒݑ = ݑ න ݒ − න ൤݀ݑ න  ൨ݒ
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∴ ܨ ൜
݀

ൠ(ݐ)ݔ ݐ݀ = ݁ି௝ఆ௧(ݐ)ݔ|ିஶ
ஶ − න(−݆ߗ) ݁ି௝ఆ௧ݐ݀(ݐ)ݔ 

= 0 + ߗ݆ න ݐ௝ఆ௧݀ି݁ (ݐ)ݔ
ஶ

ିஶ

 

                                                           =  (ߗ݆)ܺ ߗ݆
3.8.8 Time Integration 

ሬሬሬሬሬሬሬሬሬ⃗  ܶܨ  (ݐ)ݔ  (ߗ݆)ܺ
then, 

ܨ ቄ∫ ௧ݐ݀(ݐ)ݔ
ିஶ ቅ = ଵ

௝ఆ
 (3.35)                                   (ߗ݆)ܺ

Proof: Let, 

(ݐ)ݔ =
݀
ݐ݀ ቎ න ݐ݀(ݐ)ݔ

௧

ିஶ

቏ 

Take FT on both sides, 

{(ݐ)ݔ}ܨ = ܨ ቐ
݀
ݐ݀ ቎ න ݐ݀(ݐ)ݔ

௧

ିஶ

቏ቑ 

(ߗ݆)ܺ = ܨ ቐ න ൤
݀
ݐ݀ ൨(ݐ)ݔ ݐ݀

௧

ିஶ

ቑ 

(ߗ݆)ܺ = ܨ(ߗ݆) ቐ න ݐ݀(ݐ)ݔ
௧

ିஶ

ቑ 

∴ ܨ ቐ න ݐ݀(ݐ)ݔ
௧

ିஶ

ቑ =
1

ߗ݆  (ߗ݆)ܺ

3.8.9 Differentiation in Frequency 

If  ܶܨ   (ݐ)ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬ⃗        (ߗ ݆)ܺ
then,     

{(ݐ)ݔݐ}ܨ = ݆ ௗ
ௗఆ

 (3.36)                                        (ߗ ݆)ܺ

Proof: By definition of FT 
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(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁(ݐ)ݔ
ஶ

ିஶ

 

Take differentiation on both sides, w. r. t.  ߗ 

݀
ߗ݀ (ߗ݆)ܺ =

݀
ߗ݀

൥ න ௝ఆ௧ି݁(ݐ)ݔ ݐ݀ 
ஶ

ିஶ

൩ 

                                                                    = ∫ (ݐ)ݔ ቂ ௗ
ௗఆ

 ݁ି௝ఆ௧ቃஶ
ିஶ  ݐ݀

න ௝ఆ௧൧ି݁(ݐ݆−)ൣ(ݐ)ݔ
ஶ

ିஶ

 ݐ݀

As, −݆ = ଵ
௝
 

݀
ߗ݀ (ߗ݆)ܺ =

1
݆

න ݐ௝ఆ௧݀ି݁[(ݐ)ݔݐ]
ஶ

ିஶ

 

=
1
݆  {(ݐ)ݔݐ}ܨ 

∴ {(ݐ)ݔݐ}ܨ = ݆
݀

ߗ݀  (ߗ݆)ܺ

3.8.10 Convolution 

If ݔଵ(ݐ)  ܶܨ  ሬሬሬሬሬሬሬሬሬ⃗ ଵܺ(݆ߗ)  
 

ሬሬሬሬሬሬሬሬሬ⃗  ܶܨ  (ݐ)ଶݔ ܺଶ(݆ߗ)  
then, 
(ݐ)ଵݔ}ܨ ∗ {(ݐ)ଶݔ  =  ଵܺ(݆ߗ)ܺଶ(݆ߗ)                           (3.37) 
Proof: By definition of FT, 

ଵܺ (݆ߗ) = න ௝ఆ௧ି݁(ݐ)ଵݔ

ஶ

ିஶ

 ݐ݀

ܺଶ (݆ߗ) = න ௝ఆ௧ି݁(ݐ)ଶݔ

ஶ

ିஶ

 ݐ݀
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∴ (ݐ)ଵݔ} ܨ ∗ {(ݐ)ଶݔ  = න (ݐ)ଵݔ] ∗ ௝ఆ௧ି݁[(ݐ)ଶݔ

ஶ

ିஶ

 ݐ݀

න ൥ න (߬)ଵݔ ∗ ݐ)ଶݔ − ߬)݀߬
ஶ

ିஶ

൩ ݁ି௝ఆ௧

ஶ

ିஶ

 ݐ݀

݉ ݐ݈݁ = ݐ − ߬,  
݀݉ =   ,ݐ݀
ݐ = ݉ + ߬,   
݁௝ఆ௧ = ݁ି௝ఆఛ݁ି௝ఆ௠   

∴ (ݐ)ଵݔ} ܨ ∗ {(ݐ)ଶݔ  = න න (݉)ଶݔଵ(߬)݁ି௝ఆఛݔ
ஶ

ିஶ

ஶ

ିஶ

݁ି௝ఆఛ݁ି௝ఆ௠  ݀߬ ݀݉ 

∴ (ݐ)ଵݔ} ܨ ∗ {(ݐ)ଶݔ  = න ଵ(߬)݁ି௝ఆఛ݀߬ݔ න ଶ(݉)݁ି௝ఆ௠ݔ

ஶ

ିஶ

ஶ

ିஶ

 ݀݉ 

Replace ߬ ܽ݊݀ ݉ ݐ ݋ݐ, 
∴ (ݐ)ଵݔ}ܨ  ∗ {(ݐ)ଶݔ  = ଵܺ(݆ߗ)ܺଶ(݆ߗ) 

 
3.8.11 Parseval’s Theorem: 

If  ܶܨ   (ݐ)ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬ⃗        (ߗ ݆)ܺ
then, 

∫ ݐଶ݀|(ݐ)ݔ| = ଵ
ଶగ ∫ ଶஶ|ߗ݆)ܺ|

ିஶ
ஶ

ିஶ  (3.38)                         ߗ݀

Proof: 
Let |(ݐ)ݔ|ଶ =  (3.39)                                         ݐ݀(ݐ)∗ݔ(ݐ)ݔ

∴  ∫ ଶ|(ݐ)ݔ| = ∫ ஶݔ
ିஶ ஶݐ݀(ݐ)∗ݔ(ݐ)

ିஶ                                   (3.40) 

Recall the inverse FT definition, 

(ݐ)ݔ = ଵ
ଶగ

 ∫ ܺ(݆ஶ
ିஶ  ߗ௝ఆ௧݀݁(ߗ

∴ (ݐ)∗ݔ = ଵ
ଶగ ∫ ௝ఆ௧ஶି݁(ߗ݆)∗ܺ

ିஶ  (3.41)                               ߗ݀

R.H.S. of Eq. (3.40) becomes, 
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∴ න (ݐ)ݔ ൥
1

ߨ2
න ߗ௝ఆ௧݀ି݁(ߗ݆)∗ܺ
ஶ

ିஶ

൩ ݐ݀
ஶ

ିஶ

 

∴ න ଶ|(ݐ)ݔ|

ஶ

ିஶ

ݐ݀  =  
1

ߨ2
න (ߗ݆)∗ܺ ൥ න ݐ௝ఆ௧݀ି݁(ݐ)ݔ

ஶ

ିஶ

൩
ஶ

ିஶ

 ߗ݀

=
1

ߨ2
න ߗ݀(ߗ݆)ܺ(ߗ݆)∗ܺ
ஶ

ିஶ

 

න ଶ|(ݐ)ݔ|

ஶ

ିஶ

ݐ݀  =  
1

ߨ2
න ଶ|ߗ݆)ܺ|

ஶ

ିஶ

 ߗ݀ 

 
 

3.8.12 Duality Property: 

If  ܶܨ   (ݐ)ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬ⃗        (ߗ݆)ܺ
then, 
(ݐ)ܺ  ↔  (3.42)                                         (ߗ݆−)ݔߨ2
 
Proof: By definition of IFT, 

(ݐ)ݔ =
1

ߨ2
න ߗ௝ఆ௧݀݁(ߗ݆)ܺ
ஶ

ିஶ

 

 

(ݐ−)ݔ = ଵ
ଶగ ∫ ஶߗ௝ఆ௧݀ି݁(ߗ݆)ܺ

ିஶ                         (3.43) 

Put t= jߗ in Eq. (3.43) 

(ߗ݆−)ݔ = ଵ
ଶగ ∫ ௝ఆ௧ஶି݁(ݐ)ܺ

ିஶ  dߗ 

∴ (ߗ݆−)ݔ ߨ2 = න ݐ௝ఆ௧݀ି݁(ݐ)ܺ
ஶ

ିஶ

  

Where R.H.S. is FT of ܺ(ݐ). 
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3.9 Fourier Transform (FT) Representation of Continuous-Time (CT) LTI System in 
terms of Convolution and Multiplication 

3.9.1 Representation of Transfer Function of CT LTI System in Frequency Domain 
Transfer function if CT LTI system is defined as the ratio of output of Fourier transform to 

the input of Fourier transform.  
Let (ݐ)ݔ=Input of CT system 
 Output of CT system=(ݐ)ݕ
 (ݐ)ݔ FT of=(ߗ݆)ܺ
 (ݐ)ݕ FT of=(ߗ݆)ܻ
Then, the transfer funtion (TF) can be written as, 

ܨܶ = ௒(௝ఆ)
௑(௝ఆ)

                                 (3.44) 

Frequency domain representation of CT LTI system can be written in terms of differential 
equation as, 

ௗ೙

ௗ௧೙ (ݐ)ݕ + ଵ݌
ௗ೙షభ

ௗ௧೙షభ ଶ݌+(ݐ)ݕ
ௗ೙షమ

ௗ௧೙షమ (ݐ)ݕ + ⋯ + (ݐ)ݕ௡݌ = ଴ݍ
ௗ೘

ௗ௧೘ (ݐ)ݔ + ଵݍ
ௗ೘షభ

ௗ௧೘షభ (ݐ)ݔ +

ଶݍ
ௗ೘షమ

ௗ௧೘షమ (ݐ)ݔ + ⋯ +  (3.45)                                        (ݐ)ݔ௠ݍ

Transfer function of CT LTI system can be obtained by taking the FT of above equation and 
arranging as a ration of ܻ(݆ߗ) to ܺ(݆ߗ). 

 
3.9.2 Relation of Impulse Response and Transfer Function of CT LTI System  
Let (ݐ)ݔ and (ݐ)ݕ are the input and output of CT LTI system respectively. When input (ݐ)ݔ 
is replaced by impulse signal (ݐ)ߜ, the system output is called as impulse response which is 
denoted by ℎ(ݐ). 
The impulse response is represented as the convolution of input and impulse response itself 
for any input to LTI system. Let the convolution opertaion, 

(ݐ)ݕ = (ݐ)ݔ ∗ ℎ(ݐ) = න ݐ)ℎ(߬)ݔ − ߬)݀߬
ஶ

ିஶ

 

Let, 
 (ݐ)FT of ℎ=(ߗ݆)ܪ
 (ݐ)ݔ FT of=(ߗ݆)ܺ
 (ݐ)ݕ FT of=(ߗ݆)ܻ
Using the convolution property, 
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Ƒ{(ݐ)ݔ ∗ ℎ(ݐ)} = Ƒ{(ݐ)ݕ} =  (ߗ݆)ܪ(ߗ݆)ܺ
∴ (ߗ݆)ܻ =  (ߗ݆)ܪ(ߗ݆)ܺ

(ߗ݆)ܪ = ௒(௝ఆ)
௑(௝ఆ)

                                                       (3.46) 

Equation (3.46) shows that the transfer function in frequency domain is given by Fourier 
transform of impulse response which is the ratio of Fourier transform of output to input. 
 
3.9.3 Response of CT LTI System in terms of Fourier Trasnform 
Consider Eq. (3.46) of transfer function, 

(ߗ݆)ܪ =
(ߗ݆)ܻ
 (ߗ݆)ܺ

∴ (ߗ݆)ܻ =  (ߗ݆)ܪ(ߗ݆)ܺ

∴ (ߗ݆)ܻ = (௭భା௝ఆ)(௭మା௝ఆ)ା⋯
(௣భା௝ఆ)(௣మା௝ఆ)ା⋯

                                        (3.47) 

Using partial fraction expansion, 

(ߗ݆)ܻ = ஺భ
(௣భା௝ఆ)

+ ஺మ
(௣మା௝ఆ)

+ ஺య
(௣యା௝ఆ)

+ ⋯                                (3.48) 

Where ܣଵ, ,ଶܣ ,ଷܣ  .. are residues. 

The Fourier transform of ݁ି௔௧ = ଵ
௔ା௝ఆ

                             (3.49) 

Using Eq. (3.49), the inverse Fourier transform of Eq. (3.48) can be written as, 
(ݐ)ݕ = (ݐ)ݑଵ݁ି௣భ௧ܣ + (ݐ)ݑଶ݁ି௣మ௧ܣ + (ݐ)ݑଷ݁ି௣య௧ܣ + ⋯                        (3.50) 

The response obtained by using Eq. (3.50) is the time domain steady state response of the LTI 
continuous time system as the transfer function is defined with zero initial conditions. 
 
3.9.4 Magnitude and Phase Response of CT LTI System 

 
The output of LTI system in terms of the convolution opertaion is written as, 

 

(ݐ)ݕ = (ݐ)ݔ ∗ ℎ(ݐ) = ℎ(ݐ) ∗ (ݐ)ݔ = න ℎ(߬)ݐ)ݔ − ߬)݀߬
ஶ

ିஶ

 

Let, 
(ݐ)ݔ = ௝ఆ௧݁ܣ                                (3.51) 

∴ ݐ)ݔ  − ߬) =  ௝ఆ(௧ିఛ)                        (3.52)݁ܣ

(ݐ)ݕ = ∫ ℎ(߬)݁ܣ௝ఆ(௧ିఛ)݀߬ஶ
ିஶ                         (3.53) 
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(ݐ)ݕ = ∫ ℎ(߬)݁ܣ௝ఆ௧݁ି௝ఆఛ݀߬ஶ
ିஶ                         (3.54) 

(ݐ)ݕ = ௝ఆ௧݁ܣ ∫ ℎ(߬)݁ି௝ఆఛ݀߬ஶ
ିஶ                              (3.55) 

 
Recall the definition of FT, 

(ߗ݆)ܪ = ∫ ℎ(ݐ)݁ି௝ఆ௧݀ݐ = ∫ ℎ(߬)݁ି௝ఆఛ݀߬ஶ
ିஶ

ஶ
ିஶ                                (3.56) 

Using Eq. (3.51), (3.56), the Eq. (3.55) can be written as, 
 

(ݐ)ݕ =  (3.57)                                        (ߗ݆)ܪ(ݐ)ݔ
 

Equation (3.57) says that if a complex signal is given as input signal to CT LTI system, then 
the output has the same frequency as that of input signal multiplied by (ߗ݆)ܪ. Hence, (ߗ݆)ܪ 
is called the frequency response of the CT LTI system. The  

 
The (ߗ݆)ܪ can be represented in terms of magnitude and phase as, 

(ߗ݆)ܪ =  (ߗ݆)ܪ ∠|(ߗ݆)ܪ|
         Where, 

|(ߗ݆)ܪ| =  ݊݋݅ݐܿ݊ݑ݂ ݁݀ݑݐ݅݊݃ܽܯ
(ߗ݆)ܪ ∠ = ܲℎܽ݊݋݅ݐܿ݊ݑ݂ ݁ݏ 

(ߗ݆)ܪ = (ߗ݆)௥௘௔௟ܪ +  (ߗ݆)௜௠௔௚௜௡௔௥௬ܪ
The magnitude function is written as, 

|(ߗ݆)ܪ| = ඥܪଶ
௥௘௔௟(݆ߗ) + ଶܪ

௜௠௔௚௜௡௔௥௬(݆ߗ)                            (3.58) 
 

The phase function is written as, 
(ߗ݆)ܪ ∠ = ଵି݊ܽݐ ቂு೔೘ೌ೒೔೙ೌೝ೤(௝ఆ)

ுೝ೐ೌ೗(௝ఆ)
ቃ                                               (3.59) 

 
 

Solved examples on Fourier transform 
Example 3.5 Determine the Fourier transform of given continuous time signals. 

(ݐ)ݔ .1 = ൜1 − ;ଶݐ   for |ݐ| < 1
0;           for |ݐ| > 1  

(ݐ)ݔ .2 = ݁ି௔௧ܿߗݏ݋଴(ݐ)ݑ ݐ 

Solution:  

1. Given, ࢞(࢚) = ൜૚ − ࢚૛; |࢚| ܚܗ܎   < ૚
૙; |࢚| ܚܗ܎           > ૚  

That means  
(ݐ)ݔ = 1 −  to +1 1- =ݐ ଶ;  forݐ
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Using the definition of FT, 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁(ݐ)ݔ
ஶ

ିஶ

 

(ߗ݆)ܺ = න (1 − ݐଶ)݁ି௝ఆ௧݀ݐ
ାଵ

ିଵ

 

(ߗ݆)ܺ = න ݁ି௝ఆ௧݀ݐ
ାଵ

ିଵ

− න ݐଶ݁ି௝ఆ௧݀ݐ
ାଵ

ିଵ

 

,݈݁ݑݎ ݊݋݅ݐܽݎ݃݁ݐ݊݅ ݃݊݅ݏܷ න ݒݑ = ݑ න ݒ − න ൤݀ݑ න  ൨ݒ

= ቈ
݁ି௝ఆ௧

ߗ݆−
቉

ିଵ

ାଵ

− ቈݐଶ ݁ି௝ఆ௧

ߗ݆− − න ݐ2
݁ି௝ఆ௧

ߗ݆− ቉ݐ݀
ିଵ

ାଵ

 

= ቈ
݁ି௝ఆ௧

ߗ݆−
቉

ିଵ

ାଵ

− ቈ
ଶ݁ି௝ఆ௧ݐ−

ߗ݆ +
2

ߗ݆
න ቉ݐ௝ఆ௧݀ି݁ݐ

ିଵ

ାଵ

 

,݈݁ݑݎ ݊݋݅ݐܽݎ݃݁ݐ݊݅ ݃݊݅ݏݑ ݊݅ܽ݃ܣ න ݒݑ = ݑ න ݒ − න ൤݀ݑ න  ൨ݒ

= ቈ
݁ି௝ఆ௧

ߗ݆−
቉

ିଵ

ାଵ

− ൥
ଶ݁ି௝ఆ௧ݐ−

ߗ݆ +
2

ߗ݆
ቈ
௝ఆ௧ି݁ݐ

ߗ݆− − න 1
݁ି௝ఆ௧

ߗ݆− ቉൩ݐ݀
ିଵ

ାଵ

 

= ቈ
݁ି௝ఆ௧

ߗ݆−
቉

ିଵ

ାଵ

− ൥−
ଶ݁ି௝ఆ௧ݐ

ߗ݆ +
2

ଶ(ߗ݆) ൤−ି݁ݐ௝ఆ௧ − න ݁ି௝ఆ௧݀ݐ൨൩
ିଵ

ାଵ

 

= ቈ−
݁ି௝ఆ௧

ߗ݆
቉

ିଵ

ାଵ

− ൥−
ଶ݁ି௝ఆ௧ݐ

ߗ݆ −
2

ଶ(ߗ) ቈ−ି݁ݐ௝ఆ௧ +
݁ି௝ఆ௧

ߗ݆−
቉൩

ିଵ

ାଵ

 

= ቈ−
݁ି௝ఆ௧

ߗ݆
቉

ିଵ

ାଵ

− ൥−
ଶ݁ି௝ఆ௧ݐ

ߗ݆ + ቈ
௝ఆ௧ି݁ݐ2

ଶߗ +
2݁ି௝ఆ௧

ଷߗ݆ ቉൩
ିଵ

ାଵ

 

= −
݁ି௝ఆ

ߗ݆ +
݁௝ఆ

ߗ݆ − ቈ−
݁ି௝ఆ

ߗ݆ +
2݁ି௝ఆ

ଶߗ +
2݁ି௝ఆ

ଷߗ݆ +
݁௝ఆ

ߗ݆ +
2݁௝ఆ

ଶߗ −
2݁௝ఆ

ଷߗ݆ ቉ 

Using, ߗ݊݅ݏ = ௘ೕ೾ି௘షೕ೾

ଶ௝
 and ܿߗݏ݋ = ௘ೕ೾ା௘షೕ೾

ଶ
 

= −
2

ଶߗ ൫݁௝ఆ + ݁ି௝ఆ൯ +
2

ଷߗ݆ ൫݁௝ఆ + ݁ି௝ఆ ൯ 
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= −
2

ଶߗ ߗݏ݋2ܿ +
2

ଷߗ݆  ߗ݊݅ݏ2݆

=
4

ଶߗ ൬
ߗ݊݅ݏ

ߗ −  ൰ߗݏ݋ܿ

2. Given, ࢞(࢚) =  (࢚)࢛ ૙࢚ࢹ࢙࢕ࢉ࢚ࢇିࢋ

Given signal can be written as, 
(ݐ)ݔ = ݁ି௔௧ܿߗݏ݋଴ݐ   for ݐ ≥ 0 
Using the definition of FT, 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁(ݐ)ݔ
ஶ

ିஶ

 

= ∫ ݁ି௔௧ܿߗݏ݋଴ି݁ݐ௝ఆ௧݀ݐஶ
଴  =∫ ݁ି௔௧  ቀ௘ೕ೾బ೟ା௘షೕ೾బ೟

ଶ
ቁ ݁ି௝ఆ௧݀ݐஶ

଴    

=  ଵ
 ଶ ∫ ݁ି௔௧  ݁௝ఆబ௧݁ି௝ఆ௧݀ݐஶ

଴  +ଵ
ଶ ∫ ݁ି௔௧  ݁ି௝ఆబ௧݁ି௝ఆ௧݀ݐஶ

଴    

=  ଵ
 ଶ ∫ ݁ି(௔ି௝ఆబା௝ఆ)௧ ݀ݐஶ

଴  +ଵ
ଶ ∫ ݁ି(௔ା௝ఆబା௝ఆ)௧݀ݐஶ

଴    

=  ଵ
 ଶ

ቂ௘ష(ೌషೕ೾బశೕ೾)೟

ି(௔ି௝ఆబା௝ఆ)
ቃ

଴

ஶ
 +  ଵ

 ଶ
ቂ௘ష(ೌశೕ೾బశೕ೾)೟

ି(௔ା௝ఆబା௝ఆ)
ቃ

଴

ஶ
 

=
1
2

ቈ
݁ିஶ

−(ܽ − ଴ߗ݆ + (ߗ݆ −
݁଴

−(ܽ − ଴ߗ݆ + (ߗ݆
቉

+
1
2

ቈ
݁ିஶ

−(ܽ + ଴ߗ݆ + (ߗ݆ −
݁଴

−(ܽ + ଴ߗ݆ + (ߗ݆
቉ 

=
1
2 ൤0 +

1
(ܽ − ଴ߗ݆ + ൨(ߗ݆ +

1
2 ൤0 +

1
(ܽ + ଴ߗ݆ +  ൨(ߗ݆

=
1
2 ൤

1
(ܽ + (ߗ݆ − ଴ߗ݆

+
1

(ܽ + (ߗ݆ + ଴ߗ݆
൨ 

=
1
2

ቈ
(ܽ + (ߗ݆ + ଴ߗ݆ + (ܽ + (ߗ݆ − ଴ߗ݆

(ܽ + ଶ(ߗ݆ + ଴ߗ
ଶ ቉ 

=
1
2 ቈ

2 (ܽ + (ߗ݆ 
(ܽ + ଶ(ߗ݆   + ଴ߗ 

ଶ቉ =
(ܽ + (ߗ݆ 

(ܽ + ଶ(ߗ݆  + ଴ߗ 
ଶ 
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Example 3.6 Determine the Fourier transform of the rectangular pulse shown in fig 3.10.1. 
 

 
Fig. 3.10.1 

Solution:  
From fig. 3.10.1, the equation can be written as, 
x(t) = 1; for ݐ = ݋ݐ ܶ− + ܶ 
Using the definition of FT, 

(ߗ݆)ܺ = න ݐ௝ఆ௧݀ି݁(ݐ)ݔ
ஶ

ିஶ

 

= න 1 ݁ି௝ఆ௧݀ݐ
ା்

ି்

 

= ቂ௘షೕ೾೟

ି௝ఆ
ቃ

ି்

ା்
= ௘షೕ೾೅

ି௝ఆ
− ௘ೕ೾೅

ି௝ఆ
 = ଵ

௝ఆ
(݁௝ఆ் − ݁ି௝ఆ்)= ଵ

௝ఆ
 ܶߗ݊݅ݏ2݆

= 2 ௦௜௡ఆ்
ఆ

=2ܶ ௦௜௡ఆ்
ఆ்

= as  ௦௜௡ఏ.………ܶߗܿ݊݅ݏ2ܶ
ఏ

=  ߠܿ݊݅ݏ

 
Example 3.7 Determine the inverse Fourier transform of the following functions. 

(ߗ݆)ܺ.1 = ଷ(௝ఆ)ାଵସ
௝ఆమା଻௝ఆାଵଶ

 

(ߗ݆)ܺ.2 = ௝ఆା଻
(௝ఆାଷ)మ 

 
Solution:  

1.Given, (ࢹ࢐)ࢄ = ૜(ࢹ࢐)ା૚૝
ା૚૛ࢹ૛ାૠ࢐ࢹ࢐

 

(ߗ݆)ܺ =
(ߗ݆)3 + 14

ߗ݆) + ߗ݆)(3 + 4) 

Using partial fraction, 

(ߗ݆)ܺ =
ଵܣ

ߗ݆) + 3) +
ଶܣ

ߗ݆) + 4)  
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ଵܣ =
(ߗ݆)3 + 14

ߗ݆) + ߗ݆)(3 + ߗ݆) (4 + 3)ቤ
௝ఆୀିଷ

= 5 

ଶܣ =
(ߗ݆)3 + 14

ߗ݆) + ߗ݆)(3 + ߗ݆) (4 + 4)ቤ
௝ఆୀିସ

= −2 

 

(ߗ݆)ܺ = ହ
(௝ఆାଷ)

− ଶ
(௝ఆାସ)

                                   (3.60) 

Using Fourier transform of ܨ{݁ି௔௧(ݐ)ݑ} = ଵ
௝ఆା௔

 

The inverse Fourier transform of Eq. (3.60) can be written as, 

 

(ݐ)ݔ = 5݁ିଷ௧(ݐ)ݑ − 2݁ିସ௧(ݐ)ݑ 
 
2. Given, (ࢹ࢐)ࢄ = ାૠࢹ࢐

 ૛(ା૜ࢹ࢐)

Using partial fraction, above function can be written as, 

X(jΩ) =
ଵܣ

(jΩ + 3)ଶ +
ଶܣ

jΩ + 3 

ଵܣ =
ߗ݆ + 7

ߗ݆) + 3)ଶ ߗ݆)  + 3)ଶฬ
௝ఆୀିଷ

= −3 + 7 = 4 

Using rule of repeating poles, 

ଶܣ =
݀

൤ (ߗ݆)݀
ߗ݆ + 7

ߗ݆) + 3)ଶ ߗ݆)  + 3)ଶ൨ อ
௝ఆୀିଷ

=
݀

(ߗ݆)݀ ߗ݆) + 7) ฬ
௝ఆୀିଷ

= 1  

(ߗ݆)ܺ = ସ
(୨ஐାଷ)మ + ଵ

୨ஐାଷ
                                     (3.61) 

Using Fourier transform of ܨ{ି݁ݐ௔௧(ݐ)ݑ} = ଵ
(௝ఆା௔)మ 

The inverse Fourier transform of Eq. (3.61) cann be written as, 

 

(ݐ)ݔ = (ݐ)ݑଷ௧ି݁ݐ4 + ݁ିଷ௧(ݐ)ݑ 
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Example 3.8 Given X(jΩ) = 2πδ(Ω − Ω଴) 
Determine the time-domain signal x(t). 
Solution: The inverse Fourier transform can be found as, 

x(t) =
1

2π න X(jΩ)e୨ஐ୲

ஶ

ିஶ

dΩ 

Substituting for X(jΩ), we get 

x(t) =
1

2π න 2πδ(Ω − Ω଴)
ஶ

ିஶ

e୨ஐ୲dΩ 

x(t) = න e୨ஐ୲δ(Ω − Ω଴)dΩ
ஶ

ିஶ

  

Using the Sifting property of impulse, 

 න x(t)δ(t − t଴)
ஶ

ିஶ

dt = x(t଴) 

∴ x(t) =  e୨ஐ୲ 
For this time–domain signal, the Fourier transform given as,  

e୨ஐ౥୲  
୊୘
↔ 2πδ(Ω − Ω଴) 

 
Example 3.9 Find the Fourier transform of the periodic signal 

x(t) = sinΩ଴t  
Solution: Using Euler’s identity, x(t) can be written as 

x(t) =
e୨ஐబ୲ − eି୨ஐబ୲

2j =
1
2j e୨ஐబ୲ −

1
2j eି୨ஐబ୲ 

The Fourier series coefficients can be identified as, 

aଵ  =  
1
2j ,  aିଵ  =  

−1
2j , 

 
Substituting the values, we get the Fourier transform ofsinΩ଴t as 

X(jΩ) =
π
j δ(Ω − Ω଴) −

π
j δ(Ω + Ω଴) 
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3.10 Discrete Time Fourier Series representation 

A discrete time signal which is periodic with fundamental period ܰ can be decomposed into ܰ 
harmonics of frequency components (frequency spectrum). When we combine these related 
frequency components it must give the Fourier series representation of that particular periodic 
discrete time signal which is a function of angular frequency denoted as ω, . This representation 
of Fourier series of discrete time signal is called Discrete Time Fourier Series (DTFS).  
3.10.1   Representation of Discrete Time Fourier Series 

The Discrete Time Fourier Series, (DTFS) of discrete time periodic signal ݔ[݊] with period ܰ 
is defined as, 

[݊]ݔ = ෍ ܽ௞݁
௝ଶగ௞௡

ே

ேିଵ

௞ୀ଴

 

,ݐ݈݁ ω0  =  Fundamental frequency of ݔ[݊] 

[݊]ݔ = ෍ ܽ௞݁௝ன0௞௡
ேିଵ

௞ୀ଴

 

,ݐ݈݁ ݇ = ݇௧௛ harmonic frequency component of ݔ[݊] 
 

[݊]ݔ = ∑ ܽ௞݁௝னೖ௡ேିଵ
௞ୀ଴                          (3.62) 

 
Where, ܽ௞= Fourier coefficients 

This coefficient represents the amplitude and phase of the kth frequency component that 
provides the presentation of ݔ[݊] in the Fourier/frequency domain. 
These Fourier coefficients ܽ௞ can be evaluated using following formula, 

 

ܽ௞ = ଵ
ே

∑ ݁[݊]ݔ
షೕమഏೖ೙

ಿேିଵ
௡ୀ଴ ; for ݇ = 0, 1, 2, . . ܰ − 1                            (3.63) 

 
3.10.2  Properties of DTFS in terms of coefficients 
The properties of DTFS coefficients are given in table 3.1 in terms of Fourier coefficients. Let 
has Fourier series coefficients ܾ௞ [݊]ݕ has Fourier series coefficients ܽ௞ and [݊]ݔ . 
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Table 3.1 : Properties of DTFS in terms of coefficients 

 
Sr. No. Property name Discrete periodic 

signal 
FS coefficients 

1 Linearity ݔܣ[݊] + ௞ܽܣ [݊]ݕܤ + ௞ܾܤ  

2 Time shifting ݔ[݊ − ݊଴] ܽ௞݁
௝ଶగ௞௡బ

ே  

3 Frequency shifting ݔ[݊]݁
௝ଶగ௡௡బ

ே  ܽ௞ି௡బ  

4 Conjugation ݔ∗[݊] ܽ∗
ି௞  

5 Time reversal ݔ[−݊] ܽି௞  

6 Time scaling ݔ ቂ ௡
௠

ቃ where ݊ is 
multiple of ݉ 

1
݉ ܽ௞  

7 Multiplication ݕ[݊]ݔ[݊] 
෍ ܽ௠ܾ௞ି௠

ேିଵ

௠ୀ଴

 

8 Convolution 
෍ ݊]ݕ[݉]ݔ
ேିଵ

௠ୀ଴
− ݉]ே 

 
ܰܽ௞ܾ௞  

9 Symmetry If ݔ[݊] is real ܽ௞ = ܽ∗
ି௞  

|ܽ௞| = |ܽି௞| 
∠ܽ௞ = −∠ܽି௞  

If ݔ[݊] is real and 
even 

ܽ௞ are real and even 

If ݔ[݊] is real and 
odd 

ܽ௞ are imaginary and 
odd 

10 Parseval’s theorem ܲ

=
1
ܰ ෍|ݔ[݊]|ଶ

ேିଵ

௡ୀ଴

 
ܲ = ෍|ܽ௞|ଶ

ேିଵ

௞ୀ଴

 

 
Solved examples on DTFS 
Example 3.6 Determine the DTFS representation of the following signals. 

[݊]ݔ .1 =  ݊ߨ5√ݏ݋4ܿ
[݊]ݔ .2 = ݏ݋8ܿ గ௡

ସ
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Solution: 
1. Given, ࢞[࢔] = ૝࢙࢕ࢉ√૞࣊࢔ 

Let us check for the periodicity, 

݊]ݔ + ܰ] = ݊]ߨ5√ݏ݋4ܿ + ܰ] = 4cos [√5݊ߨ +  [ܰߨ5√
For periodicity √5݊ߨ should be equal to integral multiple of 2ߨ. 

Let √5ܰߨ = ܯ ×        where M and N are integers ;ߨ2
௬௜௘௟ௗ௦
ሱ⎯⎯⎯ሮ ܰ = ଶ

√ହ
 ܯ

Here N cannot be an integer for any integer value of M and so ݔ[݊] will not be periodic and 
for nonperiodic signal FS does not exists. 

2. Given, ࢞[࢔] = ૡ࢙࢕ࢉ ࢔࣊
૝

 

Let us check for the periodicity, 

݊]ݔ + ܰ] = ݏ݋8ܿ
݊]ߨ + ܰ]

4 = 8cos [
݊ߨ
4 +

ܰߨ
4 ] 

For periodicity గ௡
ସ

 should be equal to integral multiple of 2ߨ. 

Let గே
ସ

= ܯ ×        where M and N are integers ;ߨ2
௬௜௘௟ௗ௦
ሱ⎯⎯⎯ሮ ܰ =  ܯ8

Here N is an integer for M = 1, 2, 3, ..... 
Let M = 1, \ N = 8 
So ݔ[݊] will be periodic with fundamental period 8 and fundamental frequency 

߱଴ = ଶగ
ே

= ଶగ
଼

= గ
ସ
. 

Now go for the Fourier series expansion, 
The Fourier coefficient ܽ௞ is given by, 

ܽ௞ = ଵ
ே

∑ ݁[݊]ݔ
షೕమഏೖ೙

ಿேିଵ
௡ୀ଴ ; for ݇ = 0, 1, 2, . . ܰ − 1 

Here, N=8 and ݔ[݊] = ݏ݋8ܿ గ௡
ସ

 

ܽ௞ = ଵ
଼

∑ ݏ݋8ܿ గ௡
ସ

݁
షೕమഏೖ೙

ఴ଻
௡ୀ଴ ; for ݇ = 0, 1, 2,3, 4, 5, 6, 7 

=
8
8 ෍ ݏ݋ܿ

݊ߨ
4 ݁

ି௝గ௞௡
ସ

଻

௡ୀ଴

= ෍ ݏ݋ܿ
݊ߨ
4 ൬ܿݏ݋

݊݇ߨ
4 − ݊݅ݏ݆

݊݇ߨ
4 ൰

଻

௡ୀ଴

 



Signals and Systems | 131 

 
 

= 0ݏ݋ܿ)0ݏ݋ܿ − (0݊݅ݏ݆ + ݏ݋ܿ
ߨ
4 ൬ܿݏ݋

݇ߨ
4 − ݊݅ݏ݆

݇ߨ
4 ൰ + ݏ݋ܿ

ߨ
2 ൬ܿݏ݋

݇ߨ
2 − ݊݅ݏ݆

݇ߨ
2 ൰

+ ݏ݋ܿ
ߨ3
4 ൬ܿݏ݋

݇ߨ3
4 − ݊݅ݏ݆

݇ߨ3
4 ൰ + ݇ߨݏ݋ܿ)ߨݏ݋ܿ − (݇ߨ݊݅ݏ݆

+ ݏ݋ܿ
ߨ5
4 ൬ܿݏ݋

݇ߨ5
4 − ݊݅ݏ݆

݇ߨ5
4 ൰ + ݏ݋ܿ

ߨ3
2 ൬ܿݏ݋

݇ߨ3
2 − ݊݅ݏ݆

݇ߨ3
2 ൰

+ ݏ݋ܿ
ߨ7
4 ൬ܿݏ݋

݇ߨ7
4 − ݊݅ݏ݆

݇ߨ7
4 ൰ 

As, ܿ0ݏ݋ = 1, ߨݏ݋ܿ = −1, ݏ݋ܿ గ
ସ

= ݊݅ݏ గ
ସ

= ݊݅ݏ ଷగ
ସ

= √ଶ
ଶ

, ݏ݋ܿ ଷగ
ସ

= − √ଶ
ଶ

, ݏ݋ܿ గ
ଶ

= 0, ݊݅ݏ గ
ଶ

=

1, ߨ݊݅ݏ = 0, ݏ݋ܿ ହగ
ସ

= ݊݅ݏ ହగ
ସ

= − √ଶ
ଶ

, ݏ݋ܿ ଷగ
ଶ

= 0, ݊݅ݏ ଷగ
ଶ

= −1, ݏ݋ܿ ଻గ
ସ

= √ଶ
ଶ

, ݊݅ݏ ଻గ
ସ

=

− √ଶ
ଶ

 

ܽ௞ = 1 +
√2
2 ቆ

√2
2 ݇ − ݆

√2
2 ݇ቇ −

√2
2 ቆ−

√2
2 ݇ − ݆

√2
2 ݇ቇ + ݇ −

√2
2 ቆ−

√2
2 ݇ + ݆

√2
2 ݇ቇ

+
√2
2 ቆ

√2
2 ݇ + ݆ 

√2
2 ݇ቇ 

ܽ௞ = 1 +
2
4 ݇ +

2
4 ݇ + ݇ +

2
4 ݇ +

2
4 ݇ 

When k=0, ܽ௞ = ܽ଴ = 1 

When k=1, ܽ௞ = ܽଵ = 1 + ଶ
ସ

+ ଶ
ସ

+ 1 + ଶ
ସ

+ ଶ
ସ

= 4 

When k=2, ܽ௞ = ܽଶ = 1 + 1 + 1 + 2 + 1 + 1 = 7 

When k=3, ܽ௞ = ܽଷ = 1 + ଺
ସ

+ ଺
ସ

+ 3 + ଺
ସ

+ ଺
ସ

= 10 

When k=4, ܽ௞ = ܽସ = 1 + 2 + 2 + 4 + 2 + 2 = 13 

When k=5, ܽ௞ = ܽହ = 1 + ହ
ଶ

+ ହ
ଶ

+ 5 + ହ
ଶ

+ ହ
ଶ

= 16 

When k=6, ܽ௞ = ܽ଺ = 1 + 3 + 3 + 6 + 3 + 3 = 19 

When k=7, ܽ௞ = ܽ଻ = 1 + ଻
ଶ

+ ଻
ଶ

+ 7 + ଻
ଶ

+ ଻
ଶ

= 22 

The Fourier series representation of ݔ[݊] is, 

[݊]ݔ = ෍ ܽ௞݁
௝ଶగ௞௡

ே

ேିଵ

௞ୀ଴

= ෍ ܽ௞݁
௝ଶగ௞௡

଼ = ෍ ܽ௞݁
௝గ௞௡

ସ

଻

௞ୀ଴

଻

௞ୀ଴

 

=ܽ଴ + ܽଵ݁
ೕഏ೙

ర + ܽଶ݁
ೕഏ೙

మ + ܽଷ݁
ೕయഏ೙

ర + ܽସ݁௝గ௡ + ܽହ݁
ೕఱഏ೙

ర + ܽ଺݁
ೕయഏ೙

మ + ܽ଻݁
ೕళഏ೙

ర  
 

[݊]ݔ = 1 + 4݁
௝గ௡

ସ + 7݁
௝గ௡

ଶ + 10݁
௝ଷగ௡

ସ + 13݁௝గ௡ + 16݁
௝ହగ௡

ସ + 19݁
௝ଷగ௡

ଶ + 22݁
௝଻గ௡

ସ  
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3.11 Discrete Time Fourier Transform (DTFT) Representation 

3.11.1  Definition of DTFT 

The Fourier transform (FT) of discrete-time signals is called Discrete Time Fourier Transform 
(DTFT).  
Let, ݔ[݊]=Finite energy discrete time signal 
ܺൣ݁௝ఠ൧=Discrete time Fourier transform of signal ݔ[݊] 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ∑ ௝ఠ௡ାஶି݁[݊]ݔ
௡ୀିஶ                         (3.64) 

The discrete time Fourier transform exists only for the absolutely summable signals. That means 
the Fourier transform exists for the signal ݔ[݊] if, 

෍ |[݊]ݔ| < ∞
ାஶ

௡ୀିஶ

 

3.11.2  Definition of Inverse DTFT 

Let, ݔ[݊]=Finite energy discrete time signal 
ܺൣ݁௝ఠ൧=Discrete time Fourier transform of signal ݔ[݊] 
The inverse Fourier transform (IFT) of discrete-time signal is written as, 

[݊]ݔ = ଵ{ܺൣ݁௝ఠ൧}ିܨ = ଵ
ଶగ ∫ ܺൣ݁௝ఠ൧݁௝ఠ௡݀߱గ

ିగ                         (3.65) 

As ܺൣ݁௝ఠ൧ is periodic with period 2ߨ, the limits of integral can be either from "−ߨ to + ߨ ", or 
from "0 to 2 ߨ ", or any interval of  2ߨ. 
 
3.12     Properties of DTFT 
3.12.1   Linearity 

If   ݔଵ[݊] ܶܨሬሬሬሬሬ⃗    ܺଵ[݆݁߱], 
ሬሬሬሬሬ⃗ܶܨ [݊]ଶݔ       ܺଶ[݆݁߱] 
Then, 
[݊]ଵݔଵܽ}ܨ + ܽଶݔଵ[݊]} = ܽଵ ܺଵ[݆݁߱] + ܽଶ ܺଶ[݆݁߱]                             (3.66) 
Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ
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∴  ܺଵൣ݆݁߱൧ = ෍ ݆݊߱−݁ [݊]ଵݔ 
+∞

݊=−∞
 

  

∴  ܺଶൣ݆݁߱൧ = ෍ ݆݊߱−݁ [݊]ଶݔ 
+∞

݊=−∞
 

 
Consider linear combination,   ܽଵݔଵ[݊] + ܽଶݔଵ[݊] 
∴ [݊]ଵݔଵܽ}ܨ   + ܽଶݔଵ[݊]} =  ∑ (ܽଵݔଵ[݊] + ܽଶݔଵ[݊])݁−݆߱݊+∞

݊=−∞    
       = ∑ [ܽଵݔଵ[݊]݁−݆߱݊ + ܽଶݔଵ[݊]݁−݆߱݊]+∞

݊=−∞   
       = ܽଵ ∑ ݆݊߱−݁[݊]ଵݔ + ܽଶ ∑ ∞+݆݊߱−݁[݊]ଵݔ

݊=−∞
+∞
݊=−∞   

= ܽଵ ܺଵ[݆݁߱] + ܽଶ ܺଶ[݆݁߱] 
 
3.12.2  Time Shifting: 
If   ܶܨ     [݊]ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬ⃗   ܺൣ݆݁߱൧ , 
Then, 
݊]ݔ}ܨ − ݊଴]} = ܺൣ݆݁߱൧ ݁ି௝ఠ௡బ                                  (3.67) 
Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

∴ ݊]ݔ}ܨ − ݊଴]} = ∑ ݊]ݔ − ݊଴]݁−݆߱݊+∞
݊=−∞   

Let ݊ − ݊଴ = ݉,     ∴ ݊ = ݉ + ݊଴ 

∴ ݊]ݔ}ܨ − ݊଴]} = ෍ (௠ା௡బ)݆߱−݁[݉]ݔ
+∞

݉=−∞
 

= ෍ ௠݁−݆߱௡బ݆߱−݁[݉]ݔ

+∞

݉=−∞
 

= ݁−݆߱௡బ ෍ ௠݆߱−݁[݉]ݔ
+∞

݉=−∞
 

Replace m by n 
= ܺൣ݆݁߱൧ ݁ି௝ఠ௡బ   
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3.12.3 Periodicity 
 

If   ܶܨ [݊]ݔሬሬሬሬሬ⃗   ܺ[݆݁߱], then  ܺ[݆݁߱] is periodic with period 2ߨ 
∴ ܺൣ݆݁߱൧ =  (3.68)                        [݇ߨ2+߱)݆݁]ܺ

 
Where ݇ is an integer. 
 
3.12.4 Time Reversal: 
If ܶܨ [݊]ݔሬሬሬሬሬ⃗   ܺ[݆݁߱], then, 
{[݊−]ݔ}ܨ = ܺ[݁ି௝ఠ]                            (3.69) 
If a signal is folded about the origin in discrete time, its magnitude spectrum does not change  
and the phase spectrum changes in sign i.e., phase reversal happens. 
 
Proof:  
 
By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

∴ {[݊−]ݔ}ܨ = ∑ ∞+݆݊߱−݁[݊−]ݔ
݊=−∞   

Let −݊ = ݉,     ∴ ݊ ℎ݁݊ݓ → −∞, ݉ → ݊ ℎ݁݊ݓ ݀݊ܽ ∞+ → +∞, ݉ → −∞ 

∴ {[݊−]ݔ}ܨ = ෍ ݆݉߱݁[݉]ݔ
+∞

݉=−∞
 

{[݊−]ݔ}ܨ = ෍ ݉−(݆߱−)݁[݉]ݔ
+∞

݉=−∞
 

{[݊−]ݔ}ܨ = ܺ[݁ି௝ఠ] 
 
3.12.5   Conjugation: 
If ܶܨ [݊]ݔሬሬሬሬሬ⃗   ܺ[݆݁߱], then 
 
{[݊]∗ݔ}ܨ = ܺ∗[݁ି௝ఠ]                             (3.70) 
 
Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ
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{[݊]∗ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]∗ݔ
ାஶ

௡ୀିஶ

 

= ൥ ෍ ௡ି(௝ఠି)݁[݊]ݔ
ାஶ

௡ୀିஶ

൩
∗

 

= ቂܺൣ݁ି௝ఠ൧ቃ
∗
 

= ܺ∗[݁ି௝ఠ]   
 
3.12.6   Frequency Shifting: 
 
If ܶܨ [݊]ݔሬሬሬሬሬ⃗   ܺ[݆݁߱], then 
 
ൟ[݊]ݔ൛݁௝ఠబ௡ܨ = ܺ[݁௝(ఠିఠబ)]                           (3.71) 
 
Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

ൟ[݊]ݔ൛݁௝ఠబ௡ܨ = ෍ ݁௝ఠబ௡ݔ[݊]݁ି௝ఠ௡
ାஶ

௡ୀିஶ

 

= ෍ ௝(ఠିఠబ)௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

= ܺ[݆݁(߱−߱0)] 
 
3.12.7   Differentiation in Frequency 
If ܶܨ [݊]ݔሬሬሬሬሬ⃗   ܺ[݆݁߱], then 

{[݊]ݔ ݊}ܨ = ݆ ௗ
ௗఠ

ܺ[݁௝ఠ]                         (3.72) 

Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ
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{[݊]ݔ݊}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ݊
ାஶ

௡ୀିஶ

 

{[݊]ݔ݊}ܨ = ෍ ௝ఠ௡ି݁(݆−)݆[݊]ݔ݊
ାஶ

௡ୀିஶ

 

= ݆ ෍ ௝ఠ௡ି݁(݆݊−)[݊]ݔ
ାஶ

௡ୀିஶ

 

As, (−݆݊)݁ି௝ఠ௡ = ௗ
ௗఠ

݁ି௝ఠ௡  

= ݆ ෍ [݊]ݔ
݀

݀߱ ݁ି௝ఠ௡
ାஶ

௡ୀିஶ

 

= ݆
݀

݀߱ ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

= ݆
݀

݀߱ ܺ[݁௝ఠ] 

 
3.12.8   Convolution 

If ݔଵ[݊]  ܶܨ  ሬሬሬሬሬሬሬሬሬ⃗ ଵܺ[݁௝ఠ]  

ሬሬሬሬሬሬሬሬሬ⃗  ܶܨ  [݊]ଶݔ ܺଶ[݁௝ఠ] then, 
[݊]ଵݔ}ܨ ∗ {[݊]ଶݔ  =  ଵܺ[݁௝ఠ]ܺଶ[݁௝ఠ]                        (3.73) 
 
Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

∴  ܺଵൣ݆݁߱൧ = ෍ ݆݊߱−݁ [݊]ଵݔ 
+∞

݊=−∞
 

  

∴  ܺଶൣ݆݁߱൧ = ෍ ݆݊߱−݁ [݊]ଶݔ 
+∞

݊=−∞
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∴ [݊]ଵݔ} ܨ ∗ {[݊]ଶݔ  = ෍ [݊]ଵݔ)  ∗ ଶ[݊]) ݁ି௝ఠ௡ݔ 
ାஶ

௡ୀିஶ

 

Using convolution formula, 

[݊]ଵݔ} ܨ {[݊]ଶݔ ∗ = ෍ ൥ ෍ [݇]ଵݔ) ∗ ݊]ଶݔ  − ݇]) 
ାஶ

݇ୀିஶ

൩ 
ାஶ

௡ୀିஶ

݁ି௝ఠ௡  

= ෍ ෍ [݇]ଵݔ) ݊]ଶݔ ∗ − ݇]) 
ାஶ

݇ୀିஶ

 
ାஶ

௡ୀିஶ

݁ି௝ఠ௡݁ି௝ఠ௞ ݁௝ఠ௞  

= ෍ [݇]ଵݔ
ାஶ

݇ୀିஶ

݁ି௝ఠ௞ ෍ ݊]ଶݔ − ݇]
ାஶ

௡ୀିஶ

݁ି௝ఠ(௡ି௞) 

Let, n-k=m 

= ෍ [݇]ଵݔ
ାஶ

݇ୀିஶ

݁ି௝ఠ௞ ෍ [݉]ଶݔ
ାஶ

௠ୀିஶ

݁ି௝ఠ௠  

Replace ݇ ܽ݊݀ ݉ ݋ݐ ݊, 
∴ [݊]ଵݔ}ܨ {[݊]ଶݔ ∗ =  ଵܺ[݁௝ఠ]ܺଶ[݁௝ఠ] 

 
3.12.9   Parseval’s Theorem: 
If ݔଵ[݊]  ܶܨ  ሬሬሬሬሬሬሬሬሬ⃗ ଵܺ[݁௝ఠ]  
 
ሬሬሬሬሬሬሬሬሬ⃗  ܶܨ  [݊]ଶݔ ܺଶ[݁௝ఠ] then, Parseval’s relation says that, 
 

∑ [݊]ଵݔ)  ∗ ([݊]ଶݔ  = ଵ
ଶగ௝ ∫ หܺ[݁௝ఠ]หଶగ

ିగ
ାஶ
௡ୀିஶ ݀߱                         (3.74) 

Proof: By definition of FT, 

ܺൣ݁௝ఠ൧ = {[݊]ݔ}ܨ = ෍ ௝ఠ௡ି݁[݊]ݔ
ାஶ

௡ୀିஶ

 

Using inverse FT 

[݊]ݔ =
1

݆ߨ2
න ܺ[݁௝ఠ]

గ

ିగ

݁௝ఠ௡݀߱ 

Using R.H.S of Eq. (3.74), 
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1
݆ߨ2

නหܺ[݁௝ఠ]หଶ
݀߱

గ

ିగ

=
1

݆ߨ2
න ܺ1[݁௝ఠ]ܺ2

∗[݁௝ఠ]݀߱
గ

ିగ

 

=
1

݆ߨ2
න ൥ ෍ ௝ఠ௡ି݁[݊]1ݔ

ାஶ

௡ୀିஶ

൩ ܺ2
∗[݁௝ఠ]݀߱

గ

ିగ

 

= ෍ [݊]1ݔ ൥
1

݆ߨ2
න ܺ∗[݁௝ఠ]݁ି௝ఠ௡݀߱

గ

ିగ

൩
ାஶ

௡ୀିஶ

 

=∑ [݊]ଵݔ)  ∗ ଶ[݊])ାஶݔ 
௡ୀିஶ  

 
3.13 Discrete Fourier Transform (DFT) Representation 

The above discrete time Fourier transform (DTFT) concept provides analysis for a discrete time 
signal in frequency domain where it is a continuous function of ߱ and so it cannot be processed 
by digital system. Hence, we have to represent this ߱ into a discrete function of ߱, so that 
frequency analysis of discrete time signals can be presented using digital system.  
Basically, the DFT of a discrete time signal is obtained by sampling the DTFT of the signal at 
uniform frequency intervals. These samples must be sufficient to avoid aliasing effect. DFT is 
represented as a sequence of complex numbers represented as ܺ(݇) for k = 0, 1, 2, 3, …. The 
magnitude and phase of each sample of ܺ(݇) can also be computed. 
The plot of magnitude versus ݇ is called magnitude spectrum and the plot of phase versus ݇ is 
called phase spectrum (frequency spectrum).  
 
3.13.1 Definition of DFT 

Let ܺ[݆݁߱] be DTFT of the discrete time signal ݔ[݊]. The discrete Fourier transform (DFT) 
 is calculated by sampling one period of the DTFT ܺ[݆݁߱]  at a finite number of frequency[݊]ݔ
points. 
Let one period consists of N equally spaced points, 0 ≤ ߱ ≤  .ߨ2
Each frequency point is represented by ratio, 

߱௞ = ଶగ௞
ே

;    for ݇ =  0, 1, 2 … ܰ − 1 

Hence, the sampling of DTFT at frequency points is written as, 
ܺ[݇] = ܺ[݁௝ఠ]ห

ఠೖୀమഏೖ
ಿ

;     for ݇ =  0, 1, 2 … ܰ − 1                     (3.75) 

DFT is also called as N point DFT, where the number of samples N for a finite duration 
sequence x[n] of length L should be such that, N ≥ L, in order to avoid aliasing. 
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Let, ݔ[݊] = Discrete time signal having length as L 
 ܺ[݇]= DFT of ݔ[݊] 
Hence, n-point DFT of ݔ[݊] is defined as, 

ܺ[݇] = ∑ ೕమഏೖ೙ି݁[݊]ݔ
ಿேିଵ

௡ୀ଴ ;   for ݇ =  0, 1, 2 … ܰ − 1                      (3.76) 
 
3.13.2   Definition of Inverse DFT 

Let, ݔ[݊] = Discrete time signal having length as L 
 ܺ[݇]= N-point DFT of ݔ[݊] 
Hence, inverse DFT of ܺ[݇] is defined as, 

[݊]ݔ = ଵ
ே

∑ ܺ[݇]݁
ೕమഏೖ೙

ಿேିଵ
௞ୀ଴ ;   for ݊ =  0, 1, 2 … ܰ − 1                            (3.77) 

The relation between DTF and inverse DFT is expressed as, 

,ܶܨܦ            [݊]ݔ ሬ⃖ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ܶܨܦܫ           ܺ[݇] 
3.14  Properties of DFT 
3.14.1 Linearity 

If   ݔଵ[݊] ܶܨܦሬሬሬሬሬሬሬሬ⃗    ܺଵ[݇], 
ሬሬሬሬሬሬሬሬ⃗ܶܨܦ [݊]ଶݔ       ܺଶ[݇] 
Then, 
[݊]ଵݔଵܽ}ݐܨܦ + ܽଶݔଵ[݊]} = ܽଵ ܺଵ[݇] + ܽଶ ܺଶ[݇]                                       (3.78) 
Proof: By definition of FT, 

ܺ[݇] = {[݊]ݔ}ܶܨܦ = ෍ ݁[݊]ݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

∴  ܺଵ[݇] = ෍ ݁ [݊]ଵݔ 
݊݇ߨ2݆−

ܰ

ܰ−1

݊=0
 

  

∴  ܺଶ[݇] = ෍ ݁ [݊]ଶݔ 
݊݇ߨ2݆−

ܰ

ܰ−1

݊=0
 

Consider linear combination,   ܽଵݔଵ[݊] + ܽଶݔଵ[݊] 

∴ [݊]ଵݔଵܽ}ܶܨܦ   + ܽଶݔଵ[݊]} =  ∑ (ܽଵݔଵ[݊] + ܽଶݔଵ[݊])݁
݊݇ߨ2݆−

ܰܰ−1
݊=0    

       = ∑ [ܽଵݔଵ[݊]݁
݊݇ߨ2݆−

ܰ + ܽଶݔଵ[݊]݁
݊݇ߨ2݆−

ܰ ]ܰ−1
݊=0   
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       = ܽଵ ∑ ݁[݊]ଵݔ
݊݇ߨ2݆−

ܰ + ܽଶ ∑ ݁[݊]ଵݔ
݊݇ߨ2݆−

ܰܰ−1
݊=0

ܰ−1
݊=0   

= ܽଵ ܺଵ[݇] + ܽଶ ܺଶ[݇] 
 
3.14.2  Circular Time Shifting: 
If   ܶܨܦ    [݊]ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   ܺ[݇] , 
Then, 

݊)]ݔ}ܶܨܦ − ݉)ே]} = ܺ[݇] ݁
݉݇ߨ2݆−

ܰ                             (3.79) 
 
Proof: By definition of DFT, 

ܺ[݇] = {[݊]ݔ}ܶܨܦ = ෍ ݁[݊]ݔ
ି௝ଶగ௞௠

ே

ேିଵ

௡ୀ଴

 

∴ ݊)]ݔ}ܶܨܦ − ݉)ே]} = ∑ ݊)]ݔ − ݉)ே]݁
݊݇ߨ2݆−

ܰܰ−1
݊=0   

Let ݊ − ݉ = ∴     ,݌ ݊ = ݌ + ݉ 

∴ ݊]ݔ}ܶܨܦ − ݊଴]} = ෍ ݊)]ݔ − ݉)ே]݁
(௣ା௠)݇ߨ2݆−

ܰ

ܰ−1

݊=0
 

= ෍ ݁[ே(݌)]ݔ
(௣ା௠)݇ߨ2݆−

ܰ

ܰ−1

0=݌
 

= ݁
݉݇ߨ2݆−

ܰ ෍ ݁[݌]ݔ
௣݇ߨ2݆−

ܰ

ܰ−1

0=݌
 

Replace p by n 

= ܺ[݇] ݁
݉݇ߨ2݆−

ܰ  
3.14.3 Periodicity 
 
If   ܶܨܦ    [݊]ݔ   ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   ܺ[݇] , i. e., If a sequence ݔ[݊] is periodic with periodicity of N samples then 

N-point DFT, X(k) is also periodic with periodicity of N samples.  
Hence, if ݔ[݊] and ܺ[݇] are N point DFT pair then,  
ܺ[݊ +  ܰ]  =  for all ݊                                      (3.80) ; [݊]ݔ 
ܺ[݇ +  ܰ]  =  ܺ[݇] ; for all ݇                                      (3.81) 
 
Proof: By definition of DFT, 
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ܺ[݇] = {[݊]ݔ}ܶܨܦ = ෍ ݁[݊]ݔ
ି௝ଶగ௞௠

ே

ேିଵ

௡ୀ଴

 

∴ ܺ[݇ + ܰ] = ∑ ݁[݊]ݔ
(ܰ+݇)݊ߨ2݆−

ܰܰ−1
݊=0   

= ෍ ݁[݊]ݔ
݇݊ߨ2݆−

ܰ ݁
ܰ݊ߨ2݆−

ܰ

ܰ−1

݊=0
 

= ෍ ݁[݊]ݔ
݇݊ߨ2݆−

ܰ ݊ߨ2݆−݁
ܰ−1

݊=0
 

= ෍ ݁[݊]ݔ
݇݊ߨ2݆−

ܰ

ܰ−1

݊=0
 

∴ ܺ[݇ + ܰ] = ܺ[݇] 
 
3.14.4 Time Reversal: 
If ܶܨܦ [݊]ݔሬሬሬሬሬሬሬሬ⃗   ܺ[݇], then, 

ܰ]ݔ}ܶܨܦ − ݊]} = ܺ[ܰ − ݇]                                      (3.82) 

If a signal is folded about the origin in discrete time, its magnitude spectrum does not changes  

and the phase spectrum changes in sign i.e., phase reversal happens. 

 
Proof:  
By definition of DFT, 

ܺ[݇] = ܰ]ݔ}ܨ − ݊]} = ෍ ܰ]ݔ − ݊]݁
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

Let, ܰ − ݊ = ݉, ∴ ݊ = ܰ − ݉ 

= ෍ ݁[݉]ݔ
ି௝ଶగ௞(ܰ−݉)

ே

ேିଵ

௠ୀ଴

 

= ෍ ݁[݉]ݔ
ି௝ଶగ௠(ܰ−݇)

ே

ேିଵ

௠ୀ଴

 

= ܺ[ܰ − ݇] 
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3.14.5 Conjugation: 

If ܶܨܦ [݊]ݔሬሬሬሬሬሬሬሬ⃗   ܺ[݇], then 

{[݊]∗ݔ}ܶܨܦ = ܺ∗[ܰ − ݇]                                    (3.83) 

Proof: By definition of DFT, 

{[݊]∗ݔ}ܶܨܦ = ෍ ݁[݊]∗ݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

= ൥෍ ݁[݊]ݔ
௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

൩

∗

 

= ൤∑ ݁[݊]ݔ
ೕమഏೖ೙

ಿேିଵ
௡ୀ଴ ݁ି௝ଶగ൨

∗
  As, ݁ି௝ଶగ = 1 

= ൤∑ ݁[݊]ݔ
షೕమഏೖ(ಿష೙)

ಿேିଵ
௡ୀ଴ ൨

∗
   

= ܺ∗[ܰ − ݇]   
 

3.14.6 Circular Frequency Shifting:  
 
If ܶܨܦ [݊]ݔሬሬሬሬሬሬሬሬ⃗   ܺ[݇], then 

ܶܨܦ ൜݁
ೕమഏ೘೙

ಿ ൠ[݊]ݔ = ܺ[(݇ − ݉)ே]                                  (3.84) 

Proof: By definition of FT, 

ܺ[݇] = ܨ ൜݁
௝ଶగ௠௡

ே ൠ[݊]ݔ = ෍ ݁
௝ଶగ௠௡

ே ݁[݊]ݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

= ෍ ݁[݊]ݔ
ି௝ଶగ(௞ି௠)௡

ே

ேିଵ

௡ୀ଴

 

= ܺ[(݇ − ݉)ே] 
 
3.14.7 Multiplication 

If   ݔଵ[݊] ܶܨܦሬሬሬሬሬሬሬሬ⃗    ܺଵ[݇], 
ሬሬሬሬሬሬሬሬ⃗ܶܨܦ [݊]ଶݔ       ܺଶ[݇] 
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Then, 

{[݊]ଵݔ[݊]ଵݔ}ܶܨܦ = ଵ
ே

 [ܺଵ[݇] ⊛  ܺଶ[݇]]                   (3.85) 

Proof: By definition of FT, 

ܺ[݇] = {[݊]ݔ}ܶܨܦ = ෍ ݁[݊]ݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

{[݊]ଵݔ[݊]ଵݔ}ܶܨܦ = ෍ ݁[݊]ଶݔ[݊]ଵݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

= ෍ ൥
1
ܰ ෍ ଵܺ[݉]݁

௝ଶగ௠௡
ே

ேିଵ

௠ୀ଴

൩ ݁[݊]ଶݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

 

=
1
ܰ ෍ ଵܺ[݉] ൥෍ ݁[݊]ଶݔ

ି௝ଶగ௞௡
ே ݁

௝ଶగ௠௡
ே

ேିଵ

௡ୀ଴

൩
ேିଵ

௠ୀ଴

 

=
1
ܰ ෍ ଵܺ[݉] ൥෍ ݁[݊]ଶݔ

ି௝ଶగ(ି(௠ି௞))௡
ே

ேିଵ

௡ୀ଴

൩
ேିଵ

௠ୀ଴

 

=
1
ܰ ෍ ଵܺ[݉]ܺଶ[(݉ − ݇)]ே

ேିଵ

௠ୀ଴

 

=
1
ܰ

 [ܺଵ[݇] ⊛  ܺଶ[݇]] 

 
 
3.14.8 Convolution 

If   ݔଵ[݊] ܶܨܦሬሬሬሬሬሬሬሬ⃗    ܺଵ[݇], 
ሬሬሬሬሬሬሬሬ⃗ܶܨܦ [݊]ଶݔ       ܺଶ[݇] 
Then, 
[݊]ଵݔ}ܶܨܦ ⊛ {[݊]ଵݔ =  ܺଵ[݇] ܺଶ[݇]                         (3.86) 
 
Proof: By definition of FT, 

ܺ[݇] = {[݊]ݔ}ܶܨܦ = ෍ ݁[݊]ݔ
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴
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∴  ܺଵ[݇] = ෍ ݁[݊]ଵݔ
݊݇ߨ2݆−

ܰ

ܰ−1

݊=0
 

  

∴  ܺଶ[݇] = ෍ ݁[݊]ଶݔ
݊݇ߨ2݆−

ܰ

ܰ−1

݊=0
 

Considering the product of Xଵ[k] and Xଶ[k] and taking inverse DFT of the product the convolution 
property ccan be proved. 

Hence, 
 ܺଵ[݇] ܺଶ[݇] = [݊]ଵݔ}ܶܨܦ ⊛  {[݊]ଵݔ

 
3.14.9 Parseval’s Theorem: 

If   ݔଵ[݊] ܶܨܦሬሬሬሬሬሬሬሬ⃗    ܺଵ[݇], 
ሬሬሬሬሬሬሬሬ⃗ܶܨܦ [݊]ଶݔ       ܺଶ[݇] 
then, Parseval’s relation says that, 

∑ ∗ݔ  [݊]ଵݔ 
ଶ[݊] = ଵ

ே
ேିଵ
௡ୀ଴ ∑ ଵܺ[݇]  ܺ∗

ଶ[݇]ேିଵ
௞ୀ଴                            (3.87) 

 
Unit Summary 
 
Fourier series and Fourier transform are fundamental tools in signal processing, mathematics, 
physics, and engineering. They are used to analyze and represent periodic and non-periodic 
functions in terms of sinusoidal or complex exponential functions. Fourier series decomposes 
a periodic function into a sum of sinusoidal functions (sine and cosine). It's applicable to 
functions with periodicity, allowing representation in terms of a discrete set of harmonics. The 
series comprises a constant term (DC component) and an infinite sum of harmonic terms, each 
with its own amplitude and phase. Fourier transform extends the concept of Fourier series to 
non-periodic functions or signals. It transforms a function from the time or spatial domain into 
the frequency domain. It decomposes a function into its constituent frequencies, represented 
by a continuous spectrum. Fourier series and Fourier transform are indispensable tools in 
various fields for analyzing, synthesizing, and processing signals and functions. Understanding 
these concepts facilitates advanced analysis and manipulation of signals in diverse 
applications. 
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Exercises 

1. Find the Fourier series coefficients for the signals shown in figure. 

 
2. Find the inverse CTFT of the following: 
a. ܺ(݆Ω) = ସା௝Ω

ଵଷିΩమିସ௝Ω
 

b. ܺ(jΩ) = ୣషౠΩ

ଵା୨Ω
 

c. X(jΩ) = ଶା୨Ω
଺ିΩమା଻୨Ω

 

3. Find the output y(t) of an LTI system for an input x(t) = eିଶ୲u(t) + eିହ୲u(−t) and 
impulse response h(t) = eି୲u(t) by using CTFT. 

4. Given the FT of x(t) as, 

X(jΩ) =
2 + jΩ

(jΩ)ଶ + 6jΩ + 31 

    Find the transform for the following signals by using properties of CTFT: 
a. x ቀ୲

଺
ቁ + x(6t) 

b. x(−3t + 1) 
c. ୢ

ୢ୲
x(t) 

d. tx(t) 
 

5. Find the convolution of following signals using CTFT:  
x(t) = teିସ୲u(t),     h(t) = teିଶ୲u(t) 

6. If the function y = x in the range 0 to π is expanded as a sine series, show that it is equal 
to 

2 ൬
sin x

1 −
sin 2x

2 +
sin 3x

3 + ⋯ … … ൰ 

7. Expand ஠୶
଼

 (π − x) in a sine series valid when 
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0 ≤ x ≤ π 
8. Find a sine series for 

f(x) = x;     0 < x <
π
2 

          = 0;    ஠
ଶ

< x < π 

9. Show that in the range (0, π), the sine series for πx − xଶ is ଼
஠

 ቀsin x + ଵ
ଷయ  sin3x +

ଵ
ହయ  sin5x + ⋯ ቁ 

10. Find a Fourier cosine series corresponding to the function f(x) = x, defined in the 
interval (0,π). 

11. Find the Fourier sine series and the Fourier cosine series corresponding to the function , 

f(x) = π − x when 0 < x < π 
         Defined in the interval 0 to π. 

12. A function f(t) can be expressed as a sum of an odd part and even part: 
f(t) =  fୣ(t) + f଴(t)  

        Show that Re [F(ω)] is the transform of fୣ (t) 
         jIm[F(ω)] is the transform of f଴(t) 

13. Find the N-point Discrete Fourier Transform (DFT) of 

          h(n) = ଵ
ଷ

, for n = 0,1,2,  and zero otherwise. 
14. Find the DFT of x(n) if  

x(n) = 1, for n = 2 to 6 
x(n) = 0, for n = 0,1,7,8,9 

        Assume x(n) is periodic beyond this interval 0 − 9 
15. Find the response of the following system to the input: 

x(n) = 2 + 2cos ቀ
nπ
4 ቁ + cos ൬

2πn
3 +

π
2൰ 

          System: H(ω) = eି୨னcos (ன
ଶ

) 
16. Show that the Hilbert Transform of exp (jωt)is(−sgn f)exp (jωt) 
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17. Without using a calculator or computer find the dot products of (a)  w1 and w-1, (b) w1 
and w-2  (c) w11 and w37, where 

w୩ =

⎣
⎢
⎢
⎢
⎡ wସ

଴

wସ
୩

wସ
ଶ୩

wସ
ଷ୩⎦

⎥
⎥
⎥
⎤
 and w୒ూୀୣౠమಘ/ొూ  

         to show that they are orthogonal. 
18. Find the DTFS harmonic function of a signal x[n]with period 4 for which x[0]= 3, 

x[1]=1, x[2] = -5, and x[3]=0 using the matrix multiplication X = ୛ౄ୶
୒ూ

 

19. One period of a periodic function with period 4 is described by x[n] = δ[n] −
δ[n − 2], 0 ≤ n < 4. Using the summation formula for the DTFS harmonic function and 
not using the tables or properties, find the harmonic function X[k]. 

20. Find the DTFS harmonic function of  

x[n] = ෍ δଷ[m] −
୬

୫ୀିஶ

δଷ[m − 1] 

         with N୊ = N଴ = 3. 
21. A periodic signal x[n] is exactly described for all discrete time by its DTFS 

X[k] = (δ଼[k − 1] + δ଼[k + 1] + j2δ଼[k + 2] − j2δ଼[k − 2])eି୨஠୩/ସ 
          Using one fundamental period as the representation time. 

a) Write a correct analytical expression for x[n] in which √1 (j) does not appear 

b) What is the value of x[n]  at n = −10? 

22. Based on a representation time N୊ = 4, the DTFS harmonic function X[k] of a signal 
x[n] has the following values. 

X[−1] = 2 − j2, X[0] = 4, X[1] = 2 + j2, X[2] = 3 
a) What is the Value of X[3]? 

b) What is the Value of X[22]? 

c) What is the average value of x[n]? 
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Multiple-Choice Questions 
1. A CT periodic signal x(t) is represented in Fourier series representation as 
a. x(t) = ∑ a୩e୨୩Ωబ୲ஶ

୩ୀିஶ  
b. x(t) = ∑ aି୬eି୨୬Ωబ୲ஶ

୬ୀିஶ  
c. x(t) = ∑ a୬eି୨୬Ωబ୲ஶ

୬ୀିஶ  
d. x(t) = ∑ aି୩e୨Ωబ୲ஶ

୩ୀିஶ /k 
 

2. If the function f(x) is even, then which of the following is zero? 
a. a୬ 
b. b୬ 
c. a଴ 
d. nothing is zero 

 
3. The spectrum of a continuous periodic rectangular signal is a 
a. Discrete periodic sinc function 
b. Continuous periodic sinc function 
c. Discrete aperiodic sinc function 
d. Continuous aperiodic sinc function 

 
4. If the function f(x) is odd, then which of the only coefficient is present? 
a. a୬ 
b. b୬ 
c. a଴ 
d. Everything is present 

 
5. Find a୬ if the function f(x) = x–xଷ. 
a. finite value 
b. infinite value 
c. zero 
d. can’t be found 

 
6. The Fourier series coefficients of a continuous periodic signal x(t) are a୩. Fourier series 

coefficients of x(−t) are 
a. aି୩ 
b. −a୩ 
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c. a୩ 
d. ଵ

ୟౡ
 

 
7. If the Fourier series coefficients of a signal x(t) are a୩, then 
a. a୩ = aି୩

∗ 
b. a୩ = a୩

∗ 
c. −a୩ = a୩

∗ 
d. a୩ = −a୩

∗ 
 

8. x(t) is a continuous periodic signal with period T, fundamental frequency Ω଴ and 
Fourier series coefficients a୩. The Fourier series coefficients  of x(2t) are 

a. aଶ୩ 
b. a୩ 
c. 2a୩ 
d. ଵ

ଶ
a୩ 
 

9. The CTFT of a signum function is 
a. 2jΩ 
b. δ(Ω) 
c. ଶ

୨Ω
 

d. ଵ
௝Ω

 

 
10. If the Fourier transform of (ݐ)ݔ is ܺ(݆Ω), then Fourier transform of (ݐ−)ݔ is 
a. ܺ(−݆Ω) 
b. −ܺ(݆Ω) 
c. −ܺ(−݆Ω) 
d. ܺ(݆Ω) 

 

KNOW MORE  
        To delve deeper into the realm of Fourier series and Fourier transform is to embark on a 

journey of profound mathematical elegance and practical utility. One can uncover the 

secrets of convergence theorems, unravel the mysteries of orthogonality in function 
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spaces, and master the art of manipulating signals in both time and frequency domains. 

Advanced analytical techniques open doors to solving complex differential equations, 

paving the way for applications in fields as diverse as physics, engineering, and finance. 

Moreover, the realm of Fourier transform beckons with promises of understanding the 

very essence of signals, be they audio waves, images, or quantum phenomena. From fast 

algorithms powering digital signal processors to cutting-edge applications in medical 

imaging and quantum computing, Fourier analysis continues to shape our modern world. 

As we journey forward, the exploration of Fourier series and transform promises not only 

a deeper understanding of mathematics and science but also an endless stream of 

possibilities for innovation and discovery. 
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UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 What is Laplace transform, why it was developed?  
 Review of the Laplace Transform for continuous-time signals and systems 

 Poles and zeros of system functions and signals 
 Laplace domain analysis of the signals 

 The solution to differential equations, and system behavior. 

 
RATIONALE  

The unit on “Laplace Transform" provides students to understand the behavior of Continuous 
and Discrete-time signals and systems in s-domain or Laplace domain. The Laplace transform 
is one of the most important tools used for solving ODEs and specifically, PDEs as it converts 
partial differentials to regular differentials. 

Laplace transform can convert complex differential equations that describe the dynamic 
behavior of a system into simpler algebraic equations that describe the frequency response of 
a system 

PRE-REQUISITES  

1. Strong understanding of mathematics, including algebra, calculus, and complex numbers. 
2. Familiarity with basic concepts in signals and systems, such as time-domain and periodic, 

non-periodic signals. 
3. Proficiency in solving ordinary differential equations and understanding linear algebra 

concepts. 

4 Laplace Transform 
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 UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U4-O1: Understand the need for bilateral and unilateral Laplace transform for continuous-

time signals and systems. 
U4-O2: Understand the relationship between continuous-time Fourier transform and Laplace 

transform. 
U4-O3: Learn the properties of Laplace transform. 
U3-O4: Learn the applications of Laplace transform in the analysis of CT LTI systems. 
U3-O5: Learn to solve the differential equations using Laplace transform. 
 

Unit-4 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U4-O1 3 - - - - - 
U4-O2 - - 3 - - - 
U4-O3 2 - - - - - 
U4-O4 - 3 -  - - - 
U4-O5  3     
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4.1 Introduction 
In the 3rd chapter we have discussed the Fourier series and Fourier transform along with their 

magnitude and frequency spectrum. In this chapter, the Laplace transform is discussed which 

is used to transform a time signal to complex frequency domain and this complex frequency 

domain is called as Laplace domain or s-domain. Laplace transformation was proposed by 

Laplace in the year 1780; hence this transformation is called as Laplace transform. In time 

domain the equations to represent a system are written in terms of differential equations 

whereas in s-domain, the differential equations are transformed to algebraic equations for 

easier analysis. In this chapter a brief discussion about Laplace transform, its properties and 

applications for analysis of signals and systems are presented. 

 
4.2 Definition of Complex Frequency 
The complex frequency is represented as, 

ݏ = ߪ  + ݆Ω 
where, σ = Neper frequency in neper per second 

 Ω = Radian (or Real) frequency in radian per second 

Let, (ݐ)ݔ  =   ௧                                       (4.1)(ఙା௝Ω)݁ܣ = ௦௧݁ܣ 

Let us analyze the signal of Eq. (3.1) for various choice of ߪ and Ω. 

When, ࣌ = ૙, 

x(t)  =  Aeୱ୲ = Ae(୨Ω)୲ 

= A(cosΩt + jsinΩt)= AcosΩt + jAsinΩt                            (4.2) 

The real part of Eq. (3.2) represents a cosine signal and the imaginary part represents a 

sinusoidal signal. 

 Real part= AcosΩt 

Imaginary part= AsinΩt 

When, Ω = ૙, 
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(ݐ)ݔ  =  ఙ௧                                        (4.3)݁ܣ = ௦௧݁ܣ 

In Eq. (3.3), if ߪ is positive, signal will be an exponentially increasing. 

In Eq. (3.3), if ߪ is negative, signal will be an exponentially decreasing. 

 
4.2.1 Complex Frequency Plane (s-Plane) 
The complex frequency is defined as,  
Complex frequency, s = σ + jΩ  
where, σ = Real part of s  
Ω= Imaginary part of s 
Real part σ and imaginary part Ω can take values from -∞ to +∞. They are represented on a 
two dimensional complex plane along with horizontal axis and vertical axis as shown in fig 
4.1 is called complex frequency plane or s-plane. 

 
Fig 4.1 s-plane 

 
4.2.2 Definition of Laplace Transform (LT) 
A time domain signal (ݐ)ݔ can be transformed into s-domain by multiplying the signal by 

݁ି௦௧ and integrate from -∞ to +∞.  The transformed signal is represented by ܺ(ݏ) and 
the transformation is denoted by the letter L. 

Laplace transform is represented as, 
(ݏ)ܺ =L{ (ݐ)ݔ} 
Let (ݐ)ݔ be a continuous time signal defined for all values of ݐ. Let ܺ  be Laplace transform (ݏ)

of (ݐ)ݔ then the Laplace transform of (ݐ)ݔ is defined as, 

L{(ݐ)ݔ}=ܺ(ݏ) = ∫ ାஶݐ௦௧݀ି݁(ݐ)ݔ
ିஶ                       (4.4) 

For causal input signal, 



Signals and Systems | 155 

 
 

L{(ݐ)ݔ}=ܺ(ݏ) = ∫ ஶݐ௦௧݀ି݁(ݐ)ݔ
଴                             (4.5) 

 
4.2.3 Definition of Inverse Laplace Transform (ILT) 
The s-domain signal ܺ(ݏ) can be represented to time domain signal (ݐ)ݔ by using inverse 
Laplace transform (ILT). 
Laplace transform is represented as, 

L-1= (ݐ)ݔ = ଵ
ଶగ௝ ∫ ௦ୀఙା௝Ωݏ௦௧݀݁(ݏ)ܺ

௦ୀఙି௝Ω                             (4.6) 

Input signal (ݐ)ݔ and transformed signal ܺ(ݏ) are called Laplace transform pair and are 
expressed as, 

(ݐ)ݔ ⟺  (ݏ)ܺ 
 

4.3 Region of Convergence (RoC) 

The Laplace transform of a signal is given by, ∫ ାஶݐ௦௧݀ି݁(ݐ)ݔ
ିஶ . The values of ݏ for which the 

given LT equation converges is called Region of Convergence (RoC). The RoC is 
expressed for three types of cases given below: 

 
Case I:  Right Sided Signal 
 Let x(t) =  eିୠ୲u(t), where ܾ > 0 
= eିୠ୲  where ݐ ≥ 0 
Take Laplace transform on both sides,  
Using definition of LT, 

x(s) =  න x(t) eିୱ୲ dt
ஶ

ିஶ

 

= න  eିୠ୲ u(t) eିୱ୲  dt
ஶ

ିஶ

 

= න eିୠ୲  eିୱ୲dt
ஶ

଴

=  න eି(ୠାୱ)୲ dt
ஶ

଴

 

= ቈ
eି(ୠାୱ) ୲

−(b + s)
቉

଴

ஶ
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=
1

−(b + s)  ൣeି(ୠାୱ)୲൧
଴
ஶ

 

=
1

−(s + b) [eିஶ −  e଴]  

=
1

−(s + b) [0 − 1] =  
1

s + b 

 
         X(s) Converges for σ =  −b   where s = σ +  ߗ݆

 
Therefore, for causal signal ROC is the right side of pole at σ =  −b  as shown in following fig 
4.2. 

 
Fig 4.2 RoC for right sided signal 

Case II: Left sided signal 
Let x(t) = eିୠ୲ u(t), where ܾ > 0, for  ݐ ≤ 0 
Take Laplace, transform on both sides, 
Using definition of LT, 

x(s) = න x(t)eିୱ୲dt
ஶ

ିஶ

 

= න eିୠ୲ u(t)eିୱ୲

ஶ

ିஶ

dt 

න eିୠ୲ eିୱ୲

଴

ିஶ

dt = න eି(ୱାୠ)୲dt
଴

ିஶ
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= ቈ
݁ି(ୱାୠ)୲

−(s + b)
቉

ିஶ

଴

 

=
1

−(s + b) ൣeି(ୱାୠ)×଴ − e(ୱାୠ)×ஶ൧ 

Let ݏ = ߪ +  ,ߗ݆

∴ X(S) =  −
1

ݏ) + ܾ) ൣ݁ି଴ − ݁(ఙା௝ఆା௕)ஶ൧ 

= −
1

ݏ + ܾ +
݁(ఙା௕)ஶ ݁௝ఆ×ஶ

ݏ + ܾ  

Let  ݌ = ߪ  + ܾ 
If ߪ + ܾ > 0 , ߪ >  −ܾ, ݅. ݁., ݁ஶ =  ∞ 
If ߪ + ܾ < 0 , ߪ <  −ܾ ݅. ݁., ݁ିஶ =  0 
Hence, (ݏ)ݔ converges when σ < −b 

 
Fig 4.3 RoC for left sided signal 

∴ (ݏ)ܺ =  −
1

ݏ + ܾ + 
0

ݏ + ܾ =  − 
1

ݏ + ܾ 

Therefore, for an anticausal signal, RoC is on the left of pole ߪ =  −ܾ  shown in figure. 
 
Case III: Two sided signal 
Let x(t) =  eିୟ୲u(t) + eିୠ୲u(−t) where ܽ, ܾ, >  0 and ܽ > ܾ. 
Using definition of Laplace Transform, 

X(s) =  න x(t)eିୱ୲ dt
ஶ

ିஶ
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= න[݁ି௔௧ (ݐ) ݑ  + ݁ି௕௧(ݐ−)ݑ]݁ି௦௧݀ݐ
ஶ

ିஶ

 

= න ݁ି௔௧

ஶ

଴

݁ି௦௧݀ݐ + න ݁ି௕௧  
଴

ିஶ

݁ି௦௧݀ݐ 

= න ݁ି(௦ା௔)௧

ஶ

଴

ݐ݀ + න ݁ି(௦ା௕)௧  
଴

ିஶ

 ݐ݀

= ቈ
݁ି(௦ା௔)௧

ݏ)− + ܽ)
቉

଴

ஶ

+ ቈ
݁ି(௦ା௕)௧

ݏ)− + ܾ)
቉

ିஶ

଴

 

Here also, 
When,  s + a > 0, s > −a →  eିஶ = 0  
  s + a < 0, s < −a →  eஶ = ∞ 

            s + b > 0, s > −b →  eஶ = ∞ 
            s + b < 0, s < −b →  eିஶ = 0 

∴ X(s) =  
1

s + a −  
1

s + b 

Therefore, for two sided signal, ROC includes all points on s-plane lies between poles –a to –b 
as shown in figure. 

 
Fig 4.4 RoC for two sided signal 

 
 

Example 4.1 
Determine the Laplace transform of the following continuous time signals & find their ROC 

1) x (t) = A u (t) 
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2) x (t) = t u (t) 

3) x (t) = eି଼୲  u (t) 

4) x (t) = eି଼୲  u (−t) 

5) x (t) = eି଼|୲| 

Solution: 
1.Given, (ܜ)ܠ =  (ܜ) ܝ ۯ

Using definition of LT, 

X(s) =  න x(t)eିୱ୲

ஶ

ିஶ

 dt 

න A u (t)eିୱ୲

ஶ

ିஶ

 dt 

x(s) =  න A eିୱ୲

ஶ

଴

 dt = A න eିୱ୲

ஶ

଴

 dt 

= A ቜ
eିୱ୲

−s
ቝ

଴

ஶ

=  
A

−s   
[eିୱ୲]଴

ஶ 

 

∴ X(s) =  
A

 s   
[eିஶ −  e଴] =  − 

A 
s   

[0 − 1] 

∴ X(s) =  ୅
 ୱ  

  where for s > 0 the X(s) converges. 

 
Fig 4.5 ROC of  ࢞(࢚) =  (࢚) ࢛ ࡭
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∴ ROC is the Right half of S-plane 
 

2. Given, ࢞(࢚) = ࢚ ࢛ (࢚) 

Using definition of LT, 

X(s) =  න x(t) eିୱ୲ dt
ஶ

ିஶ

 

=  න t u(t) eିୱ୲ dt
ஶ

ିஶ

 

=  න t  eିୱ୲ dt
ஶ

଴

 

Using ∫ uv = u ∫ v − ∫[du ∫ v] rule, 

X(s) = t න eିୱ୲ dt − න ൤
d
dt (t) න eିୱ୲ dt൨ 

=ቂt ୣష౩౪

ିୱ
ቃ

଴

ஶ
−  ∫ 1 ୣష౩౪

ିୱ
ஶ

଴  dt 

=  ቂt ୣష౩౪

ିୱ
ቃ

଴

ஶ
−  ቂୣష౩౪

ୱమ ቃ
଴

ஶ
 

= [eିஶ − 0] −  ଵ
ୱమ  [eିஶ − e଴] 

= ଵ
ୱమ 

When, ݏ > converges and ROC lies to the right of line passing through σ (ݏ)ܺ ,0 = 0. 

 
Fig 4.6 ROC of  ࢞(࢚) = ࢚ ࢛ (࢚) 
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3. Given , (ܜ) ܠ =  (ܜ) ܝ ܜૡି܍

Using definition of LT, 

      x(s) =  ∫ x (t)eିୱ୲  dtஶ
ିஶ  

= න eି଼୲

ஶ

ିஶ

 u (t) eିୱ୲ dt 

= න eି଼୲ eିୱ୲

ஶ

଴

 dt 

= ∫ eି(ୱା଼)୲ dt =  ቂୣష(౩శఴ)౪

ି(ୱା଼)
ቃ

଴

ஶஶ
଴   

=  − 
1

s + 8 
[eିஶ −  e଴] =  

1
s + 8 

For,  ܵ + 8 >  0,  X (s) converges for ܵ  > −8 and ROC lies to the right of line passing through  
σ = −8 

 
4. Given, (ܜ)ܠ =  (ܜ−) ܝ  ܜૡି܍ 

Using definition of LT, 

X (s) =  න x(t)eିୱ୲

ஶ

ିஶ

 dt 

=  න eି଼୲  u (−t) eିୱ୲

ஶ

ିஶ

 dt 

= න eି଼୲  eିୱ୲

଴

ିஶ

 dt =  න eି(ୱା଼)୲

଴

ିஶ

dt 

=ቂୣష(౩శఴ)౪

ି(ୱା଼)
ቃ

ିஶ

଴
=  − ଵ

ୱା଼ 
 ൣeି(ୱା଼)୲൧

ିஶ
଴

 

Here, for S < - ∞, X (s) converges 

∴ x (s) = − 
1

s + 8 

ROC contains all points in s − place on the left side of line passing through σ =  −8 
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Fig 4.7 ROC of  (ܜ)ܠ =  (ܜ−) ܝ ܜૡି܍

 
5. Given (ܜ)ܠ =   |ܜ| ૜ି܍

Using definition of LT, 

x(s) = න x(t)
ஶ

ିஶ

eୱ୲ dt 

 

= න eିଷ |୲|

ஶ

ିஶ

 eିୱ୲ dt 

න eସ୲

଴

ିஶ

 eିୱ୲ dt +  න eିସ୲

ஶ

଴

 eିୱ୲ dt 

න eି(ୱିସ)୲

଴

ିஶ

  dt +  න eି(ୱାସ)୲

ஶ

଴

 dt 

 

=ቂୣష(౩షర)౪

ି(ୱିସ)
ቃ

ିஶ

଴
+  − ቂୣష(౩శర)౪

ି(ୱାସ)
ቃ

଴

ஶ
 

=− ଵ
ୱିସ 

 [e଴ −  eஶ] − ଵ
ୱାସ

 [eିஶ − e଴] 

X(s) =  −
1

s − 4 +  
1

s + 4 =  − 
8

sଶ − 16 

 
ROC lies between the points σ =  −4  to  σ = 4 
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Fig 4.8 ROC of  (ܜ)ܠ =  |ܜ| ૜ି܍

 
 
Example 4.2: Determine the Laplace Transform of the following signals. 
 

1. x(t) = sin Ω଴ t u(t) 
2. x(t) = cos Ω଴ t u(t) 
3. x(t) = eିୟ୲sin Ω଴ t u(t) 
4. x(t) = eିୟ୲cos Ω଴ t u(t) 

Solution: 
1. Given  ࢞(࢚) = (࢚)࢛ ࢚ ૙ࢹ ࢔࢏࢙ = ; ࢚ ૙ࢹ ࢔࢏࢙    ࢚ ≥ ૙ 

Using definition of Laplace Transform, 

X(s) = ∫ x(t)eିୱ୲ஶ
ିஶ dt  

 

          = ∫ sin Ω଴ t u(t)eିୱ୲ஶ
ିஶ dt  

 

         = ∫ sin Ω଴ t eିୱ୲ஶ
଴ dt  

 

Using formula, sin∅ = ୣౠ∅ିୣషౠ∅

ଶ୨
 

 

X(s) = ∫ ቂୣౠ ಈబ ౪ିୣషౠ ಈబ ౪

ଶ୨
ቃ eିୱ୲ஶ

଴ dt  
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= ଵ
ଶ୨ ∫ ൣe୨ ஐబ ୲ − eି୨ ஐబ ୲൧ஶ

଴ eିୱ୲dt  

 

= ଵ
ଶ୨ ∫ ൣeିୱ୲e୨ ஐబ ୲ − eିୱ୲eି୨ ஐబ ୲൧ஶ

଴ dt  

 

= ଵ
ଶ୨ ∫ ൣeି(ୱି୨ ஐబ)୲ − eି(ୱା୨ ஐబ)୲൧ஶ

଴ dt  

 

= ଵ
ଶ୨

ቂୣష(౩షౠ ಈబ)౪

ି(ୱି୨ ஐబ)
− ୣష(౩శౠ ಈబ)౪

ି(ୱା୨ ஐబ)
ቃ

଴

ஶ
  

 

= ଵ
ଶ୨

ቂ ୣషಮ

ି(ୱି୨ ஐబ)
− ୣషಮ

ି(ୱା୨ ஐబ)
− ୣబ

ି(ୱି୨ ஐబ)
+ ୣబ

ି(ୱା୨ ஐబ)
ቃ  

 

= ଵ
ଶ୨

ቂ0 − 0 + ଵ
ୱି୨ ஐబ

− ଵ
ୱା୨ ஐబ

ቃ  

 

= ଵ
ଶ୨

ቂ ୱା୨ ஐబିୱା୨ ஐబ
(ୱି୨ ஐబ)(ୱା୨ ஐబ)

ቃ  

 

= ଵ
ଶ୨

ቂ ଶ୨ ஐబ
ୱమା ஐబ

మቃ  

 

=  ஐబ
ୱమା ஐబ

మ  
 
 as, jଶ = −1 

 

∴L{sin Ω଴tu(t)} =  ஐబ
ୱమା ஐబ

మ  

 
2. Given that  ࢞(࢚) = (࢚)࢛ ࢚ ૙ࢹ ࢙࢕ࢉ = ;   ࢚ ૙ࢹ ࢙࢕ࢉ         ࢚ ≥ ૙  

Using definition of Laplace Transform, 
 

X(s) = ∫ x(t)eିୱ୲ஶ
ିஶ dt  
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          = ∫ cos Ω଴ t u(t)eିୱ୲ஶ
ିஶ dt  

 

         = ∫ cos Ω଴ t eିୱ୲ஶ
଴ dt  

 

Using formula, cos∅ = ୣౠ∅ାୣషౠ∅

ଶ
 

 

X(s) = ∫ ቂୣౠ ಈబ ౪ାୣషౠ ಈబ ౪

ଶ
ቃ eିୱ୲ஶ

଴ dt  

 

= ଵ
ଶ ∫ ൣeିୱ୲e୨ ஐబ ୲ + eିୱ୲eି୨ ஐబ ୲൧ஶ

଴ dt  

 

= ଵ
ଶ ∫ ൣeି(ୱି୨ ஐబ)୲ + eି(ୱା୨ ஐబ)୲൧ஶ

଴ dt  

 

= ଵ
ଶ

ቂୣష(౩షౠ ಈబ)౪

ି(ୱି୨ ஐబ)
+ ୣష(౩శౠ ಈబ)౪

ି(ୱା୨ ஐబ)
ቃ

଴

ஶ
  

 

= ଵ
ଶ

ቂ0 + 0 + ଵ
ୱି୨ ஐబ

+ ଵ
ୱା୨ ஐబ

ቃ  

 

= ଵ
ଶ

ቂ ୱା୨ ஐబାୱି୨ ஐబ
(ୱି୨ ஐబ)(ୱା୨ ஐబ)

ቃ  

 

= ଵ
ଶ

ቂ ଶୱ
ୱమା ஐబ

మቃ  

 
         = ୱ

ୱమା ஐబ
మ   

 
3. Given that  ࢞(࢚) =  (࢚)࢛ ࢚ ૙ࢹ ࢔࢏࢙࢚ࢇିࢋ

                   = eିୟ୲sin Ω଴ t ;     t ≥ 0  
Using definition of Laplace Transform, 

X(s) = ∫ x(t)eିୱ୲ஶ
ିஶ dt  

          = ∫ eିୱ୲sin Ω଴ t eିୱ୲ஶ
଴ dt  
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=
1
2j න ቂeି(ୱାୟି୨ஐబ)୲ିୣష(౩శ౗షౠಈబ)౪   ቃ

ஶ

଴

dt 

=
1
2j

ቈ
eି(ୱାୟି୨ஐబ)t

−(s + a − jΩ଴
−

eି(ୱାୟି୨ஐబ)୲

−(s + a + jΩ଴
 ቉

଴

ஶ

 

=
Ω଴

(s + a)ଶ + Ωଶ
଴
 

∴ L{eିୟ୲ sin Ω଴ t u(t)} =  
Ω଴

(s + a)ଶ + Ωଶ
଴
 

Given that x(t) = eିୟ୲ cos Ω଴ t u (t) 
= eିୟ୲ cos Ω଴t;      t ≥ 0 

Using definitiion of laplace Trasnform. 

x(s) =  න x(t) eିୱ୲

ஶ

ିஶ

 dt 

= න  eିୟ୲

ஶ

଴

cosΩ଴t  eିୱ୲dt 

=
1
2 න ቂeି(ୱାୟି୨ஐబ)୲ାୣష(౩శ౗శౠಈబ)౪   ቃ dt

ஶ

଴

 

=
1
2

ቈ
eି(ୱାୟି୨ஐబ)௧

−(s + a − jΩ଴
−

eି(ୱାୟା୨ஐబ)୲

−(s + a + jΩ଴
  ቉

଴

ஶ

 

=ଵ
ଶ

ቂ0 + 0 + ଵ
ୱାୟି୨ஐబ

+ ଵ
ୱାୟା୨ஐబ

ቃ 

=
s + a

(s + a)ଶ + Ωଶ
଴
 

∴L{eିୟ୲ cos Ω଴ t u(t)} =  ୱାୟ
(ୱାୟ)మାஐమబ
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Table 4.1 Some Standard Pairs of Laplace Transform with ROC 
 

 ࡯ࡻࡾ (࢙)࢞ (࢚)࢞

ܵ ݁ݎ݅ݐ݊ܧ 1 (ݐ)ߜ − ݈ܲܽ݊݁ 

1 (ݐ)ݑ
ݏ

ߪ  > 0 

1 (ݐ)ݑݐ
ߪ ଶݏ > 0 

௡ିଵݐ

(݊ − 1)!
 (ݐ)ݑ 

1
ߪ ௡ݏ > 0 

݁ି௔௧1 (ݐ)ݑ
ݏ + ܽ

ߪ  > −ܽ 

−݁ି௔௧1 (ݐ−)ݑ
ݏ + ܽ

ߪ  < −ܽ 

!݊ (ݐ)ݑ௡ݐ
ߪ ௡ାଵݏ > 0 

௔௧ି݁ݐ 1 (ݐ)ݑ 
ݏ) + ܽ)ଶ ߪ > −ܽ 

௡݁ି௔௧ݐ !݊ (ݐ)ݑ 
ݏ) + ܽ)௡ାଵ ߪ > −ܽ 

଴ߗ (ݐ)ݑ ݐ଴ߗ݊݅ݏ

ଶݏ + ଴ߗ
ଶ ߪ > 0 

ݏ (ݐ)ݑ ݐ଴ߗݏ݋ܿ
ଶݏ + ଴ߗ

ଶ ߪ > 0 

݁ି௔௧ߗ݊݅ݏ଴ߗ (ݐ)ݑ ݐ଴

ݏ) + ܽ)ଶ + ଴ߗ
ଶ ߪ > −ܽ 

݁ି௔௧ܿߗݏ݋଴ݏ (ݐ)ݑ ݐ + ܽ
ݏ) + ܽ)ଶ + ଴ߗ

ଶ ߪ > −ܽ 
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4.4 Properties of Laplace Transform 
4.4.1 Scaling of amplitude 
If amplitude is scaled in time domain by constant K then it’s Laplace transform is multiplied by 
same constant 
i.e. if    L{x(t)} = X(s) 

 then, 
L{Kx(t)} = KX(s)  
Proof: Using definition of LT 

X(s) = ∫ x(t)eିୱ୲ஶ
ିஶ d                                (4.7) 

 

= ∫ Kx(t)eିୱ୲ஶ
ିஶ dt   

 

= K ∫ x(t)eିୱ୲ஶ
ିஶ dt   

=  Using Eq. (4.7)                                         (ݏ)ܺܭ
 
4.4.2 Linearity 

This property states that weighted sum of two or more signals is equal to similar weighted sum 
of individual’s Laplace transform. 
i.e. if L{xଵ(t)} = Xଵ(s) 
L{xଶ(t)} = Xଶ(s) ,  then 
L{axଵ(t) + bxଶ(t)} = aXଵ(s) + bXଶ(s)  
 
Proof: Using definition of LT 

Xଵ(s) = ∫ xଵ(t)eିୱ୲dtஶ
ିஶ                             (4.8) 

Xଶ(s) = ∫ xଶ(t)eିୱ୲dtஶ
ିஶ                            (4.9) 

L{axଵ(t) + bxଶ(t)} = ∫ [axଵ(t) + bxଶ(t)]eିୱ୲dtஶ
ିஶ   

= a ∫ xଵ(t)eିୱ୲dt + b ∫ xଶ
ஶ

ିஶ (t)eିୱ୲dtஶ
ିஶ   

= aXଵ(s) + bXଶ(s)  
 
4.4.3 Time differentiation 

If derivative is taken in time domain then it’s Laplace transform is SX(s) − x(0)   
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i.e. if L{x(t)} = X(s),   then 

L ቄ ୢ
ୢ୲

x(t)ቅ = SX(s) − x(0)  , Where x(0) is value of x(t) at t = 0 

 
Proof: Using definition of LT 

X(s) = ∫ x(t)eିୱ୲dtஶ
ିஶ                                   (4.10) 

∴ L ቄ ୢ
ୢ୲

x(t)ቅ = ∫ ୢ
ୢ୲

x(t)eିୱ୲dtஶ
ିஶ   

= ∫ eିୱ୲ ୢ୶(୲)
ୢ୲

dtஶ
଴                     … for causal x(t) 

Using ∫ uv = u ∫ v − ∫[du ∫ v]  

L ቄ ୢ
ୢ୲

x(t)ቅ = [eିୱ୲x(t)]଴
ஶ − ∫ −seିୱ୲ஶ

଴ x(t)dt  

= eିஶx(∞) − e଴x(0) + s ∫ x(t)eିୱ୲ஶ
଴ dt  

= S ∫ x(t)eିୱ୲ஶ
଴ dt − x(0)  

= SX(s) − x(0)                                         Using Eq. (4.10) 
 

 
4.4.4 Integration in time domain 

If L{x(t)} = X(s),   then 

L{∫ x(t)dt} = ଡ଼(ୗ)
ୗ

+ [∫ ୶(୲)ୢ୲]|౪సబ
ୗ

  

Proof: Using definition of LT 

X(S) = ∫ x(t)eିୱ୲ஶ
଴ dt                                             …for causal signal 

 

L{∫ x(t)dt} = ∫ [Sx(t)dt]ஶ
଴ eିୱ୲dt  

Using, ∫ uv = u ∫ v − ∫[du ∫ v]  

L{∫ x(t)dt} = ቈ[∫ x(t)dt] ୣష౩౪

ିୱ
቉

଴

ஶ

− ∫ x(t) ୣష౩౪

ିୱ
ஶ

଴ dt  

= ଵ
ୗ

[∫ x(t)dt]|୲ୀ଴ + ଵ
ୗ ∫ x(t)eିୱ୲ஶ

଴ dt  

= ଡ଼(ୗ)
ୗ

+ [∫ ୶(୲)ୢ୲]|౪సబ
ୗ
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4.4.5 Shifting in frequency domain 

If L{x(t)} = X(s),   then 
L{e±ୟ୲x(t)} = X(S ∓ a)  
Proof : Using definition of LT, 

X(S) = ∫ x(t)eିୱ୲ஶ
ିஶ dt  

L{e±ୟ୲x(t)} = ∫ e±ୟ୲ஶ
ିஶ x(t)eିୱ୲dt  

= ∫ x(t)eି(ୗ∓ୟ)୲dtஶ
ିஶ   

= X(S ∓ a)  
 
4.4.6 Shifting in time domain 

If L {x + (t)} = X(s), then 
L{x(t ± a)} = e±ୟୱx(s) 

Proof: Using definition of LT, 

X(s) = ∫ x(t)eିୱ୲ஶ
ିஶ dt                                                        (4.11) 

L{x(t ± a)} = න x(t ± a)eିୱ୲dt
ஶ

ିஶ

 

let t ∓ a = τ 
∴ t = τ ∓ a, dt = dτ 

∴ L{x(t ± a)} = න x(τ)eିୱ(த∓ୟ) dτ
ஶ

ିஶ

 

= න x(t)eିୱத

ஶ

ିஶ

e±ୟୱdτ 

= e± ୟୱ න x(τ)eିୱத

ஶ

ିஶ

dτ 

= e±ୟୱ X(s)                            Using Eq (4.11) 
 

4.4.7 Differentiation in frequency 

If L{x(t)} = X(s), then, 
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L {tx(t)} =  −
d

ds  X (s) 

Proof: Using definition of LT, 

X(s) =
d

ds  
൥ න x(t)eିୱ୲dt

ஶ

ିஶ

൩  

 

= න x(t) ൬
d

ds  e
ିୱ୲൰

ஶ

ିஶ

 dt 

= න x(t)(−t eିୱ୲)
ஶ

ିஶ

 dt 

= න [−t x(t)]eିୱ୲

ஶ

ିஶ

 dt 

= L{−t x (t)} 
 

= −L{t x (t)} 

∴ L{t x(t)} = −
d
ds X(s) 

4.4.8 Time Scaling 

If L{x (t)} = X(s), then 

L{ x (at)} =
1

|a| X ቀ
s
aቁ 

Proof: Using definition of LT, 

X(s) =  න x(t)
ஶ

ିஶ

eିୱ୲ dt 

∴ L { x (at)} = න x(at)
ஶ

ିஶ

eିୱ୲ dt 

 
let at =  τ 

t =
τ
a  , dt =

dτ
a  
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X(s) =  න x(τ)eିቀୱ
ୟቁத dτ

a

ஶ

ିஶ

 

=
1
a  න x(τ)eିቀୱ

ୟቁதdτ
ஶ

ିஶ

 

L{x(at)} =  
1
a X ቀ

s
aቁ                        (4.12) 

Above equation is true when a is positive for negative a, 

L{x(at)} = − ଵ
ୟ

X ቀୱ
ୟ
ቁ                    (4.13)  

∴ Combining Eq.  (4.12)& Eq. (4.13) 

L{x(at)} =
1

|a| X ቀ
s
aቁ 

4.4.9 Initial Value theorem 

If L{x(t)} = X(s), then 
Initial Value of signal x (t) at t=0 is, 

x(0) =  lim
୲→଴

(ݐ)ݔ =  lim
ୱ→ஶ

 (ݏ)ܺݏ

4.4.10 Final Value theorem 

If L {x(t)} = X(s). then 
Final value of signal  x(t)at t = ∞ is, 

x(∞) =  lim
୲→ஶ

(ݐ)ݔ =  lim
ୱ→଴

 (ݏ)ܺݏ

4.4.11 Convolution Property 

The convolution theorem of LT says that the convolution of two signals in time domain is 
equivalent to multiplication of their Laplace transforms in S domain. 

                i.e. If L {x, (t)} =  Xଵ (s) 
                     L {xଶ  (t)} =  Xଶ (s) then, 

 L{xଵ(t) ∗  xଶ (t)} = Xଵ (s)Xଶ (s) 
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4.5 Poles and Zeros of System Functions and Signals 
The Laplace transform is represented in terms of rational, i.e. it is a ratio of polynomials in the 

complex variable s. 

)(
)()(

sD
sNsX   

Where N and D are the numerator and denominator polynomials respectively. 

In fact, X(s) will be rational whenever x(t) is a linear combination of real or complex 

exponentials.  Rational transforms also arise when we consider LTI systems specified in 

terms of linear, constant coefficient differential equations. 

We can mark the roots of N and D in the s-plane along with the ROC 

 
4.5.1 Poles and Zeros: 
The roots of N(s) are known as the zeros.  For these values of s, X(s) is zero.  
The roots of D(s) are known as the poles.  For these values of s, X(s) is infinite, the Region of 
Convergence for the Laplace transform cannot contain any poles, because the corresponding 
integral is infinite 
The set of poles and zeros completely characterise X(s) to within a scale factor (+ ROC for 
Laplace transform) 

)(
)()(
jj

ii

ps
zssX




  

        The graphical representation of X(s) through its poles and zeros in the s-plane is referred to as 
the pole-zero plot of X(s). 

 
Example 4.3: Poles and Zeros 
Consider the signal below signal and arrange in pole zero form showing the ROC. 

)(
3
1)(

3
4)()( 2 tuetuettx tt    

         Solution: By linearity we can evaluate the second and third terms 
The Laplace transform of the impulse function is: 

1)()}({  




 dtettL st  
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which is valid for any s.  Therefore, 
 
 
 
 
That means ROC lies on the RHS of right most pole which is 2. 
 
4.6 ROC Properties for Laplace Transform: 
Depending upon the location of poles and the criteria of convergence the following properties 

are given. 

Property-1: The ROC of X(s) consists of strips parallel to the jW - axis in the s-plane. 

Property-2: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire 

s- plane. 

Property-3: If x(t) is right sided, and if the line passing through Re(s) = s0 is in ROC, then all 

values of s for which Re(s) > s0 will also be in ROC. 

Property-4: If x(t) is left sided, and if the line passing through Re(s) = s0 is in ROC, then all 

values of s for which Re(s) < s0 will also be in ROC. 

Property-5: If x(t) is two sided, and if the line passing through Re(s) = s0 is in ROC, then the 

ROC will consists of a strip in the s-plane that includes the line passing through Re(s) = 

s0 . 

Property-6: If X(s) is rational, (where X(s) is Laplace transform of x(t)), then its ROC is 

bounded by poles or extends to infinity. 

Property-7: If X(s) is rational, (where X(s) is Laplace transform of x(t)), then ROC does not 

include any poles of X(s). 

Property-8: If X(s) is rational, (where X(s) is Laplace transform of x(t)), and if x(t) is right 

sided, then ROC is the region in s-plane to the right of the rightmost pole. 
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Property-9: If X(s) is rational, (where X(s) is Laplace transform of x(t)), and if x(t) is left sided, 

then ROC is the region in s-plane to the left of the leftmost pole. 

 

4.7 Inverse Laplace Transform by Partial Fraction Expansion Method 

Let Laplace transform of x(t) be X(s). The s-domain signal X(s) will be a ratio of two 

polynomials in s (i.e., rational function of s). The roots of the denominator polynomial are called 

poles. The roots of numerator polynomials are called zeros. In signals and systems, three 

different types of s-domain signals are encountered. They are, with separate poles, with multiple 

poles, with complex conjugate poles. 

The inverse Laplace transform (ILT) by partial fraction expansion method of all the three cases 

are explained with an example. 

Type 1: When s-Domain Signal X(s) has Distinct Poles 

Let ܺ(ܵ) = ୅
ୱ(ୱା୮ଵ)(ୱା୮ଶ)

 

Using partial fraction expansion, above equation can be written as, 

ܺ(ܵ) =
A1
s +

A2
(s + p1) +

A3
(s + p2) 

The residues A1, A2, A3 will be found for s=0, s=-p1, s=-p2. 

 

Type 2: When s-Domain Signal X(s) has Multiple Poles 

Let ܺ(ܵ) = ୅
ୱ(ୱା୮ଵ)(ୱା୮ଶ)మ 

Using partial fraction expansion, above equation can be written as, 

ܺ(ܵ) =
A1
s +

A2
(s + p1) +

A3
(s + p2) +

A4
(s + p2)ଶ 
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The residues A1, A2, A4, will be found for s=0, s=-p1, s=-p2. 

For residue A3, 

3ܣ =
d
ds

s)(ݏ)ܺ] + p2)ଶ]ฬ
ୱୀି୮ଶ

 

Type 3: When s-Domain Signal X(s) has Complex Conjugate Poles 

Let ܺ(ܵ) = ୅
(ୱା୮ଵ)(ୱమା௕௦ା௖)

 

Using partial fraction expansion, above equation can be written as, 

ܺ(ܵ) =
A1

(s + p1) +
A2s + A3

(sଶ + ݏܾ + ܿ) 

The residues A2 and A3 are solved by cross multiplying the above equation and then equating 

the 

coefficients of like power of s. 

 

Examples 4.4:  On Inverse Laplace Transform 
1. Find the ILT of given signal 
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Solution: Like the inverse Fourier transform, expand as partial fractions 
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2. Find the ILT of ܺ(ܵ) = ସ
(ୱାଶ)(ୱାସ)

 if the ROC is  

i. −2 > {ݏ}ܴ݁ > −4 
ii. ܴ݁{ݏ} < −4 

iii. ܴ݁{ݏ} > −2 

Solution: Given ܺ(ܵ) = ସ
(ୱାଶ)(ୱାସ)

 = ୅ଵ
ୱାଶ

+ ୅ଶ
ୱାସ

 

Residue A1 is, 

1ܣ = s)(ݏ)ܺ + 2)|ୱୀିଶ =
4

(s + 2)(s + 4) × (s + 2)ฬ
ୱୀିଶ

= 2 

Residue A2 is, 

2ܣ = s)(ݏ)ܺ + 4)|ୱୀିଶ =
4

(s + 2)(s + 4) × (s + 4)ฬ
ୱୀିସ

= −2 

ܺ(ܵ) =
2

s + 2 −
2

s + 4 

i. For −2 > {ݏ}ܴ݁ > −4 
Given that ROC lies between lines passing through s = 2 to s = 4. Hence, x(t) will be two sided 

signal. 
࢞(࢚) = −૛ି܍૛࢛ܜ(−࢚) − ૛ି܍૝࢛ܜ(࢚) 

 
ii. ܴ݁{ݏ} < −4 
Given that ROC is left of the line passing through s =  4. Hence x(t) will be anticausal signal 

࢞(࢚) = −૛ି܍૛࢛ܜ(−࢚) + ૛ି܍૝࢛ܜ(−࢚) 
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iii. ܴ݁{ݏ} > −2 
Given that ROC is right of the line passing through s = – 2. Hence x(t) will be causal signal. 

࢞(࢚) = ૛ି܍૛࢛ܜ(࢚) − ૛ି܍૝࢛ܜ(࢚) 
 

4.8 Laplace domain analysis 
 
4.8.1 Transfer Function of LTI Continuous Time System 
In general, the input-output relation of a LTI (Linear Time Invariant) continuous time system 

is represented by the constant coefficient differential equation shown below, 

ௗ೙

ௗ௧೙ (ݐ)ݕ + ଵ݌
ௗ೙షభ

ௗ௧೙షభ (ݐ)ݕ + ଶ݌
ௗ೙షమ

ௗ௧೙షమ (ݐ)ݕ + ⋯ + ௡ିଵ݌
ௗ
ௗ௧

(ݐ)ݕ + (ݐ)ݕ௡݌ = ଴ݖ
ௗ೘

ௗ௧೘ (ݐ)ݔ +

ଵݖ
ௗ೘షభ

ௗ௧೘షభ (ݐ)ݔ + ଶݖ
ௗ೘షమ

ௗ௧೘షమ (ݐ)ݕ + ⋯ + ௠ିଵݖ
ௗ
ௗ௧

(ݐ)ݔ +  (4.14)                      (ݐ)ݔ௠ݖ

Where n is order of system and ݉ ≤  ݊ 

On taking LT of above equation and taking zero initial conditions, 

௒(௦)
௑(௦)

= ௭బ௦೘ା௭భ௦೘షభା௭మ௦೘షమା⋯ା௭೘షభ௦ା௭೘
௣బ௦೙ା௣భ௦೙షభା௣మ௦೙షమା⋯ା௣೙షభ௦ା௣೙

                                   (4.15) 

The transfer function of a continuous time system is defined as the ratio of Laplace transform 

of output and Laplace transform of input. Hence the equation (4.15) is the transfer function of 

an LTI continuous time system. 

 
4.8.2 Impulse Response and Transfer Function 
Let, (ݐ)ݔ=input to LTI system 
 (ݐ)ݔ output for input=(ݐ)ݕ
ℎ(ݐ)=Impulse response 
Now, the response y(t) of the continuous time system is given by convolution of input and 

impulse 
response. Recall the formula of convolution, 

(ݐ)ݕ = (ݐ)ݔ ∗ ℎ(ݐ) = ∫ ݐ)ℎ(߬)ݔ − ߬)݀߬ାஶ
ିஶ                      (4.16) 

Taking LT, 
(ݏ)ܻ =  (4.17)              (ݏ)ܪ(ݏ)ܺ
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(ݏ)ܪ =
(ݏ)ܻ
(ݏ)ܺ = ܭ

ݏ) − ݏ)(ଵݖ − ݏ)(ଶݖ − (ଷݖ … … ݏ) − (௠ݖ
ݏ) − ݏ)(ଵ݌ − ݏ)(ଶ݌ − (ଷ݌ … … ݏ) −  (௡݌

The transfer function of LTI continuous time system is also given by Laplace transform of the 
impulse response. 
 
4.9   Solving Differential Equations by Using Laplace Transform 

Given a differential equation of LTI system as shown by Eq. (4.17), the system function can be 
written as, 

(ݏ)ܪ = ௒(௦)
௑(௦)

                   (4.18) 

Which is obtained by taking the Laplace transform of the differential equation. The inverse   
Laplace transform of system function (ݏ)ܪ can be obtained to get the impulse response of  
the system ℎ(ݐ). For the stable system, i.e., if ROC includes the ݆Ω axis, then by   
substituting ݏ =  ݆Ω , the frequency response of the system ܪ(݆Ω) can be obtained.  

 
Unit Summary 
The Laplace transform, a powerful mathematical tool, transcends mere computation to offer 
profound insights into the behavior of dynamic systems across various disciplines. Beginning 
with its historical roots and fundamental properties, the journey into Laplace transform theory 
elucidates its superiority over conventional methods in solving differential equations, thanks to 
its ability to convert complex time-domain problems into simpler algebraic ones. Techniques 
such as partial fraction decomposition and theorems for initial and final values amplify its 
practicality in diverse applications, from control systems analysis and electrical circuit design 
to signal processing and probability theory. Advanced topics unveil its versatility in handling 
generalized functions and partial differential equations, while its integration into modern 
engineering workflows underscores its indispensable role in modeling and analysis. As we 
reflect on its enduring impact, it becomes evident that the Laplace transform not only 
revolutionizes problem-solving but also fosters a deeper understanding of dynamic systems, 
paving the way for innovation and discovery across scientific and engineering frontiers. 
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Exercise 
1. Using final value theorem, find the final value of the signal x(t) given 
a. X(s) = ଶ଴

ୱ(ୱାସ)
 

b. X(s) = ୱ
ୱାସ

 

c. X(s) = ୱାଵଶ
ୱమାଷୱାଶ

 

d. X(s) = ୱାଷ
ୱమାଶୱିଷ

 

e. X(s) = ୱାଽ
ୱమାଵଵୱାଷ଴

 

2. Find the inverse Laplace transform of the following: 

a. Xଵ(s) = ିସ
(ୱାଶ)(ୗିଵ)

;     ROC: −2 < Re{s} < 1 

b. Xଶ(s) = ଵହୱା଻ଶ
ୱమିଷୱିଶ଼

;     −7 < Re{s} < 4 

c. Xଷ(s) = ହ଴
ୱమିଶଶହ

;     ROC: −15 < Re{s} < 15 

3. Using convolution property, find the following: 

a. yଵ(t) = eିସ୲u(t) ∗ u(t) 

b.yଶ(t) = u(t) ∗ u(t − 5) 

c. yଷ(t) = δ(t) ∗ eି୲u(t) 

d.yସ(t) = eି଼୲u(t) ∗ eି଼୲u(t) 
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e. yହ(t) = eିସ୲u(t) ∗ eସ୲u(−t) 

4. Sketch the pole-zero plot and ROC (if exists) for the following signals: 

a. xଵ(t) = eିଷ୲u(t) 

b. xଶ(t) = eଷ୲u(−t) 

c. xଷ(t) = teି୲u(t) 

d. xସ(t) = 3eି│୲│ 

e. xହ(t) = ସ
ଷ

e(ସ ଷ⁄ )୲u(−t) 

5. Using Laplace transform, solve the following differential equations: 

a. ୢ
ୢ୲

y(t) + 5y(t) = 5; y(0ି) = 1 

b. ୢమ

ୢ୲మ y(t) + 7 ୢ
ୢ୲

y(t) + 12y(t) = 3 

c. ୢమ

ୢ୲మ x(t) + 3 ୢ
ୢ୲

x(t) + 2x(t) = 4; x(0ି) = 1 = x΄(0ି) 

d. ୢయ

ୢ୲య y(t) + 11 ୢమ

ୢ୲మ y(t) + 30y(t) = eି୲u(t); y(0ି) = y΄(0ି) = y΄΄(0ି) = 0 

e. ୢమ

ୢ୲మ y(t) + 4 ୢ
ୢ୲

y(t) + 4y(t) = 1;  y(0ି) = 1, y΄(0ି) = −1, y΄΄(0ି) = 0 

6. Find the Laplace transform of the signal 
(ݐ)ݔ = −݁ିఈ௧(ݐ−)ݑ 

7. Find the Laplace transform of the signal 

(ݐ)ݔ = ݁ିଶ│௧│ 
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8. Find the Laplace transform of the signal and its corresponding ROC. 
(ݐ)ݔ = ݁ିସ௧[(ݐ)ݑ − ݐ)ݑ − 4)] 

9. Find the Laplace transform of (ݐ)ݔ = ݁ିଶ௧(ݐ)ݑ + ݁ିସ௧(ݐ)ݑ  

10. Find the Laplace transform of the signal (ݐ)ݔ = ݁ଷ௧(ݐ)ݑ + ݁ଽ௧(ݐ−)ݑ  

11. Find the Laplace transform of (ݐ)ݔ = (ݐ)ߜ − ଵ
ହ

݁ିଷ௧(ݐ)ݑ + ଵ
଺

݁ିସ௧(ݐ)ݑ  

12. Find the Laplace transform of (ݐ)ݔ = ݁ି௔௧(ݐ)ݑ + ݁௕௧ݐ−)ݑ − 1)  

13. Find the Laplace transform of (ݐ)ݔ =  (ݐ)ݑ

14. Find the Laplace transform of (ݐ)ݔ =  (ݐ)ݑݐ

15. Find the Laplace transform of (ݐ)ݔ = ݁௝ఆ௧(ݐ)ݑ. 

16. Find the Laplace transform of ݔଵݐ =  by using the time-scaling property (ݐ2)ݑ

 

17. Find the Laplace transform of (ݐ)ݕ = (ݐ)ଵݔ ∗ (ݐ)ଵݔ where ,(ݐ)ଶݔ = ݁ି௧(ݐ)ݑ, (ݐ)ଶݔ =  .(ݐ)ߜ
 

18. Find the Laplace transform of (ݐ)ݕ =  Using the differentiation in time domain .(ݐ)ݑ௧ି݁ݐ−
property. 

19. Find the Laplace transform of the output  of an LTI system (ݐ)ݕ =  by using the (ݐ)ݔݐ3
differentiation in s-domain property. Given  

(ݏ)ܺ =
ݏ + 2

ଶݏ + ݏ4 + 4
 

20. Find the initial value and final value of (ݐ)ݔ with Laplace transform 

(ݏ)ܺ =
2

ଶݏ)ݏ + ݏ3 + 5)
 

 
21. Find the inverse Laplace transform of 

(ݏ)ܺ = ଶ
௦మାଷ௦ାଶ

 , Re {ݏ} > −1 
 

22. Find the inverse Laplace transform of 

(ݏ)ܺ =
ݏ2 + 1
ݏ + 3

 

For (a) ROC: Re{ݏ} > −3. 
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23. Find the inverse Laplace transform of 

(ݏ)ܺ =
1

ݏ) + ݏ)(5 − 3) 

                 For the following ROCs:  
            (ܽ) − 5 < {ݏ}ܴ݁ < 3 

 (b) ܴ݁{ݏ} > 3 
 (c) ܴ݁{ݏ} < −5 

24. Find the inverse Laplace transform of 

(ݏ)ܺ = ௦(௦ାଷ)
(௦ାଷ)మ , 

ROC: ܴ݁{ݏ} > −3 
 

25. Find the inverse Laplace transform of 

(a) ܺ (ݏ) = ଵ
(௦ାଶ)మ ;   ROC: ܴ݁{ݏ} > −2 

 
(b) ܺ (ݏ) = ௦

௦మାସ
;   ROC: ܴ݁{ݏ} > −2 

 
(c) ܺ (ݏ) = ଶ

(௦ାଵ)మାସ
;   ROC: ܴ݁{ݏ} > −1 

Multiple-Choice Questions 
1. For a causal signal x(t), the ROC of X(s) is 

a) Right-half of s-plane 
b) Left-half of s-plane 
c) Entire s-plane 
d) jΩ-axis 

 
2. The Laplace transform of x(t) = 2δ(t) is 

a) 2 
b) b) 2 s⁄  
c) c) 2s 
d) d) s 

 
3. The Laplace transform of x(t) = eିସ୲u(t) is 

a) ଵ
ୱିସ
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b)  ଵ
ୱାସ

 

c)  ଵ
(ୱାସ)మ 

d) ଵ
(ୱିସ)మ 

 
4. ROC of X(s) of eସ୲u(−t) is 

           a)  Re{s} > 4 
           b)  Re{s} < −4 
           c) Re{s} < 4 

 d)  Re{s} > −4 
 

5. If X(s) = ୱିଵ଴
ୱమିହୱ

 then x(0ି) is 

          a)  0 
          b)  ∞ 
          c) 1 
          d) 2 

6. Given (t)
୐୘
↔ X(s) , then −4 ୢ

ୢ୲
x(t)

୐୘
↔  is 

a) 4sX(s) 
b)  −4sX(s) 
c)  ସ

ୱ
X(s) 

d) − ସ
ୱ

X(s) 

 
          7. The Laplace transform of δ(t) ∗ u(t) is 

a) ଵ
ୱ
 

b) s 
c) ଵ

ୱାଵ
 

d) ଵ
ୱିଵ

 

      8. The Laplace transform of x(2t) is 

a) ଵ
ଶ

X ቀୱ
ଶ
ቁ 

b) 2X(2s) 
c) ଵ

ଶ
X(2s) 
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d)  2 ଡ଼
ୱ ଶ⁄

 

9. The inverse Laplace transform of  X(s) = ଵ଴ୱ
(ୱାଵ)(ୱାଷ)

  is 

a) 5(3eଷ୲ − e୲)u(t) 
b) 5(3eିଷ୲ − eି୲)u(t) 
c) 5(3eିଷ୲ − e୲)u(t) 
d) 5(3eିଷ୲ − e୲)u(−t) 

 
 
  

10. The Laplace transform of x(t) = e୲u(t) is 

a)  ଵ
ୱିଵ

; Re{s} > 1 

b)  ଵ
ୱାଵ

; Re{s} > 1 

c)  ଵ
ୱିଵ

; Re{s} < 1 

d)  ଵ
ୱାଵ

; Re{s} < 1 
 

11. The Laplace transform of δ(4t) is 
a) 1 4s⁄  
b) 1 4⁄  
c) s 4⁄  
d)  4s 

12. The output of an LTI system ୢ
ୢ୲

y(t) + y(T) = x(t) initially at rest, for given x(t) = δ(t) is 

a) eି୲u(t) 
b) u(t) 
c) δ(t) 
d) δ(t − 1) 

 
13. If x(t) is a left-sided signal, then its ROC is  

a) entire s-plane 
b) left-half of s-plane 
c) right-half of s-plane 
d) entire jΩ- axis 

 
14. A causal LTI system has a transfer fraction (ݏ)ܪ, whose ROC will be 

a) Right-sided in the s-plane 
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b) Left-sided in the s-plane 
c) Entire s-plane 
d) s =  jΩ- axis 

 
15. The ROC of a stable LTI system will 

a) include the jΩ- axis 
b) be Re{s} > 1 
c) be Re{s} + 1 
d) be Re{s} > 0 

 
KNOW MORE 
The Laplace transform is a mathematical technique that is used to simplify solving differential 

equations, particularly those with initial conditions. It transforms functions of time into 

functions of complex frequency. This transformation makes it easier to solve linear differential 

equations by turning them into algebraic equations. Understanding the Laplace transform's 

definition and its properties is crucial. This includes linearity, time-shifting, scaling, and 

differentiation properties. Additionally, understanding the region of convergence is important 

for ensuring convergence of the transformed function. Knowing how to convert a Laplace-

transformed function back into the time domain is essential. Techniques such as partial fraction 

decomposition, contour integration, and the use of tables of Laplace transforms are commonly 

employed. Laplace transform is extensively used in solving ordinary and partial differential 

equations, including those arising in engineering, physics, and other fields. It simplifies solving 

differential equations with initial conditions, boundary conditions, and forcing functions. 

Laplace transform finds applications in signal processing for analyzing and manipulating 

continuous-time signals. It aids in filtering, modulation, demodulation, and system 

identification tasks, contributing to various fields such as telecommunications, audio 

processing, and medical imaging. We have to stay updated on recent advancements and ongoing 

research in Laplace transform theory, applications, and computational methods. Investigating 

emerging trends, challenges, and potential interdisciplinary collaborations in areas such as data 

science, machine learning, and quantum computing along with Laplace transform is needed. 
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UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 What is z- Transform, why it was developed?  
 z-Transform and ROC of finite and infinite duration sequences  

 Relation between Discrete Time Fourier Transform (DTFT) and z-Transform  
 Properties of z-Transform.  

 Inverse z-Transform and methods of analysis 

 

RATIONALE  

The unit on “z-Transform" provides students to understand the relationship between DTFT and 
z-Transform. The students will understand the conversion of a discrete-time signal, which is a 
sequence of real or complex numbers, into a complex valued frequency-domain (the z-domain 
or z-plane) representation. 

The unit focuses on z-Transform and ROC of finite and infinite duration sequences along with 
the properties. The students can analyse the behaviour of the linear time-invariant (LTI) system 
using the Z transform. 

PRE-REQUISITES  

1. Strong understanding of mathematics, including algebra, calculus, and complex numbers. 

5 Z - Transform 
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2. Familiarity with basic concepts in signals and systems, such as periodic, non-periodic 
signals, unilateral and bilateral sequences. 

3. Proficiency in solving ordinary differential equations and understanding linear algebra 
concepts. 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U5-O1: Be able to understand the need for bilateral and unilateral z-transforms to analyze 

discrete-time (DT) signals and systems. 
U5-O2: Be able to understand the relationship between DT Fourier Transform (DTFT) and z-

transform. 
U5-O3: Be able to learn the properties of z-transform. 
U5-O4: Be able to learn the applications of bilateral and unilateral z-transform. 

 

Unit-5 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U5-O1 - - - 2 3 - 
U5-O2 - - - 2 3 - 
U5-O3 - - - - 3 - 
U5-O4 - - - - 3 - 
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5.1 Introduction 
The Z-transform is a mathematical technique used in signal processing and control theory to 
analyze and process discrete-time signals and systems. It is the discrete-time counterpart of the 
Laplace transform, which is used for continuous-time signals and systems. 
 
The Z-transform is beneficial for several reasons: 
Frequency Analysis: It allows for the analysis of signals and systems in the frequency domain. 
By taking the Z-transform of a discrete signal or system, you can analyze its frequency 
components and behavior. 
System Representation: The Z-transform can be used to represent and analyze discrete-time 
linear time-invariant (LTI) systems, which are essential in fields like control theory and digital 
signal processing. 
Transfer Functions: It helps in finding the transfer function of a system, which relates the input 
and output in the Z-domain. This is useful for designing and analyzing control systems and 
filters. 
Stability Analysis: The Z-transform can be used to analyze the stability of discrete-time 
systems. It's crucial in control theory to ensure that a system doesn't become unstable over time. 
Differential Equations: It can be used to solve linear difference equations, which often arise in 
discrete-time systems modeling. 
The Z-transform is a powerful tool for the analysis and design of discrete-time systems and is 
widely used in various engineering and scientific fields. It helps in simplifying the analysis of 
complex systems and understanding their behavior in both the time and frequency domains. 
 
5.2 Need of Z-transform 
 
There are some signals which are not absolutely summable and there Fourier transform does 
not exist. Instead of taking transform of x[n], we can do a little change in the signal so that the 
signal becomes absolutely summable and then apply the transform. Let us multiply the signal 
x[n] with r-n. r-n is a slow decaying exponential signal. This transform is named as Z-transform.  
ܼ. ܶ. {(݊)ݔ} = (ݖ)ܺ = ∑ ஶ{௡ିݎ[݊]ݔ}

ିஶ ݁ି௝௪௡  
=∑ ௡݁ି௝௪௡ൟஶିݎ൛[݊]ݔ

ିஶ  
 

= ෍ ௝௪ൟି௡݁ݎ൛[݊]ݔ
ஶ

ିஶ
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Substituting into z = r ejw the above equation, the difficulty is resolved by generalizing the DTFT 
of the signal x(n) can be expressed as sum of complex exponential, zn. 

(ݖ)ܺ = ∑ ௡ஶିݖ[݊]ݔ
ିஶ                                                 (5.1) 

The Z-transform reduces to DTFT for the value of r = 1. 

Inverse Z-transform is given by, 

[݊]ݔ  = ଵ
ଶగ௝ ∮ ஼ݖ௡ିଵ݀ݖ(ݖ)ܺ  

It is denoted as,  

(݊)ݔ
௓.்
ርሮ  (ݖ)ܺ

Z. T. {(݊)ݔ} =  (ݖ)ܺ
I. Z. T. {(ݖ)ܺ} =  [݊]ݔ

 
5.3 Types of Z-transforms 
There are mainly two types of Z-transforms: the unilateral Z-transform and the bilateral Z-
transform. Both are mathematical techniques used in the analysis and design of discrete-time 
systems, but they differ in their definitions and applications. 
 
5.3.1 Unilateral Z-Transform: 
Definition: The unilateral Z-transform is defined for signals that are causal, meaning they start 
at a finite time and continue indefinitely. 
Formula: The unilateral Z-transform of a discrete-time signal x[n] is given by: 

(ݖ)ܺ = ∑ ௡ஶିݖ[݊]ݔ
଴                                 (5.2) 

Application: It is commonly used when dealing with signals that are causal and have a starting 
point in time. 

 
5.3.2 Bilateral Z-Transform: 
Definition: The bilateral Z-transform is defined for signals that may be non-causal, extending 
over both past and future time indices. 
Formula: The bilateral Z-transform of a discrete-time signal x[n] is given by: 

(ݖ)ܺ = ∑ ௡ஶିݖ[݊]ݔ
ିஶ  (5.3) 

Application: It is more general and can be applied to a wider range of signals, including non-
causal ones. However, it may not converge for all signals, and caution is needed in its 
application. 
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In practical applications, the unilateral Z-transform is often more commonly used, especially in 
the context of causal systems and signals. The choice between unilateral and bilateral Z-
transform depends on the nature of the problem and the characteristics of the signals involved. 

5.4 The Z-plane 
The Z-plane is a graphical representation used in the analysis and design of discrete-time 
systems, particularly in the context of Z-transforms as shown in the figure below. The Z-plane 
is a complex plane where the Z-transform is visualized and analyzed. In the Z-plane, complex 
numbers are represented as points, and each point corresponds to a specific frequency response 
or characteristic of a discrete-time system. 

 
Fig 5.1: Z-plane 

The Z-transform is a mathematical transformation that converts a discrete-time signal, 
represented by a sequence x[n], into a complex function of a complex variable z. The Z-plane 
provides a way to understand and interpret the properties of this complex function. 

 
The point at the origin (z = 0) represents the DC (zero-frequency) component of the signal. The 
unit circle in the Z-plane corresponds to the unit circle in the complex plane, where the 
magnitude of z is equal to 1. Points on the unit circle are associated with frequencies equal to 
the sampling frequency. The unit circle is particularly important for analyzing frequency 
response characteristics. 

 
Poles and zeros of the Z-transform are represented as points in the Z-plane. Zeros are locations 
where the Z-transform is zero, and poles are locations where the Z-transform becomes infinite. 
The distribution of poles and zeros in the Z-plane provides insights into the stability and 
frequency response of a discrete-time system. 
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Fig 5.2: Poles and zeros in the Z-plane 

 
5.4.1 Poles: 
Poles are the values of Z for which the transfer function becomes infinite (the denominator of 
the transfer function becomes zero). The poles are denoted with the cross sign in the above 
figure. They represent the natural frequencies of the system and provide information about the 
system's stability and response to input signals. 
The locations of the poles in the Z-plane determine how the system responds to different 
frequencies. Poles closer to the origin (Z = 0) correspond to faster decaying modes, while poles 
farther from the origin may represent dominant resonant frequencies. 
The system is considered stable if all poles are inside the unit circle in the Z-plane. If any poles 
are outside the unit circle, the system is unstable. 

 
5.4.2 Zeros: 
Zeros are the values of Z for which the transfer function becomes zero (the numerator of the 
transfer function becomes zero). The zeros are denoted with a small circle sign in the above 
figure. They represent the frequencies at which the system's response is zero, indicating points 
in the Z-plane where the system does not respond to certain input frequencies. 
Zeros can affect the system's frequency response, leading to resonant peaks or notches in the 
frequency domain. The location of zeros in the Z-plane indicates the frequencies at which the 
system has no response. 
In summary, poles and zeros in the Z-transform provide valuable information about the 
frequency response and stability of a discrete-time system. By analyzing the distribution of 
poles and zeros in the Z-plane, one can understand how a system responds to different 
frequencies and make design decisions to achieve desired system performance. 
The Z-plane is also associated with the concept of the Region of Convergence (ROC), which is 
the set of values of z for which the Z-transform converges. The ROC is often specified to ensure 
the convergence of the Z-transform. We will discuss about this later in this chapter.  The 
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location of poles in the Z-plane is crucial for stability analysis. For a discrete-time system to be 
stable, all poles must lie inside the unit circle. 

 
The Z-plane is a valuable tool for visualizing and analyzing the properties of discrete-time 
systems in the context of Z-transforms. It provides insights into the frequency response, 
stability, and convergence properties of these systems, making it an essential concept in the 
field of digital signal processing and control system analysis. 

 
5.5 Region of Convergence (ROC) for Z-Transform 

We have already seen that the Z-Transform of x[n] is the Fourier Transform of x[n] r-n, that is, 

(ݖ)ݔ = ∑ ௝௪௡ஶି݁{௡ିݎ[݊]ݔ}
ିஶ                    (5.4) 

Hence, is guaranteed to converge if x[n] r-n is absolutely summable. So, if x[n] r-n is absolutely 
assumable then   |ܺ(ݖ)| < ∞.                 

For a given Z-transform X(z), the Region of Convergence (ROC) is the set of values of the 
complex variable z for which the Z-transform converges. The ROC is crucial because it 
determines the set of values for which the Z-transform is well-defined. 
 
Let us see few signals and their Z-Transform. 
 
Example 5.1 Determine the Z.T. and ROC of the following finite duration signals: 
      (a) ݔ[݊] = {1,2,3, −1,0,1}, −2 ≤ ݊ ≤ 3 
 (b)  ݔ[݊] = {0, 0 ,1,2,1},   0 ≤ ݊ ≤ 4 
      (c)  ݔ[݊] = {1, 2, 3, −1,0, }, −4 ≤ ݊ ≤ 0 

                       
Solution:  

(a)   ݔ[݊] = {1, 2, ૜, −1,0,1}, −2 ≤ ݊ ≤ 3 
                    
 By definition, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

    The given signal is of finite duration 2 < n < 3. 
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= ෍ ௡ିݖ[݊]ݔ
ଷ

ିଶ

 

ଶݖ(2−)ݔ= + ଵݖ(1−)ݔ + ଴ݖ(0)ݔ + ଵିݖ(1)ݔ + ଶିݖ(2)ݔ +  ଷିݖ(3)ݔ
 Substituting values of x[n] we get, 

(ݖ)ܺ = ଶݖ1 + ݖ2 + 3 − ଵିݖ +  ଷିݖ
 ROC for X(z) is entire z-plane except z = 0 and z = . 
  
(b)  ݔ[݊] = {૙, 0,1,2,1}, 0 ≤ ݊ ≤ 4                       
 By definition, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

 The given signal is of finite duration 0  n  4. 
 Change the limits of summation, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ସ

଴

 

    

= (0)ݔ + ଵିݖ(1)ݔ + ଶିݖ(2)ݔ + ଷିݖ(3)ݔ + ସିݖ(4)ݔ  

(ݖ)ܺ = 0 + ଵିݖ0 + ଶିݖ1 + ଷିݖ2 + ସିݖ1  

ଶିݖ= + ଷିݖ2 +  ସିݖ
    ∴ ݖ ݁ݎ݅ݐ݊݁ ݏ݅(ݖ)ܺ ݂݋ ܥܱܴ − ݖ ݐ݌݁ܿݔ݁ ݈݁݊ܽ݌ = 0. 
     

(c) ݔ[݊] = {1,2,3, −1, ૙}, −4 ≤ ݊ ≤ 0.  
By definition, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

  The signal x[n] has non-zero values of n = 4, 3, 2,  1, 0. i.e. 4  n  0. 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
଴

ିସ

 

                   = (ସି)ିݖ(4−)ݔ + (ଷି)ିݖ(3−)ݔ + (ଶି)ିݖ(2−)ݔ + 
(ଵି)ିݖ(1−)ݔ +  ଴ݖ(0)ݔ

= ସݖ1 + ଷݖ2 + ଷݖ3 + ݖ(1−) + 0 
= ସݖ1 + ଷݖ2 + ଶݖ3 + ݖ(1−) + 0 
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(ݖ)ܺ = ݖ + ଶݖ3 + ଷݖ2 +  ସݖ
The ROC for X(z) is entire z-plane except z = . 
 
Example 5.2 
Consider the Signal x[n] = anu(n). Find Z-Transform of x[n] Where |a| < 1. 
Given :  x[n] = an u(n),  |a| < 1 
Solution: The signal x[n] is right sided i.e. causal and infinite duration. 
Z.T. of x[n] can be found by using equation below, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

= ෍ ܽ௡ ௡ିݖ(݊)ݑ 
ஶ

ିஶ

 

We know,  

(݊)ݑ = ቄ1,       ݊ ≥ 0
.݋         ,0 .ݓ  

(ݖ)ܺ = ෍ ܽ௡  .1. ௡ିݖ
ஶ

଴

 

= ෍(ܽ. ଵ)௡ିݖ
ஶ

଴

 

We know, 

෍ ܽ௡
ஶ

଴

 . (݊)ݑ =
1

1 − ܽ,      |ܽ| < 1 

Applying this to X(z) we get, 

(ݖ)ܺ = ෍(ܽିݖଵ)௡ =
1

1 − ଵିݖܽ

ஶ

଴

=
ݖ

ݖ − ܽ 

   
ݖ|  − ܽ| > 0, |ݖ| > |ܽ|  It will be the ROC. 
The zeros can be obtained by equating numerator to zero and poles by equation denominator to 
zero.  
   z  a =0   z = a 
 One pole is located at z = a. 
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Fig. 5.3 x(n) = anu(n) 

 

 
Fig. 5.4 Pole-zero plot and ROC |z| > |a|   

 
Observe here that the signal x[n] is causal, therefore the ROC of X(z) is outside the circle having 
radius |a|. 
 
Example 5.3: Determine the Z.T. of the another signal given below 

[݊]ݔ = −ܽ௡ݑ[−݊ − 1], |ܽ| < 1 
Solution: It is an infinite duration left sided, anticausal signal. 
 The Z.T. of the x[n] can be evaluated as, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

 Substituting value of x[n] in X(z) we get, 
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(ݖ)ܺ = ෍ −ܽ௡
ஶ

ିஶ

݊−)ݑ −  ௡ିݖ(1

Here, u(n  1) is 1 only when n  [ ,  1]. 

∴ (ݖ)ܺ = − ෍ ܽ௡(ݑ(݊ − ௡ିݖ(1
ஶ

௡ୀିஶ

 

= − ෍ ܽ௡ . 1. ௡ݖ
ିଵ

௡ୀିஶ

 

= − ෍(ܽିݖଵ)௡
ିଵ

ିஶ

 

 
Replacing n by n we get, 

= − ෍(ܽିଵݖ)௡
ஶ

ଵ

 

As the lower limit starts from 1, we cannot directly find the answer. We will do some 
adjustments so that it will start from 0.  

= − ൥෍(ܽିଵݖ)௡ − 1
ஶ

଴

൩ 

= 1 − ෍ ቀ
ݖ
ܽቁ

௡ஶ

௡ୀ଴

 

= 1 −
1

1 − ܽିଵݖ =
ݖ

ݖ − ܽ 

 
 This series converges, 

|ܽିଵݖ| < 1 
                                                             |ݖ| < ⌈ܽ⌉ 

∴ (ݖ)ܺ =  
ݖ

ݖ − ܽ  ; |ݖ| ܥܱܴ < |ܽ| 

[݊]ݔ  = −ܽ௡ ݊−) ݑ  − 1) is a non-causal infinite duration signal. 
 The ROC is inside the circle of radius |a| as shown below.
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Fig. 5.5 x[n]= an u( n  1) 

 

 
Fig. 5.6 Pole-zero plot and ROC |z| < |a| 

 
It is an interesting thing to observe that the signals: ݔ[݊] = ܽ௡ݑ (݊), [݊] ݔ ݀݊ܽ 1 |ܽ| =
−ܽ௡ݑ( −݊ − 1)are having same value of ܺ(ݖ) = ௭

௭ି௔
 Here the ROC is playing an important 

role of differentiating the two signals. For causal signal the ROC of X(z) is outside the circle 
having radial |a| and anti-causal signal the ROC of X(z) is inside the circle having radial |a|. 
These two examples explain the importance of specifying ROC. 
 
5.6 Properties of ROC 
The ROC determines the validity and convergence of the Z-transform expression. If a specific 
Z value is within the ROC, the Z-transform is well-defined and finite for that value. Outside the 
ROC, the Z-transform might not exist or could be infinite, leading to undefined results. In this 
section, let us go through the properties of ROC. 

 1. The ROC of X(z) consists of a ring in the z-plane centered about the origin. 
 2. If X(z) is rational, then The ROC must not contain any pole because at pole location the 

Z.T. becomes infinity. 
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 3. If x[n] is of finite duration, then the ROC is the entire z-plane, except possibility z = 0 and/or 
z = . 

 4. If x[n] is right sided and of infinite duration sequence, then ROC is the region of the z-plane 
outside the outermost pole. 

 5. If x[n] is a left sided and of infinite duration sequence, then ROC is the region of the z-plane 
inside the innermost pole. 

 6. If x[n] is two sided and if the circle |z| = r0 is the ROC, then the ROC will consist of a ring 
in the z-plane that includes the circle |z| = r0. 

 7. If the z-transform X(z) of x[n], is rational, then its ROC is bounded by poles or extends to 
infinity. 

 8. If the Z.T. of X(z) of x[n] is rational and if x[n] is right sided, then ROC is the region in the 
z-plane outside the outermost pole. i.e. outside the circle of radius equal to the largest magnitude 
of the pole of X(z). 
  If signal x[n] is causal then ROC includes z = . 

 9. If the Z.T. X(z) of x[n] is rational and if x[n] is left sided, then ROC is the region in the z-
plane inside the innermost nonzero pole. 
i.e. Inside the circle of radius equal to the smallest magnitude including z = 0 in particular, if 
x[n] is anti-causal then the ROC also includes z = 0.  
 
5.7 Properties of the Z-transform  
The Z-transform is a mathematical tool used in the analysis and processing of discrete-time 
signals and systems. It has several important properties that make it a valuable tool in various 
engineering and scientific fields. Here are some of the key properties of the Z-transform: 
 
5.7.1 Linearity:  
The Z-transform is a linear operation, which means it satisfies the superposition principle. If 
you have a linear combination of signals, you can compute the Z-transform of each signal 
separately and then sum them to find the Z-transform of the combined signal. 
Linearity property states that, 

(݊)ଵݔ
௓.்
ርሮ ଵܺ(ݖ) ݐ݅ݓℎ ܴܱܥ ∶  ܴଵ 

(݊)ଶݔ
௓.்
ርሮ ܺଶ(ݖ) ݐ݅ݓℎ ܴܱܥ ∶  ܴଶ 

 

Then, y(n)  = (݊)ଵݔ ܽ  + (݊) ଶݔ ܾ
௓.்
ርሮ (ݖ)ܻ  = a ଵܺ(ݖ) + ܾ ܺଶ(ݖ) with  ROC ܴଵ ܴଶ    (5.5) 

 Proof : The Z.T. of Y[n] is given by, 
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(ݖ)ܻ =  ෍ ௡ିݖ  .(݊)ݕ
ஶ

௡ୀିஶ

 

= ෍{ܽݔଵ

ஶ

ିஶ

(݊) +  ௡ିݖ{(݊) ଶݔ ܾ

= ܽ ෍ .(݊)ଵݔ ௡ିݖ
ஶ

ିஶ

+ ܾ ෍ ଶݔ

ஶ

ିஶ

 ௡ିݖ(݊) 

ଵܺ(ݖ)            ܺଶ(ݖ) 
(ݖ)ܻ = ܽ ଵܺ(ݖ) + ܾ ܺଶ(ݖ) ݐ݅ݓℎ ܴܱܥ ܴଵ  ܴଶ 

Hence proved. 
The linearity property can be generalized for any number of arbitrary signals. 
It implies that the Z.T. of  a linear combination of signals is the same as linear combination of 
their Z.T. 
 
5.7.2 Time Shifting:  
If you delay (advance) a discrete signal in the time domain, the Z-transform of the shifted signal 
is related to the original Z-transform by multiplying it by a power of Z. 

 If ݔ[݊] 
௓.்
ርሮ ܥܱܴ ℎݐ݅ݓ (ݖ)ܺ   ∶ ܴ 

 then, ݕ(݊) = ݊) ݔ − ݊଴) 
௓.்
ርሮ (ݖ)ܻ  = ௡బିݖ  (ܺ௭)              ܴܱܥ ∶ ܴ ⋂{0 < |ݖ| < ∞}    (5.6) 

Proof : Let,  y[n] = x[n  n0] 
 By the definition of the Z.T. we have, 

[ݖ]ܻ = ෍ ௡ିݖ [݊]ݕ
ஶ

ିஶ

 

= ෍ ݊)ݔ − ݊଴

ஶ

ିஶ

 ௡ିݖ(

   
 Let,݊ − ݊଴ = ݉ ,      ݊଴ + ݉ = ݊ 
[ݖ]ܻ =  ∑ ஶ(௠ା௡బ)ିݖ[݉]ݔ

ିஶ      (5.7) 
=∑ ௡బஶିݖ ௠ିݖ[݉]ݔ

ିஶ           (5.8) 
= ௡బିݖ ∑ ௠ஶିݖ(݉)ݔ

௠ୀିஶ       (5.9) 
(ݖ)ܻ = ௡బିݖ  (ܺ௭)              ܴܱܥ ∶ ܴ ∩ {0 < |ݖ| < ∞} 

Hence proved.  
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5.7.3 Time Reversal:  
The Z-transform of a time-reversed signal is related to the complex conjugate of the Z-transform 
of the original signal. 
 Time reversal property states that, 

 if  ݔ[݊] 
௓.்
ርሮ (݊)ݕ  with ROC : R   and (ݖ)ܺ  =  (݊−) ݔ

 then,  ܻ (ݖ) = ଵ ܥܱܴ ℎݐ݅ݓ(ଵିݖ) ܺ
ோ
               (5.10) 

 Proof : We have,  ݕ(݊) =   (݊−) ݔ
 By the definition of Z.T. 

(ݖ)ܻ =  ෍ ௡ିݖ(݊)ݕ
ஶ

ିஶ

 

= ∑ ௡ஶିݖ(݊−)ݔ
ିஶ                (5.11) 

 Substituting −݊ = ݉ 

(ݖ)ܻ =  ෍ ௠ݖ[݉]ݔ
ஶ

ି௠ୀ ିஶ

 

= ∑ ௠ஶି[ଵିݖ][݉]ݔ
௠ିஶ                  (5.12) 

(ݖ)ܻ =  (ଵିݖ) ܺ
   
 then,ܻ(ݖ) = ଵ ܥܱܴ ℎݐ݅ݓ(ଵିݖ) ܺ

ோ
 . 

 which is same as R.H.S. Hence proved. 
 
5.7.4 Scaling in z-domain:  
If you multiply a discrete signal by a constant in the time domain, the Z-transform of the scaled 
signal is obtained by multiplying the original Z-transform by the same constant. 

 Let,ݔ[݊]
௭.
↔   .ܴ ܥܱܴ ℎݐ݅ݓ(ݖ) ܺ

x[n]  (z) with ROC R. 

 then, ݕ[݊] =  ܽ௡  . [݊]ݔ
௓.்
ርሮ (ݖ) ݕ  =  ܺ ቀ௭

௔
ቁ ܥܱܴ ℎݐ݅ݓ ∶  |ܽ| ܴ.             (5.13) 

 Proof : Let  ܼ. ܶ. [݊] ݕ ݂݋ = ܽ௡  .  ,ݏ݅[݊]ݖ[݊]ݔ
 Z.T. of  ݕ[݊] =  ܽ௡  .  ,is [݊]ݔ

[ݖ]ܻ = ෍ ௡ିݖ(݊)ݕ = ෍ ܽ௡
ஶ

ିஶ

ஶ

ିஶ

.  ௡ିݖ[݊]ݔ
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= ෍ .[݊]ݔ ቀ
ݖ
ܽቁ

ି௡ஶ

ିஶ

 

(ݖ) ܻ =  ܺ ቀ
ݖ
ܽቁ ܥܱܴ ℎݐ݅ݓ ∶  |ܽ| ܴ. 

 then,ܻ(ݖ) = ܺ ቀ௭
௔

ቁ ܥܱܴ ℎݐ݅ݓ  ∶  |ܽ|ܴ. 

 ||ܽ| R is scaled version of R. 

 If X(z) has a pole or zero at z = b then X 


z

a  has a pole or zero at z = a  b. 

If b is +ve number, the scaling can be interpreted as shrinking or expanding of the z-plane. 
 
5.7.5 Time scaling:  

,ݐ݁ܮ [݊]௠ݔ = ቊݔ ቀ ௡
௠

ቁ                 if n is multiple of m;
0             if n is  not multiple of m ;

   

 
xm[n] is obtained from x[n] by inserting (m  1) zeros between successive sample values of 
x(m). 
 if, ݔ௠ (݊) = X (z)  

 then, y(n) = Xm(n)  
z

 X(zm) = Y(z) with ROC : R1/m.              (5.14) 
 Proof : We know that, 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

(௠ݖ)ܺ = ෍ ௡ି(௠ݖ)[݊]ݔ
ஶ

ିஶ

 

= ෍ ௠௡ିݖ[݊]ݔ
ஶ

ିஶ

 

 k = mn then n=k/m, 
(௠ݖ)ܺ = ∑ ݔ ቂ ௞

௠
ቃ ௞ஶିݖ

ିஶ                           (5.15) 

  
 Replacing k by n, 

(௠ݖ)ܺ = ෍ ݔ ቂ
݊

 ݉
ቃ

ஶ

ିஶ

 ௡ିݖ
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  Y(z) = X(zm)  with ROC : R1/m. 
 
5.7.6 Convolution:  
Convolution in the time domain corresponds to multiplication in the Z-domain. This property 
is particularly useful for analyzing the behavior of linear time-invariant systems. Convolution 
property states that, 

(݊)ଵݔ
௭

↔ ଵܺ(ݖ)ݐ݅ݓℎ ܴܱܥ ܴଵ 

(݊)ଶݔ
௭

↔ ଵܺ(݊)ݐ݅ݓℎ ܴܱ2 ܥ 
 
 

  then, ݕ(݊) = (݊)ଵݔ  (݊) ଶݔ ∗
௭

↔ (ݖ)ܻ  = ଵܺ (ݖ). ܺଶ (ݖ)   ܴܱܥ ∶  ܴଵ  ܴଶ            (5.16) 
 Proof : By definition of Z.T. 
 We have,  

(ݖ)ݕ =  ෍ ௡ିݖ(݊)ݕ
ஶ

ିஶ

 

෍[ݔଵ(݊) ∗ ௡ିݖ [(݊)ଶݔ
ஶ

ିஶ

 

 But, we know, 
(ݔ)ݕ = (݊)ଵݔ ∗  (݊)ଶݔ

 
= ∑ ଵݔ

ஶ
ିஶ ݊)ଶݔ(݉) − ݉)                                     (5.17) 

    Substituting y (n) in y (z) as, 
(ݖ)ݕ = ∑ ∑ .(݉)ଵݔ ଶݔ

ஶ
ିஶ

ஶ
ିஶ (݊ −  ௡             (5.18)ିݖ(݉

= ∑ ଵݔ
ஶ
ିஶ (݉) ∑ ݊)ଶݔ − ௡ஶିݖ(݉

ିஶ                       (5.19) 
 Using time shifting property,  
= ∑ ଵݔ

ஶ
ିஶ (݉).  (5.20)                 (ݖ)௠ܺଶିݖ

 Putting ∑ ଵݔ
ஶ
ିஶ (݉). ௠ିݖ = ଵܺ(ݖ) into the above equation, 

(ݖ)ܻ = ଵܺ (ݖ). ܺଶ (ݖ)   ܴܱܥ ∶  ܴଵ  ܴଶ 
 Hence proved. 
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5.7.7 Differentiation in z-domain:  
Taking the Z-transform of a signal's derivative in the time domain is related to the Z-transform 
of the original signal through multiplication by Z (i.e., differentiation in the time domain 
corresponds to multiplication by Z in the Z-domain).  

[݊]ݔ ݂ܫ 
௓்
↔  .ܴ ܥܱܴ ℎݐ݅ݓ(ݖ)ܺ

 Then, ݕ(݊) = ݊. [݊]ݔ
௓்
↔ (ݖ)ܻ = ݖ− ௗ

 ௗ௭
 (5.21)                .ܴ ܥܱܴ ℎݐ݅ݓ(ݖ)ܺ 

  Proof : We know, 

(ݖ)ܺ =  ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

   Differentiate X(z) w.r.t. z we get, 
ௗ

ௗ௭
(ݖ)ܺ = ∑ .[݊]ݔ ௗ

ௗ௭
ஶ(௡ିݖ) 

ିஶ                       (5.22) 
ௗ

ௗ௭
(ݖ)ܺ  = ∑ .[݊]ݔ (−݊) . ௡ିଵஶିݖ

ିஶ                       (5.23) 
ௗ

ௗ௭
(ݖ)ܺ  = ଵିݖ− ∑ ݊. . [݊]ݔ ௡ஶିݖ

ିஶ                          (5.24) 

.ݖ− ௗ
ௗ௭

(ݖ)ܺ  = ∑ ݊. ௡ஶିݖ[݊]ݔ
ିஶ                            (5.25) 

It is the ܼ. ܶ. {݊.  {[݊] ݔ

   Hence, ݊. [݊]ݔ
௓்
↔ ݖ− ௗ

ௗ௭
 (ݖ)ܺ 

 
5.7.8 Conjugation:  
 Convolution property states that 

 It states that, if ݔ[݊]
௓்
↔   ܴ ܥܱܴ ℎݐ݅ݓ (ݖ)ܺ

 then, ݕ(݊) = (݊)∗ݔ
௓்
↔ (ݖ) ݕ =  (5.26)               .ܴ ܥܱܴ ℎݐ݅ݓ (∗ݖ) ∗ܺ

 Proof: The ܼ. ܶ.  ,ݕܾ ݊݁ݒ݅݃ ݏ݅[݊]ݔ ݂݋
(ݖ)ܺ = ∑ ௡ஶିݖ[݊]ݔ

ିஶ          
 Taking conjugate of the above equation we get, 
(ݖ)∗ܺ = (∑ ௡ஶିݖ[݊]ݔ

ିஶ )∗                    (5.27) 
(ݖ)∗ܺ = ∑ ஶ∗ݔ

ିஶ (݊). ௡ݖ = ∑ ௡ஶି(∗ݖ)(݊)∗ݔ
ିஶ                      (5.28) 

   

 

 Putting z = z* we get, 
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(∗ݖ)∗ܺ = ෍ ∗ݔ
ஶ

ିஶ

(݊).  ௡ିݖ

 Hence, ݔ∗(݊)
௓்
↔  (∗ݖ) ∗ܺ

  
5.7.9 Initial Value Theorem:  
The initial value of a signal can be found from its Z-transform. This property is useful for 
analyzing the behavior of signals as they start at time zero. 
      It states that, if x[n] is causal signal i.e. x[n] = 0,  n < 0. 
   then, (0)ݔ = lim

௭→ஶ 
 (5.29)                (ݖ)ܺ 

 
5.7.10 Final Value Theorem:  
The final value of a signal can also be determined from its Z-transform. This property is useful 
for understanding the long-term behavior of signals as time approaches infinity. 
It states that, ݔ(∞) = lim

௭→ଵ
(1 −  (5.30)                  (ݖ)ܺ(.1−ݖ

where, x() is the final value of causal signal. 
This expression is possible only when the poles of  
 (1  z1) X(z) are inside the unit circle. 

 Proof : We have, ݔ[݊] − ݊)ݔ − 1)
௭

↔ (1 −  (ݖ)ܺ(ଵିݖ
 L.H.S.ݕ(݊) = [݊]ݔ − ݊) ݔ − 1) 
 Taking the Z.T. of above, 

(ݖ)ݕ =  ෍{ݔ[݊] − ݊)ݔ − ௡ିݖ{(1
ஶ

ିஶ

 

= ܰ
ݐܮ
→ ∞  ෍{ݔ[݊] − ݊)ݔ − ݊−ݖ{(1

ܰ

݊=0

 

 
   

lim
௡→ଵ

(1 − (ݖ)ܺ(ଵିݖ  =   lim
௡→ஶ

[݊]ݔ} − ݊)ݔ − ௡ିݖ{(1  =  (∞)ݔ

(∞)ݔ = lim
௡→ଵ

 (1 − .(ଵݖ  (ݖ) ܺ

   
 Hence proved. 
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5.7.11 Accumulation:  

,ݐ݁ܮ [݊]ݕ =  ෍ [݇]ݔ
௡

௞ୀିஶ

 

 Then  
(ݖ)ܻ = ௑(௭)

(ଵି௭షభ)
                (5.31) 

 
 Proof : 

(݊)ݕ − ݊)ݕ − 1) =  ෍ [݇]ݔ −  ෍ [݇]ݔ
௡ିଵ

ஶୀ௞

௡

ିஶ

 

(݊)ݕ  − ݊)ݕ − 1) =  [݊]ݔ
 Taking Z.T. on both sides, we get 

(ݖ)ܻ − (ݖ)ଵܻିݖ =  (ݖ)ܺ
1)(ݖ)ܻ − (ଵିݖ =  (ݖ)ܺ

 

(ݖ)ܻ =
(ݖ)ܺ

(1 −  (ଵିݖ

 This is the Z.T. of accumulator. It adds poles at z = 1 and ROC 1 < |z| < R. 
 
These properties make the Z-transform a powerful tool for analyzing and solving problems in 
discrete-time signal processing, control theory, and other related fields. They simplify the 
analysis of discrete-time systems and help in understanding their behavior in the Z-domain. 
 
Example 5.4 
Determine the Z.T. of the following signals ࢞[࢔] = .࢔ࢇ [࢔]࢛ − ࢔−]࢛࢔࢈  − ૚]. 
for |ࢇ| < ,|࢈| |ࢠ| ࢋ࢜ࢇࢎ ࢋ࢝ > ,ࢇ |ࢠ| <  .࢈
Solution: ݊݁ݒ݅ܩ ∶ [݊]ݔ = ܽ௡ݑ[݊] − ܾ௡ ݊]ݑ  − 1] 
 The given signal is two sided; the Z.T. is given by, 
  

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

   
= ∑ (ܽ௡ ௡ܾ−(݊)ݑ  ݊−)ݑ  − 1))ஶ

ିஶ            ௡ିݖ
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= ෍ ܽ௡ ௡ିݖ(݊)ݑ 
ஶ

ିஶ

− ෍ ܾ௡ ݊−)ݑ  − ௡ିݖ(1
ஶ

ିஶ

 

   

= ෍(ܽିݖଵ)௡
ஶ

ିஶ

+ ෍ −(ܾିଵݖ)௡
ஶ

ଵ

 

    

=
1

1 − ଵିݖܽ +
1

1 − ݖ
ܾ

− 1 

   
  

(ݖ)ܺ =
ݖ

ݖ − ܽ +
ݖ

ݖ − ܾ 

 There are two different causes for ROC. 
  
 
For |ܽ| < |ܾ|, ,݁ݒℎܽ ݁ݓ |ݖ| > ܽ, |ݖ| < ܾ 
These two ROC's overlap as shown and X(z) exists and given by, 
   

(ݖ)ܺ =
ݖ

ݖ − ܽ +
ݖ

ݖ − ܾ |ܽ|ܥܱܴ  < |ݖ| < |ܾ| 

 

 
Fig. 5.7 Pole-zero plot and ROC |a| < |z| < |b| 

 For an infinite duration two sided sequence. The ROC is a ring in the z-plane. 
 From this example, it is clear that we cannot have two ROC's. 
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Example 5.5 
Determine the Z.T. of the signal, 

[݊]ݔ = ൬
1
3൰

௡

(݊) ݑ + ൬
1
4൰

௡

 .(݊)ݑ

Solution: We know that Z.T. of, 
  

ܽ௡ݑ (݊)
௓.்.
ርሮ 

ݖ
ݖ − ܽ , |ݖ| ܥܱܴ > |ܽ|. 

 Hence,  

൬
1
3൰

୬

 u(n)
୞.୘
ርሮ

z

z − 1
3

 , |z| >  
1
3 

൬
1
4൰

୬

 u(n)
୸.୘
ርሮ

z

z − 1
4

∶  |z| >  
1
4 

 Therefore, z-transform of x[n] is given by, 
  

(ݖ)ܺ =  
ݖ

ݖ − 1
3

+  
ݖ

ݖ − 1
4

 

   

=
ݖ4

ݖ4 − 1 +
ݖ3

ݖ3 − 1 =
ݖ3

ݖ3 − 1 +
ݖ4

ݖ4 − 1 

 The first series converges for |z| > 
1
3.  Second series converges for |z| > 

1
4 . The common 

values of z for which both the series converges is |z| > 
1
3. This is shown in the figure below. 

 

Fig. 5.8 Pole-zero plot and ROC : 
1
3 < |z|  
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Example 5.6 
Determine the Z.T. of x[n], 
  

[࢔]࢞ = ൬
૚
૝൰

૛

࢔−)࢛ − ૚) + ൬
૚
૜൰

࢔

࢔−)࢛ − ૚) 

  

[݊]ݔ = ൬
1
4൰

௡

݊−)ݑ − ݊) + ൬
1
3൰

௡

݊−)ݑ − 1) 

 Solution: The Z.T. of x[n] is given by, 
 

(ݖ)ܺ = ෍[൬
1
4൰

௡ஶ

ିஶ

݊−)ݑ − 1) + ൬
1
3൰

௡

݊−)ݑ −  ௡ିݖ[(1

  
 

= ෍ ൬
1
4 ଵ൰ିݖ

௡ିଵ

ିஶ

+ ෍ ൬
1
3 ଵ൰ିݖ

௡ିଵ

ିஶ

 

  

= ෍(4ݖ)௡
ஶ

ଵ

+ ෍(3ݖ)௡
ஶ

ଵ

 

 

(ݖ)ܺ =
ݖ4

1 − ݖ4 +
ݖ3

1 −  ݖ3

First series converges for |z| < 
1
4 because signal is non-causal and second series converges for 

|z| < 
1
3 . Therefore, x(z) will be converge for common ROC of R1 and R2. 

 i.e.  |z| < 
1
4  

 The ROC of X(z) is inside the circle of radius |z| < 
1
4  

  Pole zero plot and ROC is shown below. 
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Fig. 5.9: Pole-zero plot and ROC |z| < 
1
4  

5.8 Relationship between DTFT and z-transform: 
The relationship between CTFT and L.T. we have seen. 
DTFT and Z.T.exhibits similar relation as CTFT and L.T. 
Let,  z= r  ejω 
Here, r is the magnitude and  z = ω is the phase. 
We know, z = rejω 
  

(ݖ)ܺ = ෍ .[݊]ݔ ௡ିݖ
ஶ

ିஶ

 

  

= ∑ ௝ఠି௡ஶ݁ݎ[݊]ݔ
ିஶ                    (5.32) 

    
= ∑ ௡ିݎ} . ௝ఠ௡ஶି݁{[݊]ݔ

ିஶ                 (5.33) 
 and we have, DTFT given by 
∑ ௝ఠ௡ஶି݁[݊]ݔ

ିஶ                          (5.34) 
 On comparing (1) and (2), it is clear that DTFT of rn  x[n] is Z.T. 
  

[݊]ݔ௡ିݎ
ி.்.
ርሮ  (௝௪݁ݎ)ܺ

 When r = 1. 

,ݐ݁݃ ܹ݁ (1)௡ [݊]ݔ  = [݊]ݔ
ி.்.
ርሮ ܺ(݁௝௪) 

 
 Hence, |ݎ|= |ݖ| = 1 , DTFT is Z.T. obtained on the unit circle. 
  

௭ୀ ௘ೕೢ|(ݖ)ܺ = ܺ൫݁௝ఠ൯ = .ܨ ܶ.  {[݊]ݔ}
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5.9 Inverse Z- transform 
We know that Z.T. of x[n] which is defined as 

(ݖ)ܺ = ෍ ௡ିݖ[݊]ݔ
ஶ

ିஶ

 

 

ݖ = .ݎ ݁௝ఠ 
 
ܺ൫݁ݎ௝ఠ൯ = .ܨ ܶ.  (5.35)               {௡ିݎ[݊]ݔ}
 Applying I.Z.T.to above equation we get, 
  

௡ିݎ[݊]ݔ = .ܫ .ܨ ܶ{ܺ൫݁ݎ௝ఠ൯} 
[݊]ݔ = .ܫ௡ݎ .ܨ ܶ. {ܺ൫݁ݎ௝ఠ൯} 

 Using I.F.T. expression, we have 
[݊]ݔ = ௡ݎ ଵ

ଶగ
 ∫  (5.36)              ݓ൫݁௝ఠ௡൯݀(௝௪݁ݎ)ܺ

    
1

ߨ2
න .ݎ)(௝௪݁ݎ)ܺ ݁௝ఠ)௡  ݀߱ 

 If we put, 
ݖ =  ௝ఠ݁ݎ

    
ݖ݀ = . ݎ݆ ݁௝௪݀߱   dω = . jr)/ݖ݀ ݁௝ఠ) 

 Substituting in above equation is obtained. 
 
[݊]ݔ = (݆ߨ2)/1 ∮ .(௝ఠ݁ݎ)ܺ ൫ݎ. ݁௝ఠ൯௡

. .ݎ݆)/1 ݁௝ఠ)݀(5.37)                  ݖ 
 The symbol ∮ represents contour integration. 

[݊]ݔ = (݆ߨ)1/2 ර .(ݖ)ܺ ௡(ݖ)  ݖ݀ ଵି(ݖ) 

[݊]ݔ = (݆ߨ2)/1 ර .(ݖ)ܺ ௡ିଵݖ  ݖ݀

 This is the expression for I.Z.T. indicates the integration around a counter clockwise closed 
circular contour centered at the origin with radius r. 
 This is a formal definition of I.Z.T. This is a direct method of computing I.Z.T. I.Z.T. 
There are other methods to find a time domain sequence when its z-transform is known. 
These are, 
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a) Power series expansion or Long division method  
b) Partial fraction method 
 
5.9.1. Power series expansion method  
The power series expansion method for the inverse Z-transform is a useful technique for finding 
the time-domain sequence when an explicit inverse Z-transform expression is not readily 
available. The power series expansion method can be employed to find the inverse Z-transform 
by representing X(z) as a power series and then finding the inverse Z-transform of each term in 
the series. 
The power series expansion is typically expressed as: 

(ݖ)ܺ = ෍ ܿ௡

ஶ

ିஶ

.  ௡ିݖ

where cn = x[n] are the coefficients in the power series. When X(z) is rational, the expansion can 
be performed by long division. Thus, it is also called as long division method.  
 
We will learn this method through solved examples. 
 
Example 5.7 
Using long division method find the I.Z.T. of   

(ࢠ)ࢄ =
૚ + ૚ିࢠ

૚ + ቀ૚
૜ቁ ૚ࢠ

 assuming ROC to be |ࢠ| >
૚
૜. 

Solution: 
The ROC is outside the circle of radius z = 1/3. So, its corresponding time domain signal is 
causal. 
Causal signals have negative power series expansion of z. 
 

      1 + 
2
3 z1  

2
9 z2 + 

2
27 z3   

 

  1 + 


1

3  z  ) 1 + z1 

      1 + 
1
3 z1  
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2
3 z1  

        
2
3 z1 + 

2
9 z2  

           
2
9 z2  

           
2
9 z2 + 

2
27 z3  

              
2
27 z3  

  X(z) =1 + 
2
3 z1  

2
9 z2 + 

2
27 z3  

 Taking I.Z.T.  

  x[n] =








1  
2
3    

2
9   

2
27       

 
 
 
Example 5.8 

Using long division method find the I.Z.T. of  X(z) = 
z

z  a ;  ROC |z| < |a| 

Solution: 
 The ROC is inside the circle of radius z = a. So, its corresponding time domain signal is 
anti-causal. 
 Anti-causal signals have positive power series expansion of z. 

 So, the I.Z.T. of  
z

z  a can be evaluated by using following method (the terms are written in 

opposite sequence so as to get positive power series expansion of z) as, 

       
1
a z  



1

a
2

 z2  


1

a
3

 z3  

  a + z  )  z  

      z  
1
a z2 z  )  z   

        
1
a z2  
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1
a z2  



 

1
a

2
 z3 

           


1

a
2

 z3  

           


1

a
2

 z3  


1

a
3

 z4  

               


1

a
3

 z4  

               


1

a
3

 z4  


1

a
4

 z5  

 
 
 We know that quotient is the power series of X(z). 
 Therefore, 
 

(ݖ)ܺ = − ൬
1
ܽ൰ ݖ − ൬

1
ܽ൰

ଶ

ଶݖ − ൬
1
ܽ൰

ଶ

ଷݖ … 

   

= − ቈ൬
1
ܽ൰ ݖ + ൬

1
ܽ൰

ଶ

ଶݖ + ൬
1
ܽ൰

ଷ

ଷݖ … … . ቉ 

 So, x[n] is given by, 

[݊]ݔ = −









1

a  z + 


1

a
2

 z2 + 


1

a
3

 z3    

   ={ a3, a2, a1, 0} 
= {… … … ܽିଷ, ܽିଶ, ܽିଵ, 0} 

 
 We can write, ݏܽ [݊]ݔ 
  

[݊]ݔ  =  −−ܽ௡ݑ(−݊ − 1) 
   We can write relation X(z) and x[n] as, 
  

−ܽ௡ݑ(−݊ − 1)
௭

↔
ݖ

ݖ) − ܽ) ; |ݖ| ܥܱܴ < |ܽ| 
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5.9.2 Partial fraction method 
The inverse Z.T. can be evaluated by partial fraction method. If the Z.T.is represented as a 
rational function given by, 

(ݖ)ܺ = ே(௭)
஽(௭)

= ௔೚ା௔భ௭షభା௔మ௭షమା⋯…௔೘௭షಾ

௕೚ା௕భ௭షభା௕మ௭షమା⋯…௕ಿ௭షಿ                        (5.38) 

With its corresponding ROC, then partial expansion can be used to find the inverse Z.T. 
 1. If the denominator D(z) can be factorized and if it has distinct real roots as given by, 
 
௑(௭)

௭
= ஼బ

௭
+ ஼భ

௭
                    (5.39) 

 

=
ଵܣ

ݖ −  ݖ

 

(ݖ)ܺ = ே(௭)
஽(௭)

= ௞.(௭ି௭భ)(௭ି௭మ)…..((௭ି௭೘)
(௭ି௣భ)((௭ି௣మ)……((௭ି௣೙)

                    (5.40) 

 
 Case I)   P1, P2, P3, , Pn are different poles. 
 
 

(ݖ)ܺ
ݖ =

଴ܥ

ݖ +
ଵܥ

ݖ − ଵܲ
+

ଶܥ

ݖ − ଶܲ
+ ⋯ . .

௡ܥ

ݖ − ௡ܲ
 

  
= ஼బ

௭
+ ∑ ஼ೖ

௭ି௉ೖ

௡
௞ୀଵ                    (5.41) 

 
 The C0, C1, C2  Cn can be evaluated by following equations, 
   

଴ܥ = ௭(ݖ)ܺ = 0 
௞ܥ = ݖ) − ௞ܲ)ܺ(ݖ)௭ୀ௣ೖ  

   
(ݖ)ܺ = ଴ܥ + ௭஼భ

(௭ି௉భ)
+ ௭஼మ

(௭ି௉మ)
+ ⋯ . . ஼೙௭

(௭ି௣೙)
           (5.42) 

 
We can compute I.Z.T. of ௭

௭ି௣భ
, ௭

௭ି௣మ
… . ௭

௭ି௣೙
 

Case II) If X(z) has poles with multiplicity with greater than one or if X(z) has more than one 
poles at same location. 
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 Let Pi is pole location with multiplicity r then X(z)/z will have term of the following form 
 
௑(௭)

௭
= ఒభ

௭ି௉೔
+ ఒమ

(௭ି௣೔)మ + ⋯ ఒೝ
(௭ି௣೔)ೝ                   (5.43) 

  

௥ି௞ߣ = ଵ
௞!

ௗೖ

ௗ௭ೖ ൤ቂ(ݖ − ௜ܲ)௥ ௑(௭)
௭

ቃ൨
௭ୀ௣೔

                   (5.44) 

 
From the above equation we can find the coefficients of poles which are located at same 
location. 
 
Example 5.9 
Determine the inverse Z.T. of the following X(z) by the partial fraction method. 

(ࢠ)ࢄ =
ࢠ + ૛

૛ࢠ૛ − ૠࢠ + ૜
 

With ROC (ࢇ)|ࢠ| > ૜, |ࢠ|(࢈) < ૚
૛

, (ࢉ) ૚
૛

> |ࢠ| < ૜. 

Solution: Let, 
(ݖ)ܺ

ݖ
=

ݖ) + 2)
ଶݖ2)ݖ − ݖ7 + 3)

 

  
(ݖ)ܺ

ݖ
=

ݖ + 2

ݖ2 ቀݖ − 1
2ቁ ݖ) − 3)

 

  
(ݖ)ܺ

ݖ
=

଴ܥ

ݖ
+

ଵܥ

ቀݖ − 1
2ቁ

+
ଶܥ

ݖ) − 3)
 

   

଴ܥ = ௭ୀ଴|(ݖ)ܺ =
0 + 2

2 + 1
2 ∗ 3

=
2
3
 

   

ଵܥ = ൬ݖ −
1
2

൰ ቎
ݖ) + 2)

ݖ2 ቀݖ − 1
2ቁ ݖ) − 3)

቏ 

    

=
ݖ) + 2)

ݖ)ݖ2 − 3)ฬ
௭ୀଵ

ଶ
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=
1
2 + 2

2 ∗ 1
2 ቀ1

2 ∗ 3ቁ

=
5
2

− 5
2

= −1 

   

ଶܥ = ݖ) − 3)
ݖ) + 2)

ݖ2 ቀݖ − 1
2ቁ ݖ) − 3)

ቮ

௭ୀଷ

 

 

   

=
3 + 2

2 ∗ 3 ቀݖ − 1
2ቁ

+
5

6 ∗ 5
2

=
1
3

 

   Substituting values of C0, C1 and C2 we get, 
   

(ݖ)ܺ =
2
3

−
ݖ

ቀݖ − 1
2ቁ

+
1
3

 
ݖ

ݖ) − 3)
 

 (a) ROC : |z| > 3 

 X(z) has 2 poles at z = 
1
2 , z = 3. 

   The I.Z.T. of  X(z) is given by,  

 
2
3

 
ூ.௓.்.
ር⎯ሮ 

2
3

 [݊]ߜ

 
ݖ

ቀݖ − 1
2ቁ

ூ.௓.்.
ር⎯ሮ  ൬

1
2൰

௡

 (݊)ݑ 

     
ݖ

ݖ) − 3)
ூ.௓.்.
ር⎯ሮ (3)௡ݑ(݊) 

[݊]ݔ =
2
3

[݊]ߜ − ൬
1
2൰

௡

(݊)ݑ + (3)௡ݑ(݊) 

 (b)  ROC |z| < 
1
2  

 The ROC is inside the circle of radius z = 
1
2.  

[݊]ݔ =
2
3

[݊]ߜ + ൬
1
2൰

௡

݊−)ݑ − 1) −
1
3

(3)௡ݑ(−݊ − 1) 

 (c)  ROC : ૚
૛

> |ࢠ| < ૜ 
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ܥܱܴ(ܿ) ∶  
1
2

|ݖ|݇ < 3 

   The ROC is ring between the poles at ݖ = ଵ
ଶ

ݖ ݀݊ܽ = 3. 

 

 The corresponding time domain signal of 
z

(z  3) is anti-causal and of 
z

z  
1
2

   is causal. 

[݊]ݔ =
2
3

[݊]ߜ + ൬
1
2൰

௡

(݊)ݑ −
1
3

(3)௡ݑ(−݊ − 1) 

 
5.10 Z – Domain Causality and stability analysis 
A causal linear time invariant system is one whose unit sample response h(n) satisfies the 
condition, 

ℎ[݊] = ݊ ݎ݋݂ 0 < 0                 (5.45) 
We have also seen that the ROC of the Z-transform of a causal sequence is the exterior of a 
circle outside the outermost pole. 
When we talk about stability we want to refer to the so called BIBO (bounded-input, bounded-
output) stability. As the name already implies, a BIBO stable system should respond with a 
bounded output to a bounded input.  
The output y[n] is commonly known as the convolution of x[n] and the impulse response, h[n]. 
So, with a bounded input, output will be bounded if and only if the impulse response is finite. 
For the impulse response to be finite, we need to ensure that h[n] is absolutely summable. This 
would ensure that the system will be stable. Hence, the bottom line is that we need an absolutely 
summable impulse response, i.e. 
∑ |ℎ[݊]| < ∞ஶ

ିஶ                     (5.46) 
By definition, (ݖ)ܪ =  ∑ ℎ(݊)ஶ

ିஶ  ௡, it followsିݖ
|(ݖ)ܪ| =  ∑ |ℎ(݊)ஶ

ିஶ |௡ିݖ =  ∑ |ℎ(݊)||ஶ
ିஶ  ௡|                         (5.47)ିݖ

For |z| = 1 i.e. on the unit circle, it will become,  
 
(ݖ)ܪ =  ∑ |ℎ[݊]|ஶ

ିஶ                                 (5.48) 
 
In turn this condition implies that H(z) must contain the unit circle within its ROC.  
 
Example 5.10 
A linear time-invariant system  is characterized by the system function 

(ݖ)ܪ =
3 − ଵିݖ4

1 − ଵିݖ3.5 +  ଶିݖ1.5
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Specify the ROC of H(z) and determine h(n) for the following conditions: 
(a) The system is stable.  
(b) The system is causal. 
(c) The system is anticausal. 

Solution: 

(ݖ)ܪ =
3 − ଵିݖ4

1 − ଵିݖ3.5 +  ଶିݖ1.5

By applying partial fractions, 

(ݖ)ܪ =
1

1 − ଵିݖ0.5 + 
2

1 −  ଵିݖ3

The system has poles at z= 0.5 and z= 3. 
(a) Since the system is stable, its ROC must include the unit circle and hence  

it is 0.5 < |z| < 3. Consequently, h(n) is non-causal and is given as, 
ℎ(݊) = (0.5)௡ݑ(݊) − 2(3)௡ݑ(−݊ − 1) 

(b) Since the system is causal, it ROC is |z| > 3. Hence,  
  ℎ(݊) = (0.5)௡ݑ(݊) + 2(3)௡݊ݑ) 

 and the system is unstable in this case. 
(c) If the system is anti-causal, it ROC is |z| < 0.5. Hence, 

 ℎ(݊) = −(0.5)௡ݑ(݊ − 1) − 2(3)௡ݑ(−݊ − 1) 
  and the system is unstable in this case. 

 

Unit Summary 
The Z-transform, a powerful mathematical tool in discrete-time signal processing, offers a 
comprehensive framework for analyzing discrete signals and systems. Understanding its 
definition and properties, including linearity, time-shifting, scaling, and convolution properties, 
forms the foundation of its application. The inverse Z-transform facilitates the conversion of 
transformed signals back into the time domain, employing techniques such as partial fraction 
decomposition and contour integration. In practical terms, the Z-transform finds extensive use 
in digital filter design, system analysis, and control theory, allowing engineers to analyze and 
design discrete-time systems with precision. Its applications extend to fields such as 
telecommunications, audio processing, and image processing, where it enables efficient 
manipulation of discrete signals. Advanced topics, including the relationship between Z-
transform and Laplace transform, as well as multirate signal processing, deepen the 
understanding of its theoretical underpinnings and broaden its scope of application. As 
technology continues to evolve, the Z-transform remains a vital tool for digital signal 
processing, offering insights into the behavior of discrete systems and paving the way for 
innovative solutions in a digital world. 
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Exercise 
1) Determine the Z-transform of the following signals, also mention the ROC. 

a) ݔ(݊) = {1, 2, 3, 3, 2, 0 ݎ݋݂ {1 ≤ ݊ ≤ 5 

b) ݔ(݊) = {−1, 0, 1, 0, −1, 0, ݎ݋݂ {1+ − 2 ≤ ݊ ≤ 4 

c) ݔ(݊) = {3, 2, 1, 1, 2, ݎ݋݂ {3 − 5 ≤ ݊ ≤ 0 

2) Determine the z-transform of the following signals, also plot the ROC.  

a) ݔ(݊) = ܽ௡ sin(ݓ଴݊) .  (݊)ݑ

b) ݔ(݊) =  (0.3)௡[ݑ(݊) − ݊)ݑ − 2)] 

3) Determine the causal signal ݔ(݊) if Z-transform is given by 

(ݖ)ݔ =
2 − ଵିݖ1.5

1 − ଵିݖ1.5 +  ଶିݖ0.5

4) Determine the Z-transform of the signal ݔ(݊) = −ܽ௡ݑ(−݊ − 1) and plot the ROC. 

5) Evaluate the inverse z-transform of  

a) ܺ(ݖ) = ଵ
ଵି଴.ହ௭షభ                     |z|<0.5 

b) ܺ(ݖ) = ଶ
(௭ି଴.ଶ)(௭ା଴.ସ)

 

6) For the given sequences ݔଵ(݊) = (݊)ߜ5 − ݊)ߜ2 − 2) and ݔଶ(݊) = ݊)ߜ3 − 3), find 
(݊)ଷݔ = (݊)ଵݔ ∗  .ଶ(݊) using the convolution property of z-transformݔ

7) A linear time invariant system is characterized by the system function  (ݖ)ܪ =
ଷିସ௭షభ

ଵିଷ.ହ௭షభାଵ.ହ௭షమ  Specify the ROC of H(z) and determine h(n) for the following 
convolutions 

a) The system is stable 

b) The system is causal 

c) The system is anticausal. 
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Multiple choice questions 
1. The Ƶ – transform of ܽି௡ݑ(−݊ − 1) is, 

a) ି௭
௭ିଵ ௔⁄  

 b) ௭
௭ିଵ ௔⁄  

 c) ௭
௭ି௔

 

 
 d) ି௭

௭ି௔
  

2. The ROC of the sequence ݔ(݊) =  ,is (݊−)ݑ

a) |z|>1 

b) b) |z|<1 

c) c) no ROC 

d) d) -1<|z|<1 

3. The inverse Ƶ − ଷ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ
௭ିସ

, |ݖ| >  ,ݏ݅ 4

a)    3(4)௡ݑ(݊ − 1) 
b) 3(4)௡ିଵݑ(݊) 
c)    3(4)௡ିଵݑ(݊ + 1) 
d) 3(4)௡ିଵݑ(݊ − 1)   

 

       4. ROC of x(n) contains 
  a) Poles 

  b) zeros 
  c) no poles 
 d) no zeros 

 
5. The Ƶ − (݊)ݔ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ = (݊)ݑ] − ݊)ݑ − 3))], |ݖ| ܥܱܴ ݎ݋݂ >  ,ݏ݅ 1

a) ܺ(ݖ) = ௭ି௭షయ

௭ିଵ
 

 b)ܺ(ݖ) = ௭షమ

(௭ିଵ)మ 

 c)ܺ(ݖ) = ௭ିସ௭షమାଷ௭షయ

(௭ିଵ)మ

 d) none of the above 
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6.  If all the poles of the system function H(z) have magnitude smaller than 1, then the system will 
be,    

    

a) Stable 
 b) unstable 
 c) BIBO stable  
 d) a and c 

 

(݊)ݔ ݂ܫ .7 = {0.5, −0.25, 1}, ℎ݁݊ Ƶݐ −  ,ݏ݅ ݈ܽ݊݃݅ݏ ℎ݁ݐ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ

a) ௭మ

଴.ହ௭మି଴.ଶହ௭ାଵ
 

 b) ௭మ

௭మି଴.ହ௭ା଴.ଶହ
          

c)଴.ହ௭మି଴.ଶହ௭ାଵ
௭మ       

d) ଶ௭మାସ௭ାଵ
௭మ  

 

8. ܶℎ݁ ܴܱݐ ݂݋ ܥℎ݁ ݔ ݈ܽ݊݃݅ݏ(݊) = ܽ௡݂ݎ݋ − 5 < ݊ <  ,ݏ݅ 5
  a) Entire z-plane 

  b) entire z-plane except z=0 and z=∞ 
 c) Entire z-plane except z=0 

 d) entire z-plane except z=∞ 

 
Ƶ ݂ܫ.9        − ℎ݁݊ Ƶݐ(ݖ)ܺ ݏ݅ (݊)ݔ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ −  ,ݏ݅(݊−)ݔ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ
 a) −ܺ(ݖ) 

 b) ܺ(−ݖ)      
  c) −ܺ(ݖଵ)  
 d)ܺ(ିݖଵ) 

 

       10. ܶℎ݁ ݅݊݁ݏݎ݁ݒ Ƶ −  ,ݏܽ ݂݀݁݊݅݁݀ ܾ݁ ݊ܽܿ(ݖ)ܺ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ

              a) ݔ(݊) = ଵ
ଶగ ∮ ௡ିଵݖ(ݖ)ܺ  ݖ݀

  b)ݔ(݊) = ଵ
ଶ௝ ∮  ݖ௡ିଵ݀ݖ(ݖ)ܺ

     c) ݔ(݊) = ଵ
ଶగ௝ ∮  ݖ௡ିଵ݀ݖ(ݖ)ܺ

  d) ݔ(݊) = ଵ
ଶగ௝ ∮ ௡ିݖ(ݖ)ܺ  ݖ݀
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11. ܶℎ݁ Ƶ −  ,ܽ ݏ݅  ݉ݎ݋݂ݏ݊ܽݎݐ
 a) finite series 
b) infinite power series    

c) geometric series 
d) both a and c 

12. ܶℎ݁ Ƶ −  ,ݏ݅(݊)ݕ ݀݊ܽ(݊)ݔ ݁ܿ݊݁ݑݍ݁ݏ ℎ݁ݐ ݂݋ ݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ
       a) ܺ∗(ݖ)ܻ∗(ିݖଵ)        b) ܺ(ݖ)ܻ(ିݖଵ)     c) ܺ(ݖ) ∗  (ଵିݖ) ܻ(ଵିݖ)ܺ (d       (ݖ) ܻ

13. For a stable LTI discrete time system poles should lie_______ and unit circle should be_______ 
            a) Outside unit circle, included in ROC 

 b) inside unit circle, outside of ROC 
             c) inside unit circle, included in ROC 

 d) outside unit circle, outside of ROC 

,݁ݏ݊݋݌ݏ݁ݎ ݁ݏ݈ݑ݌݉݅ ℎݐ݅ݓ ݉݁ݐݏݕݏ ܫܶܮ ݊ܣ .14 ℎ(݊) = (−ܽ)௡ ݑ(݊)ܽ݊݀ − ܽ <  ,ܾ݁ ݈݈݅ݓ 1−
         a) stable system 

 b) unstable system 
 c) anticausal system  

        d) neither stable nor causal 

 
,݈݁ܿݎ݅ܿ ݐ݅݊ݑ ℎ݁ݐ ݊݋ ݈݁݋݌ ݈݁݃݊݅ݏ ܽ ݏℎܽ(ݖ)݂ܺܫ .15 ,ℎ݁݊ݐ ݏ݅ݔܽ ݈ܽ݁ݎ ݁ݒ݅ݐܽ݃݁݊ ݊݋  ,ݏ݅(݊)ݔ

a) signed constant sequence                
b) signed decaying sequence 

  c) signed growing sequence 
 d) constant sequence 

 

ܼ ݏℎܽ(݊)ݔ ݂ܫ .16 − ܥܱܴ ℎݐ݅ݓ(ݖ)ܺ  ݉ݎ݋݂ݏ݊ܽݎܶ →  ܴ ଵݐℎ݁݊ ܴܱ݂݋ ܥ ܽ௡ݔ(݊)
Ƶ

↔ ܺ ቀ௭
௔

ቁ   ,ݏ݅

             a) ோభ
௔

           b) aܴଵ                          c) ܴଵ                              d) ଵ
ோభ

 

 
17. ܶℎ݁ Ƶ − (݊)ݔ ݊݋݅ݐܿ݊ݑ݂ ݌݉ܽݎ ܽ ݂݋ ݉ݎ݋݂ݏ݊ܽݎݐ =  ,ݏ݅(݊) ݑ ݊

     a) ܺ(ݖ) = ௭
(௭ିଵ)మ     ; |ݖ| ݏ݅ ܥܱܴ    > 1           b)ܺ(ݖ) = ି௭

(௭ିଵ)మ    ; |ݖ| ݏ݅ ܥܱܴ    > 1    

 



Signals and Systems| 225 

 
 

     c) ܺ(ݖ) = ௭
(௭ିଵ)మ    ; |ݖ| ݏ݅ ܥܱܴ    < 1   

 d) ܺ(ݖ) = ି௭
(௭ିଵ)మ    ; |ݖ| ݏ݅ ܥܱܴ   < 1    

Answers to the multiple choice questions: 

1. a 2. b 3. d 4. c 5. d 6. a 7. c 8. b 9. d 

10. c 11. b 12. b 13. c 14. a 15. a 16. a 17. a  

 
KNOW MORE 
Z-transform reveals a rich tapestry of mathematical intricacies and practical applications. 

Beyond its fundamental properties lie advanced techniques and insights that amplify its utility 

in discrete signal analysis and system design. Understanding the intricacies of Z-transform 

inversion methods, such as residue calculus and contour integration, empowers engineers and 

researchers to unravel complex system behaviors with precision and accuracy. The Z-

transform's role extends far beyond mere signal processing; it serves as a cornerstone in areas 

ranging from digital control theory to communication systems design, enabling the 

development of robust algorithms and efficient data processing techniques. Exploring the 

connections between the Z-transform and other mathematical tools, such as Fourier analysis 

and Laplace transform, unveils deeper insights into the interplay between time and frequency 

domains in discrete systems. Moreover, ongoing research in areas such as multirate signal 

processing and adaptive filtering continues to push the boundaries of Z-transform theory, 

paving the way for innovative applications in emerging technologies. As we delve deeper into 

the intricacies of the Z-transform, we unlock a world of possibilities, where mathematical 

abstraction converges with real-world engineering challenges, driving forward progress and 

innovation in the digital age. 
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UNIT SPECIFICS  
Through this unit we have discussed following aspects: 

• The necessity of sampling theorem 
• Sampling theorem for Continuous Time & Discrete time signal 
• Understanding of discrete time processing of continuous time signals 
• Frequency domain spectra of the sampled signals 
• Interpolation methods for reconstruction of sampled signals 
• Zero-order & first order hold interpolation methods  
• Effects of under sampling and oversampling on the signals 
• Using spectra to understand aliasing and its effects 
• Understanding continuous and discrete time systems 

 

RATIONALE  
The unit “Sampling and Reconstruction” is not only important to understand signals but also 

will be helpful in Communications. We can call on simple intuition to motivate and describe the 

processes of sampling and reconstruction from samples, because in communication systems 

that are closely related to sampling or rely fundamentally on using a sampled version of the 

signal to be transmitted. 

 

6 

Sampling & 
Reconstruction 
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This unit focuses on sampling of continuous and discrete time signals. The effects of under 

sampling and oversampling are discussed in detail with various examples. Frequency domain 

analysis i.e. Fourier transform of signals is extensively used for the better understanding of the 

topic. The effects of ‘aliasing’ are explained in lucid manner. Various methods to avoid aliasing 

are also discussed in this topic. Both continuous time and discrete time signals are considered 

for discussions. For reconstruction of the sampled signal, various interpolation methods are 

discussed with detailed mathematical analysis and distinct examples. Different filtering 

techniques are studied for proper reconstruction of the signal. 

The discrete and continuous time systems are also discussed to give overview of the working of 
how systems work. 

PRE-REQUISITES  
1. Strong understanding of mathematics, including algebra, calculus, and complex 

            numbers. 
2. Familiarity with basic concepts in signals and systems, such as time-domain and 

            frequency-domain representations, Fourier analysis, and convolution. 
3. Proficiency in solving ordinary differential equations and understanding linear 

            algebra concepts. 
4. Basic knowledge of electronics and circuit analysis for understanding continuous- 

            time LTI systems. 
5. Knowledge of digital signal processing concepts for understanding discrete-time 

            LTI systems. 

UNIT OUTCOMES  
List of outcomes of this unit is as follows: 
U6-O1: Understand need of sampling theorem 
U6-O2: Apply sampling theorem to continuous and discrete time signals 
U6-O3: Study the effects of under sampling and oversampling 
U6-O4: Perform Zero-order and first order hold interpolation 
U6-O5: Study aliasing and its effects 
U6-O6: Understand aliasing and its effects through Fourier analysis 
U6-O7: Study relationship between continuous time & discrete time systems 
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Unit-6 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6 
U6-O1 - - - - - 3 
U6-O2 2 - - 2 - 3 
U6-O3 - - - - - 3 
U6-O4 - - - - - 3 
U6-O5 - - - - - 3 
U6-O6 - - 3 - - 3 
U6-O7 - 2 - 2 - 2 
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6.1 Introduction 
A continuous time signal can entirely be represented by its samples which are equally spaced 
in time. The sampling theorem is associated with these samples. This theorem is widely used in 
applications where digital data is preferred over analog. Sampling theorem is one of the most 
important theorems in signals & systems as it acts bridge between continuous time signals and 
discrete time signals.  
Nowadays, technically advanced digital systems are developed to effectively process 
continuous time signals. Hence, there is need to convert these continuous time signals into 
discrete time signals. Sampling process provides some insight, to deal with the problem of 
conversion mentioned above. Sampling is the process which involves conversion of continuous 
time signal to discrete time signal. The sampling is performed by taking samples of continuous 
time signal at definite intervals of time. This sampled (discrete time) signal is easily processed 
by discrete time systems. The original continuous time signal is reconstructed from this discrete 
time signal. 
In the following discussion, we introduce and develop concept of sampling and process of 
reconstructing CT signals from its samples. In the following discussion, we will analyze the 
conditions under which sampling rate is sufficient to be able to exactly reconstruct the original 
continuous time signal. And we will also observe when sampling rate is low what will happen 
to original continuous time signal while trying to reconstruct from its samples. Finally, we 
examine the sampling of discrete time signals & related concepts of decimation & interpolation.     
6.2 Sampling Theorem 
First, we need to clearly see some examples of continuous time signals which can be uniquely 
specified by a sequence of equally spaced samples. For example, figure 6.1 illustrate three 
different continuous time signals, all of which have identical values at integer multiples of T (T 
is sampling time/sampling period/sampling interval) that is, 

xଵ(kT) = xଶ(kT) = xଷ(kT) 

 
Fig 6.1: Three continuous time signals 
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6.2.1 Impulse train sampling 
To sample a continuous time signal at regular intervals we need a convenient way to develop 
sampling theorem. One useful way is to use periodic impulse train multiplied by continuous 
time signal (ݐ)ݔ which is the signal we wish to sample. This mechanism is known as impulse-
train sampling and is shown in figure 6.2. The periodic impulse train (ݐ)݌ is referred to as 
sampling function, the period T as sampling period and the fundamental frequency of (ݐ)݌, 
߱௦ = ଶగ

்
 as the sampling frequency. In time domain, we can write, 

(ݐ)௣ݔ =  (6.1)                                                                        (ݐ)݌(ݐ)ݔ
Where, 

(ݐ)݌ = ෍ ݐ)ߜ − ݊ܶ)
ାஶ

௡ୀିஶ

                                                            (6.2) 

Now, by using sampling property of unit impulse function, we know that multiplying x(t) by a 
unit impulse sample the value of signal at the point at which the impulse is located i.e. 
ݐ)ߜ(ݐ)ݔ − (଴ݐ = ݐ)ߜ(଴ݐ)ݔ −  ଴). Applying this to Eq. (6.1) we see the result which is illustratedݐ
in figure 6.2, that ݔ௣(ݐ) is an impulse train with amplitudes of impulses equal to the samples of 
x(t) at intervals spaced at time interval T; that is, 

(ݐ)௣ݔ = ෍ ݐ)ߜ(ܶ݊)ݔ − ݊ܶ)
ାஶ

௡ୀିஶ

                                                (6.3) 

From multiplication property, we know that  

ܺ௣(݆߱) =
1

ߨ2
න ߱)൫݆ܲ(ߠ݆)ܺ − ߠ൯݀(ߠ

ାஶ

ିஶ
                                (6.4) 

Using earlier properties, 

ܲ(݆߱) =
ߨ2
ܶ ෍ ߱)ߜ − ݇߱௦)

ାஶ

௞ୀିஶ

                                                  (6.5) 

Since, convolution with the impulse function simply shifts a signal, it follows that, 
 

 ܺ௣(݆߱) =
1
ܶ ෍ ܺ(݆(߱ − ݇߱௦))

ାஶ

௞ୀିஶ

                                                  (6.6) 
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Fig 6.2: Impulse-train sampling 

So, ܺ௣(݆߱) is periodic function of ߱ consisting of superposition of shifted replicas of ܺ(݆߱), 
scaled by 1/ܶ as illustrated in figure 6.3. In figure 6.3(c), ߱௠ < (߱௦ − ߱ெ), or equivalently, 
߱௦ > 2߱ெ  and hence there is no overlap between shifted replicas of ܺ(݆߱), whereas in figure 
6.3(d), with ߱௦ > 2߱ெ, x(t) can be recovered exactly from xp(t) by means of a low pass filter 
with gain T and cut off frequency greater than ߱ெ and less than ߱௦ − ߱ெ and is indicated in 
figure 6.4. 
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Fig. 6.3: Frequency domain representation due to sampling in time domain: (a) Spectrum of 

original signal; (b) Spectrum of sampling function; (c) Spectrum of sampled signal with 
࣓࢙ > ૛࣓ࡹ ; (d) Spectrum of sampled signal ࣓࢙ < ૛࣓ࡹ 

 
Sampling Theorem: 

Let x(t) be a band limited signal with ܺ(݆߱) = |߱| ݎ݋݂ 0 > ߱ெ . Then x(t) is uniquely 
determined by its samples x(nT), ݊ = 0, ±1, ±2, … …, if 

߱௦ > 2߱ெ  
Where, 

߱௦ =
ߨ2
ܶ  

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which 
successive impulses have amplitudes that are successive sample values. This impulse train is 
then processed through an ideal lowpass filter with gain T and cutoff frequency greater than 
߱ெ and less than ߱௦ − ߱ெ. The resulting output will be exactly equal to x(t).   
We have seen sampling theorem, where impulse train sampling method was discussed. 
However, in practice the frequency of the original continuous time signal which comes under 
sampling theorem must be excess than the sampling frequency is referred to as ‘Nyquist Rate’. 
In real life applications a non-ideal lowpass filter is used instead of ideal lowpass filter as 
shown in figure 6.4. The non-ideal filter has filter characterictics as |ܪ(݆߱)| where |ܪ(݆߱)| ≅
߱ ݎ݋݂ 1 < ߱ெ  and  |ܪ(݆߱)| ≅ ௦߱ ݎ݋݂ 0 − ߱ெ. For understanding basic principles of 
sampling theorem for convenience we will regularly use ideal filters throughout this chapter.  
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Fig 6.4: Recovery of original signal by using ideal lowpass filter 

(a) System for sampling & reconstruction (b) Representative spectrum for x(t) (c) 
Corresponding spectrum for xp(t) (d) Ideal lowpass filter to recover (࢐࣓)ࢄ from (࢐࣓)࢖ࢄ (e) 

Spectrum of xr(t) 
 

6.2.2 Sampling with Zero-Order Hold 
In sampling theorem a band limited signal is uniquely represented by its samples using the 
impulse-train sampling. However, in practice, large narrow amplitude pulses are difficult 
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generate and transmit. So, it is often more convenient to generate sampled signal in a form 
referred to as ‘Zero-Order hold. Such system samples the given continuous time signal at given 
instant and holds that value until the next instant at which sample is taken as shown in figure 
6.5. 

 
Fig 6.5: Sampling using Zero-Order Hold 

Now, the output ݔ଴(ݐ) of zero order hold can be generated by impulse train sampling followed 
by LTI system. The impulse response is shown in figure 6.6 as shown below, 

 
Fig 6.6: Zero order hold as impulse- train sampling followed by an LTI system with ractangular 

response 
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6.3 Reconstruction of a signal from its samples using interpolation 
Interpolation, to fit a continuous signal to a set of sample values, is a widely used for 
reconstructing a function from its samples. One simple interpolation procedure is the zero-order 
hold discussed in Section 6.1.2. Another useful form of interpolation is linear interpolation, 
whereby adjacent sample points are connected by a straight line, as illustrated in Figure 6.7 

 
Fig 6.7: Interpolation between samples, solid curve represents interpolation 

For a band-limited signal if the sampling instants are sufficiently close then signal can be 
reconstructed exactly. By using a lowpass filter, exact interpolation can be carried out between 
sample points. For the reconstruction of (ݐ)ݔ using the interpolation process we will consider 
the effect of lowpass filter in time domain as shown in figure 6.4. The output of reconstruction 
is written as, 

(ݐ)௥ݔ = (ݐ)௣ݔ ∗ ℎ(ݐ) 
Substituting for ݔ௣(ݐ) using Eq. (6.3) in above equation, we can write 

(ݐ)௥ݔ = ෍ ݐ)ℎ(ܶ݊)ݔ − ݊ܶ)
ାஶ

௡ୀିஶ

                                                (6.7) 

Eq. (6.7) describes how to fit a continuous curve between the sample points ݔ(݊ܶ) and 
consequently represent an interpolation formula. For the ideal lowpass filter ܪ(݆߱) in Figure 
6.4, the impulse response ℎ(ݐ) is, 

ℎ(ݐ) =
߱௖ܶ sin(߱௖ݐ)

ݐ௖߱ߨ                                                                     (6.8) 

we will get, 

(ݐ)௥ݔ = ෍ ݐ)ℎ(ܶ݊)ݔ − ݊ܶ)
ାஶ

௡ୀିஶ

                                                (6.9) 

(ݐ)௥ݔ = ෍ (ܶ݊)ݔ
߱௖ܶ

ߨ
ݐ)௖߱)݊݅ݏ − ݊ܶ))

߱௖(ݐ − ݊ܶ)

ାஶ

௡ୀିஶ

                                              (6.10) 
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The reconstruction according to Eq. (6.10) with ߱௖ = ߱௦/2 is illustrated in Figure 6.8 Figure 
6.8(a) represents the original band-limited signal (ݐ)ݔ, and Figure 6.8(b) represents ݔ௣(ݐ), the 
impulse train of samples. In figure 6.8(c), the superposition of the individual terms in Eq. (6.10) 
is illustrated. 

Interpolation using the impulse response of an ideal lowpass filter as in Eq. (6.10) is commonly 
referred to as band-limited interpolation, since it implements exact reconstruction if (ݐ)ݔ is 
band limited and the sampling frequency satisfies the conditions of the sampling theorem. As 
we have indicated, in many cases it is preferable to use a less accurate, but simpler, filter or, 
equivalently, a simpler interpolating function than the function in Eq. (6.8). For example, the 
zero-order hold can be viewed as a form of interpolation between sample values in which the 
interpolating function ℎ(ݐ) is the impulse response ℎ଴(ݐ) depicted in figure 6.6. In that sense, 
with ݔ଴(ݐ) in the figure corresponding to the approximation to (ݐ)ݔ, the system ℎ଴(ݐ) represents 
an approximation to the ideal lowpass filter required for the exact interpolation. Figure 6.9 
shows the magnitude of the transfer function of the zero-order-hold interpolating filter, 
superimposed on the desired transfer function of the exact interpolating filter. 

 

Fig 6.8: Band-limited interpolation using Sinc function: (a) Band-limited signal x(t) (b) Impulse 
train sampling of x(t) (c) Ideal band-limited interpolation in which impulse train is 

replaced by superposition of Sinc functions. 
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Fig 6.9: Transfer function for zero-order hold 

If the interpolation provided by zero-order hold is insufficient then we can opt for interpolation 
strategies which are of higher order holds. We know from figure 6.5 that the zero-order hold 
produces an output signal that is not continuous in time. On the other hand, the linear 
interpolation, as shown in figure 6.7 gives us reconstructions which are continuous. The linear 
interpolations are sometimes also known as first-order hold and can also be viewed as in figure 
6.6. The associated transfer function is also shown in figure and is given by  

(݆߱)ܪ =
1
ܶ

ቌ
sin ቀ߱ܶ

2 ቁ
߱
2

ቍ

ଶ

                                                                        (6.11) 

The transfer function of the first-order hold is shown superimposed on the transfer function for 
the ideal interpolating filter. Now, we can define second- and higher order holds that produce 
reconstructions with a higher degree of smoothness. For example, the output of a second-order 
hold provides an interpolation of the sample values that is continuous and has a continuous first 
derivative and discontinuous second derivative. 

 
6.3.1 The effect of under sampling: Aliasing 

Till now we assumed that the sampling frequency was sufficiently high that the conditions of 
the sampling theorem were satisfied. As illustrated in figure 6.3, with ߱௦ > 2߱ெ  the spectrum 
of the sampled signal consists of scaled replications of the spectrum of (ݐ)ݔ, and this forms the 
basis for the sampling theorem. When ߱௦ < 2߱ெ , ܺ(݆߱) the spectrum of (ݐ)ݔ,  is no longer 
replicated in ܺ௣(݆߱) and thus it is not possible to recover original continuous time signal by 
lowpass filtering. This effect is known as aliasing, and in this section, we explore its effect and 
consequences. 

Clearly, if the system of figure 6.4 is applied to a signal with ߱௦ < 2߱ெ  the reconstructed 
signal ݔ௥(ݐ) will no longer be equal to x(t). However, as explored in earlier section, the original 
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signal, and the signal ݔ௥(ݐ) that is reconstructed using band­ limited interpolation will always 
be equal at the sampling instants; that is, for any choice ߱௦, 

(ܶ݊)௥ݔ = ݊          ,(ܶ݊)ݔ = 0, ±1, ±2 … …                                             (6.12) 

 

Fig 6.10: Linear Interpolation (First-order hold) as impulse-train sampling followed 
with convolution a triangular impulse response: (a) system for sampling & 

reconstruction; (b) Impulse train of samples; (c) Impulse response representing 
a first-order hold; (d) First-order hold applied to sampled signal; (e) 

Comparison of transfer function of ideal interpolating filter & first order hold. 

We will try to understand the relationship between (ݐ)ݔ and ݔ௥(ݐ) when ߱௦ < 2߱ெ  for the 
simple case of sinusoidal case thus let, 

(ݐ)ݔ = cos(߱଴ݐ)                                                                                         (6.13) 

with Fourier transform  ܺ (݆߱) as indicated in Figure 6.11(a). In this figure, we have graphically 
distinguished the impulse at w0 from that at -w0 for convenience. Let us consider ܺ௣(݆߱), the 
spectrum of the sampled signal, and focus on the effect of a change in the frequency ߱଴ with 
the sampling frequency ߱௦ fixed. In figure 6.11(b)-(e), we illustrate ܺ௣(݆߱) for several values 
of ߱଴. Also indicated by a dashed line is the passband of the lowpass filter of figure 6.4 with 
߱௖ = ߱௦/2. Note that no aliasing occurs in (b) and (c), since ߱ ଴ < ߱௦/2, whereas aliasing does 
occur in (d) and (e). For each of the four cases, the lowpass filtered output ݔ௥(ݐ) is given as 
follows: 
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(ܽ)    ߱଴ =
߱௦

6 (ݐ)௥ݔ                   ; = cos ߱଴ݐ =  (ݐ)ݔ

(ܾ)    ߱଴ =
2߱௦

6 ; (ݐ)௥ݔ                  = cos ߱଴ݐ =  (ݐ)ݔ

(ܿ)    ߱଴ =
4߱௦

6 (ݐ)௥ݔ                 ; = cos(߱௦ − ߱଴)ݐ ≠  (ݐ)ݔ

(݀)    ߱଴ =
5߱௦

6 (ݐ)௥ݔ                 ; = cos(߱௦ − ߱଴)ݐ ≠  (ݐ)ݔ

When aliasing occurs, the original frequency ߱଴ takes on the identity of a lower frequency, 
߱௦ − ߱଴. For ߱௦/2 < ߱଴ < ߱௦, as ߱଴ increases relative to ߱௦ , the output frequency ߱௦ − ߱଴ 
decreases. When ߱௦ = ߱଴, for example, the reconstructed signal is a constant. This is consistent 
with the fact that, when sampling once per cycle, the samples are all equal and would be 
identical to those obtained by sampling a constant signal (߱଴ = 0). In figure 6.12, we have 
depicted, for each of the four cases in Figure 6.11, the signal (ݐ)ݔ, its samples, and the 
reconstructed signal ݔ௥(ݐ). From the figure, we can see how the lowpass filter interpolates 
between samples. Consider another sinusoidal signal given by Eq. (6.14) as, 

(ݐ)ݔ = cos(߱଴ݐ + ߮)                                                                                 (6.14)  

In this case, the Fourier transform of (ݐ)ݔ is essentially the same as Figure 6.11(a), except that 
the impulse indicated with a solid line now has amplitude ݁ߨ௝ఝ, while the impulse indicated 
with a dashed line has amplitude with the opposite phase, namely, ି݁ߨ௝ఝ  If we now consider 
the same set of choices for ߱଴ as in Figure 6.11, the resulting spectra for the sampled versions 
of cos(߱଴ݐ + ߮) are exactly as in the figure, with all solid impulses having amplitude ݁ߨ௝ఝ  
and all dashed ones having amplitude ି݁ߨ௝ఝ Again, in cases (b) and (c) the condition of the 
sampling theorem is met, so that ݔ௥(ݐ) = cos(߱଴ݐ + ߮) =  while in (d) and (e) we again ,(ݐ)ݔ
have aliasing. but we now see that there has been a reversal in the solid and dashed impulses 
appearing in the passband of the lowpass filter. As a result, we find that in these cases, ݔ௥(ݐ) =
cos[(߱௦ − ߱଴)ݐ + ߮)], where we have a change in the sign of the phase ߮  i.e., a phase reversal. 

It is important to note that the sampling theorem explicitly requires that the sampling frequency 
be greater than twice the highest frequency in the signal, rather than greater than or equal to 
twice the highest frequency. The next example illustrates that sampling a sinusoidal signal at 
exactly twice its frequency (i.e., exactly two samples per cycle) is not sufficient. 
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Fig 6.11: Effect of oversampling & under sampling: (a) Spectrum of original sinusoidal signal; 
(b) (c) Spectrum of sampled signal with ࣓࢙ > ૛࣓૙; (d) (e) Spectrum of sampled signal 

with ࣓࢙ < ૛࣓૙; 
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Fig 6.12: Effect of aliasing on sinusoidal signal. For each of the four values of ࣓૙, the original 
sinusoidal signal (solid curve), its samples, and reconstructed signal (dashed curve) are 
illustrated: (a) ࣓૙ = ૞࣓࢙

૟
, in (a) and (b) no aliasing occurs, whereas in (c) & (d) there is 

aliasing 
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Example 6.1 

Consider a sinusoidal signal 

(ݐ)ݔ = cos ቀ
߱௦

2 ݐ + ߮ቁ , 

And suppose that the above signal is sampled using impulse sampling at exactly the twice the 
frequency of the sinusoid that is with sampling frequency ߱௦. Now if this impulse sampled 
signal is applied as input to an ideal low pass filter with cut-off frequency ߱௦/2 the resulting 
output is  

(ݐ)௥ݔ = (cos ߮) cos ቀ
߱௦

2  ቁݐ

It is observed that the perfect reconstruction of (ݐ)ݔ is only possible when ߮ = 0 or when ߮ is 
integer multiple of 2ߨ. Otherwise ݔ௥(ݐ) ≠  So, the perfect reconstruction of original .(ݐ)ݔ
continuous time signal becomes conditional, which is not desirable. 

Now, let us consider the case in which ߮ =  ,so that 2/ߨ−

(ݐ)ݔ = sin ቀ
߱௦

2  ቁݐ

The signal corresponding to above signal is sketched in figure 6.12. The values of the signal at 
integer multiples of the sampling period 2ߨ/߱௦ are zero. So, sampling at this rate will produce 
a signal which is zero. Now these zero inputs will be given to the ideal low pass filter, the 
resulting output ݔ௥(ݐ) will also be zero. 

 

Fig 6.13: Sinusoidal signal for example 6.1 

Due to under sampling, stroboscopic effect is observed where higher frequencies are reflected 
into lower frequencies, is the principle on which the it is based. Consider, for example, the 
situation depicted in Figure 6.13, in which we have a disc rotating at a constant rate with a 
single radial line marked on the disc.  
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Fig 6.14 Strobe effect 

The flashing strobe can be considered to act as a sampling system, since it illuminates the disc 
for extremely brief time intervals at a periodic rate. It is observed that when the rotational speed 
of the disc is less than the strobe frequency then the speed of the rotation of the disc is perceived 
correctly. Now, when the strobe frequency is less than twice the rotational frequency of the 
disc, then rotation appears to be at lower frequency than the actual. Sometimes because of phase 
reversal disc will appear to be rotating in the wrong direction. Now, if we track the position of 
line on the disc at successive samples then when ߱଴ < ߱௦ < 2߱଴ such that sampling rate per 
revolution is increased so that so that we sample somewhat more frequently than once per 
revolution, samples of the disc will show the fixed line in positions that are successively 
displaced in a counterclockwise direction, opposite to the clockwise rotation of the disc itself. 
At one flash per revolution, corresponding to ߱௦ = ߱଴, the radial line appears stationary (i.e., 
the rotational frequency of the disc and its harmonics have been aliased to zero frequency). A 
similar effect is commonly observed in western movies, where the wheels of a stagecoach 
appear to be rotating more slowly than would be consistent with the coach's forward motion, 
and sometimes in the wrong direction. In this case, the sampling process corresponds to the fact 
that moving pictures are a sequence of individual frames with a rate (usually between 18 and 
24 frames per second) corresponding to the sampling frequency. 

The preceding discussion suggests interpreting the stroboscopic effect as an example of a useful 
application of aliasing due to under sampling. Another practical application of aliasing arises 
in a measuring instrument referred to as a sampling oscilloscope. This instrument is intended 
for observing very high-frequency waveforms and exploits the principles of sampling to alias 
these frequencies into ones that are more easily displayed. 
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6.4 Discrete Time Processing of Continuous Time Signals 

In many applications, there is a significant advantage offered in processing a continuous time 
signal by first converting it to a discrete-time signal and, after discrete-time processing, 
converting back to a continuous-time signal. The discrete-time signal processing can be 
implemented by a special purpose computer, with various DSP processors, or with any of the 
variety of devices that are specifically designed for discrete-time signal processing. 

In broad terms, this approach to continuous-time signal processing can be viewed as the cascade 
of three operations, as indicated in Figure 7.13, where ݔ௖(ݐ) and ݕ௖(ݐ) are continuous-time 
signals and ݔௗ(݊) and ݕௗ(݊) are the discrete-time signals corresponding ݔ௖(ݐ) to ݕ௖(ݐ) and. 
The overall system is, of course, a continuous-time system in the sense that its input and output 
are both continuous-time signals. The theoretical basis for converting a continuous-time signal 
to a discrete-time signal and reconstructing a continuous-time signal from its discrete-time 
representation lies in the sampling theorem. By satisfying simple conditions of sampling 
theorem and through the process of periodic sampling with the sampling frequency consistent 
with the conditions of the sampling theorem, the continuous-time signal ݔ௖(ݐ) is exactly 
represented by a sequence of instantaneous sample values ݔ௖(݊ܶ); that is, the discrete-time 
sequence ݔௗ(݊) is related to ݔ௖(ݐ) by 

 

 

Fig 6.15: Discrete-time processing of Continuous Time signals 

 

(݊)ௗݔ =  ௖(݊ܶ)                                                                               6.15ݔ

The continuous time signal is applied to the first block of the figure 6.13 and ݔ௖(ݐ) is converted 
to the discrete time signal ݔௗ(݊). It will be abbreviated as C/D conversion. The third block in 
figure 6.13 converts the discrete time signal ݕௗ(݊) to continuous signal. This conversion is 
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known is abbreviated as D/C. The D/C operation uses the interpolation technique between 
sample values provided to it as input. The continuous time signal produced is expressed as  

(݊)ௗݕ =  (ܶ݊)௖ݕ

This notation is made explicit in Figure 6.14. In systems such as digital computers and digital 
systems for which the discrete-time signal is represented in digital form, the device commonly 
used to implement the C/D conversion is referred to as an analog-to-digital (A­ to-D) converter, 
and the device used to implement the D/C conversion is referred to as a digital-to-analog (D-
to-A) converter. 

 

Fig 6.16: Notation for A/D conversion and D/A conversion 

 

To understand further the relationship between the continuous-time signal ݔ௖(ݐ) and its 
discrete-time representation ݔௗ(݊) , it is helpful to represent C/D as a process of periodic 
sampling followed by a mapping of the impulse train to a sequence. These two steps are 
illustrated in Figure 6.15. First step is to represent using the sampling process, the impulse train 
 corresponds to a sequence of impulses with amplitudes corresponding to the samples of (ݐ)௣ݔ
 and with a time spacing equal to the sampling period T. In the process of conversion from (ݐ)௖ݔ
the impulse train to the discrete-time sequence, we obtain ݔௗ(݊), corresponding to the same 
sequence of samples of ݔ௖(ݐ), but with unity spacing in terms of the new in­ dependent variable 
n. Thus, in effect, the conversion from the impulse train sequence of samples to the discrete-
time sequence of samples can be thought of as a normalization in time. This normalization is 
evident in Figures 6.15 (b) and (c). 

It is also instructive to examine the processing stages in Figure 6.13 in the frequency domain. 
Since we will be dealing with Fourier transforms in both continuous and discrete time, in this 
section only we distinguish the continuous-time and discrete-time frequency variables by using 
߱ in continuous time and Ω in discrete time. For example, the continuous-time Fourier 
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transforms of ݔ௖(ݐ) and ݕ௖(ݐ) are ܺ௖(݆߱) and ௖ܻ(݆߱), respectively, while the discrete-time 
Fourier transforms of ݔௗ(݊) and ݕௗ(݊) are ܺௗ(݆Ω) and ௗܻ(݆Ω), respectively. 

 

Fig 6.17: Sampling then followed by conversion to Discrete-time sequence: (a) Overall System; 
(b) ࢞࢖(࢚) for two sampling rates. Dashed envelop represents ࢞ࢉ(࢚); (c) The output 

sequence for two different sampling rates. 

Let us, apply Fourier Transform to ݔ௣(ݐ) to get ܺ௣(݆߱), then we will get, 

(ݐ)௣ݔ = ෍ ݐ)ߜ(ܶ݊)௖ݔ − ݊ܶ)
ஶ

௡ୀିஶ

                                                           (6.16 ) 

Now, we know the transform of ݐ)ߜ − ݊ܶ) is ݁ି௝ఠ௡்  it follows that  

ܺ௣(݆߱) = ෍ ௖(݊ܶ)݁ି௝ఠ௡்ݔ
ஶ

௡ୀିஶ

                                                           (6.17 ) 

On similar lines the discrete-time Fourier Transform of ݔௗ(݊) will be  
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ܺௗ(݆Ω) = ෍ ௗ(݊)݁ି௝ஐ௡ݔ
ஶ

௡ୀିஶ

                                                           (6.18 ) 

Using the equation 6.15  

ܺௗ൫݁ି௝ஐ൯ = ෍ ௖(݊ܶ)݁ି௝ஐ௡ݔ
ାஶ

௡ୀିஶ

                                                    (6.19) 

Comparing equation 6.17 and 6.19 we see that ܺௗ൫݁௝ஐ൯ & ܺ௣(݆߱) are related as  

ܺௗ൫݁௝ஐ൯ = ܺ௣(݆Ω/ܶ)                                                                        (6.20) 

With the help of equation 6.6, we can further write 

(݆߱)௣ݔ =
1
ܶ ෍ ܺ௖(݆(ω − ݇߱௦))

ାஶ

௞ୀିஶ

                                               (6.22) 

Similarly,  

ௗ൫݁௝ஐ൯ݔ =
1
ܶ ෍ ܺ௖(݆(Ω − 2πk)/ܶ)

ାஶ

௞ୀିஶ

                                               (6.23) 

The relationship among ܺ௖(݆߱), ܺ௣(݆߱) and ܺௗ(݁௝ஐ) is illustrated in figure 6.16 for two 
different sampling rates. Here, ܺௗ(݁௝ஐ) is a frequency scaled version of ܺ௣(݆߱) and in 
particular is periodic in Ω with period 2ߨ. This is the characteristic of any discrete-time Fourier 
transform. The spectrum of ݔௗ(݊) is related to that of ݔ௖(ݐ) through periodic replication, 
represented by eq. (6.22), followed by linear frequency scaling, represented by eq. (6.20). The 
periodic replication is a consequence of the first step in the conversion process in Figure 6.15, 
namely, the impulse-train sampling. The linear frequency scaling in eq. (6.20) can be thought 
of informally because of the normalization in time introduced by converting from the impulse 
train ݔ௣(ݐ) to the discrete-time sequence ݔௗ(݊).  

In the overall system of Figure 6.13, after processing with a discrete-time system, the resulting 
sequence is converted back to a continuous-time signal. This process is the reverse of the steps 
in Figure 6.15. Specifically, from the sequence ݕௗ(݊), a continuous time impulse train ݕ௣(ݐ) 
can be generated. Recovery of the continuous-time signal ݕ௖(ݐ) from this impulse train is then 
accomplished by means of lowpass filtering, as illustrated in Figure 6.17. 
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Fig 6.18: The relationship among (࢐࣓)ࢉࢄ,  with different sampling rates (࢐ષࢋ)ࢊࢄ and (࢐࣓)࢖ࢄ

 

Fig. 6.19: Conversion of discrete time sequence to a continuous time signal 
 

6.4.1 Digital differentiator 
Consider the discrete-time implementation of a continuous-time band-limited differentiating 
filter. As discussed in earlier section, the frequency response of a continuous-time 
differentiating filter is, 

(݆߱)௖ܪ = ݆߱                                                                                 (6.24) 

And band-limited differentiator with cutoff frequency ߱௖ is 

(݆߱)௖ܪ = ൜݆߱, |߱| < ߱௖
0, |߱| > ߱௖

                                                           (6.25) 
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With sampling frequency ߱௦ = 2߱௖, we see that corresponding discrete-time transfer function 
is,  

ௗ൫݁௝ஐ൯ܪ = ݆ ൬
Ω
ܶ൰,      |Ω| <  (6.26)                                                           ߨ

For the above filters, the magnitude and phase response are shown in figure 6.19 and figure 
6.20 

 
Fig 6.20: Frequency Response of ideal band-limited differentiator 

 

 
Fig 6.21: Frequency Response of discrete-time filter used to implement a continuous time band-

limited differentiator 

Example 6.2 
By considering the output of the digital differentiator for a continuous time sine input, we may 
conveniently determine the impulse response ℎௗ(݊) of the discrete-time filter in the 
implementation of the digital differentiator.  
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(ݐ)௖ݔ =
sin(ݐߨ/ܶ)

ݐߨ                                                                       (6.27) 

Where T is sampling period, then  

ܺ௖(݆߱) = (ݔ)݂ = ൜1, |߱| < ܶ/ߨ
0,   ݁ݏ݅ݓݎℎ݁ݐܱ

which is sufficiently band limited to ensure that sampling ݔ௖(ݐ) at frequency ߱௦ =  ܶ/ߨ2

does not give rise to any aliasing. It follows that the output of the digital differentiator is, 

(ݐ)௖ݕ =
݀
ݐ݀ (ݐ)௖ݔ =

cos(ݐߨ/ܶ)
ݐܶ −

sin ቀݐߨ
ܶ ቁ

ଶݐߨ                                         (6.28)  

The ݔ௖(ݐ) is given by equation (6.27) the corresponding signal ݔௗ(݊) is 

(݊)ௗݔ = (ܶ݊)௖ݔ =
1
ܶ  (6.29)                                                                       (݊)ߜ

Which can be verified from l’Hospital’s rule, 

(݊)ௗݕ = (ܶ݊)௖ݕ = ൝
−1௡

݊ܶଶ ,  ݊ ≠ 0
0,             ݊ = 0

                                   (6.30) 

So when input to the filter is given by equation 6.26 is the scaled unit impulse in equation (6.29) 

The resulting output is given by eq. 6.30. So, impulse response of this filter is given by, 

ℎௗ(݊) = ൝
−1௡

݊ܶଶ ,  ݊ ≠ 0
0,             ݊ = 0

                                                       (6.30) 

 
6.5 Sampling of discrete time signals 
Thus far in this chapter, we have considered the sampling of continuous-time signals, and in 
addition to developing the analysis necessary to understand continuous-time sampling, we have 
introduced several of its applications. As we will see in this section, a very similar set of 
properties and results with several important applications can be developed for sampling of 
discrete-time signals. 
6.5.1 Impulse train sampling  
In analogy with continuous-time sampling as carried out using the system of Figure 6.14, 
sampling of a discrete-time signal can be represented as shown in Figure 6.20. Here, the new 
sequence ݔ௣(݊) resulting from the sampling process is equal to the original sequence ݔ(݊) at 
integer multiples of the sampling period N and is zero at the intermediate samples; that is, 
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(݊)௣ݔ = ൜ݔ(݊), ݂݅ ݊ = ܰ ݂݋ ݈݁݌݅ݐ݈ݑ݉ ݎ݁݃݁ݐ݊݅ ݊ܽ
,ݔ ݁ݏ݅ݓݎℎ݁ݐܱ                             (6.31) 

Using the multiplication property developed early in this section, discrete time sampling in 
frequency domain can be written as, 
 

(݊)௣ݔ = (݊)݌(݊)ݔ = ෍ ݊)ߜ(ܰ݇)ݔ − ݇ܰ)
ାஶ

௞ୀିஶ

                                          (6.32) 

We have, in frequency domain, 

 

௣൫݁௝ఠ൯ݔ =
1

ߨ2
න ܲ൫݁௝ఏ൯ܺ൫݁௝(ఠିఏ)൯݀ߠ                                              (6.33) 

 
Fig 6.22: Discrete time sampling 

Fourier Transform of sampling space ݌(݊) is, 

ܲ൫݁௝ఠ൯ =
ߨ2
ܰ ෍ ߱)ߜ − ݇߱௦)

ାஶ

௞ୀିஶ

                                                       (6.34) 
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Equation (6.42) is the counterpart for discrete-time sampling of eq. (6.6) for continuous-time 
sampling and is illustrated in figure 6.21. In Figure 6.21(c), with ߱௦ − ߱ெ > ߱ெ, or 
equivalently, ߱௦ > ߱ெ there is no aliasing (i.e., the nonzero portions of the replicas of ܺ(݁௝ఠ) 
do not overlap), whereas with ߱௦ < ߱ெ, as in figure 6.21(d), frequency domain aliasing results. 
In the absence of aliasing, ܺ(݁௝ఠ) is faithfully reproduced around ߱ = 0 and integer multiples 
of 2ߨ. Consequently, ݔ(݊) can be recovered from ݔ௣(݊) by means of a lowpass filter with gain 
ܰ cutoff frequency greater than ߱௠ and less than ߱௦ − ߱ெ, where we have specified cutoff 
frequency of the low pass filter as ߱௦/2. If overall system from figure 6.22 (a) is applied to a 
sequence for which ߱௦ < ߱ெ, so that there are aliasing results ݔ௥(݊) will no longer will equal 
to ݔ(݊). But with continuous time sampling, the two sequences will be equal at multiple time 
of sampling period. Now, we have, 

(ܰ݇)௥ݔ = ݇         ,(ܰ݇)ݔ = 0, ±1, ±2 … … …,                                      (6.35) 
independently of whether aliasing occurs  

 
Fig 6.23: Impulse-train sampling of discrete-time signal in frequency domain: (a) Original signal 

spectrum; (b) Spectrum of sampling sequence; (c) Spectrum of sampled signal with ࣓࢙ >
࢙࣓ Spectrum of sampled signal with (d) ;ࡹ࣓ <  .No aliasing occurs .ࡹ࣓
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Fig 6.24: Exact recovery of discrete time signal from its samples using an ideal low pass filter: 

(a) Block diagram for sampling & reconstruction; (b) spectrum of ࢞(࢔); 
Example 6.3 

Consider a sequence of ݔ(݊) whose Fourier transform ܺ(݁௝ఠ) has property that 

ܺ൫݁௝ఠ൯ = ≥ 9/ߨ2      ݎ݋݂          0 |߱| ≤  ߨ

To determine the lowest rate at which ݔ(݊) may be sampled without the possibility of aliasing, 
we must find the largest N such that 

ߨ2
ܰ ≥ 2 ൬

ߨ2
9 ൰ ⟹ ܰ ≤

9
2 

We conclude that ܰ௠௔௫ = 4 and corresponding sampling frequency is ଶగ
ସ

= గ
ଶ
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The reconstruction of ݔ(݊) using a lowpass filter applied to ݔ௣(݊) can be interpreted in the 
time domain as an interpolation formula like eq. (6.10). With ℎ(݊) denoting the impulse 
response of the lowpass filter, we have  

ℎ(݊) =
ܰ߱௖

ߨ
sin(߱௖݊)

߱௖݊                                                                     (6.36) 

The reconstructed sequence is then 

(݊)௥ݔ = (݊)௣ݔ ∗ ℎ(݊)                                                                     (6.37) 

Or equivalently, 

(݊)௥ݔ = ෍ ݊)ℎ௥(ܰ݇)ݔ − ݇ܰ)
ାஶ

௡ୀିஶ

                                                     (6.38) 

Where ℎ௥(݊) is impulse response of interpolating filter  
 
6.5.2 Discrete time decimation and interpolation  
There are a variety of important applications of the principles of discrete-time sampling, such 
as in filter design and implementation or in communication applications. In many of these 
applications it is inefficient to represent, transmit, or store the sampled sequence ݔ௣(݊) directly 
in the form depicted in Figure 6.20, since, in between the sampling instants, ݔ௣(݊) is known to 
be zero. Thus, the sampled sequence is typically replaced by a new sequence ݔ௕(݊), which is 
simply every Nth value of ݔ௣(݊); that is, 

(݊)௕ݔ =  ௣(݊ܰ)                                                                                   (6.39)ݔ

Similarly, 

(݊)௕ݔ =  (6.40)                                                                                   (ܰ݊)ݔ

since ݔ௣(݊) and ݔ(݊) are equal at integer multiples of N. The operation of extracting every ܰ௧௛ 
sample is commonly referred to as decimation. The relationship between ݔ(݊), ,(݊)௣ݔ  (݊)௕ݔ 
is illustrated in figure 6.23. 
To determine the effect of decimation in the frequency domain, we wish to determine the 
relationship between ܺ௕(݁௝ఠ) the Fourier transform of ܺ௕(݊) and ܺ(݁௝ఠ). To this end, we note 
that, 

ܺ௕൫݁௝ఠ൯ = ෍ ௕[݇]݁ି௝ఠ௞ݔ
ାஶ

௞ୀିஶ

                                                          (6.41) 

Using the Eq. (6.39) 
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ܺ௕൫݁௝ఠ൯ = ෍ ௣[݇ܰ]݁ି௝ఠ௞ݔ
ାஶ

௞ୀିஶ

                                                         (6.42) 

If we let ݊ = ݇ܰ, or equivalently ݇ = ݊/ܰ, we can write 

  
ܺ௕൫݁௝ఠ൯ = ෍ ௣[݊]݁ି௝ఠ௡/ேݔ

௡ୀ௜௡௧௘௚௘௥ 
௠௨௟௧௜௣௟௘ 

௢௙ ே

                                                         (6.43) 

And since ݔ௣[݊] = 0 when n is not integer multiple of N, we can also write, 

ܺ௕൫݁௝ఠ൯ = ෍ ௣[݊]݁ି௝ఠ௡/ேݔ
ାஶ

௞ୀିஶ

                                                          (6.44) 

 

Fig 6.25: Relationship between ࢞[࢔]࢖ corresponding to sampling and ࢞[࢔]࢈ corresponding to 
decimation 

Also, right hand side of equation (6.44) as the Fourier transform of ݔ௣[݊]; so, 

  

෍ ௣[݊]݁ି௝ఠ௡/ேݔ
ାஶ

௞ୀିஶ

= ܺ௣(݁௝ఠ/ே)                                                          (6.45) 

Thus, from equation (6.44) & (6.45) we can conclude that 

ܺ௕൫݁௝ఠ൯ = ܺ௣(݁௝ఠ/ே)                                                                            (6.46) 
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This relationship is illustrated in Figure 6.24, and from it, we observe that the spectra for the 
sampled sequence and the decimated sequence differ only in a frequency scaling or 
normalization. If the original spectrum ܺ(݁௝ఠ) is appropriately band limited, so that there is no 
aliasing present in ܺ௣(݁௝ఠ), then, as shown in the figure, the effect of decimation is to spread 
the spectrum of the original sequence over a larger portion of the frequency band. 

 

Fig 6.26: Frequency domain illustration of the relationship between sampling & decimation 

If the original sequence ݔ(݊) is obtained by sampling a continuous-time signal, the process of 
decimation can be viewed as reducing the sampling rate on the signal by a factor of N. To avoid 
aliasing, ܺ(݁௝ఠ) cannot occupy the full frequency band. In other words, if the signal can be 
decimated without introducing aliasing, then the original continuous­ time signal was 
oversampled, and thus, the sampling rate can be reduced without aliasing. With the 
interpretation of the sequence ݔ(݊) as samples of a continuous-time signal, the process of 
decimation is often referred to as downsampling. 
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Fig 6.27: Continuous time signal that was originally sampled at Nyquist rate. After discrete time 
filtering, the resulting sequence can be further downsampled. Here (࢐࣓)ࢉࢄ is the 

continuous time Fourier Transform of ࢞ࢉ(࢚),  are the discrete time (࢐࣓ࢋ)ࢊࢅ ࢊ࢔ࢇ ࢐࣓൯ࢋ൫ࢊࢄ
Fourier transforms of ࢞(࢔)ࢊ࢟ & (࢔)ࢊ respectively. And ࢊࡴ൫࢐࣓ࢋ൯ is the frequency response 

of the discrete time low pass filter depicted in the block diagram. 

In some applications in which a sequence is obtained by sampling a continuous­ time signal, 
the original sampling rate may be as low as possible without introducing aliasing, but after 
additional processing and filtering, the bandwidth of the sequence may be reduced. An example 
of such a situation is shown in Figure 6.25. Since the output of the discrete-time filter is band 
limited, downsampling or decimation can be applied. 

Just as in some applications it is useful to downsample, there are situations in which it is useful 
to convert a sequence to a higher equivalent sampling rate, a process referred to as upsampling 
or interpolation. Upsampling is basically the reverse of decimation or downsampling. As 
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illustrated in Figures 6.23 and 6.24, in decimation we first sample and then retain only the 
sequence values at the sampling instants. To upsample, we reverse the process. For example, 
referring to Figure 6.23, we consider upsampling the sequence ݔ௕[݊] to obtain ݔ[݊]. From 
 ௣[݊] by inserting N - 1 points with zero amplitude between eachݔ ௕[݊], we form the sequenceݔ
of the values in ݔ௕[݊]. The interpolated sequence ݔ[݊] is then obtained from ݔ௣[݊] by lowpass 
filtering. The overall procedure is summarized in Figure 6.26. 

 

Fig 6.28: Upsampling: (a) Overall system; (b) associated sequences and spectra for 
upsampling by a factor of 2.  

 
Example 6.4 

In this example, we illustrate how a combination of interpolation and decimation may be used 
to further downsample a sequence without incurring aliasing. It should be noted that maximum 
possible downsampling is achieved once the non-zero portion of one period of the discrete-time 
spectrum has expanded to fill the entire band from −݋ݐ ߨ +  .ߨ



260 | Sampling & Reconstruction 

 

Consider the sequence ݔ[݊] whose Fourier transform ܺ(݁௝ఠ) is illustrated in Figure 6.27(a). 
The lowest rate at which impulse-train sampling may be used on this sequence without 
incurring aliasing is 24/ߨ. This corresponds to, 

  

 

 

Fig 6.29: Spectra associated with example 6.4: (a) Spectrum of ࢞[࢔]; (b) Spectrum 
after downsampling by 4; (c) Spectrum after upsampling of ࢞(࢔) by factor of 2; 

(d) Spectrum after upsampling ࢞[࢔] by 2 then downsampling by 9 
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sampling every 4th value of ݔ(݊). If the result of such sampling is decimated by a factor of 4, 
we obtain a sequence ݔ௕[݊] whose spectrum is shown in Figure 6.27(b). Clearly, there is still 
no aliasing of the original spectrum. However, this spectrum is zero for 89/ߨ ≤ |߱| ≤  which ,ߨ
suggests there is room for further downsampling.  

Specifically, examining Figure 6.27(a) we see that if we could scale frequency by a factor of 
9/2, the resulting spectrum would have nonzero values over the entire frequency interval from 
݋ݐ ߨ− +  However, since 9/2 is not an integer, we cannot achieve this purely by .ߨ
downsampling. Rather we must first upsample ݔ[݊] by a factor of 2 and then downsample by a 
factor of 9. In particular, the spectrum of the signal ݔ௨[݊] obtained when ݔ[݊] is upsampled by 
a factor of 2, is displayed in Figure 6.27(c). When ݔ௨[݊] is then downsampled by a factor of 9, 
the spectrum of the resulting sequence ݔ௨௕[݊] is as shown in Figure 6.27(d). This combined 
result effectively corresponds to downsampling ݔ[݊] by a no integer amount, 9/2. Assuming 
that ݔ[݊] represents unaliased samples of a continuous-time signal ݔ௖(ݐ), our interpolated and 
decimated sequence represents the maximum possible (aliasing-free) downsampling of ݔ௖(ݐ). 

 

Unit Summary 
In this chapter we have developed the concept of sampling, whereby a continuous-time or 
discrete-time signal is represented by a sequence of equally spaced samples. The conditions 
under which the signal is exactly recoverable from the samples is embodied in the sampling 
theorem. For exact reconstruction, this theorem requires that the signal to be sampled be band 
limited and that the sampling frequency be greater than twice the highest frequency in the signal 
to be sampled. Under these conditions, exact reconstruction of the original signal is carried out 
by means of ideal lowpass filtering. The time-domain interpretation of this ideal reconstruction 
procedure is often referred to as ideal band­ limited interpolation. In practical implementations, 
the lowpass filter is approximated and the interpolation in the time domain is no longer exact. 
In some instances, simple interpolation procedures such as a zero-order hold or linear 
interpolation (a first-order hold) suffice. 
If a signal is undersampled (i.e., if the sampling frequency is less than that required by the 
sampling theorem), then the signal reconstructed by ideal band-limited interpolation will be 
related to the original signal through a form of distortion referred to as aliasing. In many 
instances, it is important to choose the sampling rate to avoid aliasing. However, there are a 
variety of important examples, such as the stroboscope, in which aliasing is exploited. 
Sampling has several important applications. One particularly significant set of applications 
relates to using sampling to process continuous-time signals with discrete­ time systems, by 
means of minicomputers, microprocessors, or any of a variety of devices specifically oriented 
toward discrete-time signal processing. 
The basic theory of sampling is similar for both continuous-time and discrete­ time signals. In 
the discrete-time case there is the closely related concept of decimation, whereby the decimated 
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sequence is obtained by extracting values of the original sequence at equally spaced intervals. 
The difference between sampling and decimation lies in the fact that, for the sampled sequence, 
values of zero lie in between the sample values, whereas in the decimated sequence these zero 
values are discarded, thereby compressing the sequence in time. The inverse of decimation is 
interpolation. 

 
Solved examples on DTFS 
Example 6.1: 
Shown in figure below is a system in which sampling signal is an impulse train with alternating 

sign  

 
The sampling signal (ݐ)݌, the Fourier transform of signal (ݐ)ݔ and frequency response of filter 

are shown below 

 
(a) For Δ < గ

ఠ೘
, Sketch the Fourier Transform of ݔ௣(ݐ) and (ݐ)ݕ 

(b) For Δ < గ
ఠ೘

, Determine a system that will recover (ݐ)ݔ from ݔ௣(ݐ) and another that will 
recover (ݐ)ݔ from (ݐ)ݕ 

(c) What is the maximum value of ∆ in relation to ߱௠ for which (ݐ)ݔ can be recovered from 
either ݔ௣(ݐ) or (ݐ)ݕ 

Solution: 
We know that ݔ௣(ݐ) =  ,by dual of convolution theorem, we have ,(ݐ)݌(ݐ)ݔ
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ܺ௣(߱) = ܺ(߱)ܲ(߱),  
So we first find Fourier transform of (ݐ)݌ as follows 

The Fourier transform of periodic function is an impulse train at intervals of ߱ = ଶగ
ଶ୼

= గ
୼
 

Strength of impulse at ௞గ
୼

 being 

௞ܥ =
ߨ
Δ

න (ݐ)݌ ݁௝ଶగ௞
ଶ୼ ௧݀ݐ 

௞ܥ =
ߨ
Δ ൬1 − ݁௝ଶగ௞

ଶ୼ ୼൰ =
ߨ
Δ

൫1 − ݁௝௞గ ൯ 

௞ܥ =
ߨ
Δ

(1 − (−1)௞) 

Thus, we can sketch ܲ(߱) 

 
Thus, we can also sketch ܺ௣(߱) and hence ܻ(߱): 

 
 

(b) Recover (ݐ)ݔ from ݔ௣(ݐ) 

Modulate ݔ௣(ݐ) with cos(గ
୼

 (ݐ
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cos(గ
୼

has spectrum with impulses of equal strength at గ (ݐ
୼
 & − గ

୼
. Thus, new signal will have 

copies of the original spectrum (modulated by constant of course) at all even multiples of 
గ
୼
 

Now, an appropriate low pass filter can extract the original spectrum  
To recover (ݐ)ݔ from (ݐ)ݕ  
Here too, notice from the figures that modulation with cos(గ

୼
 will do the job. Here too the (ݐ

modulated signal will have copies of the original spectrum at all even multiples of గ
୼
  

(c) So long as adjacent copies of the original spectrum do not overlap in ܺ௣(߱), theoretically 
one can reconstruct the original signal. Therefore, the condition is, 

2߱௠ <
ߨ2
Δ ⟹ Δ <

ߨ
߱௠

 

Example 6.2: 
The signal (ݐ)ݕ is obtained by convolving signals ݔଵ(ݐ) and ݔଶ(ݐ) where:  
| ଵܺ(߱)| = |߱|  ݎ݋݂               0 >    &    ߨ1000

|ܺଶ(߱)| = |߱|  ݎ݋݂               0 >      ߨ2000
Impulse train sampling is performed on (ݐ)ݕ to get  

(ݐ)௣ݕ = ෍ ݐ)ߜ(ܶ݊)ݕ − ݊ܶ)
ାஶ

ିஶ

 

Specify the range of values of T so that (ݐ)ݕ may be recovered from ݕ௣(ݐ)  
Solution: 
By Convolution theorem  

ܻ(߱) = ଵܺ(߱)ܺଶ(߱) 
ܻ(߱) = |߱|   ݎ݋݂          0 >  ߨ1000

Thus, from the sampling theorem, the sampling rate must exceed 2 ∗ ଵ଴଴଴గ
ଶగ

= 1000 

So, T must be less than 10ିଷ i.e. 1mSec 
Example 6.3: 
In the figure below, we have a sampler, followed by an ideal low pass filter, for reconstruction 

of (ݐ)ݔ from its samples ݔ௣(ݐ). From sampling theorem, we know that if ߱௦ = ଶగ
்

 is 
greater than twice the highest frequency present in (ݐ)ݔ ߱ ௖ = ఠೞ

ଶ
, then reconstructed signal 

will exactly equal (ݐ)ݔ. If this condition on bandwidth of (ݐ)ݔ is violated, then ݔ௥(ݐ) will 
not equal (ݐ)ݔ. We seek to show in this problem that if ߱௖ = ఠೞ

ଶ
 then for any choice of T, 
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(ܶ݇)௥ݔ ,will be always equal at the sampling instants; that is (ݐ)ݔ & (ݐ)௥ݔ = ,(ܶ݇)ݔ ݇ =
0, ±1, ±2, … … 

 
To obtain this result, consider the following equation which expresses ݔ௥(ݐ) in terms of samples 

 :(ݐ)ݔ

(ݐ)௥ݔ = ෍ ܶ(ܶ݊)ݔ
߱௖

ߨ
sin[߱௖(ݐ − ݊ܶ)]

߱௖(ݐ − ݊ܶ)

ஶ

௡ୀିஶ

 

With ߱௖ = ఠೞ
ଶ

 this becomes, 

(ݐ)௥ݔ = ෍ (ܶ݊)ݔ
sin ቂߨ

ܶ ݐ) − ݊ܶ)ቃ
ߨ
ܶ ݐ) − ݊ܶ)

ஶ

௡ୀିஶ

 

By considering value of ߤ for which [ୱ୧୬ ఓ]
ఓ

= 0, show that without any restrictions on 
,(ݐ)ݔ (ܶ݇)௥ݔ =  .for any integer value of k (ܶ݇)ݔ

Solution:  
To show that ݔ௥(ݐ) and (ݐ)ݔ are equal at the sampling instants, consider 

lim
௧→௞்

(ݐ)௥ݔ = lim
௧→௞்

෍ (ܶ݊)ݔ
sin ቂߨ

ܶ ݐ) − ݊ܶ)ቃ
ߨ
ܶ ݐ) − ݊ܶ)

ஶ

௡ୀିஶ

 

= ෍ ቐ lim
௧→௞்

(ܶ݊)ݔ
sin ቂߨ

ܶ ݐ) − ݊ܶ)ቃ
ߨ
ܶ ݐ) − ݊ܶ)

ቑ
ାஶ

௡ୀିஶ

 

= ෍ ቐݔ(݊ܶ)
sin ቂߨ

ܶ (݇ܶ − ݊ܶ)ቃ
ߨ
ܶ (݇ܶ − ݊ܶ)

ቑ
ஶ

௡ୀିஶ,௡ஷ௞

+  lim
௧→௞்

ቐݔ(݇ܶ)
sin ቂߨ

ܶ ݐ) − ݇ܶ)ቃ
ߨ
ܶ ݐ) − ݇ܶ)

ቑ 

  

= ෍ ቊݔ(݊ܶ)
sin[ߨ(݇ − ݊)]

݇)ߨ − ݊) ቋ
ஶ

௡ୀିஶ,௡ஷ௞

+ lim (ܶ݇)ݔ
௧→௞்

ቐ
sin ቂߨ

ܶ ݐ) − ݇ܶ)ቃ
ߨ
ܶ ݐ) − ݇ܶ)

ቑ 
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= 0 + (ܶ݇)ݔ × 1  ∵ (݇ − ݊) ∈ ܼ ⟺  sin[ߨ(݇ − ݊)] = 0  & lim
௫→଴

ୱ୧୬ ௫
௫

= 1 

Thus, 
lim

௫→௞்
(ݐ)௥ݔ =  (ܶ݇)ݔ

Assuming continuity of ݔ௥(ݐ) at ݐ = (ܶ݇)௥ݔ ,ܶ݇ = ,(ܶ݇)ݔ ∀݇ ∈  ݖ
Example 6.4: 
This problem deals with one procedure of bandpass sampling & reconstruction. This procedure, 

used when (ݐ)ݔ is real, consists of multiplying (ݐ)ݔ by a complex exponential and then 
sampling the product. The sampling system is shown below figure a with (ݐ)ݔ real with 
ܺ(݆߱) non-zero only for ߱ଵ < |߱| < ߱ଶ, the frequency chosen to be ߱଴ = ଵ

ଶ
(߱ଶ + ߱ଵ) 

and low pass filter ܪଵ(݆߱) has cutoff frequency ቀଵ
ଶ
ቁ (߱ଶ + ߱ଵ) 

(a) For ܺ(݆߱) shown in figure b, Sketch ܺ௣(݆߱)  
(b) Determine maximum sampling period T such that (ݐ)ݔ is recoverable from ݔ௣(ݐ) 
(c) Determine a system to recover (ݐ)ݔ from ݔ௣(ݐ) 

 
Solution: 
(a) Multiplication by the complex exponential ݁ି௝ఠ௧ in time domain is equivalent to shifting 

left the Fourier transform by an amount ߱ in frequency domain. Therefore, resultant 
transform looks as shown below 
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After passing through filter, the Fourier transform becomes, 

 
Now sampling the signal amounts to making copies of the Fourier transform, the center of each 

separated from the other by the sampling frequency in the frequency domain. Thus, 
ܺ௣(݆߱) has the following form  
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(b) (ݐ)ݔ is recoverable from ݔ௣(ݐ) only if the copies of Fourier transform obtained by sampling 
do not overlap with each other. For this to happen, the condition set down by Shannon-
Nyquist theorem for a band-limited signal must be satisfied i.e. the sampling frequency 
should be greater than twice the bandwidth of original signal. Mathematically, 

߱௦ > 2߱௠  
ଶగ
்

> 2 ቀఠమିఠభ
ଶ

ቁ    

ܶ <
ߨ2

߱ଶ − ߱ଵ
 

Hence the maximum sampling period for (ݐ)ݔ to be recoverable from ݔ௣(ݐ) is ଶగ
ఠమିఠభ

 

(c) The system to recover (ݐ)ݔ from ݔ௣(ݐ) is outlined below: 

 
 
Example 6.5: 
Shown in the figures is a system in which the sampling signal is an impulse train with alternating 
sign. The Fourier transform of the input signal is as indicated in figures below. 

(i) For Δ < గ
ଶఠ೘

, Sketch the Fourier Transform of ݔ௣(ݐ) and (ݐ)ݕ 

(ii) For Δ < గ
ଶఠ೘

, determine a system that will recover (ݐ)ݔ from ݔ௣(ݐ) 

(iii) For Δ < గ
ଶఠ೘

,  determine a system that will recover (ݐ)ݔ from (ݐ)ݕ 

(iv) What is the maximum value of Δ in relation to ߱௠ for which (ݐ)ݔ can be recovered from 
either ݔ௣(ݐ) or (ݐ)ݕ? 
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Solution: 
(a) As ݔ௣(ݐ) = (݆߱)by dual of convolution theorem we have ܺ௣ ,(ݐ)݌(ݐ)ݔ = ܺ(݆߱)ܲ(݆߱) so 

we first find Fourier transform of (ݐ)݌ as follows 

The Fourier transform of a periodic function is an impulse train at intervals of ߱ = ଶగ
ଶ୼

= గ
୼
 

Each impulse being of magnitude: 

ܲ(݆߱)௞ = 2Δ/ߨ2 න ௝௞ఠబ௧ି݁(ݐ)݌  ݐ݀

= Δ(1/ߨ − cos(݇ߨ)) 
Here, we see that the impulses on ߱ axis vanish at even values of k 
Hence, Fourier transform of ܺ௣(݆߱) is as shown in figure (a). In the frequency domain, the 

output signal Y can be found by multiplying the input with the frequency response. Hence 
ܻ(݆߱) is as shown below in figure (b)     
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(b) To recover (ݐ)ݔ from ݔ௣(ݐ), we do the following two things: 
      1. Modulate the signal by  
                         cos((2ߨ/Δ)ݐ)  
       2. Apply a low pass filter of bandwidth 2/ߨΔ 
(c) To recover (ݐ)ݔ from (ݐ)ݕ we do following two things  
        1.  Modulate signal by 2 cos((2ߨ/Δ)ݐ) 
        2. Apply a low pass filter of bandwidth 2/ߨΔ 
(d) Maximum value for recoverability is ߨ/߱௠ as can be seen from graphs 
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Example 6.6: 
A signal (ݐ)ݔ with Fourier transform ܺ(݆߱) undergoes impulse train sampling to generate  

(ݐ)௣ݔ = ෍ ݐ)ߜ(ܶ݊)ݔ − ݊ܶ)
ାஶ

௡ୀିஶ

 

Where ܶ = 10ିସ For each of the following set of constraints on (ݐ)ݔ and/or ܺ(݆߱), does the 
sampling theorem guarantee that (ݐ)ݔ can be recovered exactly from ݔ௣(ݐ) ? 

(a) ܺ(݆߱) = |߱|   ݎ݋݂         0 >   ߨ5000
(b) ܺ(݆߱) = |߱|   ݎ݋݂         0 >  ߨ15000
(c) ℜ{ܺ(݆߱)} = |߱| ݎ݋݂       0 >  ߨ5000
(d) (ݐ)ݔ real and ܺ(݆߱) = |߱| ݎ݋݂         0 >  ߨ5000
(e) (ݐ)ݔ real and ܺ(݆߱) = |߱| ݎ݋݂         0 <  ߨ15000−
(f) ܺ(݆߱) ∗ ܺ(݆߱) = |߱|   ݎ݋݂             0 >  ߨ15000
(g) |ܺ(݆߱)| = ߱   ݎ݋݂            0 >  ߨ5000
Solution: 
We have ܶ = 10ିସ 
So, ߱௦ =  ߨ20000
(a) ܺ(݆߱) = |߱|   ݎ݋݂         0 >   ߨ5000
     2߱௠ =  ߨ10000
Here, obviously ߱௦ < 2߱௠ 
Hence (ݐ)ݔ can be recovered exactly from ݔ௙(ݐ) 
(b) ܺ(݆߱) = |߱|   ݎ݋݂         0 >  ߨ15000

2߱௠ =  ߨ30000
Here, obviously ߱௦ < 2߱௠ 
Hence (ݐ)ݔ can be recovered exactly from ݔ௙(ݐ) 
 
(c) ℜ{ܺ(݆߱)} = |߱| ݎ݋݂       0 >  ߨ5000
Real part of ܺ(݆߱) = 0, but we cannot say anything particular about imaginary part of the 

ܺ(݆߱), thus, not necessary that ܺ(݆߱) = 0 for this range 
Hence (ݐ)ݔ cannot be recovered exactly from ݔ௙(ݐ)   
(d) (ݐ)ݔ real and ܺ(݆߱) = |߱| ݎ݋݂         0 >  ߨ5000
As (ݐ)ݔ is real we have ܺ(݆߱) = ܺ(−ଔ߱)തതതതതതതതതത 
Taking mod on both sides   
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ܺ(݆߱) = ܺ(−ଔ߱)തതതതതതതതതത = ߱ ݎ݋݂    0 >  ߨ5000

⟹  |ܺ(−ଔ߱)|തതതതതതതതതതതത = |ܺ(−݆߱)| = ߱  ݎ݋݂       0 >  ߨ5000

⟹ ܺ(−݆߱) = ߱ ݎ݋݂   0 >  ߨ5000

⟹ ܺ(݆߱) = ߱ ݎ݋݂    0 <  ߨ5000−
So, we get  

ܺ(݆߱) = |߱|   ݎ݋݂   0 >  ߨ5000

Here, obviously ߱௦ > 2߱௠ 

Hence (ݐ)ݔ can be recovered exactly from ݔ௙(ݐ) 

(e) (ݐ)ݔ real and ܺ(݆߱) = |߱| ݎ݋݂         0 <  ߨ15000−

Proceeding as above we get  

ܺ(݆߱) = |߱|    ݎ݋݂      0 >  ߨ15000

Here, obviously ߱௦ < 2߱௠ 

Hence (ݐ)ݔ can not be recovered exactly from ݔ௙(ݐ)  

(f) ܺ(݆߱) ∗ ܺ(݆߱) = |߱|   ݎ݋݂             0 >  ߨ15000

When we convolve two functions with domain ߱ଵ ݋ݐ ߱ଶ and ߱ଷ ݋ݐ ߱ସ then domain of their 
convolution function varies from ߱ଵ + ߱ଷ to ߱ଶ + ߱ସ 

Here, ߱ଵ = ߱ଷ & ߱ଶ = ߱ସ 

2߱ଵ = 15000 

⟹ ߱ଵ = 7500 
Therefore, 

ܺ(݆߱) = |߱|     ݎ݋݂      0 >  ߨ7500

Here, obviously ߱௦ > 2߱௠ 

Hence (ݐ)ݔ can be recovered exactly from ݔ௙(ݐ) 

(g) |ܺ(݆߱)| = ߱   ݎ݋݂            0 >  ߨ5000

We can not say anything about ܺ(݆߱)   ݂ݎ݋    ߱ <  ,ߨ5000−
Hence (ݐ)ݔ can not be recovered exactly from ݔ௙(ݐ) 
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Example 6.7: 
Figure I shows overall system for filtering a continuous time signal using a discrete time filter. 

If ܺ௖(݆߱) and ܪ(݁௝ఠ) are as shown in figure II with ଵ
்

= ,(݆߱)sketch ܺ௣ ݖܪܭ20 ܺ(݁௝ఠ), 
ܻ(݁௝ఠ), ௣ܻ(݆߱) & ௖ܻ(݆߱) 

 

 
Solution: 
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EXERCISES 
 

1) The signal (ݐ)ݔ = sin(14000ݐߨ), where t is in seconds, is sampled at a rate of 9000 samples 
per second. The sampled signal is the input to an ideal lowpass filter with frequency 
response ܪ(݂) as following:  

(݂)ܪ = ൜1, |݂| ≤ ݖܪܭ12
0, |݂| >  ݖܪܭ12

What is number of sinusoids in the output and their frequency in KHz? 
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2) Consider a continuous time signal defined as (ݐ)ݔ = ௌ௜௡ (గ௧/ଶ)
(ഏ೟

మ )
∗ ∑ ݐ)ߜ − 10݊)ାஶ

௡ୀିஶ . Where 

* denotes the convolution operation and t is in seconds. Calculate the Nyquist sampling 
rate for x(t) in (samples/sec). 

3) Calculate the Nyquist sampling rate for the signal (ݐ)ݏ = ୱ୧୬(ହ଴଴గ௧)
గ௧

× ୱ୧୬(଻଴଴గ௧)
గ௧

  

4) Calculate minimum sampling frequency (in samples/sec) required to reconstruct the 
following signal from its samples without distortion  

(ݐ)ݔ = 5 ൬
sin ݐ1000ߨ2

ݐߨ ൰
ଷ

+ 7 ൬
sin ݐ1000ߨ2

ݐߨ ൰
ଶ

 

5) A signal ݉(ݐ) with bandwidth 500Hz is first multiplied by a signal g(t) where  

(ݐ)݃ = ෍ (−10)௞ݐ)ߜ − (10ିସ݇ݔ0.5
ାஶ

௞ୀିஶ

 

   The resulting signal is then passed through an ideal low pass filter with bandwidth 1KHz. 
Write the output of the low pass filter. 

6) A 1KHz signal is ideally sampled at 1500 samples/sec and the sampled signal is passed 
through an ideal low pass filter with cut off frequency of 800 Hz. Calculate frequency of 
the output signal 

7) A signal (ݐ)ݔ = 100 cos(24ߨ × 10ଷ) is ideally sampled with sampling period of 50ܿ݁ݏߤ 
and then passed through an ideal low pass filter with cutoff frequency of 15 KHz. What 
will be the frequencies at the output? 

8) A 4 GHz carrier is DSB-SC modulated by a low pass message signal with maximum 
frequency of 2 MHz. The resultant signal is to be ideally sampled. Find the minimum 
frequency of the sampling impulse train. 

9) Find the Nyquist sampling interval for the signal ܵ݅݊ܿ (700ݐ) +      (ݐ500)ܿ݊݅ݏ
10) A low pass signal ݉(ݐ) band-limited to B Hz is sampled by a periodic rectangular pulse 

train ݌ఛ(ݐ) of period ௦ܶ =  sec. Assuming natural sampling and that the pulse ܤ1/3
amplitude and pulse width are A volts 1/30ܤ sec., respectively, obtain an expression for 
the frequency spectrum of the sampled signal ݉௦(ݐ).  

11) A real valued signal (ݐ)ݔ is known to be uniquely determined by its samples, when the 
sampling frequency is ߱௦ =  For what values of ߱ is ܺ(݆߱) guaranteed to be .ߨ10000
zero. 

12) A continuous time signal (ݐ)ݔ at the output of of ideal low pass filter with cutoff frequency 
߱௖ =  Which of the following ,(ݐ)ݔ If impulse train sampling is performed on .ߨ1000
sampling periods would guarantee that (ݐ)ݔ can be recovered from its sampled version 
using an appropriate low pass filter  

(a) ܶ = 0.5 × 10ିଷ 
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(b) ܶ = 2 × 10ିଷ 
(c) ܶ = 10ିସ 
13) For the following figure shows a system consisting of a continuous time LTI system 

followed by a sampler, conversion to a sequence, an LTI discrete time system. The 
continuous time LTI system is causal and satisfies the linear, constant coefficient 
differential equation, 

(ݐ)௖ݕ݀
ݐ݀ + (ݐ)௖ݕ =  (ݐ)௖ݔ

The input ݔ௖(ݐ) is unit impulse (ݐ)ߜ  
(a) Determine ݕ௖(ݐ) 
(b) Determine frequency response ܪ(݁௝ఠ) and impulse response ℎ[݊] such that ݓ[݊] =  [݊]ߜ

 
14) A signal ݔ௣(ݐ) is obtained through impulse train sampling of a sinusoidal signal (ݐ)ݔ whose 

frequency is equal to half the sampling frequency ߱௦ 

(ݐ)ݔ = cos ቀ
߱௦

2 ݐ + ߶ቁ 

And 

(ݐ)௣ݔ = ෍ ݐ)ߜ(ܶ݊)ݔ − ݊ܶ)
ାஶ

௡ୀିஶ

 

Where ܶ =   ௦߱/ߨ2
(a) Find ݃(ݐ) such that  

(ݐ)ݔ = cos ߶ cos ቀ
߱௦

2 ቁݐ +  (ݐ)݃

(b) Show that  
݃(݊ܶ) = ݊ ݎ݋݂                   0 = 0, ±1, ±2, … … 

15) Suppose ݔ[݊] = cos ቀగ
ସ

݊ + ߶଴ቁ with 0 ≤ ߶଴ ≤ [݊]݃ and ߨ2 = [݊]ݔ ∑ ݊]ߜ − 4݇]ାஶ
௞ୀିஶ , 

what additional constraints must be imposed on ߶଴ to ensure that 
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݃[݊] ∗ ቌ
sin ߨ

4 ݊
ߨ
4

ቍ =  [݊]ݔ

16) With reference to the filtering approach, assume that sampling period used is ܶ and input 
(݆߱)is band limited so that ܺ௖ (ݐ)௖ݔ = 0 for |߱| ≥  If the overall system has the .ܶ/ߨ
property ݕ௖(ݐ) = ݐ)௖ݔ − 2ܶ) determine the impulse response ℎ[݊] of the discrete time 
filter. 

17) Repeat the previous problem except this time assume that  

(ݐ)௖ݕ = ௗ
ௗ௧

௖ݔ ቀݐ − ்
ଶ

ቁ. 

18) Impulse train sampling of ݔ(݊) is used to obtain  

݃[݊] = ෍ ݊]ߜ[݊]ݔ − ݇ܰ]
ାஶ

௞ୀିஶ

 

If ܺ൫݁௝ఠ൯ = 0 for 37/ߨ ≤ |߱| ≤  ܰ determine the largest value for the sampling interval ,ߨ
which ensures that no aliasing takes place while sampling ݔ[݊]. 

19) The following facts are given about the signal ݔ[݊] and its Fourier transform: 
  is real [݊]ݔ .1
2.ܺ൫݁௝ఠ൯ ≠ 0   ݎ݋݂    0 < ߱ <  ߨ
[݊]ݔ.3 ∑ ݊]ߜ − 2݇] = ஶ[݊]ߜ

௞ୀିஶ  
Determine ݔ[݊].  

20) Consider a signal (ݐ)ݔ = ቀୱ୧୬ ହ଴గ௧
గ௧

ቁ
ଶ

, 

Which we wish to sample with a sampling frequency of ߱௦ =  with (ݐ)݃ to obtain a signal ߨ150
Fourier transform ܩ(݆߱). Determine the maximum value of ߱଴ for which it is guaranteed that  

(݆߱)ܩ = |߱|  ݎ݋݂  (݆߱)75ܺ ≤ ߱଴ 
Where ܺ(݆߱) is Fourier transform of (ݐ)ݔ. 

 
Multiple-Choice Questions 
1. Sampling can be done by: 
a) Impulse train sampling 
b) Natural sampling 
c) Flat-top sampling 
d) All of above 
      Ans: d) 
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2. Sampled data technique is appropriate as: 
a) For long distance data transmission 
b) Pulses are transferred by little loss of accuracy 
c) More than one channel of information is sequentially sampled and transmitted. 
d) All of the mentioned 

      Ans: d) 
3. Signal sampling reduces the power demand made on the signal. 
a) True 
b) False 
      Ans: a) 
4. The signal is reconstructed back with the help of 

a) Zero order hold circuits 
b) Extrapolations 
c) Signal is reconstructed with zero order holds and extrapolations 
d) Signal is not reconstructed 

      Ans: c) 
5. Aliasing is caused when: 

a) Sampling frequency must be equal to the message signal 
b) Sampling frequency must be greater to the message signal 
c) Sampling frequency must be less to the message signal 
d) Sampling frequency must be greater than or equal to the message signal 

      Ans: c) 
6. The first step required to convert Analog signal to digital is: 

a) Sampling 
b) Holding 
c) Reconstruction 
d) Quantization 

      Ans: a) 
7. _______________ is a sampling pattern which is repeated periodically 

a) Single order sampling 
b) Multi order sampling 
c) Zero order sampling 
d) Unordered sampling 

       Ans: b) 
8. Choose minimum sampling rate required to avoid aliasing when continuous time signal 

(ݐ)ݔ = 5 cos  :is sampled ݐߨ400
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a) 200 Hz 
b) 500 Hz 
c) 400 Hz  
d) 450Hz  
       Ans: c) 
9. Find Nyquist rate and Nyquist interval of sinc[t] 
a) 1 Hz, 1 sec 
b) 2 Hz, 2 sec 
c) ½ Hz, 2 sec 
d) 2 Hz, ½ sec 
       Ans: a) 
10. Determine the Nyquist rate of signal (ݐ)ݔ = 1 + cos ݐߨ2000 + sin   ݐߨ4000
a) 2000 Hz 
b) 4000 Hz 
c) 500 Hz 
d) 3000 Hz 
        Ans: b) 
11. Which of the following requires interpolation filtering?  
a) UP-Sampler 
b) D to A Converter 
c) Both (a) & (b) 
d) None of these 
        Ans: c) 
12. Which process requires Low Pass Filter. 
a) UP-sampling 
b) Down-sampling 
c) Up-sampling & Down-sampling 
d) None of the above mentioned 
          Ans: c) 
13. Which device is needed for the reconstruction of signal? 
a) Low pass filter 
b) Equalizer 
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c) Low pass filter & Equalizer 
d) None of the above mentioned 
            Ans: c) 
14. Decreasing the data rate is called as  
a) Aliasing 
b) Down-sampling 
c) Up-sampling 
d) None of the above mentioned 
             Ans: b) 
15. Instantaneous sampling  
a) Has a train of impulses  
b) Has the pulse width approaching zero value 
c) Has negligible power content 
d) All of the above 
            Ans: d) 
16. The spectrum of sampled signal may be obtained without overlapping only if 
a) ௦݂ ≥ 2 ௠݂  
b) ௦݂ < 2 ௠݂ 
c) ௦݂ > ௠݂  
d) ௦݂ < ௠݂  
            Ans: a) 
17. Decimation is a process in which the sampling rate is __________ 
a) Enhanced 
b) Stable 
c) Reduced 
d) Unpredictable 
             Ans: c) 
18. To change the sampling rate for better efficiency in two or multiple stages, the decimation 

& interpolation factors must be ______________ unity.  
a) Greater than 
b) Less than 
c) Equal to 
d) None of the above 
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             Ans: a) 
19. How is the sampling rate conversion achieved by factor I/D 
a) By increase in sampling rate with (I) 
b) By filtering the sequence to remove unwanted images of spectra of original signal. 
c) By decimation of filtered signal with factor D 
d) All of the above 
              Ans: d) 
20. The first step required to convert Analog signal to digital is: 
a) Aliasing 
b) Holding 
c) Quantization 
d) Sampling 
         Ans: d) 
 

   
KNOW MORE 
Our treatment of sampling is concerned primarily with the sampling theorem and its 
implications. However, to place this subject in perspective we begin by discuss the general 
concepts of representing a continuous-time signal in terms of its samples and the reconstruction 
of signals using interpolation. After using frequency-domain methods to derive the sampling 
theorem, we consider both the frequency and time domains to provide intuition concerning the 
phenomenon of aliasing resulting from under sampling. One of the very important uses of 
sampling is in the discrete-time processing of continuous time signals. Which is discussed 
thoroughly. Following this, we turn to the sampling of discrete-time signals. The basic result 
underlying discrete-time sampling is developed in a manner that parallels that used in 
continuous time, and the applications of this result to problems of decimation and interpolation 
are described. Again, a variety of other applications, in both continuous and discrete time, are 
addressed in the problems. 
Both the sampling and reconstruction are critical in maintaining the integrity and fidelity of 
signals as they transition between the continuous and discrete domains. Careful consideration 
of the sampling rate, anti-aliasing, and reconstruction techniques is essential to avoid signal 
degradation and ensure accurate representation. These concepts are foundational in various 
fields, including telecommunications, audio processing, image processing, and more. 
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CO AND PO ATTAINMENT TABLE 
 

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) 

after the completion of the course and a correlation can be made for the attainment of POs to 

analyze the gap. After proper analysis of the gap in the attainment of POs necessary measures 

can be taken to overcome the gaps. 

Table for CO and PO attainment 

Course 
Outcomes 

Expected Mapping with Programme Outcomes 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 

CO-1             

CO-2             

CO-3             

CO-4             

CO-5             

CO-6             
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