

Computer System Organization

Author
Dr. Sonal Yadav
Assistant Professor

Dept. of Computer Science & Engineering (CSE)
National Institute of Technology Raipur, Chhattisgarh

Reviewer
Prof. Milan Mehta

Professor (HAG)
Dept. of Computer Science & Engineering (CSE)
Gujarat Technological University - Ahmedabad,

Sigma Institute of Engineering (648) Bakrol, Vadodara, Gujarat

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj

New Delhi, 110070

(iii)

BOOK AUTHOR DETAILS

Dr. Sonal Yadav, Assistant Professor, Dept. of Computer Science & Engineering (CSE), National Institute
of Technology Raipur, Chhattisgarh.
Email ID: syadav.cse@nitrr.ac.in

BOOK REVIEWER DETAIL

Prof. Milan Mehta, Professor (HAG), Dept. of Computer Science & Engineering (CSE), Gujarat
Technological University - Ahmedabad, Sigma Institute of Engineering (648) Bakrol, Vadodara, Gujarat.
Email ID: milan.cs.polytech2@sigma.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Ramesh Unnikrishnan, Advisor-II, Training and Learning Bureau, All India Council for Technical
Education (AICTE), New Delhi, India

 Email ID: advtlb@aicte-india.org
 Phone Number: 011-29581215
2. Dr. Sunil Luthra, Director, Training and Learning Bureau, All India Council for Technical Education

(AICTE), New Delhi, India
 Email ID: directortlb@aicte-india.org
 Phone Number: 011-29581210
3. Sh. M. Sundaresan, Deputy Director, Training and Learning Bureau, All India Council for Technical

Education (AICTE), New Delhi, India
 Email ID: ddtlb@aicte-india.org
 Phone Number: 011-29581310

November, 2023

© All India Council for Technical Education (AICTE)

ISBN : 978-93-6027-494-8

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any
other means, without permission in writing from the All India Council for Technical Education
(AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be obtained
from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)

Disclaimer: The website links provided by the author in this book are placed for informational, educational
& reference purpose only. The Publisher do not endorse these website links or the views of the speaker /
content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction,
only.

mailto:syadav.cse@nitrr.ac.in
mailto:milan.cs.polytech2@sigma.ac.in
mailto:advtlb@aicte-india.org
mailto:directortlb@aicte-india.org
mailto:ddtlb@aicte-india.org

(iv)

(v)

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. (Dr.) T G
Sitharam, Chairman; Dr. Abhay Jere, Vice-Chairman, Prof. Rajive Kumar, Member-
Secretary, Dr. Ramesh Unnikrishnan, Advisor-II and Dr. Sunil Luthra, Director,
Training and Learning Bureau for their planning to publish the books on Computer
System Organization. We sincerely acknowledge the valuable contributions of the
reviewer of the book Prof. Milan Mehta, Principle of Sigma Institute of Engineering,
Vadodara.

 I would like to thank my PhD student Mr. Revya Naik V for his valuable support
to complete this book. I express my gratitude to my PhD supervisors, Prof. Manoj
Singh Gaur, Director, IIT Jammu, and Prof. Vijay Laxmi, Professor (CSE), MNIT
Jaipur, for their continuous inspiration and learning opportunities. I am also thankful
to my Postdoc mentor Prof. Hemangee K. Kapoor, Professor (CSE), IIT Guwahati for
providing a learning experience.

 I sincerely thank my friends, colleagues and family members for their patience
while I wrote this book. Finally, a special thanks to my parents Mr. Jai Singh Yadav
and Mrs. Rajbala Yadav, for continuously encouraging me to contribute to society.

 This book is an outcome of various suggestions of AICTE members, experts and
authors who shared their opinion and thought to further develop the engineering
education in our country. Acknowledgements are due to the contributors and different
workers in this field whose published books, review articles, papers, photographs,
footnotes, references and other valuable information enriched us at the time of writing
the book.

Dr. Sonal Yadav

(vi)

PREFACE

The book titled “Computer System Organization” is an outcome of the rich
experience of our teaching of basic and advanced courses of computer architecture.
The initiation of writing this book is to expose fundamentals of computer system
organization to the engineering students, the usage of assembly programming to
interact with computer’s hardware. Keeping in mind the purpose of wide coverage as
well as to provide essential supplementary information, we have included the
topics recommended by AICTE, in a very systematic and orderly manner throughout
the book. Efforts have been made to explain the fundamental concepts of the subject
in the simplest possible way.

 During the process of preparation of the book, we have considered the various
standard text books and accordingly we have developed sections and a variety of
questions like multiple choice, short and long answer, numericals problems and
supplementary material. While preparing the different sections emphasis has also
been laid on examples, supplementary material and also on comprehensive synopsis
of key points for a quick revision of the basic principles. The book covers all types of
medium and advanced level problems and these have been presented in a very logical
and systematic manner. The gradations of those problems have been tested over many
years of teaching to a wide variety of students.

 Apart from illustrations and examples as required, we have enriched the book
with numerous solved problems in every unit for proper understanding of the related
topics. Under the common title “Computer System Organization” there is a set of five
chapters covering different aspects and organization of computers in engineering.
Out of those, the first one covers Structure of Computers, the second one is based on
Microprogrammed Control, the third one is related to Microprocessor Architecture
and the fourth one is based on Assembly Language Programming, and the last fifth
one introduce Memory and Digital Interfacing. It is important to note that in all the
books, we have included the relevant laboratory practical. In addition, besides some
essential information for the users under the heading “Know More” we present

(vii)

notable Indian inventors as well as rich Indian Vedas knowledge and fundamental
principles for motivating readers to practice our valuable principles in modern
lifestyle.

 As far as the present book is concerned, “Computer System Organization” is
meant to provide a thorough grounding in computer architecture on the topics
covered. This part of the computer system organization book will prepare
engineering students to apply the knowledge of computer architecture to tackle 21st
century and onward engineering challenges and address the related aroused
questions. The subject matters are presented in a constructive manner so that an
Engineering degree prepares students to work in different sectors or in national
laboratories at the very forefront of technology.

 We sincerely hope that the book will inspire the students to learn and discuss the
ideas behind basic principles of computer system organization and will surely
contribute to the development of a solid foundation of the subject. We would be
thankful to all beneficial comments and suggestions which will contribute to the
improvement of the future editions of the book. It gives us immense pleasure to place
this book in the hands of the teachers and students. It was indeed a big pleasure to
work on different aspects covered in the book.

Dr. Sonal Yadav

(viii)

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to
develop an outcome based curriculum and incorporate an outcome based assessment
in the education system. By going through outcome based assessments evaluators will
be able to evaluate whether the students have achieved the outlined standard, specific
and measurable outcomes. With the proper incorporation of outcome based education
there will be a definite commitment to achieve a minimum standard for all learners
without giving up at any level. At the end of the programme running with the aid of
outcome based education, a student will be able to arrive at the following outcomes:

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic
mathematics, science and engineering fundamentals and engineering
specialization to solve the engineering problems.

PO2. Problem analysis: Identify and analyses well-defined engineering problems
using codified standard methods.

PO3. Design/development of solutions: Design solutions for well-defined
technical problems and assist with the design of systems components or
processes to meet specified needs.

PO4. Engineering Tools, Experimentation and Testing: Apply modern
engineering tools and appropriate technique to conduct standard tests and
measurements.

PO5. Engineering practices for society, sustainability and environment: Apply
appropriate technology in context of society, sustainability, environment and
ethical practices.

PO6. Project Management: Use engineering management principles individually,
as a team member or a leader to manage projects and effectively communicate
about well-defined engineering activities.

PO7. Life-long learning: Ability to analyse individual needs and engage in
updating in the context of technological changes.

(ix)

COURSE OUTCOMES

After completion of the course the students will be able to:
CO-1: Have a good understanding of functioning of computer system

CO-2: Have a good understanding of the functioning of various subcomponents of
computers.

CO-3: Student will be able to understand computing requirements for a specific
purpose.

CO-4: Analyze performance bottlenecks of the computing device.
CO-5: Choose appropriate computing device for a given use case.

Mapping of Course Outcomes with Programme Outcomes to be done according to the
matrix given below:

Course
Outcomes

Expected Mapping with Programme Outcomes
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 3 3 1 2 3

CO-2 3 3 3 3 1 2 3

CO-3 3 3 3 3 1 2 3

CO-4 3 3 2 3 1 2 3

CO-5 3 3 2 3 1 1 3

(x)

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the students
should be enhanced. Teachers should take a major responsibility for the proper
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE
system may be as follows:
● Within reasonable constraint, they should manoeuvre time to the best advantage of all

students.
● They should assess the students only upon certain defined criterion without considering

any other potential ineligibility to discriminate them.
● They should try to grow the learning abilities of the students to a certain level before they

leave the institute.
● They should try to ensure that all the students are equipped with the quality knowledge as

well as competence after they finish their education.
● They should always encourage the students to develop their ultimate performance

capabilities.
● They should facilitate and encourage group work and team work to consolidate newer

approach.
● They should follow Bloom's taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level Teacher should
Check

Student should
be able to

Possible Mode of
Assessment

 Create Students ability to
create Design or Create Mini project

 Evaluate Students ability to
justify Argue or Defend Assignment

 Analyse Students ability to
distinguish

Differentiate or
Distinguish

Project/Lab
Methodology

 Apply Students ability to
use information

Operate or
Demonstrate

Technical Presentation/
Demonstration

 Understand Students ability to
explain the ideas Explain or Classify Presentation/Seminar

Remember
Students ability to

recall (or
remember)

Define or Recall Quiz

(xi)

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the
responsibilities (not limited to) for the students in OBE system are as follows:
● Students should be well aware of each UO before the start of a unit in each and every

course.
● Students should be well aware of each CO before the start of the course.
● Students should be well aware of each PO before the start of the programme.
● Students should think critically and reasonably with proper reflection and action.
● Learning of the students should be connected and integrated with practical and real life

consequences.
● Students should be well aware of their competency at every level of OBE.

(xii)

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form

AC Accumulator Register
ADC Analog-to-Digital Conversion
ALSU Arithmetic Logic Shift Unit
ALU Arithmetic and Logic Unit
Ashl Arithmetic Shift-Left
Ashr Arithmetic Shift-Right
AX Accumulator Register
BHT Branch History Table
BIOS Basic Input/Output System
BIU Bus Interface Unit
BP Base Pointer
BSR Bit Set/Reset
BX Base Register
CAR Control Address Register
CD Compact Disc
Cil Circular Shift-Left
Cir Circular Shift-Right
CISC Complex Instruction Set
 Computer
CPU Central Processing Unit
CS Code Segment
CU Control Unit
CX Count Register
DAC Digital-to-Analog Conversion
DB Define Byte
DI Destination Index
DS Data Segment

DVD Digital Versatile Disc
DX Data Register
ES Extra Segment
EU Execution Unit
FIFO First-In First-Out
HDD Hard Disc Drive
I/O Input/Output
IP Instruction Pointer
IR Instruction Register
ISA Instruction Set Architecture
ISZ Increment and Skip if Zero
LSB Least-Significant Bit
MAR Memory Address Register
MDR Memory Data Register
MICR Magnetic Ink Character
 Recognition
MMU Memory Management Unit
MSB Most-Significant Bit
NASM Netwide Assembler
NOP No Operation
OCR Optical Character Recognition
PC Program Counter
PROM Programmable Read-Only
 Memory
RAM Random Access Memory
RAW Read After Write
RISC Reduced Instruction Set

(xiii)

General Terms

Abbreviations Full form Abbreviations Full form
 Computer

ROM Read Only Memory
RTL Register Transfer Language
SC Sequence Counter
SD Secure Digital
Shl Logical Shift-Left
Shr Logical Shift-Right
SI Source Index
SIMD Single Instruction Stream
 Multiple Data Stream

SP Stack Pointer
SS Stack Segment
SSD Solid State Drive
USB Universal Serial Bus
WAR Write After Read
WAW Write After Write
WMFC Wait until Memory Function
 Completed
ZF Zero Flag

List of Units

General Terms

Abbreviations Full form Abbreviations Full form

GB Gigabytes

KB Kilobytes

ns nanoseconds

TB Terabytes

 List of Symbols

Symbols Description Symbols Description

+ Addition X Multiplication

∧ AND operation A’ NOT A

/ Division ∨ OR operation

X Don’t Care – Subtraction

* Multiplication ⊕ XOR operation

(xiv)

LIST OF FIGURES

Unit 1: Structure of Computers
Fig. 1.1 : Computer functional units 3
Fig. 1.2 : Input devices 4
Fig. 1.3 : Memory Hierarchy: registers, caches, and main memory are volatile
memory and solid state drive, mechanical hard drives are non-volatile memory

5

Fig. 1.4 : Placement of cache memory 6
Fig. 1.5 : Secondary storage 7
Fig. 1.6 : Arithmetic logic unit (ALU) 8
Fig. 1.7 : The control unit decodes instructions and generates control signals
through master clock to synchronize events (IR: Instruction Register)

9

Fig. 1.8 : Interconnection networks 10
Fig. 1.9 : Output unit 11
Fig. 1.10: Von-nuemann architecture 11
Fig. 1.11: System bus structure is made up of data bus, address bus, and
control bus

12

Fig. 1.12: Structure of processor registers and main memory 13
Fig. 1.13: MSB and LSB bits in a 8-bit binary number 15
Fig. 1.14: Representation of +64 and -64 signed numbers in the signed-
magnitude, 1's complement, and 2's complement number systems

17

Fig. 1.15: Overflow detection on adding two positive numbers +64 and +84 18
Fig. 1.16: Overflow detection on adding two negative numbers -64 and -84 20
Fig. 1.17: Different representation of values in registers 24
Fig. 1.18: Data transfer from registers via bus 26
Fig. 1.19: Arithmetic and logic shift unit microoperations schematic diagram
and function table

28

Fig. 1.20: Schematic diagram of logic micro-operations and function table 31
Fig. 1.21: Logical shift (a) left and (b) right micro-operations 34
Fig. 1.22: Arithmetic shift (a) left and (b) right micro-operations 34
Fig. 1.23: Circular shift (a) left and (b) right micro-operations 35

(xv)

Unit 2: Micro Programmed Control
Fig. 2.1 : Control memory address selection 48
Fig. 2.2 : Control unit block diagram 50
Fig. 2.3 : Hardwired control unit 51
Fig. 2.4 : Microprogrammed control organization 52
Fig. 2.5 : Hardware implementation of addition and subtraction operation for
signed magnitude numbers

54

Fig. 2.6 : Signed magnitude addition and subtraction operation flowchart 55
Fig. 2.7 : Addition and subtraction hardware implementation for 2’s
complement numbers

56

Fig. 2.8 : Flowchart of addition and subtraction for 2’s complement numbers 56
Fig. 2.9 : Multiplication for signed magnitude numbers 57
Fig. 2.10: Signed magnitude multiplication flowchart 58
Fig. 2.11: Booth’s multiplication hardware implementation 60
Fig. 2.12: Booth’s multiplication flowchart 60
Fig. 2.13: Restoring division flowchart 62
Fig. 2.14: Non restoring division 64
Fig. 2.15: Registers for floating point arithmetic operations 69
Fig. 2.16: Addition or subtraction of floating point binary numbers 69
Fig. 2.17: Multiplication of floating point binary numbers 70
Fig. 2.18: Magnitudes division 71
Fig. 2.19: Division of floating point binary numbers 71
Fig. 2.20: Pipelined execution of floating-point adder 72
Fig. 2.21: Pipelined execution of instructions 73
Fig. 2.22: Structural or resource hazard 74
Fig. 2.23: Structural/Resource hazard solution 75
Fig. 2.24: Occurrence of Read after Write (RAW) hazard in pipelined execution
of the instructions

75

Fig. 2.25: RAW data hazard solution 76
Fig. 2.26: Control hazard situation 79
Fig. 2.27: Control hazard solution 79

(xvi)

Fig. 2.28: State diagram of 1-bit dynamic branch prediction 80
Fig. 2.29: Actual prediction and hardware prediction 81

Unit 3: Microprocessor Architecture
Fig. 3.1 : Register indirect addressing mode when operand address stored in a
register and when address stored in memory

106

Fig. 3.2 : Main memory and register contents in index addressing mode 107
Fig. 3.3 : Main memory and register contents in base-index and base-index
offset addressing mode

108

Fig. 3.4 : Modification in register address with autoincrement and
autodecrement addressing modes

110

Fig. 3.5: 8086 Microprocessor architecture 112

Unit 4 Assembly Language Programming
Fig. 4.1 : Assembly language ADD instruction representation in machine
language

129

Unit 5 Memory and Digital Interfacing
Fig. 5.1 : Memory and I/O interfacing 165
Fig. 5.2 : Peripheral devices 165
Fig. 5.3 : Block diagram of I/O module 166
Fig. 5.4 : Classification of semiconductor memories 167
Fig. 5.5 : Example of RAM chip with 7 address lines and 8 bidirectional data
lines

168

Fig. 5.6 : Direct cache block mapping of typically 4096 main memory blocks to
128 cache blocks

169

Fig. 5.7 : Associative mapping 171
Fig. 5.8 : Set-associative mapping 173
Fig. 5.9 : Logical address to physical address mapping using memory
management unit

175

Fig. 5.10 : A typical ROM chip with 9 address lines and 8 unidirectional data
lines

176

Fig. 5.11 : Flowchart of programmed I/O 182
Fig. 5.12 : Interrupt driven I/O flow 182

(xvii)

LIST OF TABLES

Table 1.1: Positive and negative numbers representation with signed-magnitude,
1’s complement and 2’s complement number representations

16

Table 1.2: Even and odd parity code representations 23

Table 1.3: Symbolic representation of registers in register transfer 25

Table 1.4: Arithmetic Micro-operations 30

Table 2.1: Signed magnitude numbers multiplication example (-6 x 3) 59

Table 2.2: Booth multiplication example (-5 x -4) 61

Table 2.3: Restoring division algorithm example 63

Table 2.4: Non restoring division example 65

Table 4.1: Difference between procedure and macro 142

Table 4.2: List of arithmetic operations 145

Table 4.3: List of logical operations 147

Table 5.1: Difference between SRAM and DRAM 168

Table 5.2: Address lines bit values for port selection 179

Table 5.3: Control register format for BSR mode 179

Table 5.4: Pin selection of port C 180

(xviii)

CONTENTS

Foreword
Acknowledgement
Preface
Outcome Based Education
Course Outcomes
Guidelines for Teachers
Guidelines for Students
Abbreviations and Symbols
List of Figures
List of Tables

iv
v

vi-vii
viii
ix
x
xi
xii
xiv
xvii

Unit 1: Structure of Computers
Unit specifics
Rationale
Pre-requisites
Unit outcomes
1.1 Digital Computers
1.2 Computer Functional Units
 1.2.1 Input Units
 1.2.2 Memory
 1.2.3 Arithmetic Logic Unit
 1.2.4 Control Unit
 1.2.5 Interconnection
 1.2.6 Output Unit
1.3 Von-Neumann Architecture
1.4 Bus Structures
1.5 Basic Operational Concepts
1.6 Data Representation
 1.6.1 Fixed Point Integer Representation
 1.6.2 Floating Point Number Representation
1.7 Error Detection Code
1.8 Register Transfer And Micro Operations
 1.8.1 Register Transfer

1-44
1
1
2
2
3
3
4
5
7
8
9

10
11
12
13
15
15
20
22
24
24

(xix)

 1.8.2 Bus and Memory Transfers
 1.8.3 Arithmetic Logic Shift Unit
Unit summary
Exercises
Practical
Know more
References and suggested readings

Unit 2: Micro Programmed Control
Unit specifics
Rationale
Pre-requisites
Unit outcomes
2.1 Control Memory
2.2 Address Sequencing
2.3 Control Unit Design
 2.3.1 Hardwired Control Unit
 2.3.2 Microprogrammed Control Unit
2.4 Computer Arithmetic
 2.4.1 Addition and subtraction for signed magnitude numbers
 2.4.2 Addition and subtraction for 2’s complement numbers
 2.4.3 Integer Multiplication
 2.4.4 Integer Division
2.5 Fraction Number Representation
 2.5.1 Fixed point representation
 2.5.2 Floating point representation
 2.5.3 Floating point arithmetic operations
2.6 Arithmetic Pipeline
2.7 Instruction Pipeline
 2.7.1 Resource or Structural Hazards
 2.7.2 Data Hazards
 2.7.3 Control Hazards
2.8 RISC Pipeline
2.9 Vector Processing
2.10 Array Processors

26
28
36
37
42
43
44

45-94

45
45
46
46
47
47
49
50
52
54
54
56
57
61
66
66
66
67
71
73
73
75
78
82
83
83

(xx)

Unit summary
Exercises
Practical
Know more
References and suggested readings

Unit 3: Microprocessor Architecture
Unit specifics
Rationale
Pre-requisites
Unit outcomes
3.1 Introduction
3.2 Instruction Set Architecture
 3.2.1 CISC Characteristics
 3.2.2 RISC Characteristics
3.3 Design Principles From Programmer Perspective
 3.3.1 Instruction Format
 3.3.2 Addressing Modes
3.4 Architecture Of 8086 Microprocessor
 3.4.1 8086 microprocessor functional units
 3.4.2 Instruction Types in 8086
Unit summary
Exercises
Practical
Know more
References and suggested readings

Unit 4: Assembly Language Programming
Unit specifics
Rationale
Pre-requisites
Unit outcomes
4.1 Introduction
4.2 Assembly Language Programs
 4.2.1 First Assembly Program with NASM

85
86
91
92
94

95-126

95
95
96
96
97
100
100
101
102
102
103
111
111
115
117
118
123
124
126

127-162

127
127
128
128
129
131
133

(xxi)

4.3 Assembler Directives
4.4 Procedures and Macros
 4.4.1 Procedures
 4.4.2 Macros
4.5 Assembly Programs
 4.5.1 Simple Programs
 4.5.2 Arithmetic Programs
 4.5.3 Logical Instructions
 4.5.4 Branch Instructions
 4.5.5 Evaluation of Arithmetic Expressions
 4.5.6 String Manipulation
 4.5.7 Sorting
Unit summary
Exercises
Practical
Know more
References and suggested readings

Unit 5: Memory and Digital Interfacing
Unit specifics
Rationale
Pre-requisites
Unit outcomes
5.1 Introduction
5.2 Memory Types and Characteristics
 5.2.1 Types of Memory
 5.2.2 Random access memory (RAM)
 5.2.3 Cache Memory Mapping Techniques
 5.2.4 Read Only Memory (ROM)
5.3 Secondary Memory
5.4 Programmable Peripheral Interface
 5.4.1 Operational modes of 8255
 5.4.2 Interfacing To Processor
 5.4.3 Interfacing keyboard and display devices
Unit summary

138
139
140
141
143
143
144
146
148
150
151
153
157
158
160
161
162

163-192

163
163
164
164
165
166
166
167
168
176
177
179
179
181
182
183

(xxii)

Exercises
Practical
Know more
References and suggested readings

References for Further Learning

CO and PO Attainment Table

Index

184
188
190
192

193

194

195-196

Computer System Organization | 1

UNIT SPECIFICS
The following aspects are discussed in this unit:
 Basic structure of computer functional units;
 Von neumann and harvard architectures;
 Bus structure and types of buses
 Processor basic operational concept;
 Numeric and floating point numbers representation and arithmetic operations;
 Error detection methods;
 Working of the ALU for arithmetic, logic, and shift micro-operations.

 The practical applications of the topics are presented for the purpose of fostering greater
curiosity and creativity and enhancing problem-solving skills. In addition to a large number
of multiple-choice questions and short- and long-answer questions marked in two categories
according to the lower and higher levels of Bloom's taxonomy, the unit provides practice
assignments in the form of numerical problems, a list of references, and suggested readings.
It is crucial to note that several QR codes, which may be scanned for further information on
various topics of interest, have been included in different parts and can be used to obtain
necessary supporting data.

 The related practical based on the content is followed by a “Know More” section on the
topic. This section has been carefully constructed such that the supplementary information it
contains is valuable to the book's readers. This section discusses Indian innovators'
contributions to computer system organization and Indian vedic knowledge's impact in
contemporary digital computers.

RATIONALE
 This fundamental unit contains information about the functional components and
subcomponents of a computer system. The features, performance, and application of these
components are discussed thoroughly. Buses enable these components to transmit and
receive signals, address, and data with each other as well as with memory. The basic bus
structure and types of buses are also covered. The design of conventional von neumann

1

Structure of Computers

2 | Structure of Computer

architecture based on the “stored program concept” is compared to the design of
contemporary harvard architecture. The representation of signed and unsigned integer and
floating point numbers, as well as associated arithmetic operations, explains how digital
computers store and execute various operations with these numbers.

 Noise interference during data transmission causes errors in the data. The techniques for
identifying errors are also explained. In addition, students learn about the architecture of an
arithmetic logic shift unit, which is necessary for understanding arithmetic, logic, and shift
microoperations. This unit makes it easier to identify hardware components of digital
computers and understand how they work together. This unit provides the foundation for
understanding the subsequent units in this book.

PRE-REQUISITES
Mathematics: Arithmetic operations with integer and floating point numbers (Class X)
Digital Electronics: Number systems and digital logic gates (Polytechnic Engineering)

UNIT OUTCOMES
List of outcomes of this unit is as follows:
U1-O1 : Describe basic structure of computer functional units
U1-O2 : Describe the integer and floating point numbers system
U1-O3 : Apply error detection code to identify bitstream errors occured due to data

transmission
U1-O4 : Explain bus and memory transfer
U1-O5 : Realize the role of arithmetic logic shift unit for implementing micro-operations

Computer System Organization | 3

1.1 DIGITAL COMPUTERS
 Digital computers are organised through a series of micro-operations performed on stored
data in registers. The digital computers are capable of performing a variety of microoperations
and can also be programmed to perform a specific sequence of operations. A computer user can
control the activities via a program.

 A computer program specifies the operations, operands, and processing order through a
sequence of instructions. A computer's instructions and data are encoded as binary digits, 0 or 1,
known as bits. To change the data processing task, either a new program with new instructions or
the same instructions with new data can be given.

 A computer instruction is encoded as a piece of binary digits to specify
a series of microoperations for a computer. Memory stores instruction codes
as well as data. Each instruction is read from memory and stored in a
processor register. The controller interprets the instruction's binary code and
executes it by issuing a series of microoperations [1]. Each computer has its
own set of instructions. The ability of a general-purpose computer to store
and execute instructions, is known as the stored program concept. Various
functional components of the computer execute given tasks in collaboration.

1.2 COMPUTER FUNCTIONAL UNITS
 A computer is made up of the input unit, memory unit, arithmetic logic unit (ALU), output
unit, and control unit as shown in Fig 1.1. The input unit accepts coded information from
keyboards or digital communication lines. The received data is stored in the memory for later use
or immediate processing by the ALU. Memory-stored programs specify processing steps. The
output unit sends the results outside. Control unit coordinates all actions. These functional units
can exchange the information via interconnection networks.

Fig. 1.1: Computer functional units

Scan Me

for computer
history and types

of computers

4 | Structure of Computer

 The processor/CPU is composed of the arithmetic logic units, and the control units [2]. The
I/O (input/output) refers to both input and output devices. A computer user sends explicit
commands (either instructions or data) that
 govern the transfer of information to processor by loading required program in memory
 enable the interaction between the user and processor via I/O devices.
 specify the ALU operations that will be executed via processor.

 The processor follows the program's instructions and completes the
essential tasks in a sequential manner. Except for possible external
interruptions by user or I/O devices connected to it, the computer is
controlled by the stored program. Data is also kept in the memory. Data are
numbers and characters that are used by instructions as operands. Each
functional unit is dedicated for a specific task [3].

1.2.1 Input Units

 Input units allow computers to receive data. The keyboard is the fundamental input device.
When a key is pressed, the letter or digit corresponding to the key is converted into its
corresponding binary digit and sent to the processor.

Fig. 1.2: Input devices

for understanding
interrupts and their

types

Scan Me

Computer System Organization | 5

 There are a wide variety of input devices for human computer interaction
that can be used as depicted in Fig 1.2. Some examples of these devices are
the OCR (Optical Character Recognition), mouse, barcode reader, joystick,
touch panel, touchpad, MICR (Magnetic Ink Character Recognition),
trackball, and scanner. These are frequently used in conjunction with displays
to function as graphical input devices. Audio input can be captured using
microphones, and once that has been done, it is sampled and converted into
digital codes so that it can be stored and processed.

 Likewise, video input can be captured through the use of cameras. Computers can also take
input not only from other computers but also from database servers via using the internet's digital
communication facility.

1.2.2 Memory
 The memory unit stores data and programs. There are two storage categories known as
primary and secondary storage.
 Primary memory
 Primary memory refers to the primary physical memory. It is utilised for
the storage of both data and programming. One bit of information can be
stored in each of the numerous semiconductor storage cells that it contains.
These cells are organised into groups of a predetermined size that are referred
to as words. Memory is structured to store or retrieve a single word within a
single operation. Word length refers to the number of bits in each computer
word, which is typically 16, 32, or 64 bits. A unique address is assigned to
each word location in the memory to facilitate access to any word in
memory.

Fig. 1.3: Memory Hierarchy: registers, caches, and main memory are volatile memory and solid state

drive, mechanical hard drives are non-volatile memory.

for understanding
the purpose of input

units

 Scan Me

for understanding
the utility of various

types of memory

 Scan Me

6 | Structure of Computer

 Memory addresses start with zero. In order to access a particular word, you must first identify
its address and then issue a control instruction to the memory in order to begin the process of
storing or retrieving the word. Memory stores and retrieves instructions and data under CPU
control. After being addressed, each word can be retrieved in a predetermined amount of time.
The term “random-access memory” (RAM) refers to this primary memory. Memory access time
refers to the amount of time required to retrieve a single word from memory. The positioning of
the word is irrelevant at this point in time. As shown in Figure 1.3, contemporary RAM devices
have latencies ranging from a few nanoseconds (ns) to 100 ns. Data access speed can be affected
by the memory type. Memory capacity ranges from KB (Kilobyte) to GB (Gigabyte). Registers
are the smallest and fastest type of memory. Conversely, secondary storage is the largest and
slowest memory type. Logic of the processor is typically faster than main memory access time.
Primarily, the processing speed is limited by the speed of main memory.

Fig. 1.4: Placement of cache memory

Computer System Organization | 7

 Cache memory can overcome the speed mismatch between the access time to main memory
and the execution speed of the processor. A small, fast cache is located between the processor and
main memory as depicted in Fig 1.4. A compact, fast cache is put between the processor and
RAM to speed up data access as demonstrated in Fig. 1.4. Cache memory stores frequently used
data and code during processing.

 Modern Processors have two or three levels of cache memories. The L1 cache is placed on a
chip near to the processor, while the L2 cache may be situated anywhere between the processor
and memory. Alternatively, both the L1, L2 caches could be integrated on the same chip. Chip
designers make this selection based on how much they concern about performance, power, and
cost of the chip. The access time of L1 cache is nearly comparable to the processor logic clock
cycle time.

Fig. 1.5: Secondary storage

 Secondary Storage
 When the power is switched off, the primary memory loses all
stored data. Whereas the secondary storage permanently stores data and
programs. Secondary storage has longer access times than primary
memory. The numerous secondary storage options available such as
SSD (Solid State Drive), pendrive (USB flash drive), SD (Secure
Digital) card, floppy diskette, Magnetic discs, optical discs (DVD and
CD), and hard disk drive as illustrated in Fig 1.5.

1.2.3 Arithmetic Logic Unit
 The arithmetic logic unit (ALU) executes arithmetic and logic operations such as addition,
subtraction, multiplication, division, and number comparison. When the processor receives the
required operands, they are stored in processor registers. Each register can hold a single word of
data. The ALU then begins its execution.

to comprehend how the
processor perform fetch,

decode, and execute
instructions

 Scan Me

8 | Structure of Computer

Fig. 1.6: Arithmetic logic unit (ALU)

 Consider the addition of two numbers; this operation can be carried out simply retrieving the
numbers from memory. Then the control units notify ALU to add up the numbers. The sum can be
stored in memory or the processor can store in general purpose registers for immediate use.

1.2.4 Control Unit
 The control unit supervises the operation of the processor. The control unit retrieves program
instruction from main memory and stores it in the instruction register (IR). The control signals
instruct the ALU to execute the same instruction. When the execution is finished, the control unit
notifies the output unit to display the results to the user. The control unit coordinates the actions
of the memory, ALU, and I/O units. The control unit tasks can be categorized as follows:
1) Its primary function is to manage how information enters, leaves, and is transferred inside a

computer's processing units.
2) It determines which devices and processes need to be controlled and how to activate them, as

well as retrieving and decoding instructions from main memory.
3) It controls the processing of data within the chip.
4) It takes instructions or commands from the outside and translates them

into a set of control signals.
5) It manages the processor's multiple execution units (the ALU, data

buffers, and registers).
6) Timer signals of the control unit monitor the exchange of information

between the processor and memory.
7) It deals with the instruction fetching, decoding, executing, and storing

results.

 The control circuitry is spread physically throughout the computer. The signals are carried by
a set of control lines (wires). The events of all units are synchronised by timing signals from the
control circuits as shown in Fig 1.7.

for understanding
interaction of control

unit with other
functional units

 Scan Me

Computer System Organization | 9

Fig. 1.7: The control unit decodes instructions and generates control signals through master clock to

synchronize events (IR: Instruction Register)

 A control unit generates a sequence of signals that are synchronized to the master clock and
operates the associated processing units. The control unit's main responsibilities include
interpreting instructions and organising their execution. The control unit sends instructions to the
ALU about what operations to perform and what timing parameters to use for those activities. The
control unit's timing signals regulate the speed at which data travels between the processor,
memory, and other components.

 The program counter (PC) register keeps track of the current instruction number in the
instruction sequence. The current instruction being run is stored in the IR. The control unit uses
the information in IR to determine the timing signals it generates. The signals help in regulating
the several pieces of processing hardware required to execute the instructions.

1.2.5 Interconnection
 A programmable system that transfers data between the processor,
memory, and I/O devices is known as an interconnection network. As
demonstrated in Fig 1.8, multiprocessor systems communicate with other
processors via buses. The bus allows the four processors P0, P1, P2, P3, and
P4 to communicate with one another. Buses, on the other hand, have limited
bandwidth. Other interconnection networks, including rings, mesh, tree,
hypercube, and crossbar, are utilised to connect additional processors. Fig 1.8
depicts the design of these interconnects.

for detailed
structure of

interconnects

 Scan Me

10 | Structure of Computer

Fig. 1.8: Interconnection networks

 A well-designed interconnection network makes the best use of limited communication
resources. It is possible to communicate across many hardware components while maintaining
high bandwidth and low latency. Traditional interconnects, in addition to buses, include linear
arrays, rings, and crossbars. The mesh, tree, and hypercube interconnects are used to connect
more processors, as shown in Fig 1.8. Interconnection networks are often straightforward to suit
the needs of a certain application due to their simple design principles.

1.2.6 Output Unit
 The output unit sends the results of processing to the outside world. Fig.
1.9 displays a few examples of output devices, including a monitor, printer,
speaker, headphone, and projector. Printers, among these output devices, are
mechanical devices. They are slower than processors, which are constructed
of electronic components. The majority of printers either use streams of ink
or photocopying, like laser printers. These printers can print at speeds of 20
pages or more per minute.

for understanding
the purpose of
different output

devices

Scan Me

Computer System Organization | 11

Fig. 1.9: Output unit

 Some units, like graphic displays, can both show text and pictures and take information from
the user by having a touchscreen. Because these units do both input and output, they are often
called input/output (I/O) units.

1.3 VON-NEUMANN ARCHITECTURE
 In Princeton, Von Neumann and his colleagues invented a “stored-
program computer” in 1946. Von Neumann's stored-program concept is
the foundation of modern digital computers. Von Neumann architecture
was made up of a control unit, an arithmetic logic unit (ALU), a memory
unit, registers, and input/output as shown in Fig 1.10.

 A single shared memory is used for storing programs and data in von
neumann architecture, and a single bus is used for memory access by the
processor. The processor retrieves and executes instructions in a sequential
manner.

Fig. 1.10: Von-nuemann architecture

to understand the
difference between
von-neumann and

harvard architectures

 Scan Me

12 | Structure of Computer

 Harvard architecture was designed to overcome von-neumann architecture's bottleneck. It
uses two separate memories for program code/instructions and data. processor can access program
code and data concurrently using separate dedicated buses for each memory segment. The
processor can fetch data and instructions at the same time, which speeds up execution.

 The modified Harvard design is commonly used in contemporary processors. Data and
instructions are stored in two different caches on the chip. Both X86 and ARM processors have
this feature.

1.4 BUS STRUCTURES
 Binary digits are transported from one register/unit to the other units/registers via a network
of physical wires called a bus. Buses connect all of the primary internal components to the
CPU/processor and memory, and they transfer data between them. Single bus, double buses, and
multiple buses are the most common configurations.

 In a single-bus system, all units are connected to a single bus, which
serves as the only means of connectivity. Single-bus interconnect designs are
simple and cost-effective. Nonetheless, only two units can communicate
simultaneously. This feature limits the network's speed. This limitation is
overcome by the double bus structure, which provides communication via
two buses. In harvard design, a processor can simultaneously retrieve
instructions from memory and read/write data to memory.

 Multiple buses are utilised by the majority of commercial processors to
provide multiple internal paths for the transfer of information such as instructions, data, addresses,
signals, etc. Fig. 1.11 depicts a three-bus structure connecting the CPU (processor), memory, and
I/O units. The data bus has ݊ bits of width, the address bus has ݉ bits of width, and the control
bus can transport ݇ bits of signals between the CPU (processor), memory, and I/O devices. These
buses are collectively referred to as a system bus.

Fig. 1.11: System bus structure is made up of data bus, address bus, and control bus

to compare
different bus
structures

 Scan Me

Computer System Organization | 13

These buses transfer-
● data via a data bus between the memory unit, input/output devices, and the processor/CPU.
● address through address bus between all linked devices.
● control signals that are sent through the control bus to monitor and coordinate all activities of

these units.

 During a particular data transmission, control signals determine which unit/register the bus
selects. Dedicated data-carrying buses on multiple buses speed up the information-processing.
Computers also utilise peripheral bus (I/O bus), local bus, and high-speed buses in addition to the
system bus to communicate with various devices.

1.5 BASIC OPERATIONAL CONCEPTS
 Computers accomplish numerous operations by integrating efforts of
several devices/units. The processor contains a number of registers in
addition to the ALU and the control circuitry used for several different
purposes. Fig. 1.12 demonstrates the arrangement of processor registers,
memory structure and system bus interconnection. The following registers
are used to temporarily store specific types of information required by
processor:

Fig. 1.12: Structure of processor registers and main memory

 Data is retrieved or stored from the processor's memory address register (MAR).The address

of the memory location to be accessed is stored in MAR.

for detailed
information about

types of buses

 Scan Me

14 | Structure of Computer

 The program counter (PC) stores the memory address of the next
instruction to be fetched and executed.

 The currently executed instruction is saved in instruction register (IR).
The execution of ALU instructions is initiated by timing signals from the
control unit.

 Processor registers (R0 – Rn−1) are general-purpose. They are used for a
variety of purposes such as temporarily load/store data to/from memory.

 Prior to being run, programmes transfer their contents from secondary storage into main
memory. When the PC navigates to the first instruction, the program execution will begin. A read
control signal is sent to memory, and the contents of the PC are transferred there. The memory-
fetched word, which is also the initial instruction of the programme, is saved into register IR. Now
it is possible to interpret and execute the instructions given. After execution, it is sent to the
processor register. The control unit sends the address, word, and write control signal to memory to
write a word.

 The PC counter is increased throughout instruction execution to point to the next instruction.
Thus, the CPU fetches a new instruction after executing the existing one. Data is sent between
memory and processor, input devices, and output devices by the computer. Instructions also
control I/O transfers.

 When a device requires urgent service, normal program execution may be halted. A
monitoring device in a computer-controlled industrial process may detect a potentially hazardous
condition, for instance. In order to respond immediately, it is required to pause the present
program's execution. To achieve this, the device sends an interrupt signal to the processor, which
is a service request.

 The CPU will execute an interrupt service routine in response to a service request. Because of
these variations, it is necessary to save the current state of the CPU in memory before carrying out
the interrupt request. The PC, general-purpose register, and control data are usually stored. After
the interrupt-service routine, RAM restores processor state so the interrupted programme may
resume.

to know more about
types of interrupts

and interrupt service
routine

 Scan Me

Computer System Organization | 15

1.6 DATA REPRESENTATION
 A computer system stores binary numbers (either 0 or 1) as a string of
bits. In the real world, integer numbers can be represented as decimal, octal,
and hexadecimal numbers. The decimal numbers are converted to binary
numbers in computers. In binary numbers, the leftmost bit is known as the
most significant bit (MSB) and the rightmost bit is known as least significant
bit (LSB) [7].

Fig. 1.13: MSB and LSB bits in a 8-bit binary number

 The example is shown in Fig. 1.13, where bit ܾ0 is LSB and bit ܾ7 is MSB for the binary
number stored in 8-bit register R1.

1.6.1 Fixed Point Integer Representation
 Integer numbers can be signed or unsigned. Unless the sign of the number is specified,
integers are assumed to be unsigned. A negative number is denoted by a minus sign and a positive
number by a plus sign in standard arithmetic. Due to hardware constraints, computers must
represent everything, including the number sign, using only 1s and 0s. The sign is represented by
a bit in the leftmost position of the number. Typically, the sign bit is set to 0 for positive numbers
and 1 for negative numbers.

Signed Number Representation
 The sign bit of positive and negative binary integers is represented by 0 and 1, respectively.
The remaining bits are expressed by one of the number systems listed below:
1. Signed-magnitude
2. 1's complement
3. 2's complement

for binary number
conversion to

decimal, octal, and
hexadecimal

numbers

 Scan Me

16 | Structure of Computer

Table 1.1: Positive and negative numbers representation with signed-magnitude, 1’s complement and
2’s complement number representations

 The positive numbers representation is the same in signed-magnitude, 1’s complement, and
2’s complement representation as shown in Table 1.1. Whereas, a negative number's signed-
magnitude form consists of the magnitude (binary representation of the number) and place 1 at
MSB for a negative sign. The negative number is either the 1's or 2's complement of its positive
value.

Example 1.1

How are the +64 and -64 signed numbers represented in the signed-magnitude, 1's complement,
and 2's complement number systems?

Solution: There is only one way to represent +64 with eight bits, although there are three different
ways to express -64 as shown in Fig. 1.14. Signed magnitude is represented as 11000000, 1's
complement as 10111111, and 2's complement as 11000000.

Computer System Organization | 17

Fig. 1.14: Representation of +64 and -64 signed numbers in the signed-magnitude, 1's complement,

and 2's complement number systems

 The signed-magnitude representation of -64 is obtained from +64 by doing the complement of
simply the sign bit. The 1's complement of -64 is derived by complement of all the bits of +64,
including the sign bit. The 2's complement is computed by adding one (00000001) to the +64's 1's
complement, resulting in 10111111.

 The signed-magnitude and 1's complement have two representations of 0 (+0 and -0).
Therefore, the 2's complement of negative numbers are used in computers to avoid complications
in micro-operations.

Overflow Detection in arithmetic additions
 An overflow occurs when the sum of n digit integers contains ݊ + 1 digits. Registers in
digital computers have a finite width. The ݊+1 bits of results cannot fit in a standard ݊-bit
register. Therefore, all computers will detect an overflow, and a overflow flag will be set when
this occurs. The overflow detection mechanism depends on whether the integers are signed or
unsigned.

18 | Structure of Computer

 An overflow arises on adding unsigned numbers when the result has a carry out of 1 from the
MSB.

 Addition of signed numbers involves adding the sign bit together with the original numbers.
A 2’s complement form is used for the negative numbers. In this case, the end carry value
does not point to an overflow. A 2’s complement representation allows the ݊ bits to store
values from −2n−1 to +2n−1 − 1. For instance, from −8 to +7 is the range that can be
represented by 4 bits. When the actual result of an operation exceeds the range that may be
represented, overflow occurs.

 An overflow condition cannot arise when one of the numbers is positive and another is
negative, since the sum of the two numbers is always less than the greater of the two
numbers.

 If both numbers being added are positive or negative, then an overflow may occur.

Example 1.2

Perform the addition of two signed numbers R1= +64 and R2= +84 using 2's complement number
systems. The size of each register is 8-bit.

Solution: The size of each register is 8-bit. So they can accommodate -28-1 to +28-1 - 1 or -128 to
+127 binary numbers. On performing decimal addition of both the numbers, we can directly
check whether overflow is there or not. The sum of the (+64)+(+84) = +148. In a positive
direction, the result can not exceed to +127 to avoid the overflow. Since +148 > +127, So
overflow occurs on adding both the numbers.

Fig. 1.15: Overflow detection on adding two positive numbers +64 and +84

Computer System Organization | 19

 Fig 1.15 shows how to check for overflow while doing signed binary number arithmetic
addition. If the carry out exceeds the capacity of the 8-bit register, this does not always imply
overflow. Carryout sometimes can be ignored. Overflow can definitely be recognised by
conducting an XOR operation on the carry in and carry out of the MSB bit position. Overflow
happens when the output of the XOR operation is 1.

 Due to overflow, the supposed positive 8-bit result has a negative sign bit. However, if the
carry out of the sign bit position is used as the result's sign bit, the 9-bit answer obtained will be
correct. We receive an inaccurate result owing to overflow since the result cannot be
accommodated inside 8 bits.

 A carry in and carry out of the sign bit position (MSB) indicate overflow. If these two carry
have different values, overflow will occur. When both carries are fed into an exclusive-OR gate,
the gate's output is equal to 1, indicating an overflow.

Example 1.3

Perform the addition of two signed numbers -64 and -84 that are stored in two 8-bit registers R1
and R2, respectively, using 2's complement number systems?

Solution: The range of acceptable numbers for each 8-bit register is -128 to +127. The result of
adding -64 and -84 is (-64)+(-84) = -148. The maximum negative number that can be stored in an
8-bit register is -128, hence this value exceeds its storage limit.

 The arithmetic addition of -64 and -84 is shown in Fig. 1.16. Both integers are negative,
hence in registers R1 and R2 they are represented using 2's complement number system. The
carry in and carry out of the MSB are fed through an XOR gate during arithmetic addition in
order to identify overflows. Overflow is detected because the XOR gate's output is 1.

 The resulting 8-bit value should have been negative. However, the b7 bit indicates that the
result is a positive number. The 9-bit answer obtained, however, will be correct if the carry out of
the sign bit position is utilised as the result's sign bit. Because the answer cannot be handled in 8
bits, overflow occurs.

20 | Structure of Computer

Fig. 1.16: Overflow detection on adding two negative numbers -64 and -84

1.6.2 Floating Point Number Representation
 There is an assumed binary point exactly after bit b0 at the right end of
the integer. To represent a signed integer in 2's complement on a computer
with a 32-bit word length, the numbers −231 to +231 − 1 are used.

 The fraction point is supposed to be close to the right of the sign bit—

between bits b31 and b30. The fraction range lies between −1 and +1 − 2−31.

The lowest fraction representable is 10−10.

 The fixed-point number format imposes restrictions on calculations used
in the sciences and the technological fields. For the sake of convenience,

 to know more about
single precision

and double
precision floating

point numbers

 Scan Me

Computer System Organization | 21

binary numerals may represent both large integers and very small fractions.
 A computer has the ability to deal with numbers and represent them in such a way that the
binary point location may be changed and is automatically updated while computation takes
place. When the binary point moves around them, the usage of floating-point integers is required.

 The binary point as a floating point shows its location. In decimal scientific notation, integers
are expressed as 8.0247 x 1024, 3.927 x 10-37, -1.0431 x 104, -6.8000 x 10-18, etc. They have five
significant digits of precision. The placement of the decimal point in relation to the significant
digits may be determined using the scale factors 1024, 10-37, 104, and 10-18 respectively.

 The sign, the mantissa, and the exponent are the three parts that make up a floating-point
number. Mantissas are either fractions or integers that are fixed-point in nature. The decimal
point, often known as the binary point, is represented by the exponent. The number +51185.987 is
written as a fraction followed by an exponent in floating-point format as follows:
 ݐ݊݁݊݋݌ݔܧ ݊݋݅ݐܿܽݎܨ
 +0.51185987 +05

 According to the exponent's value, the fraction's actual decimal point is five digits to the right
of where it is represented. This notation is the same as that used in the scientific notation +
0.51185987 x 10+5.

 In order to achieve the most accurate representation of binary floating-point data on a
computer, the scaling factor should be set to 2. Representing the base is unnecessary as it is fixed.
Positive and negative exponents exist.

 The MSB represents the sign bit, where 0 represents a positive number and 1 represents a
negative number. There is a biassed exponent component and a significant component, which is
represented as follows:

݉ x ݎe

 Where m is mantissa and e is the exponent. The register stores their binary numbers,
including signs. Always assume radix r and mantissa radix-point position. These two assumptions
ensure proper computational outputs. The exponent of a floating-point binary integer is base 2.
The binary number +1101.01 has an 8-bit fraction and 6-bit exponent:
 ݐ݊݁݊݋݌ݔܧ ݊݋݅ݐܿܽݎܨ
 01101010 000100

 A 0 in the fraction's leftmost place implies a positive sign. The binary number +4 is
represented by the exponent value 000100. Mantissa and exponent may both be written as

݉ x ݎe = + (.01101010) x 2+4

22 | Structure of Computer

 Making the mantissa MSB digit nonzero normalizes a floating-point value. Unlike 000350,
350 is normalized. The number is normalized only if its leftmost digit is nonzero, regardless of the
mantissa's radix point.

 To normalize 00011110, shift it three places to the left and remove the leading 0's to get
11110000. The number is multiplied by 23, which is equal to eight. Subtracting 3 from the
exponent keeps the floating-point number the same. Normalized values maximise floating-point
accuracy. Zeroes cannot be normalized because they do not have nonzero digits. The mantissa and
exponent are all 0's in floating-point.

 Arithmetic operations using floating-point numbers need more complicated hardware and
take longer to execute than operations with fixed-point values. However, due to the scaling issues
associated with fixed-point calculations, floating-point representation is required for scientific
computations. Modern computers have the ability to do floating-point arithmetic computations.

 An IEEE standard for encoding 32-bit floating-point integers uses a sign bit, 23 significant
bits, and 8 bits for a signed exponent of the scaling factor [8] with a base of 2. This is enough for
the majority of the calculations used in science and engineering. A 64-bit format that adheres to
the same IEEE standard provides an increased degree of precision in addition to a greater scope of
possible values. This format also includes additional significant bits and signed exponent bits. The
chapter 2 discusses the representation of floating-point numbers as well as floating-point
arithmetic.

1.7 ERROR DETECTION CODE
 Bits 0 and 1 correspond to two distinct analog signal or voltage ranges. These signals may
change during the transmission of binary data from one system to another due to noise
interference. The noise may change the signal and cause the errors in the data received by the
other system. An error occurs if the information received by the receiver does not match to the
information sent by the sender. The change in single bit is considered a single-bit error or change
in more than one bit is called a bitstream error.

 For instance, the sender transmits ܫS=00101111 data. During transmission, MSB bit of ܫS is
changed from 0 to 1 and the receiver receives ܫR=10101111. This is a single-bit error. If more
than one bit is changed, lets say, bits ܾ0, ܾ1 and ܾ5 of ܫS are changed then receiver receives
 .R=00111100 due to bitstream errorܫ

Computer System Organization | 23

Table 1.2: Even and odd parity code representations

 These errors can be detected with error detection code. Parity and Hamming codes are two
such examples. These codes identify errors that occurred during the transmission of the original
data bitstream. A parity bit is added to the original bit stream either to the left of the most
significant bit (MSB) or to the right of the least significant bit (LSB). This parity bit can be
selected as
1) Even Parity Code: If the binary code has even ones, the even parity bit should be 0. If not, it

should be 1. For example, in even parity codes, the only possible even numbers of ones are 0,
2, 4, and so on .

2) Odd Parity Code: If there are odd ones in the binary code, the odd parity bit should be 0. If
not, it should be 1. For example, in a 4 bits odd parity code, the odd number of ones could
have 1, 3 and so on.

 If the other system gets the specified number of ones in parity codes
according to used even or odd parity codes, its data is correct. Otherwise,
data is incorrect.

 The representation of both coding schemes are explained in Table 1.2.
As per the definitions, the one bit value of even and odd parity bit is
computed in column 2 and column 4 respectively. The binary data contains
three bits of information, with one bit of even or odd parity put at the
rightmost place of the binary code.

for hardware
implementation of
even parity and
odd parity codes

 Scan Me

24 | Structure of Computer

 Column 3 and column 5 lists the even and odd parity codes, respectively. The parity bit can
detect a single error but cannot correct it. Hamming code can detect one-bit and two-bit errors, or
correct one-bit errors. It uses multiple parity bits.

1.8 REGISTER TRANSFER AND MICRO OPERATIONS
 Micro-operations are elementary operations performed on register data. The operation's
output can either be overwritten in the same register or be moved to a different register. The
operations for example, shift, count, clear, and load are micro-operations. Low-level instructions
are micro-operations that are used to implement complex machine instructions.

 A register transfer language (RTL) represents the micro-operation sequences among the
registers of a digital module in symbolic form. It concisely describes the internal organisation of
digital computers. It not only expresses the movement of the results of micro-operations between
registers, but it also shows the transfer of data between registers and memory.

1.8.1 Register Transfer

 Register transfers are facilitated by hardware logic circuits that carry out specific micro-
operations and transfer the results to the same or a different register. The register transfer is
symbolically represented by the replacement operator (←). The statement R2 ← R1, for example,
defines the transfer of content from register R1 to register R2.

Fig. 1.17: Different representation of values in registers

 The register transfer can be defined in different ways:

Computer System Organization | 25

Table 1.3: Symbolic representation of registers in register transfer

● A register is generally represented by the name of the register enclosed in a rectangular box or
parenthesis , as shown in Table 1.3.

● Additionally, specific bits can be highlighted by enclosing them in parenthesis. For example,
in Fig. 1.17(b), R2(8) indicates bit ܾ8, or PC(8-15) indicates bitstream ܾ8 to ܾ15 in Fig. 1.17(c)
and Fig. 1.17(d).

● The registers are numbered from R0 to R(n-1) or R0 to R(n-1) as shown in Fig. 1.17(a).
● The bit numbering in a register can be indicated on the top of the box, as shown in Fig.

1.17(c) and Fig. 1.17(d).
● Bits (0 to 7) of a 16-bit register PC are assigned lower bytes of a 16-bit address, while bits (8

to 15) are assigned higher bytes of a 16-bit address, as shown in Fig. 1.17(d).

 Table 1.3 shows different symbolic representations of registers used during
register transfer. Furthermore, the conditional register transfer can also be
represented. For example, the expression C: R2 ← R1 defines a data transfer
from register R1 to register R2 under a specific control function (C).

 If (C=1), then data or register R1 transferred to register R2 (R2 ← R1).
Because C=1 indicates that the control unit generates a control signal to activate
such data transfer between these registers. By separating the control variables
from the register transfer operation, it is easier to specify a control function (C).

for bus and
memory transfer
hardware circuit

 Scan Me

26 | Structure of Computer

Fig. 1.18: Data transfer from registers via bus

1.8.2 Bus and Memory Transfers
 In a digital computer, each bit or value is stored in a register. If individual wires are used to
connect each register to every other register, the resulting wire complexity will be severe. Data
between registers are sent through a shared bus. To carry binary data from one register to another,
a bus structure uses a series of lines or wires, one for each bit. During each register transfer, the
bus chooses the destination register based on the control signals.

 Through multiplexers, the registers whose data may be transmitted to a common bus are
connected to the bus. Each register contains ݊ bits, which are numbered 0 through ݊ − 1. The bus
is made up of ݊ multiplexers, each multiplexer has ݊ data inputs (0 through ݊ − 1) and ݊ = 2m,
resulting in ݉ selection lines.

 The bits in each register, which all have the same significant position, are connected to the
data inputs of one multiplexer to form one bus line. Similarly, connect each register's bits b0
through bn-1 to the appropriate multiplexer. All multiplexers' selection inputs are connected to the
݉ selection lines.

 When ݊=4 and ݉=2, for example, four bits are selected from a register and transmitted to a
four-line shared bus. Because ݊=4, a total of four multiplexers (MUX) are needed. Four separate
registers, i.e., registers A, B, C, and D are linked to the bus through four multiplexers in this case.
When S1S0 = 00, the bus outputs are drawn from the initial data inputs of all multiplexers, i.e. for
register A, bits A0, A1, A2, and A3 that are the first inputs of MUX0, MUX1, MUX2, and MUX3.

Computer System Organization | 27

Each MUX's output is a bus line. As a result, all four bits are transmitted to the target register
through the bus. If S1S0 is a 01, the data from the second register (register B) is sent across the
bus. Similarly, data from registers C and D is sent when S1S0 = 10 and 11, respectively as shown
in Fig 1.18.

Memory Transfer
 Memory Transfer describes read and write operations that are persuaded by other
components. It is referred to as a read operation when information is moved from a memory unit
to the end user of the system. A write operation refers to the process of storing new information to
the memory.

 The information can be accessed in two ways either by providing the
register name or memory address where it is stored. Load and Store
instructions handle read and write operations, respectively to/from memory.
These instructions commence data transmission from memory to the
processor by first providing the target memory address, let's say ADR, to
memory during read operation and then activating the associated control
signal. In the subsequent phase, the information is read from memory.
Similarly, when writing to memory, the address of a word must be
communicated to memory. For example, the current ADD instruction is read
from memory.

Add R3, R1, R2
 The control unit then decodes it in order to determine the operation to be performed. During
decoding, it is found that data from memory locations ADR and ADR1 need to be loaded into
registers R1 and R2, respectively.

Load R1, ADR
Load R2, ADR1

 By using the Load instruction, the contents of memory locations ADR and ADR1 are read
and loaded into processor registers R1 and R2, respectively. After loading the operands, the
control units send the arithmetic add operation signals to the ALU.

 The Add instruction performs addition of the values of registers R1 and register R2 and saves
the result in register R3. Using the store instruction, Register R3 value can be written to memory.

Store ADR, R3
 By executing store instruction, the data in register R3 is written to the memory address ADR.
The value of register R3 is written over the contents of location ADR.

to know processor
addressing modes

 Scan Me

28 | Structure of Computer

Fig. 1.19: Arithmetic and logic shift unit microoperations schematic diagram and function table

1.8.3 Arithmetic Logic Shift Unit
 A digital computer's microoperations include arithmetic, logic, and shift operations. All of
these microoperations are carried out on digital circuits. Arithmetic Logic Shift Unit (ALSU)
integrates all microoperations into a single circuit. Several storage registers in computer systems
are connected to ALU.

 The ALU can perform operations in a single clock pulse, then transfers the results to the
destination register. The Arithmetic Logic Shift Unit is created when shift micro-operations are
integrated into the ALU. Therefore, the ALSU is a part of the ALU.

 ALSU's primary function is to perform all logical, arithmetic, and shift operations that
combine into a single ALU with shared selection variables. Arithmetic unit performs addition,
subtraction, multiplication, and division. Logical operation refers to operations on numbers and
special characters and connects two or more information phrases (expressions). Shift micro-
operations are serial information transfer operations.

 Fig 1.19(a) shows a diagram of a single stage of ALSU. The subscript ݅ indicates a standard
stage. The range of the ݅ for a ݊-bit number is 0 to ݊ − 1 stages. With the S1 and S0 inputs, a
specific microoperation is selected. A 4x1 multiplexer selects between an arithmetic output, logic
output, shift right, and shift left outputs. Inputs S3 and S2 in a multiplexer select the data. Other
two data inputs of the multiplexer receive Ai - 1 for the shift-right operation (shr) and Ai + 1 for the
shift-left operation (shl).

Computer System Organization | 29

 A n-bit ALU must repeat the circuit. The carry in Ci of one arithmetic step must be connected
to its carry out Ci+1. The initial stage receives the carry in via arithmetic variable Ci.

 The one-stage circuit depicted in the preceding diagram performs seven arithmetic, eight
logical, and two shift operations. The variables S3, S2, S1, S0, and Ci are used to select each
operation. Here, Ci is used exclusively for an arithmetic operation.

 In Fig. 1.19(b), the table shows the Arithmetic Logic Shift Unit's function table. There are
seven ALU operations, eight logical operations, and two shift operations. The initial seven are
arithmetic operations (S3S2 = 00). The next S3S2 = 01 is used to choose eight logical operations.
The S3S2=10 and S3S2=11 are used to select shift operations as the final two operations. The
remaining three inputs have no effect on the shift. The arithmetic, logic and shift micro-operations
are discussed more in coming subsections.

Arithmetic Micro-operations
 Arithmetic micro-operations are classified in various categories as
listed in Table 1.4. The basic Arithmetic Micro-operations are addition,
subtraction, 1’s complement, 2’s complement, increment, and decrement. In
addition, two numbers stored in registers R1 and R2 are added using ALU
and the result is stored in any register, let's say in register R3. For subtract
operation, the 2’s complement of the second number is added to the first
number. So ALU can perform both these operations easily with a
combinational circuit.

 A binary up-down counter is used to implement micro-operations that conduct plus one
(increment) and minus one (decrement) operations, respectively.

 Arithmetic and shift micro-operations are used to conduct the multiply and division arithmetic
operations. Most computers perform multiplication by a series of add and shift microoperations. A
series of subtract and shift micro-operations are used to divide. Specifying the hardware in this
scenario demands a series of micro-operations of add, subtract, and shift.

to understand

arithmetic micro-
operation

 Scan Me

30 | Structure of Computer

 Table 1.4: Arithmetic Micro-operations

Logic Micro-operations
 Logic microoperations can manipulate individual bits. These
operations can modify, delete, and insert bit values. Fig 1.20(a) illustrates
nine logic gates connected to a 9x1 multiplexer. The output of the gates
become the inputs of the multiplexer. According to the value of selection
inputs S3, S2, S1, and S0, the output of the logic gate is transmitted to the
multiplexer output. The figure depicts one common stage with subscript i.
For every bit of n bits inputs, it is repeated n times.

for applications
of logic micro-

operations

 Scan Me

Computer System Organization | 31

Fig. 1.20: Schematic diagram of logic micro-operations and function table

 The selection lines are connected with all stages. Table in Fig. 1.20(b) shows the logic
microoperations that can be performed on binary data of registers. Each bit is treated separately.
Here, A and B are the registers in which the data is stored and F saves the output after performing
selected logic micro-operations. Each micro-operation is discussed below with their truth tables in
subsequent order:

1. Clear
 The Clear logic micro-operation is used to clear the register or set the
bits of the register to 0. To use this micro-operation, we need to feed 0 to the
register.

2. AND
 The AND logic micro-operation logically ANDs the bits of data
contained in the two registers. The logical AND is represented by the
symbol ∧ .

 If both registers A and B are true, the outcome of the AND operation is 1; otherwise, it is 0.
The F ← A ∧ B specifies that registers A and B will be referred to an AND micro-operation, with
the outcome placed in register F. The outcome of the AND logic micro-operation is shown in the
truth table based on the input values of registers A and B.

32 | Structure of Computer

3. OR
 The OR logic micro-operation performs a logical OR between the bits of
two registers. The symbol for the logical OR is ∨ .

 If either the value of A register is true and B register is false, or the
value of register A is false and register B is true, or both the values of A and
B registers are true, then the result of the OR operation is 1, else it is 0. The
operation F ← A ∨ B specifies that the values in registers A and B will be
subjected to an OR micro-operation, with the output stored in register F. The
truth table displays the outputs based on the register A and B input values.

4. Exclusive OR
 This logic micro-operation, also known as XOR, conducts a logical
XOR between bits of two registers. The logical XOR implies that either A
or B must be true, but not both. Exclusive OR is represented by the symbol
⊕. The F ← A ⊕ B indicates that the values in registers A and B will be
subjected to an XOR micro-operation, with the output stored in register F.
The truth table shows that when A = 1 and B = 0, or when A = 0 and B = 1,
the output is 1.

5. Complement or NOT
 The Complement A logic micro-operation transfers the complemented
contents of input register A to the output register F. First, the content of the
register is complemented and then moved to the desired register. The truth
table, F ← A' represents the complemented value of register A is moved to
register F. So the truth table is just the opposite of the taken values of the A
register.

6. NAND

 The NAND logic micro-operation is the opposite of AND logic micro-
operation. As the name suggests, it is Not AND. In contrast to AND, in
NAND, the output is 0 when the value of both A register and B register is true,
and it is 1 when either A is false, or B is false, or both are false as shown in
truth table F ← (A ∧ B)'.

Computer System Organization | 33

7. NOR
The NOR logic micro-operation is Not OR. In contrast to OR, in NOR, the

output is 0 when the value of either A register or B register or both A and B
registers are true, and it is 1 when both A and B registers are false. The
expression F ← (A ∨ B)' represents the truth table of NOR logic micro-
operation for different values of input A and B registers.

8. Exclusive NOR
 The Exclusive NOR (XNOR) micro-operation sets the output 1 when the
values of both the registers A and B are the same. They can be true or false,
but they have to be the same.
 The truth table of XNOR logic micro-operation F ← (A ⊕ B)' shows
that the output will be 1 when either A = 0 and B = 0 or A = 1 and B = 1.

9. Set to all 1’s
 The set to all 1’s logic micro-operations is used to set all the register bits to 1.
 For example, F ← 1 means the value of the register F is set to 1. The previous value of
register F will be removed.

10. Transfer A
 The Transfer A logic micro-operation transfers the data of register A to
the output register F.

 Truth table of ‘Transfer A’ logic micro-operation shows that there is a
transfer of data from the register A to the output register in this micro-
operation, its truth table is the same as the taken values of the register A. If A
is 0 then F is 0, if A is 1 then F is 1.

Shift Micro-operations
 Information is transferred serially using shift micro-operations. Shift
micro-operations are available in three distinct ways:
1. Logical: The serial input transfers zero. The symbols “shl” and “shr” are

used for logical shifts left and right, respectively.
 Logical Shift-Left: This shift left operation moves each bit one place left.

In Fig. 1.21(a), the MSB is discarded and the LSB is filled with zero (the
serial input).

 Right Logical Shift: This results in a shift to the right of each bit as
shown in Fig. 1.21(b), the removal of the LSB, and the addition of zero
to the empty MSB position.

for shift left and
shift right hardware

implementation
circuit design

 Scan Me

34 | Structure of Computer

Fig. 1.21: Logical shift (a) left and (b) right micro-operations

Fig. 1.22: Arithmetic shift (a) left and (b) right micro-operations

2. Arithmetic: The shift left and shift right are referred to as arithmetic shift left and shift right

micro-operations when they are applied to signed binary values. A signed binary integer is
multiplied by 2 when the shift is left. The number is divided by 2 when the shift is right.

● Arithmetic shift left: Each bit is shifted to the left one at a time. The MSB is discarded, and
the empty LSB is set to zero. This is identical to the logical shift to the left as shown in Fig.
1.22(a).

Computer System Organization | 35

● Arithmetic shift right: The LSB is discarded, the empty MSB is filled with the value of the
previous MSB, and each bit is moved to the right one at a time. This is known as the right
arithmetic shift depicted in Fig. 1.22(b).

3. Circular: The circular shift recirculates the register's bit sequence around both ends without

losing any information.

Fig. 1.23: Circular shift (a) left and (b) right micro-operations

● Left Circular Shift – The MSB bit is moved to the first position while shifting all other bits to

the next position as illustrated in Fig. 1.23(a).
● Right Circular Shift – The LSB is moved to the MSB, or the last position, while all of the

other bits are shifted to the previous position as represented in Fig. 1.23(b).

36 | Structure of Computer

UNIT SUMMARY
● A computer is made up of the input unit, output unit, arithmetic logic unit (ALU), memory

unit, and control unit.
● Digital computers have a single shared memory for storing programs and data in von

neumann architecture, and a single bus is used for memory access by the processor.
● Binary digits are transported from one register/unit to the other units/registers via a network

of physical wires called a bus.
● The MAR, MDR, PC, IR, and general purpose registers store specific types of information

required by the processor.
● A computer system stores binary numbers (either 0 or 1) as a string of bits.
● Integer numbers can be signed or unsigned. The signed numbers are classified into signed-

magnitude, 1's complement, and 2's complement number systems.
● Computers use the 2's complement representation (values from −2n−1 to +2n−1 − 1) for signed

integers to prevent problems in micro-operations since there are two representations of 0 (+0
and -0) in signed-magnitude and 1's complement.

● An overflow occurs when the sum of n digit integers contains n+1 digits.
● Computers use fixed point and floating point number representations.
● Error occurs if the information received by the receiver does not match to the information

sent by the sender. The change in single bit is considered a single-bit error or change in more
than one bit is called a bitstream error. These errors can be detected with even parity code or
odd parity code error detection methods.

● Micro-operations are elementary operations performed on register data.
● Data between registers are sent through a shared bus that uses a series of lines or wires, one

wire for each bit.
● Bus chooses the destination register based on the control signals during each register transfer.
● Register transfers are facilitated by hardware logic circuits to carry out specific micro-

operations.
● Memory Transfer is referred to as a read operation when information is moved from a

memory unit to the end user and a write operation refers to the process of storing new
information to the memory.

● Arithmetic Logic Shift Unit (ALSU) integrates arithmetic, logic, and shift operations into a
single circuit.

● Arithmetic Micro-operations are addition, subtraction, 1’s complement, 2’s complement,
increment, and decrement.

● Logic microoperations can manipulate individual bits. These operations can modify, delete,
and insert bit values. These micro-operations are implemented using digital logic gates such
as AND, OR, XOR, NOT, etc.

● Shift micro-operations transfer information serially. These micro-operations are classified as
logical, arithmetic, and circular shift operations.

● Arithmetic and shift micro-operations are used to conduct the multiply and division arithmetic
operations.

Computer System Organization | 37

EXERCISES

Multiple Choice Questions
Q1.1 The decimal number 485 is the binary equivalent of

(a) 111100101 (b) 111110111 (c) 101111111 (d) 101110111

Q1.2 How many bits are equal to two bytes?
 (a) 4 (b) 8 (c) 12 (d) 16

Q1.3 Which memory unit is the fastest?
 (a) register (b) cache (c) harddisk (d) RAM

Q1.4 How does the value of PC changes
 (a) value of current instruction (b) previous instruction
 (c) next instruction address (d) none of these

Q1.5 The memory address of the instruction to be fetched is transferred from the program

counter to the RAM through ___________ during a fetch-decode-execute cycle.
 (a) control bus (b) address bus (c) data bus (d) either (a) or (b)

Q1.6 Choose the correct order to fill up the empty spaces. The ________ contains the memory

address of the data that the CPU must access. The _________ holds the data that the CPU
is transferring to or from the memory location. The memory address of the next
instruction to be executed is stored in the____________. The result of a calculation
performed by the arithmetic/logic unit is stored in the____________.

 (a) ACC, PC, MDR, MAR (b) MAR , PC, MDR, ACC
 (c) PC, ACC, MDR, MAR (d) MAR, MDR, PC, ACC

Q1.7 Assuming the last operation on an 8-bit word computer was a subtraction (A-B) with

A=11110000 and B=00010100 as the operands, what would be the value of Overflow,
Sign, Carry, Zero, and Even Parity flags? [Hints: Use 2’s complement subtraction
method, Zero flag: when the result of an arithmetic operation is zero, the zero flag is set
to 1, Even Parity Flag: this flag is set if the number of 1’s in the result is even].

 (a) 1, 0, 0, 0, 1 (b) 0, 0, 0, 1, 1 (c) 0, 0, 0, 0, 1 (d) 0, 1, 1, 0, 0

Q1.8 Assuming a 4-bit ALU performs the 5+(-5) operation for signed numbers, what are the

values of the Carry, Overflow, Zero, Negative, and Even Parity flags? [Hint: Use 2’s
complement arithmetic; Negative flag: the negative flag is set to 1 if the result is
negative, Even Parity Flag: this flag is set if the number of 1’s in the result is even]

 (a) 1, 1, 0, 1, 0 (b) 1, 0, 1, 0, 1 (c) 1, 1, 1, 0, 1 (d) 1, 0, 1, 1, 1

38 | Structure of Computer

Q1.9 Which of the following gates gives output 1 if and only if at least one of its inputs is 1?
 (a) NOR (b) AND (c) XOR (d) OR

Q1.10 How many NAND gates with two inputs are required to provide the same effect as an OR

gate with two inputs?
 (a) four (b) three (c) two (d) one

Q1.11 A shift register appropriately can be described as the register that can shift information

bits
 (a) either to the right or to the left (b) to the left only
 (c) to the right only (d) to another register

Q1.12 Let X stands for the distinct number representation of 8-bit integers in 2's complement

form. Let Y be the distinct number representation of 8-bit integers in sign magnitude
representation. So, X - Y =?

 (a) 1 (b) 0 (c) 2 (d) None of these

Q1.13 A multiplexer
 1. chooses one of numerous inputs and sends it to a single output..
 2. data is routed from a single input to one of multiple outputs.
 3. converts to serial data from parallel data.
 4. is a combinational circuit.

 Determine which of the following options is true?
 (a) 1, 2, 4 (b) 2, 3, 4
 (c) 1, 3, 4 (d) 1, 2, 3

Q1.14 Choose the option that most accurately defines correct statements.
 1. the carry out bit value from the MSB does not indicate overflow.
 2. overflow is only possible if both summands have the same sign.
 3. overflow can't occur when adding integers with opposite signs.
 4. if XOR of carry in and carry out at MSB is equal to 1 then overflow is there.

 Determine which of the following options is true?
 (a) 1, 2, 4 (b) 2, 3, 4
 (c) 1, 3, 4 (d) all are correct

Q1.15 What is the memory access time?
 (a) ~100 ms (b) ~1 ms (c) 10-30 ns (d) 3-10 ns

Computer System Organization | 39

Short and Long Answer Type Questions
Category-I
Q1.1 What are the various parts and pieces that make up a computer?
Q1.2 What distinguishes computer organisation from computer architecture?
Q1.3 How does the value of the programme counter change when an interrupt occurs?
Q1.4 Differentiate between caches, primary memory, and secondary storage.
Q1.5 Describe the features of the von neumann architecture.
Q1.6 Which interconnect do you consider is the most efficient in terms of increasing the

number of processors on chip?
Q1.7 What is the function of control lines?
Q1.8 What are the names of the five major input devices?
Q1.9 List five different types of output devices.
Q1.10 What specifically are bus and memory transfers?
Q1.11 What is the condition of the overflow detection?
Q1.12 What is the IEEE 754 standard for representing floating point numbers?
Q1.13 What are the logic micro-operations? List three uses of logic operations in the real world.
Q1.14 What are the different kinds of micro-operations? When should shift micro-operations be

performed?

Category-II
Q1.15 Construct a digital circuit to perform logic operations such as XOR, exclusive-NOR,

NOR, and NAND all at the same time. It is necessary to make use of two selection
variables in order to obtain the output of a certain gate on the output line. Show the logic
diagram to demonstrate.

Q1.16 Prove that the function ܺ = ⊕ ߙ ⊕ ߚ ⊕ ߣ ߱, a XOR function, is an odd function.
Show that there are only odd numbers of ones in ߚ,ߙ, = ܺ and ߱ if and only if ,ߣ 1.

 [Hint: First create truth tables for ܻ = ⊕ ߙ = ܼ and for ߚ ⊕ ߣ ߱, and then you have
to build the truth table for ܺ = ܻ ⊕ ܼ]

Q1.17 Create the digital circuit for a 3-bit parity generator and a 4-bit parity checker that uses
an odd-parity bit.

Q1.18 Why do computers require floating point number representation? How do computers
represent these numbers? What is the definition of floating point number normalisation?
Why is normalisation significant? Describe the various standards for floating point
representation.

40 | Structure of Computer

Numerical Problems
Q1.19 Convert the binary values (101110)2, (1110101)2, and (110110100)2 to decimal.

[Ans: 46, 117, 436]

Q1.20 The following are 8-digit binary numbers; find their 1's and 2's complements: 00000000;

00000001; 10101110; 10000000; and 10000001.
[Ans: 1's complement: 11111111, 11111110, 01010001, 01111111, 01111110

2's complement: 00000000, 11111111, 01010010, 10000000, 01111111]

Q1.21 Perform subtraction on the following unsigned binary values by subtracting the 2's

complement of the subtrahend.
 (i) 100 - 110000 (ii) 11010 - 1101
 (iii) 11010 - 10000 (iv) 1010100 - 1010100

[Ans: (i) 010100 (ii) 01101 (iii) 01010 (iv) 0000000]

Q1.22 Register A contains the binary digits 11011001. Compute the B operand and the required

logic micro-operation to change the value of A to:
 (i) 11111101 (ii) 01101101

 [Ans: B = 11111101, OR (ii) B = 10110100, XOR]

Q1.23 How do you compute the signed numbers below using the 2's complement number

system?
(i) (+70) + (+80)
(ii) (-70) + (-80)
(iii) (+42) + (-13)
(iv) (-42) - (-13)

 Each number has eight bits to store the binary value along with its sign. What will the

outcome of arithmetic operations be? Is there an overflow?
[Ans: Overflow occurs only in the first two cases, (i) 10010110 (ii) 01101010

(iii) 00011101 (iv) 11100011]

Q1.24 The initial values of the 8-bit registers R1, R2, R3, and R4 are as follows:
 R1 = 11110010, R2 = 11111111, R3 = 10111001, and R4 = 11101010.

 Determine the eight bit results in each register once the following sequence of micro-

operations has been performed.
 R1 ← R1 + R2 Add R2 to R1
 R3 ← R3 ∧ R4 AND R4 to R3

Computer System Organization | 41

 R2 ← R2 + 1 Increment R2
 R1 ← R1 - R3 Subtract R3 from R1

[Ans: R1 = 01001001; R2 = 00000000; R3 = 10101000; R4 = 11101010]

Q1.25 The binary value 10011100 is stored in an 8-bit register. Assuming an arithmetic shift

right, what is the new value in the register? From the starting value of 10011100, find the
value of the register after an arithmetic shift left, and indicate whether or not there is an
overflow.
[Ans: arithmetic shift-right: 11001110, arithmetic shift-left: 00111000, overflow detected]

Q1.26 Find the sequence of binary values in register R following a logical shift-right, a circular

shift right, a logical shift left, and a circular shift left, starting from R=11111111.
[Ans: Logical shift right: 01111111, Circular shift right: 10111111,

Logical shift left: 01111110, Circular shift left: 11111100]

Q1.27 An exponent of 8 bits plus a sign bit and a mantissa of 26 bits plus a sign bit make up a

36-bit floating-point binary integer. The mantissa is normalised. Signed magnitudes are
used for both the mantissa and exponent. If zero is ignored, what are the largest and
smallest positive integers that may be written?

[Ans: Largest: (1–2–26) × 2+255, Smallest: -(1-2-26) x 2+255]

Q1.28 What is the 24-bit binary floating point representation of +46.5? The mantissa is

normalised, and the mantissa and exponent are represented by 16 and 8 bits, respectively.
[Ans: Binary representation: (101110.1)2, Sign: 0, Mantissa: 1000010000000000,

Exponent: 01111010]

42 | Structure of Computer

PRACTICAL

Aim: Draw the logic diagram of the arithmetic logic shift unit using verilog
hardware description language.

Tools: Xilinx ISE Design Suite [4]

Theory: Verilog modules are the basic descriptive unit. Module declares it, and
endmodule always terminates it. Modules have names and ports. Module name
should be meaningfully. Alphanumeric and underscore names are case
sensitive. Names are case sensitive. The first character of a name must be either
an alphabetic character or an underscore. There is no way to begin a name
with a number.

 Port lists interface modules to their environments. Ports are the circuit's inputs and outputs.
The environment determines a circuit's input logic values, while the circuit's output logic values
are determined by the inputs.

 The port list is enclosed in parenthesis that are separated by commas. Sentences are followed
by semicolons, but endmodules are not. Commas are used to demarcate each variable. Only use
lowercase for the keywords. Following that, input and output will refer to the input and output
ports respectively. Internal connections are represented by the presence of wires.

 The building of the circuit is specified by a list of descriptive primitive
gates such as “and,” “not,” “or,” and so on. Gate instances are the list's
elements. Each gate instantiation begins with an optional name (Gate1, Gate2,
etc.) and the gate output and inputs, separated by commas and wrapped in
parenthesis. A basic gate's inputs follow its output.

 A primitive's output must be mentioned first, while a module's inputs and
outputs can be specified in any order. The description of the module concludes
with the term endmodule.

Procedure:
1. First, look into the circuit's number of inputs and outputs. Choose a good name for your

circuit. Fill up the blanks with the code module circuit_name (list of input and output ports
separated by comma) (verilog program here) endmodule

2. Declare the input variables as input variable names;
3. Declare the outputs as the output port names;

to know
installation

steps of
Xillinx ISE

design suite

Scan Me

to learn verilog
for digital circuits

Scan Me

Computer System Organization | 43

4. Designate a wire as the intermediate output that will become the input of another circuit.
5. A list of defined fundamental gates, each of which is characterised by a keyword, is used to

define the circuit design such as and, not, or, etc.
6. Each component of the list is a gate instance.
7. Each instance of a gate begins with a name or label such as Gate1, Gate2,

etc. After that, the output and inputs of the gate are subsequently described
using commas and parenthesis.

8. The primitive gate's output is always mentioned first, followed by the
inputs.

9. Create a testbench for circuit verification. Mention all potential input and
output combinations.

10. Run Isim in Xilinx to see the outputs and check the circuit's operation.

KNOW MORE
Innovations by Indian
 Indians frequently demonstrate the ability to alter the world or at least
make it a better place to live. USB (Universal Serial Bus) is an integral
element of our daily lives. This compact data storage device was co-invented
by Ajay Bhatt, an Indian-American computer architect. However, he did not
earn any money with this invention. He did not do this for financial gain, but
rather to effect change. According to him, the opportunity to accomplish such
a significant transformation is rare. Every year on May 11, India celebrates
Indian Technology Day and awards young inventors [5].

Indian Vedic Science
 Vedic education contains immense treasures
of human knowledge that have been with us for
millennia. India's vedic sciences, which exist in
oral traditions as well as 4+ million manuscripts
recorded in dozens of Indian scripts and
languages, can provide us with a firm platform
on which to improve our computing skills. Texts
from the shastra, for example, are significantly
better suited to machine processing than modern
language texts. As a result, applying vedic
notions of learning to today's powerful computing technologies yields a rich treasury of
knowledge that blends the best of both worlds.

 The idea of zero, binary number system, algebraic transformations, hashing, recursion, formal
grammars, mathematical logic, and high level language description all originated in India.
Atharvaveda, widely known as the Veda of 'magical formulas' has simplified mathematics. The
binary scheme that is utilised in all current computers derives from the Atharvaveda. With the use
of vedic mathematics, calculations that took hours could be completed in a matter of minutes.

to learn
testbench

creation and
running ISim in

Xilinx

Scan Me

to know more
about Ajay Bhatt

Scan Me

44 | Structure of Computer

 We unknowingly use vedic sutras. The 'EkadhikinaPurvena' and 'EkanyunenaPurvena' Sutras
are used in software methods when i ← i + 1 and i ← i − 1 are used, respectively. Similarly,
numerous vedic sutras are used in computer multiplier units [6]. It will produce speedier results,
which is essential in many applications such as cryptography methods and image processing
applications.

 It is feasible to establish a much broader and more comprehensive perspective of computer
sciences by including ancient vedic knowledge herein. Vedic concepts are derived from natural
law, which is adequately expressed in the Rigveda. The vedic seers saw this law as the true
governing power of the cosmos, and even the vedic gods are seen to be either subject to or
protectors of this law. Natural phenomena such as river flow, the occurrence of night and morning
are described in terms of this natural rule. It is now established that there existed a conception of
natural law with regard to god among the Babylonia.

 There are four such vast collections of vedas, namely (i) the Rigveda, the book of strophes or
hymns and prayers (mantras) to be recited during sacrifices and rituals, (ii) the Samaveda, the
book of melodies (samans) to which the strophes are to be sung, (iii) the Yajurveda, the book of
sacrificial formulas, and (iv) the Atharvaveda, the book of magical formulas [7].

REFERENCES AND SUGGESTED READINGS

[1] M. Morris Mano, Computer system architecture. Prentice-Hall, Inc., Third edition.

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
architecture.pdf (last accessed: Aug 15, 2022)

[2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian, Computer
organization and embedded systems. McGraw-Hill Higher Education, 2011.

[3] NPTEL Course by Prof. Indranil Sengupta and Prof. Kamalika Datta, Computer Architecture
and Organization, IIT Kharagpur, 2017.
https://archive.nptel.ac.in/courses/106/105/106105163/ (last accessed: Aug 15, 2022)

[4] Xilinx ISE design suite.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado
-design-tools/archive-ise.html (last accessed: Sept. 20, 2022)

[5] About National Technology Day Celebration.
https://economictimes.indiatimes.com/news/how-to/national-technology-day-why-is-it-
celebrated-history-behind-it/articleshow/100171949.cms (last accessed: Aug 15, 2022)

[6] S. Jain and V.S. Jagtap, Vedic mathematics in computer: a survey. International Journal of
Computer Science and Information Technologies, 5(6), pp.7458-7459, 2014.

[7] A Concise History of Science in India, ed. D M Bose, S N Sen and B V Subbarayappa, 1971.
[8] NPTEL Course by Jatindra Kumar Deka, Arnab Sarkar, and Santosh Biswas, Computer

Organization and Architecture: A Pedagogical Aspect, IIT Guwahati, 2017.
https://archive.nptel.ac.in/courses/106/103/106103180/ (last accessed: Aug 15, 2022)

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
https://archive.nptel.ac.in/courses/106/105/106105163/
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado
https://economictimes.indiatimes.com/news/how-to/national-technology-day-why-is-it-
https://archive.nptel.ac.in/courses/106/103/106103180/

Computer System Organization | 45

UNIT SPECIFICS
The following aspects are discussed in this unit:
 Control memory and address sequencing of control unit;
 Basic structure of control unit;
 Signed integer numbers arithmetic operations;
 Different methods for multiplication and division;
 Arithmetic operations for floating point numbers, i.e., addition, subtraction,

multiplication, division;
 Arithmetic and Instruction pipeline, hazards and their solutions;
 RISC pipeline and vector processing;
 Array processors.

 The practical applications of the topics are presented for the purpose of fostering greater
curiosity and creativity and enhancing problem-solving skills. In addition to a large number
of multiple-choice questions and short- and long-answer questions marked in two categories
according to the lower and higher levels of Bloom's taxonomy, the unit provides practice
assignments in the form of numerical problems, a list of references, and suggested readings.
It is crucial to note that several QR codes, which may be scanned for further information on
various topics of interest, have been included in different parts and can be used to obtain
necessary supporting data.

 The related practical based on the content is followed by a “Know More” section on the
topic. This section has been carefully constructed such that the supplementary information it
contains is valuable to the book's readers. This section focuses primarily on the contributions
of Indian innovators to the development of computer system organization, Indian ayurvedic
knowledge, history, and the significance of staying healthy and energetic through natural
practices in our daily lives.

RATIONALE
 A control unit coordinates the processor's actions. It directs the ALU to execute
instructions and coordinates the actions of other components. This chapter examines the
fundamental structure of the control unit and demonstrates how program instructions are

2

Micro Programmed
Control

46 | Micro Programmed Control

fetched, decoded, and executed. The processing unit is referred to as CPU (central
processing unit). Multiple processing units exist in modern computers. Therefore, the term
processor is more appropriate than CPU. Computer arithmetic introduces a number of
interesting logic design aspects.

 This chapter examines the various techniques of computer arithmetic operations, such as
addition, subtraction, multiplication, and division, for signed magnitude and the 2’s
complement number system. The floating-point number representation as per IEEE standards
and the methods for conducting floating point numbers' arithmetic operations are analysed.
The methods for adding, subtracting, multiplying, and dividing floating point numbers are
discussed. Processor organisation has changed with technological advancements to deliver
high performance. Many functional units operate in parallel to obtain high performance.
Such processors feature a pipelined structure in which an instruction is executed before the
previous instruction is finished. This chapter provides a comprehensive look at the pipelined
structure, possible hazards, and proposed solutions.

PRE-REQUISITES
Mathematics: Arithmetic operations with integer and floating point numbers (Class X)
Digital Electronics: Number systems and digital logic gates (Polytechnic Engineering)

UNIT OUTCOMES
List of outcomes of this unit is as follows:
U2-O1: Describe role of control memory and address sequencing in control unit design
U2-O2: Describe various methods of addition, subtraction, multiplication, division for
integer numbers
U2-O3: Explain IEEE standards and arithmetic operations for floating point numbers
U2-O4: Explain arithmetic and instruction pipeline, data and control hazards and their
solutions
U2-O5: Explain RISC pipeline, vector processing and array processors

Computer System Organization | 47

2.1 CONTROL MEMORY
 The control unit initiates sequences of microoperations in the computer. The functionality of
the control unit can be implemented with any one approach either hardwired or
microprogramming. Hardwired approach generates the control signals using hardware. Whereas,
microprogramming is another method for controlling the microoperation sequences in a digital
computer.

 A microprogrammed control unit stores the microprogram. Each micro-program has a
sequence of microinstructions or control words. These control words are represented by binary
values, which are strings of 1s and 0s. Each microinstruction or control word comprises a unique
bit pattern. Each binary state of the control unit specifies a microoperation, and control signals are
generated in consequence. As a result, the control words may be programmed to conduct different
actions on the system components. A micro-routine is made up of a series of microinstructions.

 Once the control unit is operational, there is no requirement for further microprogram updates
because the control memory is ROM. When the hardware is being manufactured, ROM words are
made permanent. The words in ROM stand for microinstructions. Control memories are contained
within control units. The control memory is not the same as the main memory. The programme
changes in main memory, unlike control memory.

 Machine instructions start control memory micro-instructions. These micro-instructions
generate control signals for micro-operations like fetching the instruction from main memory,
evaluating the effective address, executing the operation, and returning to the fetch phase to repeat
the cycle for the next instruction.

 Through the use of dynamic microprogramming, a micro-program is able to load data from
auxiliary memory, such as a magnetic disk. Dynamic microprogramming uses writable control
memory. This memory is usually used for reading but may modify the micro-program.

2.2 ADDRESS SEQUENCING
 The control memory is kept the collections of micro-instructions, and each collection defines
a certain routine. The computer relies on a dedicated micro-program routine stored in the control
memory to produce the micro-operations necessary to execute an instruction. The hardware that
manages the control memory's address sequence must be able to sequence micro-instructions
inside a routine and perform branching between routines.

48 | Micro Programmed Control

 The control address register of a computer is “initialised” when it is first powered on. The
microinstruction sequence that initiates instruction fetch usually begins here. The
microinstructions that make up the fetch routine are sequenced when the control address register
is incremented. The instruction is then delivered to the computer's instruction register following
the fetching step.

 A control memory routine determines the operand's effective address. Computer instructions
can define indirect address and index register modes. A branch microinstruction can access the
control memory effective address computation routine based on mode bits. The memory address
register will store the operand's address after effective address computation.

Fig. 2.1: Control memory address selection

Computer System Organization | 49

 Generate the microoperations that execute the memory-fetched instruction. Operation code
determines processor register microoperation stages. Each instruction has a microprogram stored
in control memory. Instruction code bits are mapped into control memory where the routine
exists. After reaching the needed routine, incrementing the control address register may sequence
the microinstructions that execute the instruction, although processor register status bits can also
affect microoperation sequencing.

 Subroutine-based microprograms must store return addresses in external register. Since the
device cannot write return addresses to ROM. After the instruction has been completely executed,
control must return to the fetch routine. Execute a microinstruction that performs an unconditional
branch to the fetch routine's initial address.

 Figure 2.1 shows the microinstruction address circuitry. Control memory microinstructions
start computer register microoperations and define how to get the next address. The image shows
four ways the control address register (CAR) gets the address. The incrementer selects the next
microinstruction by incrementing the control address register. The microinstruction's field defines
the branch address. Conditional branching is enabled by selecting a status bit from the
microinstruction. Mapping logic circuits relocate external addresses to control memory. The
microprogram uses a specific register to exit a subroutine using its return address.

2.3 CONTROL UNIT DESIGN
 Control unit generates the control signals to activate various components in the processor like
registers, internal bus, ALU and paths between various components as shown in Fig 2.2. Inputs
for the control unit are condition codes, instruction registers, operation codes, external inputs and
clock. These inputs convey the various information as follows.
(1) Instruction Register (IR) loads the instruction to be executed from memory data register

(MDR). The MDR contains a copy of the value in the memory location specified by the
memory address register. After the instruction decode processor knows which operation has
to perform, these operation bits are input for the control unit.

(2) Condition codes (flags) bits are inputs for the control unit. Condition codes give the status of
previous instruction operation. For example, in Increment and Skip if Zero (ISZ) instruction
effective address is incremented by one and compared with zero if equal then Zero Flag (ZF)
set to 1, and the processor skips the next instruction execution.

50 | Micro Programmed Control

(3) External Inputs are such control signals that are provided from the system bus like wait until
memory function completed (WMFC), these control signals are generated from main
memory. From input devices, interrupt request signals are also generated to the control unit.

(4) Clock: In processor, a number of micro-operations are performed in a single clock cycle
simultaneously.

Fig. 2.2: Control unit block diagram

2.3.1 Hardwired Control Unit
 The logic gates, flip-flops, decoders, and other digital circuits implement control logic in the
Hardwired Control structure. RISC-based computers require hardwired control. A block diagram
of a Hardwired Control structure is shown in Fig 2.3.

 Two decoders, a sequence counter, and several logic gates constitute a Hardwired Control.
The instruction register (IR) contains a memory-unit’s fetched instruction. The I bit, the operation
code, and bits 0–11 are the components that make up the instruction register. A 3 x 8 decoder
encodes operation code bits 12–14. The decoder has outputs labelled D0 through D7. The bit 15
operation code is read into the I-flip-flops. Control logic gates use operation codes 0–11. The
binary Sequence counter (SC) counts 0–15.

 The processor has to generate control signals in the proper sequence for executing
instructions. For Hardwired control design, hardware components like AND gates, OR gates,
encoder and decoder are used. A counter is used to keep track of the control steps. Inputs for the
hardwired control unit are clock, instruction register, condition codes and external inputs like
WMFC and interrupts.

Computer System Organization | 51

Fig. 2.3: Hardwired control unit

 Each step takes one clock cycle. Step decoders have signal lines for each control sequence
time unit. Instruction register opcode bits inputs for IR decoder. The instruction decoder outputs
one line per machine instruction. For any instruction loaded in the IR register, one output line
from IR [0-11] is set to 1 and all other lines are set to 0 (not active). The encoder combines all the
input signals and generates separate control signals. Hardwired control unit generates control
signal to limited instructions.

52 | Micro Programmed Control

2.3.2 Microprogrammed Control Unit
 Microprogrammed control unit generates a sequence of control signals for instruction
execution. It is used to design complex instruction set computer (CISC) style processors. The
program that generates control signals is known as “Microprogrammed.” These microprograms
are stored in a specific control memory.

Fig. 2.4: Microprogrammed control organization

 Figure 2.4 demonstrates the working of a microprogrammed control unit. ROM memory
holds control data permanently. The control data register has the memory-read microinstruction,
whereas the control memory address register specifies its address.

 A control word in the microinstruction defines one or more microoperations. Control will
choose the next address when these tasks have been completed. The next microinstruction could
be in sequence or control memory. As a result, some bits of the present microinstruction must
have an impact on the address of the next one. External inputs may alter the next address. The
next address generator circuit calculates and sends the control address register to read the next
microinstruction during microoperations.

 Microinstructions start microoperations and set control memory address sequences. The next
address generator determines the address sequence received from control memory and is often
termed a microprogram sequencer. Microprogram sequencers increments control address registers
by one. Control operations begin with an address from control memory, an external address, or an
initial address.

 The control data register stores the currently active microinstruction until the next address is
computed and read from memory. Data registers are also known as pipeline registers. The control
word's microoperations can be executed while the next microinstruction is generated
simultaneously.

Computer System Organization | 53

 A combinational ROM circuit reads the address value and outputs the word. The output wires
contain the ROM word's content as long as its address value is in the address register. Like
random access memory, no read signal is required. Each clock pulse executes control word
microoperations and transfers a new address to the control address register.

 The microprogrammed control unit allows to specify a different microprogram residing in
control memory. It can further classify into two categories:
 Horizontal Microprogrammed control unit: In horizontal microprogrammed control unit
(1) ݊ bits in control word, all ݊ bits will generate ݊ control signals.
(2) Some bits for external inputs, some bits for functional codes like conditional jump, some bits

for condition codes (flags) and some bits for next instruction address.
(3) In this control unit, control word has more number of bits (longer).

 Vertical Microprogrammed control unit: In vertical microprogrammed control unit
(1) For n bits control words, only ݈݃݋ ݊ control signals are generated. Suppose there are 64 bits

for functional codes, only 6 control signals shall be generated for all 64 bit functional codes.
(2) Control word has less number of bits (shorter).

 On comparing both types of control unit, the following advantages/disadvantages can be
faced with microprogrammed control unit over hardwired control unit:
(1) Microprogram Control Unit is less costly as compared to hardwired control unit because it is

implemented with a program.
(2) Microprogram Control Unit is easy to modify compared with hardwired control units. If the

instructions are changed then microprograms are also modified but the hardwired control unit
is difficult to modify because it has array logic gates (AND, OR) and a lot of wiring.

(3) Microprogrammed control unit is slower compared to hardwired control because it generates
control signals for many instructions.

(4) Hardwired control is used by RISC architecture and microprogrammed control unit is used by
CISC architecture.

54 | Micro Programmed Control

2.4 COMPUTER ARITHMETIC
 Arithmetic operations, i.e., addition, subtraction, multiplication, and division can be done on
both unsigned and signed integers. The hardware implementation techniques of arithmetic
operations for signed magnitude and 2's complement numbers' operations are explained in this section.

2.4.1 Addition and subtraction for signed magnitude numbers
 The signed magnitude numbers are stored in A and B registers. The flip-flops As and Bs hold
the sign bit value. Either As or Bs flip-flop holds only one bit information 0 or 1. The addition
overflow register (AVF) holds one bit information, and its value indicates whether or not
overflow occurred after addition. If the result of addition exceeds the register storage capacity,
overflow occurs. This overflow information is stored in AVF.

Fig. 2.5: Hardware implementation of addition and subtraction operation for signed magnitude numbers

 The values of the B register and A register are added using a parallel adder circuit for the
addition operation. When the M (mode control) bit is set to 0 for addition, the complementer
circuit transmits the value of the B register without complementing. The result of adding the
values of registers A and B is stored in registers A and As. For subtraction operation, M (mode
control) bit value set to 1 signifies a complementer circuit complements B register value and
transfers to a parallel adder circuit. The parallel adder circuit adds the value of the B register, the
value of the A register, and the input carry, and stores the result in the A and As registers, as seen
in Fig. 2.5.

 Using a flowchart, Fig. 2.6 illustrates the subtraction and addition operations for signed
magnitude numbers. For subtraction, the register values A and B store the minuend in A and the
subtrahend in B. For addition, the values are stored as augend in register A and Addend in register
B. Prior to either addition or subtraction, the sign bits are compared using the XOR operation, and

Computer System Organization | 55

if the XOR result is 1, it indicates that the signs are distinct. If the output of XOR is 0, both signs
are the same.

 The result of the addition operation is saved in EA if the XOR output is 0. In this operation
EA ← A + B, the output carry is placed in E and the result is stored in A. If an overflow occurs
after an addition operation, it is saved in the AVF. If the signs are different (XOR output is 1), a
subtraction operation (EA ← A - B) is performed. The outcome is saved in the A register,
whereas the output carry is saved in the E register. In a subtraction operation, there will be no
overflow, AVF is set to zero.

Fig. 2.6: Signed magnitude addition and subtraction operation flowchart

 Before doing subtraction, the sign bits of magnitudes are compared using the XOR operation.
If the XOR output is 1, the signs are different, the operation is subtraction, and two magnitudes
are added. If the XOR output is zero, it indicates that both magnitude signs are identical and that
the operation is subtraction. The subtraction operation's output is stored in the E and A registers.
Output carry E compared with 0 and 1. If E value is 1 means A >= B, it signifies that magnitude
A is greater or equal to magnitude of B. A's (result) value is compared to the value 0, if equal then
the magnitude A is equal to magnitude B. The As sign is set to 0 and the result is saved in A and

56 | Micro Programmed Control

As. If E is 0, magnitude A is less than magnitude B, then the result is the complement of 2 saved
in A register and the complement of As sign bit 1 saved in As flip-flop.

2.4.2 Addition and subtraction for 2’s complement numbers
 The sign bits of integers are not separated in 2's complement addition and subtraction
operations. Numbers, including sign bits, are kept in the AC (accumulator register) and the BR
(base register). Overflow may occur in complementer and parallel adder circuits. When an
overflow occurs, the overflow status register V is set to 1, as illustrated in Fig. 2.7. The output
carry is discarded.

Fig. 2.7: Addition and subtraction hardware implementation for 2’s complement numbers

 The method for addition and subtraction of binary integers of 2's complement numbers is
shown in Fig. 2.8. Accumulator register (AC) binary value containing sign bits and base register
(BR) binary value are added. If the exclusive OR of the final two bits contains a 1, the overflow V
is set to 1; otherwise, it is set to 0. AC register value is added to the 2-bit complement of BR
register value during subtraction operations, and vice versa.

Fig. 2.8: Flowchart of addition and subtraction for 2’s complement numbers

Computer System Organization | 57

2.4.3 Integer Multiplication
 There are a variety of techniques for multiplying signed integers. In
this section, different multiplication methods for signed magnitude and the
2's complement number system are discussed.

1. Multiplication for signed magnitude numbers
 For signed magnitude multiplication operation, hardware components
are registers A, B and Q, sequence counter register (SC), complementer
and parallel adder circuit and As, Qs, Bs, Qi flip-flops.

Fig. 2.9: Multiplication for signed magnitude numbers

 Registers, hardware, and steps required to multiply two signed magnitude integers are shown
in Fig. 2.9. The multiplicand stores in register B, whereas the multiplier stores in register Q. The
initial value of Register A is 0. After performing multiplication of the values of A and B registers,
partial product is stored in register A. The sequence counter is set to n (number of bits in
multiplier excluding s).

 Registers A and E are initialised to 0 in Fig. 2.10. The XOR operation is executed using the
multiplicand sign bit and the multiplier sign bit, with the result bit being stored in the As flip-flop.
If the rightmost bit Qi of the register Q is 0, a shift-right operation is done on E, A, and Q, and the
SC counter is decremented by one. If Qi is 1, the values of registers A and B are added using a
parallel adder circuit, and a partial product stored in register A. This procedure is continued until
the sequence counter (SC) approaches 0 and the result is placed in the A, Q registers.

For example of
signed-magnitude

numbers
multiplication

Scan Me

58 | Micro Programmed Control

Fig. 2.10: Signed magnitude multiplication flowchart

Example 2.1

Compute the multiplication of -6 and 3 using the signed magnitude method.

Solution: The multiplicand is the number -6, while the multiplier is the number 3. The
multiplicand -6 is stored in register B in the following way. The value of flip-flop Bs is 1, since
the multiplicand is negative and the magnitude 0110 is stored in B.

 The multiplier 3 is stored in the Q register with the binary value 0011, and Qs is set to 0. The
As flip-flop holds the sign of the product; when the XOR operation is performed on Qs (that is, 0)
and Bs (that is, 1), the As is set to 1. The E and A registers are initialized with 0 and SC is
initialized with the total number of bits, i.e. 4, in the multiplier. Final result is stored in A and Q;
AQ = 00010010, or 18 in decimal. Since As is 1, so the final product is -18 (AQ = 10010010).
Table 2.1 displays the computations and intermediate register values for multiplication.

Computer System Organization | 59

Table 2.1: Signed magnitude numbers multiplication example (-6x3)

2. Booth’s multiplication for 2’s complement numbers
 In Booth's approach for doing multiplication, the registers AC (accumulator), BR (base
register), QR (quotient), SC (sequence counter), and complementer and parallel adder circuits are
used.

 Flip-flop Qi is the rightmost bit in the multiplier, whereas Qi-1 is a flip-flop. In this
multiplication operation, the multiplicand is stored in the BR register, the multiplier is stored in
the QR register, the initial value of the AC register is zero, and the SC value is the number of bits
in the multiplier, including the sign bit.

 The hardware implementation of Booth's multiplication is shown in Fig. 2.11. The starting
value of the Qi-1 flip-flop is zero, and Qi is the rightmost bit in the multiplier. Depending on the
values of Qi Qi-1, either addition or subtraction is done. If Qi Qi-1 is 00 or 11, arithmetic right shift
is performed on the binary values of AC, QR, and Qi-1, and SC is decremented by one. When Qi
Qi-1 equals 01, addition is performed.

60 | Micro Programmed Control

 The arithmetic right shift on AC, QR, Qi-1, and SC is decremented by one
after addition. If Qi Qi-1 is equal to 10, subtraction is done. The right shift on
AC, QR, Qi-1, and SC is decreased by one after subtraction. As illustrated in
Fig. 2.12, these procedures are continued until the sequence counter (SC)
reaches 0.

Fig. 2.11: Booth’s multiplication hardware implementation

Fig. 2.12: Booth’s multiplication flowchart

For more example
on booth’s

multiplication

 Scan Me

Computer System Organization | 61

Example 2.2

How do you multiply the numbers -5 and -4 using the booth multiplication method?

Solution: The BR register contains the 2's complement of the multiplicand -5, which is 1011. The
2's complement of multiplier -4 is 1100, which is kept in the QR register. The initial value of the
AC register is 0000, and SC is set to 4 since the multiplier has four bits.

Table 2.2: Booth multiplication example (-5 x -4)

 Depending on the values of Qi Qi-1, an addition or subtraction operation is performed,
followed by an arithmetic shift right. In this scenario, arithmetic shift right is done if Qi Qi-1 is 00
or 11. This procedure is continued until the SC value reaches 0. AC and QR registers are used to
store the final product. In Table 2.2, the register and flip-flop values for each step are given in
detail.

2.4.4 Integer Division
 There are two approaches for doing division: the restoring method and the non-restoring
method.

62 | Micro Programmed Control

Fig. 2.13: Restoring division flowchart

1. Restoring method
 Initial values are assigned to the registers A, Q, M, and SC (sequence counter). Register M
stores the positive divisor of the ݊-bit binary value, whereas register Q stores the positive
dividend. Register A has ݊ + 1 bits, all of which are set to 0. The sequence counter is initialised to
݊.

 Fig. 2.13 demonstrates the flowchart for restoring division. The first operation executed on
the (A,Q) register value is a shift left. Afterwards, the value of register M is subtracted from the
value of register A, and the resulting value is stored in register A. The sign bit of register A,
represented by An, is now compared to zero. If An is 1, Q0 is set to 0 and A is restored by adding
M; otherwise, Q0 is set to 1. The value of SC is decremented by one upon completion of these
stages. The procedure is continued until the SC value reaches 0.

Computer System Organization | 63

Example 2.3

How do you divide 7/3 using the restoring division method?

Solution: Register Q has the value 0111 (dividend), register A has the value 00000, and register
M has the divisor binary value 00011. The 2's complement of M is 11101, which is added to
register A during the subtraction operation. The sequence counter's steps are shown in Table 2.3.

Table 2.3: Restoring division algorithm example

Steps A Q SC
Initial 00000 0111 4

Shift left (A,Q) 00000 1110
A ← A - M 11101

A4=1, so Q0 ← 0 11101 1110
M 00011

A ← A + M 00000 1110 3
Shift left (A,Q) 00001 1100

A ← A - M 11101
A4=1, so Q0 ← 0 11110 1100

M 00011
A ← A + M 00001 1100 2

Shift left (A,Q) 00011 1000
A ← A - M 11101

Carry is discarded 00000
A4=0; Q0 ← 1 00000 1001 1
Shift left (A,Q) 00001 0010

A ← A - M 11101
A4=1, so Q0 ← 0 11110 0010

M 00011
A ← A + M 00001 0010 0

 In Table 2.3, the value of register A after a 7/3 division operation is the remainder (0001), and
the value of register Q is the quotient (0010). The accuracy of the result may be confirmed by
performing integer division on 7/3, which yields quotient value 2 and remainder value 1.

64 | Micro Programmed Control

2. Non restoring division
 The non-restoring division technique restores partial remainder at the end of the division
operation rather than at intermediate phases. The division process requires the use of registers A,
M, Q, and SC. When the division process is finished, the value of register A is the remainder, and
the value of register Q is the quotient. The initial value of register A is 0, and the number of bits in
the divisor is assigned to SC.

 Fig. 2.14 demonstrates the steps needed to execute division using non-restoring techniques. If
An is 1, then add M to A and set Q0 to 0; otherwise, subtract M from A and set Q0 to 1. The
sequence counter SC value is then decremented by one. This process is continued until the SC
value approaches zero. When the division operation is finished, the sign bit of register A is
examined; if An is 1, the value of register M is added to register A. (partial remainder added with
divisor). Otherwise, the division process is terminated, and the value of register A is the
remainder and the value of register Q is the quotient.

Fig. 2.14: Non restoring division

Computer System Organization | 65

Example 2.4

How do you perform a 7/3 division using the non-restoring division method?

Solution: The register values are specified as follows. Register Q has been set to 0111 (dividend),
whereas register A has been set to 0. Because register A contains ݊ + 1 bits, all five bits are set to
zero, i.e., 00000. The value of register M is 00011 (divisor). M's 2's complement is 11101. During
the subtraction operation, the 2's complement of M is added to register A. Table 2.4 displays the
sequence counter steps and actions done on each register value.

Table 2.4: Non restoring division example

Steps A Q SC

Initial 00000 0111 4

Shift left (A,Q) 00000 1110

Subtract M (A ← A-M) 11101

 11101

A4=1; Q0 ← 0 11101 1110 3

Shift left (A,Q) 11011 1100

Add M (A ← A+M) 00011

A4=1; Q0 ← 0 11110 1100 2

Shift left (A,Q) 11101 1000

Add M (A ← A+M) 00011

 00000

A4=0; Q0 ← 1 00000 1001 1

Shift left (A,Q) 00001 0010

Subtract M (A ← A-M) 11101

A4=1; Q0 ← 0 11110 0010 0

If SC=1 and A4=1; add M
(A ← A+M)

00011

 00001 0010

66 | Micro Programmed Control

 There are no straightforward techniques for doing direct division on signed operands. In
division, the operands may be transformed into positive values using preprocessing. For signed
numbers division, the quotient and remainder signs may be modified after using either restoring or
non-restoring division methods.

2.5 FRACTION NUMBER REPRESENTATION
 Fraction numbers are represented in two forms, fixed point representation and floating point
representation.

2.5.1 Fixed point representation
 The decimal point does not move in fixed-point notation. The decimal point in a converted
binary number is located in the same place as it is in the original decimal value.

 For example, the given decimal number 41.6875 has a fixed decimal point. Thus, digits
before the decimal point are represented in binary format, and digits after the decimal point are
converted to binary format. If a complete number is represented in 25 bits of binary, then 16 bits
represent the number before the decimal point, 8 bits represent the digits after the decimal point,
and 1 bit represents the sign.

2.5.2 Floating point representation
 In floating point representation, the decimal point either goes to the left or to the right. Based
on the movement of the decimal point, the exponent is either increased or decreased. Fixed-point
representation cannot represent very large or small fractional numbers, which is a drawback.
Using a floating point representation, however, both small and large numbers may be represented.
IEEE 754 format is used to represent floating point numbers [4].

1. IEEE 754 single precision representation
 In a single precision representation, the first bit indicates whether a floating-point value is
positive or negative. With an 8-bit exponent, the range of unsigned integers is 0 to 255, although 0
and 255 are reserved for specific uses. Except for these two integers, the range of biased
exponents is between 1 and 254.

actual exponent = biased exponent – excess 127

Computer System Organization | 67

 Where, excess 127 = (28-1 - 1) for single precision representation, the actual exponent ranges
from -126 (1-127) to 127 (254-127). To get the actual exponent from the biased exponent, excess
127 is subtracted.

Example 2.5

In single precision format, how do you express -14.25?

Solution: The single precision representation can be computed as follows:

 The binary value of 14.25 is 1110.01 and this binary number with exponent is 1110.01 x 20.
 Normalization format is 1.M x 2(exponent – 127) , the given number can be represented in

normalized form as 1.11001 x 23. Here, the actual exponent is 3, however it will be expressed
in 8-bit biased exponent format.

 Biased exponent = actual exponent + excess 127
 Here, biased exponent = 3 + 127 = 130. So the biased exponent is stored in 8 bit binary

format 10000010, and the sign bit is 1.
 Therefore, the given number -14.25 is represented in IEEE 754 single precision format as 1

10000010 11001000000000000000000.

2. IEEE 754 Double precision representation
 IEEE 754 double precision floating point representation uses 64-bit systems. The first bit
represents the sign bit, followed by 11 bits representing the exponent and 52 bits representing the
mantissa.
|--64 bits--|

Sign Exponent Mantissa

|--1bit-----|---------11bits------------------|------------------------52bits -----------------------------------|
Biased exponent = actual exponent + excess 1023

 Here, excess 1023 = 211-1 - 1. Unsigned range for biased exponents is 0 to 2048, however 0
and 2048 are reserved for specific purposes. If excess value 1023 is subtracted, the remaining
range is -1022 to 1023.

2.5.3 Floating point arithmetic operations
 The most common floating point operations are addition, subtraction, multiplication, and
division. For simplicity, these operations are demonstrated on decimal numbers. However, same
procedures may also be performed on binary numbers.

68 | Micro Programmed Control

1. Addition or subtraction
 For floating-point arithmetic addition or subtraction, it is necessary to determine whether both
exponents are equivalent. If not equal, the decimal point in mantissa is moved to the right or left
to align it.

 For example, the addition of the following two floating point numbers can be performed as
follows.

0.5372400 x 102

0.1580000 x 10-1

 The exponents of two numbers, 2 and -1, are not equivalent. It may be aligned by moving
either the first/second number's mantissa to the right/left. The second number is shifted three
positions towards right. On moving either first or second number mantissa to the left, the most
important digits are lost. When shifting right to the first integer, the least significant bits are
discarded. In this instance, the second number moved three places to the right.

 0.5372400 x 102

+0.0001580 x 102

0.5373980 x 102

 The AC register stores the results of addition or subtraction operations performed on floating
point numbers stored in the AC and BR registers as shown in Fig. 2.15. Addition or subtraction
can be performed in four steps.

S1: Check for zeros.
S2: Align mantissas.
S3: Perform addition or subtraction on mantissas.
S4: Result normalization

 The registers AC, BR, and QR contain one floating-point number, which consists of three
components: sign, mantissa, and exponent. As represents the floating point number sign in the AC
register, A1 represents the most significant bit in the mantissa, and a represents the exponents of
floating point numbers. The registers AC and BR are used in addition or subtraction as shown in
Fig. 2.16. The QR register is used in multiplication of floating point numbers as can be seen in
Fig. 2.17.

Computer System Organization | 69

Fig. 2.15: Registers for floating point arithmetic operations

Fig. 2.16: Addition or subtraction of floating point binary numbers

70 | Micro Programmed Control

2. Multiplication
The following steps can be used to multiply:
S1: Check for zeros
S2: Add exponents
S3: Multiply mantissas
S4: Result Normalization
 Fig. 2.17 depicts these steps in detail. Before multiplying floating point
numbers, this is necessary to determine whether it is zero or not. The result
is 0 if any number is zero.

 If both numbers are non-zero, the
product of the mantissas' multiplication and
the exponents' addition is placed in the AC
register. If the final result is not in
normalised form, it is normalised by moving
the result to the left or right, depending on
whether the exponent should be increased or
decreased.

3. Division
The division of floating point numbers can
be performed using following steps:
S1: Check for zeros
S2: Initialize registers and evaluate the sign
S3: Align the dividend
S4: Subtract the exponents
S5: Divide the mantissa

 Fig. 2.19 depicts in detail the
procedures required to divide floating point
numbers [3]. In division operations, there
should be first determine whether or not the
divisor is zero. Divide overflow will occur if
the divisor is zero. If the divisor is not zero,
exponents are subtracted before dividing
mantissas, as illustrated in Fig. 2.18.

For floating point
division example

 Scan Me

Fig. 2.17: Multiplication of floating point binary
numbers

Computer System Organization | 71

Fig. 2.18: Magnitudes division Fig. 2.19: Division of floating point binary numbers

2.6 ARITHMETIC PIPELINE
 Pipeline arithmetic units are often seen in supercomputers. They are used to accomplish
floating-point operations, fixed-point multiplication, and other calculations found in scientific
situations. A pipeline multiplier is just an array multiplier with specific adders that reduce carry
propagation time across partial products.

 As demonstrated in Fig 2.20, floating-point operations may be easily broken into sub
operations. The floating-point adder pipeline gets two normalised floating-point binary values as
inputs for a pipeline unit.

W = A x 2a

Z = B x 2b

72 | Micro Programmed Control

 Mantissas (represented by the
letters A and B) and exponents
(represented by the letters a and b)
make up the expression A and B,
respectively. As can be seen in Fig.
2.20, the operations of adding and
subtracting with floating-point
numbers may be broken down into
four segments.

 For temporary storage of
intermediate data, the segments
might be connected with registers
denoted by the letter R. The four
segments consist of the following
sub operations:
S1: Compare the exponents
S2: Align the mantissas
S3: Perform addition/subtraction
operation on mantissas
S4: Result normalization

 First, subtract the exponents, as
illustrated in Fig. 2.20. The
exponent difference determines
how many times the mantissa of the
lower exponent must be moved

right or left. This aligns the
mantissas. Step three, mantissas are
added or subtracted. Normalise the
result last. Overflows increase the exponent by one and move the sum or
difference mantissa to the right. The amount of leading zeros in the
mantissa determines the exponent decrease and how far left the mantissa
shifts when there is an underflow.

Fig. 2.20: Pipelined execution of floating-point adder

To understand
arithmetic pipeline

with example

 Scan Me

Computer System Organization | 73

2.7 INSTRUCTION PIPELINE
 Multiple instructions are executed in a single processor clock cycle with
instruction pipelining. Non-pipeline architecture, on the other hand, executes
instructions sequentially one after the other. Fig. 2.21 depicts three
instructions running on a pipelined processor with five stages (fetch, decode,
operand fetch, execute, and write back). Each state is completed in a single
processor clock cycle. Three instructions in a pipeline require 7 processor
clock cycles to execute. Processing three instructions with five stages takes 15
processor clock cycles in the absence of a pipeline.

Fig. 2.21: Pipelined execution of instructions

 Suppose there are N instructions with K stages and a maximum time delay of T time units
between each instruction stage. The time necessary to execute instructions with and without a
pipeline can be computed as
● Time required to execute ݊ instructions in pipeline = (ܭ + ܰ − 1)ܶ
 Where, ܭ-number of stages, ܰ-total number of instructions, and ܶ- time delay between states
● Time needed to execute n instructions in a non-pipelined processor = ܰܶܭ
● Speed up factor =ܰܭ)/ܭ + ܰ − 1)
There are three types of pipeline hazards that might arise during instruction
execution.

2.7.1 Resource or Structural Hazards
 Structural hazards may prevent certain instructions from being executed
in parallel if there are many instructions in the pipeline. For instance, the
main memory only has one port. The processor must use the same port for
each read or write operation. Imagine that within a single processor clock

To know more
about instruction

pipeline and
performance

 Scan Me

To know structural
hazard

 Scan Me

74 | Micro Programmed Control

cycle, many instructions must access the same primary memory resource. Only one instruction
may complete its execution in a single clock cycle due to hardware resource limitations, namely
the single main memory. Such resource limitations are considered as structural hazards.

 In Fig. 2.22, instruction I1 performs a memory writeback in cycle 5, while instruction I5
performs a fetch operation in cycle 5. Similarly Instruction I2 accesses memory to perform write
operations, simultaneously Instruction I6 performs fetch operations during the sixth clock cycle. It
is not feasible to write and read concurrently to a single port memory, thus between the fifth and
sixth clock cycles, the memory is accessed for data writing and instruction reading.

Fig. 2.22: Structural or resource hazard

 There is a problem in the pipeline if there are more than two instructions performing different
operations on the same resource (memory). This kind of hazard is referred to as structural hazards.

 This type of hazard may be reduced by increasing the quantity of accessible resources. In
order to avoid structural hazards, modern processors use separate memory for storing instructions
and data. Alternatively, the problem may be circumvented by executing a set of instructions,
halting the pipeline for a few cycles, executing the set of instructions again, and continuing the
process until the program is completed. This solution is shown in Fig. 2.23; after completing the
first three steps, the other steps must be executed in sequence.

Computer System Organization | 75

Fig. 2.23: Structural/Resource hazard solution

2.7.2 Data Hazards
 When two instructions in the pipeline execute simultaneously, data hazard might arise. If the
execution result of the second instruction is dependent on the outcome of the first, data hazard
occurs. Data hazards can be classified into RAW hazards, WAR hazards, and WAW hazards.

1. RAW hazard
 The read after write (RAW) is a true dependency. There is no issue with sequential execution.
If the instructions are executed concurrently, they may execute in any sequence, resulting in an
incorrect result or output. For example, both the given instructions I1 and I2 use the shared
register R3. So the RAW hazard should be checked here.

I1: Add R3, R1, R2
I2: Subtract R5, R4, R3

 Fig. 2.24: Occurrence of Read after Write (RAW) hazard in pipelined execution of the instructions

76 | Micro Programmed Control

 As shown in Fig. 2.24, while instruction I1 is in the Decode stage,
instruction I2 is in the Fetch stage. The value of operand R3 will be
changed after the memory write step. Currently, instruction subtract is
executed using the old R3 value. Because the execution of I2 instruction is
fully dependent on the completion of I1 instruction. When I2 instruction is
executed before I1 instruction write operation completion, the Read after
Write (RAW) hazard arises.

Fig. 2.25: RAW data hazard solution

 To eliminate RAW hazard, the instruction I2 operands will be fetched in
the 6th clock cycle, following the completion of the instruction I1 write
operation as shown in Fig. 2.25.

 Because of the NOP (No operation) insertion, the pipeline is slow. RAW
hazards may be resolved using two more options. First, rearranging the
instructions such that the non-dependent instructions are placed between the
dependent instructions. The compiler can perform this reordering of
instructions. The second is that the most recent operand computed value may
be sent to dependent instructions across pipeline stages.

Example 2.6

How do you execute the Add R3, R7, R1 and Subtract R5, R8, R3 instructions in a pipeline? The
operand values are as follows: R1 = 20, R7 = 30, R3 = 10, and R8 = 400.

Solution: For instruction I1, R1 is set to 20, R7 is set to 30, and the result of instruction I1 (Add)
is 50, which is kept in register R3 and updated during clock cycle 5. If the I2 instruction needs the
R3 operand in the fourth clock cycle and the R3 operand is fetched in the fourth clock cycle, then
instruction I2 reads R3=10. This is an old value of the operand, resulting in inconsistent data. The
final result is R5 = R8 - R3 = 400 - 10 = 390. When both instructions are executed in sequence
(one after the other), the result is R3=R1+R7=20+30=50; R5=R8-R3=400-50=350. For operand
R5, the value 350 is correct.

To know instruction
reordering

 Scan Me

To know operand
forwarding

 Scan Me

Computer System Organization | 77

 This inconsistency in results is caused by the RAW hazard. To avoid RAW hazards during
parallel execution, the operands of instruction I2 should be fetched in the sixth clock cycle while
the processor stays idle/stalled/NOP (No operation) in the fourth and fifth clock cycles. As a
consequence, the I2 instruction obtains the updated operand (R3=50), R8 is 400, and the program
produces the correct result (R5=350).

2. WAR hazard
 WAR hazard is also referred to as anti dependency. These hazards arise when instructions are
executed concurrently and the destination/output register of one instruction is used immediately
after being read by the previous instruction.

I1: Mul R6, R7, R8 /R6 ← R7 x R8/
I2: Add R8, R9, R10 /R8 ← R9 + R10/

 There is no difficulty, for example, if these instructions I1 and I2 are executed sequentially.
However, when I1 and I2 are executed simultaneously, WAR hazard may occur.

Example 2.7

How do you execute the Mul R6, R7, R8 and Add R8, R9, R10 instructions in a pipeline? The
operand values are as follows: R7 = 20, R8 = 10, R9 = 30 and R10 = 50.

Solution: A “Write after Read” hazard is less likely in a four- or five-stage pipeline.

I1: R6(200) ← R7(20) x R8(10)
I2: R8 (80) ← R9 (30) + R10 (50)

 The register R8 is used by both instructions. If the I2 instruction
completes execution before the I1 instruction fetches its operand, then the
WAR hazard may occur. However, If I2 is executed after I1, then there will
be no problem. But after the I2 instruction write is done, the I1 instruction
is executed. There is a WAR hazard because the I1 instruction reads the
modified value of register R8.

I1: R6(1600) ← R7(20) x R8(80)
I2: R8 (80) ← R9 (30) + R10 (50)

 For this reason, the program will give an incorrect value for R6 (1600). However, renaming
the register R8 can solve the problem.

To know register
renaming

 Scan Me

78 | Micro Programmed Control

3. WAW hazard
 A Write After Write (WAW) hazard occurs if the instructions are executed concurrently. If
two instructions I1 and I2 are executed concurrently, it is anticipated that Instruction I1 will be
delayed while Instruction I2 will be finished. In this situation, the WAW hazard exists. This
circumstance occurs as a result of two instructions I1 and I2 writing to the same output register
R8.

I1: Add R8, R6, R7 /R8 ← R6 + R7/
I2: Add R8, R9, R10 /R8 ← R9 + R10/

Example 2.8

How do you execute the Add R8, R6, R12 and Add R8, R9, R10
instructions in a pipeline? The operand values are as follows: R6 = 50, R12
= 50, R9 = 100 and R10 = 150.

Solution: Here, R6 = 50, R12 = 50, R9 = 100, and R10 = 150. If
instructions I1 and I2 are executed in a pipeline, R8 will hold the second
instruction execution result after I1 and I2 have completed. In this case,
there is no problem.

I1: R8(100) ← R6(50) + R12(50)
I2: R8(250) ← R9(100) + R10(150)

 But, the I1 instruction delayed execution, the I2 instruction completed its execution, and the
R8(250) register stores the I2 result. The I1 instruction eventually completed its execution, and
the result was written to the R8(100) register. This is referred to as the WAW hazard. This hazard
can be solved by renaming the destination register.

2.7.3 Control Hazards
 There are control hazards associated with branch instructions. Let's imagine that there are
three instructions (I1, I2, and I3) in the pipeline. Assuming that Instruction I2 is a branch
instruction, the processor is unaware of this fact until after the decoding phase. The branch
address is loaded in a program counter (PC), and the processor then executes the instruction
provided by the branch address. Pipeline instructions I1, I2, and I3 are shown in Fig. 2.26.
Instruction I2 is decoded during the third clock cycle, and the processor identifies it as a branch
instruction. However, instruction I3 is already retrieved from memory during decoding of
instruction I2. Therefore, this is the incorrect sequence of pipeline instructions. This is referred to
as a control hazard.

To know register
allocation table in
register renaming

 Scan Me

Computer System Organization | 79

Fig. 2.26: Control hazard situation

Fig. 2.27: Control hazard solution

 If new instruction I3 is inserted in the pipeline during a control hazard, the processor will
flush the pipeline. The branch instruction address is loaded into the PC as demonstrated in Fig.
2.27. The unconditional branch instruction jumps to a specific location without performing a
conditional check. For example, the Jump 2000 instruction begins instruction execution at the
2000 address location. In contrast, conditional branch instructions examine the condition and
execute branch instructions if the condition is true (if, if-else, loops). Other than that, instructions
are executed in the order they were received.

80 | Micro Programmed Control

 Aside from flushing, branch prediction is used to maximize the benefits of the processor's
pipelined execution. In the pipeline design, a hardware circuit attempts to predict whether a
branch will be taken or not taken. If a branch is identified in the pipeline while it is being
executed, the processor waits (stalls or bubbles) for a few clock cycles. Because of this, pipeline
performance drops. Predicting for branch instructions before execution speeds up pipelining.
There are two approaches for predicting the branch: static and dynamic branch prediction.

1. Static branch prediction
 Static branch prediction assumes no branch will be taken. It fetches the subsequent instruction
in address order. Each inaccurate prediction requires taking the branch. The branch target
instruction replaces the previous instruction. Misprediction causes pipeline clock cycle penalties.

 Accelerate the branch instruction's execution if the prediction is accurate. When a conditional
branch is met, the same option (assume not taken) is always chosen.

2. Dynamic branch prediction
 Dynamic branch prediction is a history-based prediction technique. It
keeps a branch history table (BHT) with information on the preceding branch.
Branches can be dynamically predicted using either one or two bits.

 1 bit dynamic branch prediction
 The branch history table holds 1 bit of information about the branch that is
predicted to be taken (1) or not taken (0) in 1 bit dynamic branch prediction.
The processor then retrieves the subsequent instructions from the target branch
or sequence based on this.

Fig. 2.28: State diagram of 1-bit dynamic branch prediction

To
understand

dynamic
branch

prediction

 Scan Me

Computer System Organization | 81

 Predict taken implies binary value 1, and predict not taken means binary value 0, respectively,
in Fig. 2.28. The branch prediction table keeps track of prior branch information. It has been
determined that either branch has taken or has not taken based on previous information.

Example 2.9

How many times 1-bit branch predictor correctly predict the branch for the given program? The
branch is assumed to have taken in initial state.
 int a=0;
 while(a<5)
 {
 if(a%2==0){
 branch instructions
 }
 a++;
 }

Solution: The loop will run as follows. Fig. 2.29 shows the hardware prediction and the actual
prediction.
 The branch to be taken is the beginning condition. So the branch has taken at a=0.
 Hardware predicts that the branch has not taken at a=2, but that branch must be taken.
 Hardware predicts that the branch has taken at a=2, but that branch must be taken.
 At a=3, the hardware assumes that the branch has been taken, but it has not taken.
 Hardware assumes that the branch is not taken at a=4, but it is taken.

Fig. 2.29: Actual prediction and hardware prediction

 As shown in Fig. 2.29, the branch has taken for at a=0, a=2, a=4 while the branch has not
taken for at a=1, a=3. However, the branch at a=0 has been taken because of hardware prediction

82 | Micro Programmed Control

based on prior branch information. In actual prediction, the branch at a=1 does not take, but in
hardware prediction, the branch at a=1 take since the preceding history was branch taken. When
the actual prediction is compared to the hardware prediction, only one case is accurate at a=0 and
all other cases are incorrect.

● 2 bit dynamic branch prediction
 A 2 bit dynamic branch prediction has an accuracy of 90%, since a
prediction must be incorrect twice before the prediction bit is altered. After
one incorrect branch prediction in 1-bit branch prediction, the prediction bit is
inverted. After two incorrect predictions in 2-bit branch predictions, just the
prediction bit is inverted.

2.8 RISC PIPELINE
 RISC is an instruction pipeline-efficient reduced instruction set computer. The instruction
set's simplicity allows for a pipeline with few sub operations that each take one clock cycle. The
fixed-length instruction style allows decoding while the register is determined. All data
manipulation instructions use register-to-register techniques. Since all operands are in registers,
no effective address or memory retrieval is needed. Thus, the instruction pipeline has two or three
steps.

 First stage fetches instructions from memory, then executes. A third stage
stores the ALU computation in a destination register. RISC data transfer
instructions only load and store. These instructions address registers
indirectly. Three or four pipeline phases are typical. Most RISC processors
contain two buses with two memories-one for instructions and one for
data-to minimise memory access conflicts. Instruction(I)-cache and Data(D)-
cache can run at the CPU clock.

 RISC executes one instruction every clock cycle. The CPU is pipelined to execute each
instruction in a single clock cycle. RISC has pipeline segments that require only one clock cycle,
while CISC has numerous pipeline segments, the largest of which takes two or more clock cycles.

To understand 2-
bit dynamic

branch prediction

 Scan Me

To understand
the working of
RISC pipeline

 Scan Me

Computer System Organization | 83

2.9 VECTOR PROCESSING
 Standard computers cannot solve certain computing tasks. These problems need a large
number of calculations, the completion of which could take a traditional computer several days or
even weeks. Vector processing is applicable to a wide variety of scientific and technical problems.

 Vector-processing computers are in high demand in specialised applications such as image
processing, weather forecasting, mapping the human genome, petroleum explorations, medical
diagnosis, seismic data analysis, artificial intelligence and expert systems, aerodynamics and
space flight simulations.

 Many of the essential calculations cannot be accomplished in a
reasonable period of time without modern computers. To attain the desired
degree of high speed, the fastest and most reliable modern hardware equipped
with vector and parallel processing techniques is required.

 Many applications require large array arithmetic computation. Floating-
point vectors and matrices represent these integers. Vectors are one-
dimensional arrays of data objects. The V is a row vector (V = [V1,
V2,....,Vn]) of length n. Column vectors represent data elements in columns. Vector processors'
most computationally intensive process is matrix multiplication. The n2 inner products or n3
multiply-add operations multiply two n x n matrices. A n x m number matrix is a set of n row
vectors or m column vectors.

2.10 ARRAY PROCESSORS
 An array processor can process a large array of data. These types of processors are classified
into two types: attached array processors and SIMD (single instruction stream multiple data
stream) array processors. Both kinds of array processors can manipulate vectors, although they are
structured differently.

 Attached Array Processor
 A general-purpose computer has an attached array processor. Vector processing for complex
scientific applications boosts computer speed. The arithmetic unit has pipelined floating point
adders and multipliers.

For understanding
vector operations

and matrix
multiplication

Scan Me

84 | Micro Programmed Control

 The host computer, a general-purpose commercial computer, is powered by the connected
processor. The array processor acts as an external interface to the computer via an input-output
controller. A fast bus moves processor data from main memory to local memory. The general-
purpose computer offers users conventional data processing while running basic programs. The
accompanying array processor operates when complex arithmetic operations are executed. For
example, a VAX 11 computer is connected to a Floating-Point Systems FSP-
164/MAX to increase the VAX's computational capacity to 100 megaflops.

 SIMD Array Processor
 In order to process vector data, SIMD array processors make use of
several functional units. Parallel processing/functional units are present.
These processing units are coordinated to work together by a control unit so
that they can accomplish the same goal. Each processing element (PE)
contains its own ALUs, floating-point arithmetic unit (FPUs), and registers
in addition to its own local memory M. The master control unit is
responsible for managing the PEs.

 The programme is stored in the main memory. The master control unit decodes the
instructions and determines their execution method. The master control unit directly executes
scalar and program control instructions. Vector instructions are concurrently sent to all PEs. Each
PE uses local memory to hold operands. Prior to the concurrent execution of an instruction, vector
operands are distributed to local memory.

 Consider C = A + B vector addition as an example. The ith components a and b of A and B are
first stored in local memory M by the master control unit, where i = 1, 2, 3,...,N. It is possible to
perform simultaneous additions since all PEs are given the floating-point add instruction c = a + b.
The c components are always stored in the same place in each local memory. The vector sum can
be produced with just one cycle of addition. During the execution of vector instructions, masking
is used to regulate PE circumstances. When the PE is active, its flags are set, and when it is
inactive, they are reset. Only the PEs required for participation are activated during instruction
execution.

 The ILLIAC IV computer is a well known SIMD array processor developed at the University
of Illinois. This computer is now inoperable. SIMD processors are very specialized for vector or
matrix based numerical problems. However, SIMD processors are inefficient with other standard
data-processing applications.

for circuit design
of attached and

SIMD array
processors

Scan Me

Computer System Organization | 85

UNIT SUMMARY
 A microprogrammed control unit initiates sequences of microoperations in the computer. The

functionality can be implemented with either hardwired or microprogramming approach.
 Hardwired approach generates the control signals using hardware. Whereas,

microprogramming based control unit stores microprogram that generates a series of
microinstructions, and control signals.

 The control memory is kept the collections of microinstructions. Each instruction has its own
microprogram stored in the control memory at a specified location.

 The control signals activate various components in the processor like registers, internal bus,
ALU and paths between various components.

 Arithmetic operations, i.e., addition, subtraction, multiplication, and division can be done on
both unsigned and signed integers.

 Fraction numbers are represented in two forms, fixed point representation and floating point
representation. The decimal point does not move in fixed-point notation.

 In floating point representation, the decimal point either goes to the left or to the right. Based
on the movement of the decimal point, the exponent is either increased or decreased.

 Arithmetic pipeline units are often used in supercomputers to compute different types of
operations in parallel to speed up computation. For example, a supercomputer may use three
execution units, i.e., integer numbers arithmetic operations, load/store operations, floating
point number arithmetic operations.

 Instruction pipeline can execute multiple instructions in a single processor clock cycle.
 Pipelined instruction execution increases system throughput in the absence of hazards.

However, while instructions are being executed, three different types of pipeline hazards,
namely structural, data, and control hazards, might occur and significantly impair system
performance.

 Limitations in hardware resources lead to structural hazards.
 Branching instructions may result in control risks.
 Pipelined execution of instruction increases system throughput if there is no hazard. However,

three types of pipeline hazards might arise during instruction execution and may reduce
system performance significantly.

 Structural hazards occur due to hardware resource limitations.
 Data hazard may exist if data dependency exist between the instructions.
 The control hazards may arise due to branch instructions.
 RISC is a reduced instruction set computer that can build an instruction pipeline with a

minimal number of sub operations, each of which is performed in one clock cycle.
 Vector-processing computers are used for high speed computation of science and engineering

problems described in terms of vectors and matrices.
 An array processor can process a large array of data. These types of processors are classified

into two types: attached array processors and SIMD (single instruction stream multiple data
stream) array processors.

86 | Micro Programmed Control

EXERCISES

Multiple Choice Questions
Q2.1 The control signals are generated by combinational logic in a _______________

controlled unit.
 (a) micro programmed (b) software (c) logic (d) hardwired
Q2.2 A set of microinstructions is called a ___________
 (a) program (b) command (c) micro program (d) micro command
Q2.3 Numbers that can be represented in 2's complement notations are
 (a) both +ive and -ive numbers (b) numbers greater than 8 bits
 (c) only -ive numbers (d) only +ive numbers
Q2.4 In a four-bit two's complement number representation, the range of negative values is

 (a) -1 to -8 (b) -1 to -15 (c) -1 to -7 (d) -1 to -16
Q2.5 Subtraction can be done by adding

 (a) 1’s complement (b) 2's complement
 (c) 2 (d) Sign and magnitude

Q2.6 What are the values of difference and borrow for the binary subtraction 0 - 1 ?
 (a) 0, 1 (b) 0, 0 (c) 1, 1 (d)
1, 0

Q2.7 What is the outcome of subtracting one binary number from another 0110 - 0010?
 (a) 1000 (b) 0100 (c) 0110 (d) 0011
Q2.8 How is (-87)10 represented in 2's complement number system?
 (a) 11011011 (b) 10101001 (c) 11010110 (d) 10110011
Q2.9 Instruction pipeline does not have ___________?
 (a) address hazard (b) control hazard (c) data hazard (d) structural hazard
Q2.10 If instruction X tries to modify some data before it is written by instruction (X-1), it can

result in a ________ hazard.
 (a) RAR (b) RAW (c) WAR (d) WAW
Q2.11 There are five instructions, which are given below.

I1: Mul R10, R11, R12
I2: Add R15, R10, R12
I3: Add R13, R10, R14
I4: Mul R12, R11, R13
I5: Sub R15, R16, R17

Consider the following three statements:
1: Instructions I2 and I5 have an anti-dependence
2: Instructions I2 and I4 have an anti-dependence
3: An anti-dependence always creates one or more stalls within instruction pipeline

Computer System Organization | 87

Which one of the above statements is/are correct?
(a) Statement 1 is true (b) Statement 2 is true
(c) Statements 1 and 3 are true (d) Statements 2 and 3 are true

Q2.12 Consider the following instructions:

l1 : Add R10, R7, R12 ; R10 ← R7 + R12
l2 : Sub R12, R7, R10 ; R12 ← R7 - R10
l3 : Div R12, R9, R12 ; R12 ← R9 / R12

 Show the types of data hazards that exist between these instructions.
 (a) RAW, WAR, WAW (b) RAW, WAR
 (c) RAW, WAW (d) WAR, WAW

Q2.13 When 100010010 is divided by 1101, the remainder is
 (a) 1 (b) 0 (c) 11 (d) 101

Q2.14 There are 2 designs for a pipeline processor. Design-1 has a 5 stage pipeline with

execution time of 3 ns, 2 ns, 4 ns, 2 ns and 3 ns. While the Design-2 has 8 pipeline
stages each with 2 ns execution time. How much time can be saved using design D2
over design D1 for executing 100 instructions?

 [Hint: Execution time for Pipeline = (K+n ∗−1) execution time of one stage; where k =
no. of stages in pipeline, n = no. of instructions, Execution time of one stage= max (all
stages execution time)]

 (a) 314 ns (b) 202 ns (c) 96 ns (d) 190 ns

Q2.15 In a 7-bit word, a machine stores floating point numbers. The first bit represents the

number's sign, the next three represent the biased exponent, and the last three represent
the magnitude of the mantissa. In the above word, you must represent 33.35. In this
case, the error would be

 (a) overflow (b) underflow (c) error (d)
no error

Answers of Multiple Choice Questions
2.1 (d) 2.2 (c) 2.3 (a) 2.4 (a) 2.5 (d) 2.6 (c)
2.7 (b) 2.8 (b) 2.9 (a) 2.10 (d) 2.11 (b) 2.12 (a)
2.13 (a) 2.14 (b) 2.15 (a)

Short and Long Answer Type Questions
Category-I
Q2.1 How does the processor control unit function?

88 | Micro Programmed Control

Q2.2 Define the role of control memory.
Q2.3 Describe the features of the horizontal and vertical microprogrammed control unit.
Q2.4 What are the primary functions of a microprogrammed control unit?
Q2.5 Describe some common microprogramming applications
Q2.6 How do instructions and microoperations relate to one another?
Q2.7 Describe the control unit inputs and outputs.
Q2.8 Explain the difference between control hazard and data hazard.
Q2.9 What are the four main components of a floating-point number?
Q2.10 Why is biased representation required for the exponent part of a floating-point number?
Q2.11 How to determine negative numbers using signed magnitude and 2's complement

representations.
Q2.12 How do you perform addition and subtraction for floating-point numbers?
Q2.13 What is the difference between vector processing and array processors?
Q2.14 What is the difference between arithmetic and instruction pipeline?
Q2.15 What is the difference between static and dynamic branch prediction?

Category-II
Q2.16 Explain hardwired and microprogrammed control unit implementations. Is it feasible for

a hardwired control unit associated with a control memory?
Q2.17 In the control unit, how does address sequencing work? Define the words

“microoperation,” “microinstruction,” and “microprogram” as they are used in the control
unit.

Q2.18 Consider the following instructions are executed in a computer that has a five-stage
pipeline:

 Mul R9, R8, #20
 Add R11, R10, #3
 Or R12, R10, #100
 Subtract R13, R8, R10

 Each pipeline stage requires one clock cycle. Represent instructions’ execution via

pipeline diagram. Describe the function that each pipeline stage performs.

Q2.19 Explain the difference between arithmetic pipeline and instruction pipeline. Discuss the

structural hazards, data hazards, and control hazards in a pipeline. Why do these hazards
affect the pipeline's performance? Discuss the solutions for dealing with these hazards.

Q2.20 Discuss vector processor applications. Create the SIMD array processor's circuit and
describe how it works.

Computer System Organization | 89

Numerical Problems
Q2.21 How do you represent the decimal numbers 512 and -29 in signed magnitude and 2's

complement number representation using 16 bits?
[Ans: Signed Magnitude: 0000 0010 0000 0000 (512), 1000 0000 0001 1101 (–29); 2’s
Complement representation: 0000 0010 0000 0000 (512), 1111 1111 1110 0011 (–29)]

Q2.22 How do you represent the 2’s complement binary values 1101011 and 0101101 in

decimal?
 [Ans: -21; 45]

Q2.23 Assume a 4-segment pipeline system with a clock cycle of 20 ns required in each
segment to execute 100 tasks in sequence. What is the speedup ratio?

[Ans: 3.88]
Q2.24 Let's imagine a 2.5 GHz, non-pipelined processor with an average of 4 cycles per

instruction. A five-stage pipeline is introduced to the same processor, but the clock speed
drops to 2 GHz owing to the pipeline's internal latency. Assume the pipeline is moving
forward smoothly with no delays. How much faster is this pipelined processor?

[Ans: 3.2]
Q2.25 Consider a four-stage pipeline processor. The table below shows the number of cycles

needed by the four instructions I1, I2, I3, and I4 in stages S1, S2, S3, and S4.

 How many cycles are required to complete the following loop?
 for(i=1 to 2) { I1; I2; I3; I4; }

[Ans: 23]

90 | Micro Programmed Control

Q2.26 How many mispredictions are there for the given for loop with 1-bit branch predictor?
 for (i=0; i<5; i++)
 {
 a+=5;
 }
 Initially assume to start prediction with a branch taken and you will run this iteration

twice.
[Ans: 3]

Q2.27 Perform the A ÷ B using the non restoring division method on the unsigned numbers A =

1000 and B = 0011. What will be the final values of quotient and remainder?
[Ans: quotient= 0010, remainder=00010]

Q2.28 Given x = 0101 and y = 1010 numbers in 2 ’s complement notation, use Booth's

algorithm to get the product p = x * y.
[Ans: 1110 0010]

Q2.29 How do you write these numbers in IEEE 32-bit floating-point format:
 (a) - 5 (b) - 1.5 (c) 384 (d) - 1/32

[Ans: (a) 1 10000001 01000000000000000000000
(b) 1 01111111 10000000000000000000000
(c) 0 10000111 10000000000000000000000

(d) 1 01111010 00000000000000000000000]

Q2.30 Consider a floating-point format with an 8-bit biased exponent and a mantissa of 23 bits.

In this format, show the bit pattern for - 720 and 0.645 numbers.
[Ans: (a) 1 10001000 01101000000000000000000;

(b) 0 01111010 01001010000111101100000]

Computer System Organization | 91

PRACTICAL

Aim: Design a hardware circuit that does addition, subtraction, booth's
multiplication, and restoring division for 2's complement numbers using
the verilog hardware description language.

Tools: Xilinx ISE Design Suite [5]

Theory: How to construct a basic programme in verilog is previously
covered in Chapter 1 (practical). The algorithm of computer arithmetic
for 2's complement numbers has previously been discussed in this
chapter. These algorithms may be implemented in the Xilinx ISE design
suite tool using verilog [5]. You may also learn advanced verilog module
writing by consulting the verilog tutorial for beginners. You may learn
how to create numerous building blocks such as multiplexers, flipflops,
and combinational circuits of various functional units.
 The number of input and output registers necessary, as well as the
combinational circuit has been described in this chapter for executing the
following operations using 2's complement numbers.
1) addition
2) subtraction
3) booth’s multiplication
4) restoring division

Procedure:
1. First, look into the circuit's number of inputs and outputs.
2. Write the main module
 module signed_arithmetic (list of input and output ports separated by

comma)
 (verilog program here)
 endmodule
3. Declare the names of the input variables as two signed numbers (8 bit

binary numbers).
4. Declare the output port names
5. Designate a wire as the intermediate output that will become the input of another circuit.
6. A list of the four basic instances for conducting addition, subtraction, booth multiplication,

and restoring division.

Xillinx tutorial
for beginners

Scan Me

 Verilog
tutorial for
beginners

Scan Me

Booth’s
multiplication

program in verilog

Scan Me

92 | Micro Programmed Control

7. Each instance of a circuit begins with a name, such as addition,
subtraction, booth_multiplication, restoring_division followed by the
instance output and inputs separated by commas and enclosed in
parenthesis.

8. Verify the design by giving input two signed numbers. Create a
testbench for circuit verification. Mention all potential input and output
combinations in testbench.

9. Run Isim in Xilinx to see the outputs and check the circuit's operation. If
outputs are correct with all possible combinations, i.e., two positive
numbers, one positive and one negative, both negative numbers then the
circuit is correctly designed.

KNOW MORE

Innovations by Indian
 Vinod Dham, the Father of the Pentium Chip, was born in Pune, India in the 1950s. Dham
graduated from Delhi College of Engineering with a Bachelor of Engineering in Electrical
Engineering in 1971, at the age of 21 [6]. After finishing his engineering degree, he worked for
four years at Continental Devices, one of India's few private silicon semiconductor start-ups at the
time that partnered with the American Teradyne Semiconductor Company, where he developed an
interest in semiconductors. To be successful in this industry, he believed that a better
understanding of the physics driving the behaviour of semiconductor devices.

 In 1975, he enrolled at the University of Cincinnati in Ohio to pursue a master's degree in
physics. After receiving his Master of Science in 1977, he began working as an engineer at NCR
Corp in Dayton, Ohio, where he developed advanced non-volatile memory. His pioneering work
on non-volatile memories paved the way for NCR's 1985 patent for a mixed dielectric technique
and a non-volatile memory device. Later, he became an Intel Corporation engineer. His
contribution to the creation of the Pentium Microprocessor has earned him the appellation
“Pentium Engineer.” In addition, he is one of the original creators of Flash Memory Technology
at Intel. He was appointed vice president of Intel's Microprocessor Group.

History of Ayurveda
 Ayurveda is a combination of two words:
“Ayu”, which means life, and “Veda”, which
means wisdom [7]. The Rig Veda, the Sama
Veda, the Yajur Veda, and the Atharva Veda
were the foundations for Indian medicine and
healthy living. It is well known that Ayurveda is
one of the Upavedas that belong to the Atharva
Veda.

Booth’s
multiplication
simulation in

xilinx

Scan Me

Computer System Organization | 93

 The Atharva Veda is a collection of magical spells and esoteric disciplines, as well as the
medical practise of Ayurveda, which is used to cure illnesses, injuries, infertility, sanity, and
overall health. Ayurveda addresses all lifestyles. As a result, patients are given treatment that
takes into account all aspects of their health, including yoga, aromatherapy, meditation, gems,
amulets, herbs, diet, astrology, colour, and surgical procedures. Marmas are areas of the body
known for their sensitivity, and Ayurveda addresses them. Yoga, massages, and other forms of
exercise are recommended.

 A collection of Sanskrit poems known as the Charaka Samhita was compiled by Charaka in
the first century A.D. Both Sushruta and Vagbhata were authors of books as well. The Sushruta
Samhita was probably composed some time around the fourth century A.D. Ashtanga Hridaya and
Sangraha, the third most important texts, were written by Vaghbata in the fifth century A.D. The
medicinal and surgical schools established by Charaka and Sushruta are considered the roots of
Ayurveda.

 Ayurveda was further developed via the addition of sixteen important supplements known as
Nighantus, including Dhanvantari Bhavaprakasha, Raja, and Shaligrama. New drugs have taken
the place of older ones that were unsuccessful. It seemed that the applicability was growing, new
ailments were being discovered, and other treatments were being found. These dietary
supplements included around two thousand different medicinal plants [7, 8].

94 | Micro Programmed Control

REFERENCES AND SUGGESTED READINGS

[1] M. Morris Mano, Computer system architecture. Prentice-Hall, Inc., Third edition.

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
architecture.pdf (last accessed: Oct 2022)

[2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian, Computer
organization and embedded systems. McGraw-Hill Higher Education, 2011.

[3] William Stallings, Computer Organization and Architecture Designing for Performance. 10th
edition, 2016.

[4] Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-2008, August 2008.

[5] Xilinx ISE design suite.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado
-design-tools/archive-ise.html (last accessed: Oct 2022)

[6] Biography of Vinod Dham. http://www.thinklink.in/blog/father-of-the-pentium-chip-vinod-
dham (last accessed: Oct 2022)

[7] Ayurveda: an overview. https://yehaindia.com/ayurveda-an-overview/ (last accessed: Oct
2022)

[8] History of Ayurveda…a heritage of healing. https://poliklinika-harni.hr/images/uploads/434/
povijest-ayurvede.pdf (last accessed: Oct 2022)

[9] NPTEL Course by Dr. John Jose, Advanced Computer Architecture, IIT Guwahati, 2019.
https://archive.nptel.ac.in/courses/106/103/106103206/ (last accessed: Oct 2022)

[10] NPTEL Course by Prof. Indranil Sengupta and Prof. Kamalika Datta, Computer Architecture
and Organization, IIT Kharagpur, 2017. https://archive.nptel.ac.in/courses/106/
105/106105163/ (last accessed: Oct 2022)

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado
http://www.thinklink.in/blog/father-of-the-pentium-chip-vinod-
https://yehaindia.com/ayurveda-an-overview/
https://poliklinika-harni.hr/images/uploads/434/
https://archive.nptel.ac.in/courses/106/103/106103206/
https://archive.nptel.ac.in/courses/106/

Computer System Organization | 95

UNIT SPECIFICS
The following aspects are discussed in this unit:
 Fundamentals of microprocessor;
 Instruction set architecture;
 Design principles from programmer’s perspective;
 Intel 8086 microprocessor case study

 The practical applications of the topics are presented for the purpose of fostering greater
curiosity and creativity and enhancing problem-solving skills. In addition to a large number
of multiple-choice questions, further two categories of questions are designed according to
the lower and higher levels of Bloom's taxonomy, i.e., short- and long-answer questions, the
unit provides practice assignments in the form of numerical problems, a list of references,
and suggested readings. It is also noted that several QR codes have been incorporated into
various sections in order to access the required supplementary materials.

 The related practical based on the content is followed by a “Know More” section on the
topic. This section has been carefully constructed such that the supplementary information it
contains is valuable to the book's readers. This section focuses primarily on the contributions
of Indian innovators to the development of computer system organization, Indian claypot
cooking intact micronutrients found in food, and it plays an important role in preparing
nutritional food to stay healthy.

RATIONALE
 This chapter discusses standard 8-bit and 16-bit microprocessor architectures. The
instruction set architecture of these microprocessors is RISC or CISC. The CISC instruction
set has variable length and more sophisticated commands. RISC, on the other hand, uses
fixed-length instructions that are less difficult. RISC stores data in registers and has limited

3

Microprocessor
Architecture

96 | Microprocessor Architecture

memory access via load and store instructions. For the sake of convenience, programmers
can use several instruction formats and addressing modes to write the program in an efficient
manner. The architecture of the 8086 microprocessor is thoroughly described in this chapter.
Microprocessor execution unit is made up of several flags, registers, and special purpose
control flags. Whereas the bus interface unit consists of segment registers, an instruction
queue, a control unit, and an address calculation processing unit.

PRE-REQUISITES
Computer System Organization (Unit-I)
Assembly Language Programming: Fundamental knowledge of basic instructions
(Polytechnic Engineering)

UNIT OUTCOMES
List of outcomes of this unit is as follows:
U3-O1: Describe role of microprocessor in system design
U3-O2: Describe instruction set architecture
U3-O3: Design principles from programmer’s perspective
U3-O4: Explain features of Intel 8086 microprocessor

Computer System Organization | 97

3.1 INTRODUCTION
 A microprocessor is a silicon chip with an ALU (Arithmetic Logic Unit), register and control
circuitry. A central processing unit (CPU) consists of an arithmetic logic unit for conducting
arithmetic logic operations, a register bank for storing intermediate values, from which the CPU
often pulls operands, and a control logic that regulates the whole process. Previously, CPU
architecture was divided into discrete components such as distinct ALU architecture, separate
register circuits, and separate control logic design.

 The problem with different modules is that their chips will be distinct. When all of these
components are incorporated into a printed circuit board, they are linked through copper wires.
The speed of the system is restricted by the speed of the external lines; a very high speed cannot
be achieved with this design. Therefore, for a high-speed architecture, it is necessary that all of
these CPU components reside on a single chip.

 The term microprocessor is a combination of the words “micro” and “processor”. A processor
is an apparatus for processing data, especially binary integers. This will undergo some processing.
The design team for the microprocessor specifies the operations to be performed on the numbers.

 Comparing the electronic components of the prior and now, the size, power consumption, and
performance are all improving, and one of the primary reasons for this is that the whole system is
miniaturised and fits its design into a single chip. In 1970, the microchip was created, and all of
the processor's components were put on a single piece of silicon. Thus, the size of the chip shrinks
and its speed increases. With the creation of this microchip, the microprocessor was thus born by
using the word micro in microprocessor.

 A microprocessor is a programmable device that takes in numbers,
conducts arithmetic and logical operations according to the programme in
memory, and generates results. For example, suppose a circuit is built to
scan input bit streams of 1’s and detect the pattern four consecutive ones
followed by a 0. It will output a 1 unless the output bit is set to 0. A circuit
constructed using flip flops and gates can perform this specific operation.
The circuit is not programmable because it can only perform specified
operations pertinent to a single application. In contrast, microprocessors are
programmable devices. Based on the sequence of instructions provided in
the given program, they may execute various states of operations on the data they receive. So,
microprocessors are led by instructions. Practically every microprocessor features a reset pin to
return the device to its initial state. It will begin searching into memory at a specified location and
retrieve reset instructions from there. It executes that instruction, then updates its program counter
and register type so that it refers to the next instruction, and so on.

for introduction of
microprocessor

 Scan Me

98 | Microprocessor Architecture

 Modern microprocessors can scan a room's temperature regulation. It first reads the
temperature sensor readings, then switches on air conditioners or heaters based on the safe
temperature value and the divergence from that. If the same microprocessor is used for anything
other than temperature monitoring, such as conveyor belt monitoring. The application is run by
the conveyor belt control. In such a situation, the microprocessor will stay unchanged; just the
software it was running would change. So now a separate programme in memory will run, and the
CPU will perform something else. A programmable component of the microprocessor may
modify the program section to perform something else.

 A microprocessor is designed to carry out a certain set of instructions or operations. This is
referred to as an instruction set. The microprocessor user manual explains which commands this
CPU will support. These instructions should only be used to create programs. Programs are
written in a high-level language such as C, Java, or C++, and then compiled and translated into
the language that the underlying processor understands.

 In the case of a computer with an 8085 CPU, a C programme will execute. The 8085-
compatible code will be generated by the compiler. If the same program is to be run on an ARM
processor, a compiler converts the source code into an instruction set that can be read and
understood by the ARM CPU.

 The designer of a microprocessor may programme it to understand a set of machine
instructions. Users must create their own code in accordance with the stated guidelines. The CPU
may connect with other components such as memory and I/O devices.

 Memory may therefore be used as an input device if the input values for a program are saved
in the memory. For example, if the task is to sort 100 numbers, and the 100 numbers are kept in
memory. It will operate on the 100 numbers saved in memory. On the other hand, if a temperature
sensor is installed and running, the system should take temperature from that temperature sensor.
So, input devices may vary, and the input may originate from the input devices.

 These devices carry data from outside world into the system. Therefore, this is the interface
with the outside world, and the difficulty is that the outside world is mostly analog. Even though
digital circuits are created for microprocessors that operate with digital data, the external
environment is analog. So, taking extremely simple types of inputs, such as whether a specific
switch is on or off, or whether a particular light is on or off, yields continuous data. So, for
instance, a temperature sensor will create a range of voltages based on the temperature it is
receiving. Therefore, it is not digital.

 There are often data converters, such as analog-to-digital conversion (ADC) for the input and
digital-to-analog conversion (DAC) for the output from the input device to the processor. Some
processors are equipped with these data converters. So the CPU only processes digital data, but
can communicate with the analog environment through these ADC and DAC converters. So, what
is occurring is that these devices bring data from the outside world into the system, and devices
such as the keyboard, mouse, and switch are all considered input devices.

Computer System Organization | 99

 The next describes how the numbers are modified. What are the possible values it can have?
The numbers may be quite large. For instance, integer numbers can have values up to infinity and
may be arbitrarily huge, but when it is entered into a computer, it cannot be stored using an
endless amount of memory. Therefore, there will be a size limit. A 16-bit signed integer can have
a range between -32768 to +32767, while an unsigned number can have a number between 0 to
65,535. Therefore, there is a finite range.

 Thus, the microprocessor has a very limited perspective on life, since it only
comprehends binary numbers, i.e., zeros and ones, and not octal or hexadecimal integers. Though
binary numbers often portray using octal and hexadecimal notations for our own comprehension,
the binary number system is always used inside the CPU. And a binary digit, also known as a bit,
is used to store numbers because the bit 1 is stored as a high voltage value or as the logic level
high, while the bit 0 represents the logic level low.

 A microprocessor recognises groups of bits; these groups of bits are known as words. A word
may be composed of a specified number of bits, such as 16 or 32. In contrast, when it does
elementary operations such as addition, subtraction, multiplication, division, and comparison, it
operates at the word level. The designer of the processor thereby determines the processor's word
size. Thus, the same holds true for microprocessors.

 The number of bits inside a microprocessor word indicates its capabilities. An 8-bit CPU in a
microprocessor can process 8-bit values. In integer addition, only 8-bit values are used, with the
result consisting of 8 bits plus 1 bit carry for a total of 9 bits. If the basic processor supports 8-bit
addition and it is required to do a 16-bit addition. It is possible to construct 16-bit addition in
software using 8-bit additions. However, it will take longer than if a processor handles 16-bit
words and a 16-bit addition is performed in a single operation. Modern microprocessors have 32-
bit and 64-bit word sizes. Therefore, it can manage considerably bigger data sets.

 The earliest microprocessors that recognise 8-bit words are the 8085, 8088, Motorola 6800,
and 6800. These microprocessors are the only ones that support 8-bit words. Thus, processors
such as 8086 and 68000 were developed with 16-bit words. Now, it is important to note that Intel
8086 and 8088 are present. So, why did the 8088 come after the 8086, as the name says, and why
is this processor 8 bits while the 8086 is 16 bits? The reason for this is because 8085 came before
8086 and 8088, was highly popular, and was used to construct many systems. It contains 8-bit
words, which corresponds to the number of pins on the processor's data lines. Thus, this was 8
bits.

 When 8086 was launched to the marketplace, it replaced an 8085 chip with an 8086 chip due
to the fact that the data size itself has changed from 8 bits to 16 bits. Therefore, the hardware has
become incompatible. When this was realised, Intel took one step back and created the 8-bit CPU
8088, whose internal operation is identical to that of the 8086. From the outside, however, it has
an 8-bit word interface, therefore all 8085-based systems may be replaced with this 8088
processor while the hardware stays the same. The software must be updated since it is now
compatible with the 8088, but the hardware does not need to be modified.

100 | Microprocessor Architecture

 The 8086 microprocessor has words with 16 bits. Modern processors are
32-bit and 64-bit words. There is no standardization or standard entity that
corresponds to this 16-bit word. Conventionally, 8 bits make up a byte, but
the length of a word depends on the processor. If a word is 16 bits long, the
group of 8 bits is known as a half-word or byte, and the group of 4 bits is
known as a nibble. So, for a 16-bit word, there are four nibbles. So, 32-bit
groups are sometimes referred to as large words. The word size is not
standardized because it is determined by the processor's word size.

 There are other microprocessors that can manipulate 64, 80, or 128 bits simultaneously.
Currently, all processors manipulate at least 32 bits at a time. Thus, it is possible to create superior
processors with much increased capacity, allowing to manage bigger data bits with a single
instruction.

3.2 INSTRUCTION SET ARCHITECTURE
 Computer’s instruction set can be classified as either “complex
instruction set computer (CISC)” or “reduced instruction set computer
(RISC)”. Machine language programs are built in accordance with the
processor's custom instruction set. Early computers had small and simple
sets of instructions because they had to use as little hardware as possible to
run them. When integrated circuits came along and made digital hardware
cheaper, computer instructions generally tend to get both more and more
complicated. There are sometimes even more than 200 instructions in the
instruction sets of many computers.

 These computers also use a wide range of data formats and addressing mechanisms. The
CISC based computer has a high number of instructions. In the early 1980s, RISC instruction set
architecture was designed with fewer instructions. RISC's simple and straightforward architecture
allows it to execute faster in the processor, because of its limited memory access.

3.2.1 CISC Characteristics
The following are the key aspects of CISC architecture:
1. A high number of instructions, often between 100 and 250.
2. Some commands that accomplish specific tasks and are often used infrequently
3. A wide range of addressing modes—typically between 5 and 20 distinct modes
4. Instruction formats with variable lengths
5. Instructions can manipulate operands in memory

for evolution of
instruction set
architecture

 Scan Me

to know more
about 8085

microprocessor

 Scan Me

Computer System Organization | 101

 The design of a computer’s instruction set considers both machine language elements and the
constraints placed on the usage of high-level programming languages. A compiler is used to
translate high-level programming to machine language code. The complex instruction set makes
compilation easier and increases total computer speed. Because the statement is automatically
carried out by the machine's instructions. One example of CISC architecture is the IBM 370
computer.

 CISC uses variable length instruction formats. Instruction operands are only two bytes long,
whereas instructions that refer to two memory locations can be up to five bytes long.

 A special decoding circuit is required to count the bytes inside the word to fit various types of
instructions into a memory word of a fixed length. CISC instructions permit the direct
modification of stored operands in memory. More hardware circuitry is needed to implement
additional instructions and addressing modes, which can reduce the system's performance.

3.2.2 RISC Characteristics
The following RISC architectural features decrease execution time by reducing the computer's
instruction set:
1. There are fewer instructions and addressing modes
2. Memory is accessed only through “load” and “store” instructions.
3. All operations performed using CPU registers. The processing unit has a large number of

registers.
4. Instruction format with a fixed length which can be easily decoded. So the RISC pipeline can

be designed efficiently.
5. Execution of instructions take place in a single cycle
6. Control unit is hardwired rather than microprogrammed.

 RISC processors have “load” and “store” instructions only for memory access and rely mostly
on register-to-register operations. The operand is loaded into the appropriate CPU register by the
“load” instruction. The “store” instruction is used to move results to memory. For storing interim
results and speeding up data transfers to other registers, a large number of registers is essential.
By putting the most frequently requested operands in registers, register-to-memory transactions
may be reduced.

 In each clock cycle, a RISC processor may execute one instruction by pipelined execution of
instructions. As memory access takes longer than register operations, “load” and “store”
instructions need two clock cycles to communicate with memory.

102 | Microprocessor Architecture

 RISC simplifies instruction set architecture by facilitating register
manipulation. Because practically all instructions employ basic register
addressing. Few addressing modes, such as immediate operands and relative
mode, may be provided. The instruction length can be fixed by using a
reasonably basic instruction structure. The RISC instruction format is simple
to decode. The control logic may be simplified by streamlining instructions
and their format. A hardwired microprogrammed control is preferred for
faster operations.

3.3 DESIGN PRINCIPLES FROM PROGRAMMER PERSPECTIVE
 Various features in instruction format and addressing mode are provided to give programmers
more freedom and choices when translating high-level programs into machine-readable
instructions.

3.3.1 Instruction Format
Each instruction code is interpreted by a specific format within the CPU as listed below.
1. A field for operation code, which represents the type of operation.
2. A field used to specify the address of a memory location or a processor register.
3. A mode field determines operand or effective address computation approach.

 In some instances, further special fields may be used, such as specifying the number of shifts
in a shift-type instruction. The operation code field describes several processor operations such as
add, subtract, complement, and shift. The mode field indicates several options for selecting the
operands from the specified address.

 Computers may have instructions of variable lengths having a variety of addresses. The
number of address fields in a computer's instruction format is dependent on the registers' internal
structure. Most computers belong to one of three CPU organization types:
1. Single accumulator organization: Every action is executed using an implicit accumulator

register (A). This kind of computer's instruction format has a single address field. One of the
common example is ADD X instruction, which performs the addition as A ← A + M [X].
Where M [X] is the data stored at location X in memory.

2. General register organization: Three register and two address fields are examples of a
general register kind of structure. For example, three register fields are represented as ADD
R4, R5, R6. This indicates that the ADD operation is performed between registers R5 and R6,
and the result is stored in register R4, i.e., R4 ← R5 + R6.

for comparative
study of

RISC vs CISC

 Scan Me

Computer System Organization | 103

 If the destination and the source registers are identical, the instruction can be represented by
two register fields. For example, the instruction ADD R4, R5 represents the operation R4 ←
R4 + R5. In this instruction, just the register locations for R4 and R5 must be supplied.

 Transfer instructions, i.e., MOV instruction also uses two address fields. For example,

MOV R4, R5 transfers data between registers R4 ← R5 (register R5 transfers data to register
R4) or R5 ← R4 (register R4 transfers register data to register R5) depending on the
computer. General-purpose computers may use either two or three address fields instructions.

3. Stack organization: The stack-organized CPU has PUSH and POP address-field instructions.

PUSH X inserts the word on top of the stack and stack pointer is auto-updated. Other
operations can be performed directly through instruction, and these instructions do not require
the address field to be specified. For instance, the ADD instruction pops the top two values
from the stack, adds them, and then pushes the sum to the stack.

3.3.2 Addressing Modes
 The operand field of an instruction defines the operation to be performed on data stored in
registers or memory [1]. The operand value is determined during program execution by the
instruction's addressing mode. The addressing mode specifies how to interpret the instruction's
address field before accessing the operand.

Computers can use various addressing modes as follows:
1. The availability of various features provide flexibility in writing code such as data indexing,

counters for loop control, memory pointers, and program relocation.
2. It is possible for an assembly language programmer to reduce instruction count and execution

time by taking advantage of the many addressing modes available. Thus, lowering the
required number of bits in an instruction's address field improves program efficiency.

 The control unit of processor performs an operation known as an instruction cycle, which
includes reading an instruction from memory, decoding the instruction, and executing the decoded
program.

 The program counter (PC) is a special computer register that counts how many times each
instruction from a programme in memory has been executed. When an instruction is retrieved
from memory, its address is stored in the PC, and the PC is incremented by one. In the second
stage of decoding, the instruction's operation, addressing mode, and operand locations are
determined. After processing the instruction, the computer goes back to step 1 to look for the next
instruction in the sequence. It is common practice for certain computers to use a separate binary
code for specifying the addressing mode of the instruction, just as they do for specifying the
operation code. In other systems, the mode and type of an instruction are both designated by a

104 | Microprocessor Architecture

single binary code. Many different addressing modes may be used to specify an instruction, and
often many addressing modes are mixed in a single instruction.

 The instruction may or may not include an address field. Any address fields present might be
pointed to either a specific memory location or a specific CPU register. The memory address of an
operand consists of basically displacement, base address and index value [2]. In addition, the
instruction might contain many address fields, each of which could use a different addressing
method.

1. Implied Mode: There is no operand specified explicitly so this is implied mode addressing.

For example,
INC

 The INC instruction increments the contents of the accumulator. The stack-based computers
generally use this addressing mode.

2. Immediate Mode: The operand is given explicitly in the instruction. Immediate-mode

instructions may be used to set registers to a constant value. For instance,
MOV R4, #300

 In MOV instruction, one operand is the value so this is immediate addressing mode. The
MOV instruction places the value 300 in register R4. The number sign (#) in front of the value
indicates that this value is to be used as an immediate operand.

3. Register Mode: A register contains operands. The register could be either the first or second

operand of the instruction. The specific register is chosen from a set of available registers. For
example,

MOV R1, R4
 Both operands in the MOV instruction are registers so this is register addressing mode. The
MOV instruction places the contents of register R4 in register R1.

4. Absolute(Direct) Mode: Instruction’s address field contains effective address of operands.

The operand is stored in memory. The instructions provide a specific address to access the
operand. For example,

MOV R1, LOC
 The instruction MOV places the value from the memory location LOC into register R2.

5. Register Indirect Mode: The memory address or register content specifies the effective

address of the operand. For example,
MOV R1, (R4)

 The content of register R4 is the memory address where operand value is stored. The register
indirect mode may also provide the address in the memory where the address of the operand value
is stored. For example,

Computer System Organization | 105

MOV R1, (X)
 The operand value in memory is stored at address Y and this Y address is stored in location X
in memory. Here, instead of a register, the memory location X has the address of the operand.

6. Index Addressing Mode: The syntax of this addressing mode is X(Ri) or X[Ri], address

X+Ri, here X is offset. If the syntax is (Ri) or [Ri] then address Ri where
offset(displacement)=0. The index register is a specialised CPU register used to hold index
values. For example,

 MOV AL, [DI+2]
 The MOV AL, [DI+2] instruction can also be represented as MOV AL, 2(DI). A
displacement (offset) number 2 is added to the register within the [], to get the operand value
stored in the memory at location [DI+2]. This is also possible that displacement may be subtracted
from the register, for example,
 MOV AL, [SI - 1].

Example 3.1

106 | Microprocessor Architecture

Example 3.2

Fig. 3.1: Register indirect addressing mode when operand address stored in a register and when

address stored in memory

Computer System Organization | 107

7. Base-Index Addressing Mode: The syntax of base-index addressing is (Ri, Rj) or [Ri, Rj],
address Ri+Rj. The sum of base register and displacement register is the effective address of
the operand. The base-index addressing mode simplifies program relocation between different
memory segments. For example,

 MOV AL, (BL, DI)

 The interpretation of MOV AL, (BL, DI) instruction is similar to MOV AL, [BL, DI]. A base
register BL is added to displacement register DI, i.e., [BL+DI] to compute the address of the
operand in memory.

8. Base-Index Offset: The syntax of this addressing mode is X(Ri, Rj) or X[Ri, Rj], address

X+Ri+Rj. For example,
 MOV AL, X(BL, DI)

 Here X is an offset(constant) value. This X is added to [BL+DI+X] to get the address of the
operand in memory. This flexibility is useful to access multiple components in a record.

Example 3.3

Determine the addressing modes of the given instructions.
(1) LOAD R2, 50(R4) when R4=2000 (2) LOAD R2, (R4, R5)
(3) LOAD R2, 10 (R4, R5)

Solution: (1) Index addressing mode

Fig. 3.2: Main memory and register contents in index addressing mode

108 | Microprocessor Architecture

(2) Base-index addressing mode

(3) Base-index offset addressing mode

Fig. 3.3: Main memory and register contents in base-index and base-index offset addressing mode

9. Relative Addressing Mode: The relative addressing is calculated by using the program

counter. When the index value is added to the program counter, the effective address is
related to the next instruction's address. The syntax of this addressing mode is X(PC) or
X[PC], address PC+X. For example,

Branch>0 LOC
 This address is calculated as an offset from the program counter.

Computer System Organization | 109

10. Auto-increment Mode: This is also known as auto post-increment. It
uses a register indirect addressing mode and then increments a register in
order to access the next word in memory in a subsequent instruction. The
syntax for auto-increment addressing mode is (Ri)+, address Ri+1xL,
where L is the memory word length in bytes. For an example,

ST (R1)+, R5
 This instruction saves the contents of register R5 in the memory

address contained in register R1, then begins pointing out the next
memory location due to auto-increment execution. Thus the address of
the next memory location is now stored in register R1. This addressing
mode is useful for accessing data items from successive memory
locations.

11. Auto-decrement Mode: This is also named as auto pre-decrement. The syntax of auto-

decrement addressing mode is -(Ri), address Ri-1xL, here L is the length of the memory word
in bytes. It uses register indirect addressing mode and then decrements the register to access
the next word in the memory in the current instruction itself. For example,

ST -(R1), R5

 This instruction first decrements the location stored in register R1. Now R1 has the

previous memory location where the content of register R5 is stored. This addressing mode is
useful for accessing data items from preceding memory locations.

Example 3.4

Determine the addressing modes of the given instructions. Assume each word length in memory is
4 byte
MOV R2, (R4)+
ADD R3, R4
ADD R6, -(R5)
What are the contents in registers R2, R3, and R6?

Solution: The Mov instruction has auto-increment addressing mode. The first Add instruction has
register indirect addressing mode and second Add instruction has auto-decrement addressing
mode.

for 8086
addressing

modes

 Scan Me

110 | Microprocessor Architecture

Fig. 3.4: Modification in register address with autoincrement and autodecrement addressing modes

 After execution of all three instructions, the register values are R2=10, R3=20, and R6=20 as
demonstrated in Fig 3.4.

Computer System Organization | 111

3.4 ARCHITECTURE OF 8086 MICROPROCESSOR
 The 8086 is a 16-bit microprocessor. The microprocessor can read or
write 16 bits of data to memory at once via using a 20-bit address bus. The
maximum 1MB RAM can be used by this microprocessor.

3.4.1 8086 microprocessor functional units
 The execution unit (EU) and bus interface unit (BIU) are the major
functional units of the 8086 microprocessor architecture as shown in Fig 3.5.

Execution Unit (EU)
 The execution unit instructs the BIU where to obtain the data, and the BIU is then responsible
for decoding and executing those instructions. Its job is to manage data operations using the ALU
and instruction decoder. The system buses are not directly connected to the execution unit.

❖ FLAG Registers: It is a 16-bit register. It consists of two types of flags: conditional flags and

control flags. The flags' state varies based on the value stored in the accumulator register.

❖ Conditional or Status flags
 The following conditional flags represent the outcome of previously executed arithmetic or

logical operation:
1. Carry flag (C): When adding two n-bit binary numbers, if the outcome exceeds n-bits, the

carry flag sets as C=1, otherwise, C=0.
2. Auxiliary flag (AF): For BCD numbers, the auxiliary flag is the same as the CF. When

adding two numbers and carry is generated from lower nibble to higher nibble, then AF =
1. Otherwise, AF = 0.

3. Overflow flag (O): The C flag and the overflow flag are similar. If the outcome of any
arithmetic or logical operation on a signed integer exceeds the register's specified
capacity, it is set to 1. If not, the O flag is set to 0.

4. Parity flag (P): The parity flag is even parity. If the number of 1’s in the binary value is
even, then set P=1, otherwise P=0.

5. Zero flag (Z): If the result of an arithmetic or logical operation in the Accumulator
register is zero, then set Z=1, otherwise Z=0.

6. Sign flag (S): After an arithmetic or logical operation, if the result sign is positive,
then set S=1, otherwise S=0.

for functional
parts of 8086

microprocessor

Scan Me

112 | Microprocessor Architecture

Fig. 3.5: 8086 Microprocessor architecture

❖ Control flags: The interrupt flag, direction flag, and trap flag are the control flags.
1. Interrupt flag (I): When peripheral devices send the interrupt control signal to the

microprocessor, I = 1; otherwise, I = 0.
2. Directional flag (D): The directional flag is set to 1 when a string is accessed from a higher

byte to lower byte in memory. It is set to 0 when a string is accessed from a lower byte to
higher byte in memory.

3. Trap flag (T): On-chip debugging is performed using the trap flag. When T = 1, the function
operates in single-step mode. An internal interrupt is triggered on execution of each
instruction. This enables sequential execution of instructions

Computer System Organization | 113

❖ General-purpose registers
 There are four 16-bit general-purpose registers; those are “AX”, “BX”, “CX”, and “DX” in
the 8086 microprocessor and eight 8-bit general-purpose registers; those are (“AH”, “AL”),
(“BH”, “BL”), (“CH”, “CL”), and (“DH”, “DL”). These registers are used to store data during
arithmetic or logical operations.

1. Accumulator register (AX)
 The “AX” register has a capacity of 16 bits. It is split into two 8-bit registers. These are the

“AH” and “AL” registers, respectively. It stores data before arithmetic or logical operations.
The result is available in “AX” register.

2. Base register (BX)
 The base register is a 16-bit register. It is used to store the offset address of a value (operand).

It has two 8-bit registers (BH and BL). In the following example, 300H is the offset address
of a value and is stored in the BL register.

mov bl, [300] (bl←300H)
3. Count register (CX)
 The count register is a 16-bit register. It is divided into two 8-bit registers called CH and CL. It is

used for loop instructions. In the following example, the loop is repeated until cx reaches 0.
mov cx, 08

loop
4. Data register (DX)
 The data register is a 16-bit register. It is also divided into two 8-bit registers; those are DH

and DL. This register is used for division and multiplication operations. The remainder is
stored in the DX register and the quotient is stored in the AX register.

5. Stack pointer (SP)
 It is a 16-bit register that is used to point the topmost stack element of the stack segment.

6. Base Pointer (BP)
 The base pointer register is also a pointer to the stack segment. This 16-bit register is used to

access elements passed by the stack.

7. Source index (SI)
 Source index register is a 16-bit register. It uses pointer addressing of data. It points to the

data segment.

8. Destination index (DI)
 The destination index register is a 16-bit register. “DI” register is used in the pointer

addressing of data.

114 | Microprocessor Architecture

9. Arithmetic and logic unit (ALU)
 All arithmetic and logical operations are performed in the ALU circuit.

● Bus interface unit (BIU)
 The bus interface unit has segment registers, an instruction queue, a control unit, and a

processing unit for address calculation. The BIU is connected to the memory interface
through the system bus.

❖ Instruction queue
 Bus interface unit has 6-byte instruction queue. The bus interface unit retrieves and stores

memory's next instructions in the instruction queue. The execution unit executes faster with
the instruction queue.

❖ Segment registers
 The bus interface unit has four segment registers–“CS”, “DS”, “SS”, and “ES”–which store

memory addresses for data and instructions that the processor uses to access memory
addresses.

❖ Code segment (CS)
 The executable program is stored in a 16-bit code segment register. This register contains the

address of the memory's code segment.

❖ Data segment (DS)
 Data segment register of 16-bit addresses 64 KB program data. The general registers (“AX”,

“BX”, “CX”, “DX”) and index registers (“SI”, “DI”) reference data in the data segment. The
POP and LDS instructions can modify the data segment directly.

❖ Extra segment (ES)
 The extra segment is a 16-bit register with the 64KB segment address. The string stores extra

destination information in ES.

❖ Stack segment (SS)
 During execution, memory is managed using a 16-bit stack segment register to store data and

addresses.

❖ Instruction pointer (IP)
 A 16-bit instruction pointer register comprises the address of the next instruction.

Computer System Organization | 115

● Effective address calculation
 The microprocessor cannot access data with a 16-bit address because the memory has a 1 MB

storage capacity. Each memory has a 20-bit address, so before accessing data or instructions
from memory, the effective or physical address is calculated.

physical address = segment register *10H + offset
 Here segment register is CS and offset is instruction operand address.

● Control unit (CU)
 The control unit coordinates data transfer between CPU registers and ALU. The control unit

controls every part of the computer, coordinating all parts, traffic, etc.

3.4.2 Instruction Types in 8086
 Data transfer instruction, logical instruction, arithmetic instruction, string manipulation
instruction, process control instruction, and control transfer instruction are among the eight kinds
of instructions supported by the 8086 instruction set. Some of them are familiar to us, such as data
transfer, arithmetic, and logic, among others. In contrast, string manipulation instructions are quite
new. In addition, certain control transfer instructions will include various forms of branch calls,
etc., making them processor-specific.
● Data transfer instructions transfers data from source to destination.
1. MOV transfers data from source to destination. For example, mov ax, bx transfer data from

bx register to ax register.
2. PUSH places word on the top of the stack.
3. POP removes word from the top of the stack.
4. XCHG exchanges data between two registers.

● Input/Output Port Transfer Instructions
1. IN reads word/byte from the provided port to the accumulator register.
2. OUT writes word/byte from the accumulator register to the provided port.
3. LEA loads operand address to the provided register.
4. LDS load data segment register and other register from the memory.
5. LES loads extra segment register and other register from the memory.

● Arithmetic instructions: The following arithmetic instructions can be defined as
❖ Addition

1. ADD – it used to add a byte/word to another byte/word.
2. ADC - perform addition with carry
3. INC – byte/word incremented by 1. It is addition operation only.

❖ Subtraction
1. SUB – it used to subtract a word/byte from another word/byte.

116 | Microprocessor Architecture

2. SBB – subtraction with borrow.
3. DEC – either word or byte subtracted by 1.
4. CMP – two registers operand subtracted and result compared with zero.

❖ Multiplication
1. MUL – multiplication for two unsigned numbers.
2. IMUL – for two signed numbers multiplications.

❖ Division
1. DIV – for two unsigned numbers division.
2. IDIV – for two signed numbers division.

● Bit manipulation instructions
 These are logical operations like NOT, OR, AND, XOR, etc.
● Shift instructions
❖ Shift left instruction – each bit shifted to the left and in rightmost bit position zero is added.

For example
shl al, 1

 Where, all bits of AL shifted one position to the left and in the rightmost position zero added.
❖ Shift right instruction – All bits are shifted to the right and in the leftmost bit position zero is

added. For example
shr al, 2

 Where, all bits of AL are shifted towards right and in the leftmost position zero is added.
❖ Arithmetic right shift – The leftmost bit remains same in the position and all bits are shifted

towards right one position. For example
ashr al, 1

 Where, bits of AL are shifted towards right and in the leftmost bit value is added in the last bit
position.

● Branch Instructions: The following branch instructions are used in 8086:
1. JA jumps to the label if above/equal instruction satisfies.
2. JE jumps to the label if equal.
3. JC jumps if the carry flag = 1.
4. JZ jumps if zero flag = 1.

Loop instruction: The loop instruction is repeated until cx reaches 0.

Computer System Organization | 117

UNIT SUMMARY

● A microprocessor is a silicon chip with an ALU (Arithmetic Logic Unit), register and control

circuitry. A central processing unit (CPU) consists of an arithmetic logic unit for conducting
arithmetic logic operations, a register bank for storing intermediate values, from which the
CPU often pulls operands, and a control logic that regulates the whole process.

● The 8085 and 8086 microprocessors are the standard 8-bit and 16-bit microprocessor
architectures.

● A microprocessor is a programmable device that takes in numbers, conducts arithmetic and
logical operations according to the programme in memory, and generates results.

● Computers use two kinds of instruction sets: “complex instruction set computer (CISC)” and
“reduced instruction set computer (RISC)”.

● CISC instructions are variable length and complex instruction formats. These types of
instructions permit the direct modification of stored operands in memory.

● RISC processors have “load” and “store” instructions for memory access and rely mostly on
register-to-register operations. The load instruction loads operand into the appropriate CPU
register. The “store” instruction is used to save results to memory.

● Most computers belong to one of three CPU organization types: single accumulator
organization, general register organization, and stack organization.

● The addressing mode specifies how to interpret the instruction's address field before
accessing the operand.

● The operand field of an instruction defines the operation to be performed on data stored in
registers or memory.

● The 8086 is a 16-bit microprocessor. The microprocessor can read or write 16 bits of data to
memory at once via using a 20-bit address bus.

● The major functional units of the 8086 microprocessor architecture are the execution unit
(EU) and bus interface unit (BIU).

● Execution unit is made up of several flags, registers, and special purpose control flags.
Whereas the bus interface unit consists of segment registers, an instruction queue, a control
unit, and an address calculation processing unit.

● The execution unit instructs the BIU where to obtain the data, and the BIU is then responsible
for decoding and executing those instructions.

● Instruction set of 8086 comprises data transfer instruction, logical instruction, arithmetic
instruction, string manipulation instruction, process control instruction, and control transfer
instruction.

118 | Microprocessor Architecture

EXERCISES

Multiple Choice Questions
Q3.1 The smallest unit of binary data
 (a) Nibble (b) Bit (c) Byte (d) Word

Q3.2 A 64 bit word consists of
 (a) 4 bits (b) 8 bits (c) 4 bytes (d) 8 bytes

Q3.3 Single Flip-Flop can store_________bits of information.
 (a) 2 (b) 32 (c) 64 (d) 1

Q3.4 How many pins does the 8086 microprocessor have?
 (a) 20 (b) 60 (c) 40 (d) 30

Q3.5 1 MB memory equivalent to
 (a) 1024 bits (b) 1024 KB (c) 1024 bytes (d) 1024 GB

Q3.6 Which of the following is correct

(a) A microprocessor contains ALU, flash memory and control units
(b) A microprocessor contains ALU, registers and control units
(c) A microcontroller contains ALU and control units only
(d) A microprocessor contains ALU only

Q3.7 In an 8086 microprocessor, an address bus
 (a) counts 16 bits at once (b) may get two 8-bit values at once
 (c) has 20 address lines (d) none of the above

Q3.8 The register that stores information about the nature of the outcomes of arithmetic and

logic operations is known as the
 (a) Flag Register (b) Accumulator
 (c) Program Counter (d) Process status register

Q3.9 A program that uses mnemonics is called
 (a) Object program (b) Fetch cycle
 (c) Assembly language (d) Micro instruction

Q3.10 Identify addressing mode of following 8086 instruction.
 ADD C
 (a) Direct (b) Immediate (c) Implied (d) Register

Computer System Organization | 119

Q3.11 In an 8086 microprocessor, the Program Status Word register pair is implemented as
which of the following register pairs?

 (a) Program Counter and Stack Pointer (b) Program Counter and Accumulator
 (c) Program Counter and Flag Register (d) Status Flags and Control Flags

Q3.12 Which of the following about an 8086 microprocessor's stack is NOT TRUE?
 (a) Stack is a last-in-first-out structure
 (b) When you push on the stack, information is saved there.
 (c) The register for the stack is made up of 8 bits.
 (d) Information is retrieved on the stack by popping it off.

Q3.13 In an 8086 microprocessor, a conditional branch statement does not change any of the

following flags.
 (a) Zero flag (b) Carry flag (c) Sign flag (d) None of the given options

Q3.14 The __________ addressing mode adds the offset and index register to get the effective

address of the operand.
 (a) index (b) base-indexed (c) register indirect (d) relative

Answers of Multiple Choice Questions
3.1 (a) 3.2 (d) 3.3 (d) 3.4 (c) 3.5 (b) 3.6 (b)
3.7 (c) 3.8 (a) 3.9 (c) 3.10 (d) 3.11 (d) 3.12(c)
3.13 (d) 3.14 (a)

Short and Long Answer Type Questions
Category-I
Q3.1 What is the purpose of input and output ports?
Q3.2 Distinguish between a microprocessor, a microcontroller, and a microcomputer.
Q3.3 What is the significance of the AD7-0 pins?
Q3.4 What do you mean by a programmer's perspective on a processor?
Q3.5 What is a register, and what are its advantages and disadvantages over other General

Purpose Registers?
Q3.6 What distinguishes A register from the other General Purpose Registers?
Q3.7 Describe how the “AX”, “BX”, “CX”, and “DX” registers may be used.
Q3.8 What distinguishes the HL pair from the other register pairs?
Q3.9 Why do users often specify addresses and data in hexadecimal notation?
Q3.10 Describe the development of microprocessors in brief.
Q3.11 Explain the push and pop instructions in 8086.
Q3.12 Why is the 8088 microprocessor an 8-bit microprocessor instead of 16-bits?

120 | Microprocessor Architecture

Category-II
Q3.13 How is a microprocessor different from a microprogram? Can a microprocessor be made

without the use of a microprogram? Is it true that all microprogrammed computers also
function as microprocessors?

Q3.14 What is instruction set architecture? Explain the difference between RISC and CISC
instruction set architecture. Give the name of the microprocessor or processors which are
using RISC or CISC.

Q3.15 Explain the various instruction formats. How to decide which instruction format is
suitable for a specific microprocessor?

Q3.16 What is the need of addressing modes in microprocessors? Explain different addressing
modes and their applications in detail.

Q3.17 Explain in detail the functional parts of the 8086 microprocessor.

Numerical Problems
Q3.18 Registers R3 and R4 contain values 300 and 1200 respectively in decimal, and the word

length of the processors 32 bits. The effective address of the instruction “STORE R5, 90
(R3, R4)” in decimal will be __________________.

[Ans: 1590]

Q3.19 A two-word instruction is placed at address “A”. “B” represents the instruction's address

field, which is located at “A+1”. The operand utilised during instruction execution is
stored at the address “C”. In an index register, the value X is stored. Explain how “C” is
computed from the other addresses if the addressing mode of the instruction is (i)
indirect, (ii) direct, (iii) indexed, and (iv) relative.

[Ans: (i) C = M[B] (ii) C = B (iii) C = B + X (iv) C = B + A + 2]

Q3.20 There is a branch instruction at memory address 600. The address of the branch is

specified to 300 decimal places.
(i) Determine the relative address in decimal and binary numbers.
(ii) Find the binary representation of “300” in PC after the fetch phase. Then, show

that 300 in binary is equal to the sum of the program counter (PC) and the
relative address found in (i).

 [Ans: (i) Relative address = 300 – 601 = – 301; 301 = 000100101101; – 301 =
111011010011 (ii) PC = 601 = 001001011001, 300 = 000100101100; PC =
001001011001(601), RA = 111011010011(– 301), EA = 300 = 000100101100]

Q3.21 If the instruction is (i) computational and requires an operand from memory, or (ii) a

branch, determine the number of memory accesses performed by the control unit in order
to fetch and execute the instruction in indirect addressing mode.

[Ans: (i) 3 (ii) 2]

Computer System Organization | 121

Q3.22 In indexed addressing mode, what value should be entered into the address field of an
instruction for it to be considered equivalent to a register indirect mode instruction?

[Ans: zero]

Q3.23 An instruction is stored at memory address 500 with its address field at 501 memory

location. The value of the address field is 400. The R1 register of the processor contains
the number 200. Evaluate the effective address if the instruction addressing mode is (i)
immediate (ii) direct (iii) register indirect (iv) relative or (v) index with R1 index register.

[Ans: (i) 501, (ii) 400, (iii) 200, (iv) 502 + 400 = 902, (v) 200 + 400 = 600]

Q3.24 The value of 16 bits is 10011010110010101. What operation is required to:
 (i) clear the first four bits, i.e., b0 to b3, to 0?
 (ii) set the last four bits, i.e., b12 to b15, to 1?
 (iii) complement the middle four bits, b6 to b9?

[Ans: (i) AND with 1111111111110000 or AND with 1111111111111010 (ii) OR with
1111000000000000 or OR with 0110000000000000 (iii) XOR with 0000001111000000]

Q3.25 Create a binary representation of each of the signed integers that are presented below.
 (i) First, carry out the binary addition of the numbers (+68) and (-83), and then evaluate

the outcome of this operation.
(ii) Carry out the subtraction of the binary numbers (-68) - (+83), and determine the
occurrence of overflow.
(iii) Shift the value of binary -68 to the right by one position, and show the result in
decimal form. [Hint: Perform arithmetic shift right because this is signed number]
(iv) Move binary -83 one position to the left, and then determine the occurrence of
overflow.

[Ans: + 83 = 01010011, + 68 = 01000100, – 83 = 10101101, – 68 = 10111100
(i) – 83 (10101101) + 68 (01000100) = – 15 (11110001) (in 2’s complement)

(ii) – 68 (10111100) – 83 (10101101) = –151 (01101001), overflow
(iii) – 34 = 11011110, (iv) –166 ≠ 01011010, overflow]

Q3.26 Determine status bit values C, S, Z, and O according to the below instructions. In each

example, register R begins with the number 72 (hexadecimal) and it is an 8-bit register.
(i) ADD C6, R (ii) ADD 1E, R (iii) SUB 9A, R
(iv) AND 8D, R (v) XOR R, R

[Ans: (i) 138 (00111000); C = 1, S = 0, Z = 0, O = 0 (ii) 90 (10010000); C=0, S = 1,
Z = 0, O = 1 (iii) D8 (11011000); C = 0, S = 1, Z = 0, O = 1 (iv) 00 (00000000);

C = 0, S = 0, Z = 1, O = 0 (v) C = 0, S = 0, Z = 1, O = 0]

122 | Microprocessor Architecture

Q3.27 Consider the 8-bit values of registers A = 01010101 and B = 10101010.
(i) Perform the addition of binary values stored in registers A and B under the
assumptions that they are signed numbers.
(ii) Provide the decimal equivalent under the assumptions that the result obtained in (a) is
(i) unsigned and (ii) signed.
(iii) Determine status bit values C, S, Z, and O after performing addition.

[Ans: (i) A + B = 11111111 (ii) unsigned = 255, signed = –1
(iii) C = 0, S = 1, Z = 0, O = 0]

Q3.28 Two unsigned numbers, A=01000001 and B=10000101 are compared by a computer

program. Determine binary result of subtraction (A-B) and values of status bits C and Z.
[Ans: A – B = 10111100, C = 1; Z = 0]

Q3.29 Two unsigned numbers, A=01000001 and B=10000100 are compared by a computer

program. Determine binary result of subtraction (A-B) and values of status bits C, Z
and O.

[Ans: A – B = + 65 (01000001) - –124 (10000100) = 189 (10111101) = 010111101
(9 bits); S = 1, Z = 0, O = 1 (overflow)]

Q3.30 The stack pointer has the value 3560, while the top of the memory stack has the value

5320. A two-word call subroutine instruction is located in 1120 followed by the address
field of 6720 at location 1121. What are the content of PC, SP, and the top of the stack:
(i) Prior to fetching call instruction from memory?
(ii) After execution of the call instruction?
(iii) After the subroutine's return?

[Ans: (i) PC: 1120 (initial), 6720 (after call), 1122 (after return) (ii) SP: 3560 (initial),
3559 (after call), 3560 (after return) (iii) Top of Stack: 5320 (initial), 1122 (after call),

5320 (after return)]

Computer System Organization | 123

PRACTICAL

Aim: Perform addition and subtraction using 16-bit numbers. Assume
initially both the numbers are residing in memory. You have to load these
numbers into CPU registers, perform the addition and subtraction of these
numbers and store the result back to memory.

Tools: 8086 Microprocessor kit [3], Power Supply

Theory: The ADD instruction performs addition, while the SUB instruction
performs subtraction. The ADD instruction can add immediate data or the
contents of a memory location or source register specified in the instruction
to the contents of a destination register or memory location.

 The outcome is stored in the destination operand. The source and destination operands,
however, cannot both be memory operands. Because it is not feasible to add memory to memory.
All condition code flags are affected by the outcome. In addition, the status of the carry flag must
be checked, and the result and carry flag are both saved to a memory location. Similarly, execute
the subtraction operation and check the overflow condition to ensure that the result is correct.

The microprocessor can operate with the help of certain commands as follows.

Reset
Enter
Starting Address
Fill program instruction by instruction
Execute
Result Store in Memory

Procedure for 16-bit addition:

1. First you have to write an assembly language program, one program

for performing addition and second program for performing
subtraction.

2. You have to prepare a table comprising the column’s name as memory
address, machine opcode, mnemonics, operands.

3. Start the program
4. Load first data in AX register and the second data in BX register
5. Clear CL register for carry
6. Perform Add operation between AX and BX registers and get the

result in AX register.

For performing
addition on 8086
microprocessor

kit

Scan Me

For performing
subtraction on 8086
microprocessor kit

Scan Me

to understand the
working of 8086

microprocessor kit

Scan Me

124 | Microprocessor Architecture

7. Store the result in memory locations
8. If carry = 1 then go to next step. Otherwise, go to step 11
9. Increment the carry in memory
10. Store the carry in memory
11. Stop the program

KNOW MORE
Innovations by Indian
 SHAKTI is India's first open-source industrial-grade processor
[4]. It is developed by the “Reconfigurable Intelligent Systems
Engineering” group at IIT Madras under supervision of Professor
V. Kamakoti. The objective of the team is to develop SoCs that are
competitive with commercial products in terms of space, power
consumption, and performance. All SHAKTI source code is open-
source. The Shakti processors are intended for embedded
applications, robotic controllers, and Internet of Things boards [7].

The health benefits of using rejuvenated traditional Indian clay cookware
 Indian proverb “we reach the other
people's heart through stomach” [5]. Food
affects us mentally too. Cooking requires
mixing, heating, and combining
components. The cooking utensils and
heating agent (charcoal, clay stove,
kerosene stove, gas stove, microwave)
make up the heating ingredients. Ancestors
cooked using cast, copper, brass, iron, and
clay utensils.

 These utensils keep food's nutritional worth intact [6]. Modern utensils, such as the modern
pressure cooker, steel, plastic, and nonstick, are unable to maintain the majority of the
micronutrients found in the food, and plastic actually adds some toxins to the food. For instance,
cast iron utensils play a significant role in boosting the iron content of food, especially in the case
of acidic foods. Copper has a special ability to strengthen the collagen booster in meals. Brass is
excellent in preserving water, which boosts the human immune system. Similarly, silver has a
calming impact on the mood illness, but it is prohibitively expensive and difficult to acquire.

Computer System Organization | 125

Importantly, clay utensils have a significant impact on immunity. Whenever we think about clay
utensils, we can consider our nearly extinct clay potters. In place of clay cups, tea vendors now
use either plastic cups containing Bisphenol A (BPA) or paper cups (containing styrene), both of
which are extremely harmful to human health.

 Clay utensils concern us for these reasons. Food that has been cooked in clay retains more
nutrients and tastes better. Clay pottery creates jobs. In order to foster a lifestyle that is
simultaneously healthier and more tasty, it is important to promote cooking in earthen pots and
the amazing food of India. Earthen pots use less water for cooking and take up no waste space.
Indians are deeply rooted with soil, now it‘s time to use this soil for maintaining some livelihood
to distribute taste and health throughout and outside the country.

126 | Microprocessor Architecture

REFERENCES AND SUGGESTED READINGS

[1] M. Morris Mano, Computer system architecture. Prentice-Hall, Inc.,

Third edition.
https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-
computer-system-architecture.pdf (last accessed: May 2023)

[2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian,
Computer organization and embedded systems. McGraw-Hill Higher
Education, 2011.

[3] Microprocessor and Interfacing Lab Manual.
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2017/cse-
lab-manual-microprocessor.pdf (last accessed: May 2023)

[4] Shakti Processor. https://shakti.org.in/ (last accessed: May 2023)

[5] Debdip Khan, Sudatta Banerjee, Revitalizing ancient Indian clay
utensils and its impact on health. International Journal of All Research
Education and Scientific Methods (IJARESM), ISSN: 2455-6211,
Volume 8, Issue 7, July 2020.

[6] Vedic cooking for long life. https://vedichindustan.org/vedic-cooking-
long-life/ (last accessed: May 2023)

[7] NPTEL Course by Santanu Chattopadhyay, Microprocessors and
Microcontrollers, IIT Kharagpur, 2023.
https://nptel.ac.in/courses/108105102. (last accessed: May 2023)

For 8086
pin diagram

Scan Me

For 8085
pin diagram

Scan Me

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2017/cse-
https://shakti.org.in/
https://vedichindustan.org/vedic-cooking-
https://nptel.ac.in/courses/108105102.

Computer System Organization | 127

UNIT SPECIFICS
The following aspects are discussed in this unit:
 Assembly language generic structures;
 Assembler directives, procedures and macros;
 Assembly language programs involving arithmetic, logical, branch and call instructions;
 Programs for evaluation of arithmetic expressions, string manipulation, and sorting.

 The practical applications of the topics are presented for the purpose of fostering greater
curiosity and creativity and enhancing problem-solving skills. In addition to a large number
of multiple-choice questions and short- and long-answer questions marked in two categories
according to the lower and higher levels of Bloom's taxonomy, the unit provides practice
assignments in the form of numerical problems, a list of references, and suggested readings.
It is crucial to note that several QR codes, which may be scanned for further information on
various topics of interest, have been included in different parts and can be used to obtain
necessary supporting data.

 The related practical based on the content is followed by a “Know More” section on the
topic. This section has been carefully constructed such that the supplementary information it
contains is valuable to the book's readers. This section focuses primarily on the contributions
of Indian innovators to the development of computer system organization and history of
instruction set architecture. Indian practices of yoga and pranayam are also discussed for
mind-body healing to achieve good health.

RATIONALE
 This chapter examines the fundamental ideas behind assembly language, as well as its
structure, generic concepts, and terminology, using the open-source NASM assembly
programming language. The necessity of assembly language from the standpoint of hardware
developers is discussed. The examination of the generic semantics of assembly languages lays
the foundation for writing simple to complicated programmes in assembly language. This

4

Assembly Language
Programming

128 | Assembly Language Programming

chapter explains the use of various types of instructions for writing the assembly language
programs. From the basic program to advanced programs such as the assembly program
involving arithmetic, logical, branch and call instructions, evaluating arithmetic expressions,
string manipulation, and sorting are discussed in this chapter. This chapter serves as an
introduction and lays the foundation for a more in-depth study of instruction sets and
assembly languages.

PRE-REQUISITES
Microprocessor Architecture (Unit-III)
Digital Electronics: Number systems binary, octal, and hexadecimal (Polytechnic
Engineering)
Operating System: Basics of system call, kernel etc. in Linux operating system

UNIT OUTCOMES
List of outcomes of this unit is as follows:
U4-O1: Describe role of assembly language programming in processor design
U4-O2: Describe the key features of writing simple assembly programs
U4-O3: Explain assembler directives
U4-O4: Explain the importance of procedures and macros
U4-O5: Design principles of writing complex assembly programs

Computer System Organization | 129

4.1 INTRODUCTION
 The assembly language simplifies program development. The programmer can write a
program for hardware of computer systems. Assembly language is instruction set architecture
(ISA) and assembler-specific low-level programming. Assembly language programmes comprise
of assembly statements. Each computer instruction is a textual identifier like “ADD”, “SUB”,
“LOAD”, etc. Assembly language programming uses all symbolic names and their rules. Each
instruction also includes a list of operands with their values or locations. The values of the
operands are either numeric or are stored in registers or memory.

 Assembly language programmes are converted into machine instructions by assemblers.
Utility programmes, such as the assembler programmes, are included in computer system
software. Assemblers, like other software, are stored as machine instructions in computer
memory. Machine instructions are made up of binary patterns. It is challenging to programme
using such structures. Therefore, the symbolic names reflect binary code patterns in assembly
language.

Fig. 4.1: Assembly language ADD instruction representation in machine language

 The programmer runs the assembler after composing the assembly
language program to convert it into a computer-executable machine language
programme. Fig 4.1 shows an example of assembly language instruction, i.e.,
ADD r1, r2 and the machine language instruction that might be generated
from it. This ADD instruction performs addition of values stored in registers
r1 and r2 and stores result in register r1.

 The Assembly language instructions are in human readable form and
elegant written representation of the machine code. It makes writing
programmes much easier, neatly used. However, programming is tedious
because of the small amount of work done by each instruction and the
instructions available to the programmer differ from machine to machine.

Compare NASM
with MASM and
GAS Assembly

Languages

 Scan Me

130 | Assembly Language Programming

 If a programmer wants to run a program on a different type of computer, the program had to
be completely rewritten in the new computer’s assembly language.

 In practice, standalone assembly programmes can be written and converted to executables
using an assembler. Both C and C++ have the ability to include pieces of assembly code. The
second option is the more common choice. The combined programming is then converted by the
compiler into machine code. Assembly languages offer a number of benefits. Assembly code is
expressive in the same way that machine code is, and the reason for this is because each line
represents one machine instruction.

 Keyboard input stores user programmes in memory or on a hard disc. The user programme is
now lines of alphanumeric characters. The assembler programme analyses the user programme
and builds a machine-language programme with patterns of 0s and 1s that the computer will
execute. Source programmes are user programmes in alphanumeric text format, while object
programmes are machine-language programmes. Computer assembly language may or may not
discriminate between capital and lower-case letters.

 The assembler stores object programmes on the hard drive. Loading the
object programme into main memory is required for execution. This
necessitates the presence of a loader utility programme in memory. When
the loader is run, it transports the machine-language programme from the
hard drive to memory. The programme length and memory address must be
known to the loader. The assembler puts this information in a header before
the object code. After loading the object code, the loader branches to the first
instruction, such as START. The address is placed in the object code header
by the assembler for the loader to use at runtime.

 In this chapter, assembly program instructions are based on Intel 32 processors. There are
various machine encodings for the same instruction. The following assemblers are widely used for
assembly programming:
● Microsoft Assembler (MASM)
● Borland Turbo Assembler (TASM)
● GNU assembler (GAS)
● NASM assembler

Online compiler
for Assembly

Language
Programs

 Scan Me

Computer System Organization | 131

 In this chapter, all the assembly language programs are discussed using NASM assembler.
NASM is free to download on both Linux and Windows operating systems. NASM is an Intel x86
architecture assembler and disassembler. It is a popular option for low-level programming and is
commonly used in the design of operating systems, device drivers, and other system-level
programming activities. In this chapter, basic syntax and instruction formats of NASM are
demonstrated that are used for the discussed programs. NASM is well documented. The advanced
programs can be designed by following the QR codes and references discussed in this chapter.

4.2 ASSEMBLY LANGUAGE PROGRAMS
 Ubuntu operating system is free to download and its continuous support is
available. So the NASM assembler is installed on the Ubuntu operating
system. The following steps can be followed to start writing assembly
programs with NASM assembler
1. Install 64 bit ubuntu on desktop or laptop systems (if your system is 64-

bit)
2. Then type the command in the terminal of ubuntu to install NASM

sudo apt-get install -y nasm

3. After installation, the NASM installation location can be checked by the following command

whereis nasm

Learn NASM
Assembly
Language

 Scan Me

132 | Assembly Language Programming

4. You can check the version of installed nasm by using the command
nasm –version

5. If you want clear the terminal screen, use the command

clear

6. The present working directory of the terminal can be checked as
pwd

7. Now you can start to write assembly language program in geditor. Type the following

command to check whether gedit is installed or not
sudo apt-get install gedit

 Enter the system password to start the installation. If it is already installed, then you get
the message that gedit is already installed as shown in the screenshot. The next section covers
writing the first assembly programme, its syntax, and how to run it.

Computer System Organization | 133

4.2.1 First Assembly Program with NASM
Step1: Open the terminal and type the command

gedit print_name.asm

 Here print_name is the name of the program and .asm extension is used for the assembly
program.

This command open the gedit window with program name print_name.asm

Step 2: Comments in assembly language begin with a semicolon (;). They are
used to elaborate the details of program and syntax to enhance the readability
and understanding of the program.

 Write the details of the program what to perform and command to execute
the program in the header by using the comments with syntax ;

 However, this is an optional step. In this chapter, all the program's details
are mentioned in the beginning using comments.

To learn
NASM

installation
through GUI

Scan Me

134 | Assembly Language Programming

Step 3: Write the complete assembly language program. A generic assembly statement has three
fields: a label, also known as an identifier of the instruction, a key, also known as an assembly
instruction or a directive to the assembler, and a comment. These fields make up the general
structure of an assembly statement. These three fields are completely optional. Nevertheless, at
least one of these fields is required for every assembly statement to be valid. These are explained
in detail in subsequent steps.

Step 4: You can save the program with keys ctrl+s or can save the program with a different name
by using the keys ctrl+shift+s keys together. Alternatively as displayed in the keyboard you can
click on the three lines by using the mouse cursor and you will see the options to apply different
options. For save as, you will get the following options:

Computer System Organization | 135

Step 5: On clicking save as, you will get the option to rename the program and display the
location where it will be saved. Here, you have the option to change the save location as well.

Step 6: A label is a textual identifier of an assembly statement. Labels are used to specify the
branch jump location while implementing branch instructions. For example, a label can be shown
as follows.

label: add r1, r2
 After the label and colon, an assembly instruction “add” is written and given a list of
operands, i.e., r1, r2. A label can consist of valid alpha-numeric characters [a − z][A − Z][0 − 9].
However, a label cannot start with a digit.

136 | Assembly Language Programming

Step 7: The linker searches for the statement global _start. Basically, _start tells linker the entry
point of the program.

Step 8: The assembler directive starts with a period (.), It is used to start a new section or declare a
constant. The directive accepts a list of parameters. Regular assembly instructions start with
letters.

Sections: The following three different sections are used in assembly program:
● data section: The data and constants are declared/initialized in the data section. This data

does not change at runtime. This section is declared as
section .data

● bss section: The variables are declared in bss section. This section is declared as
section .bss

● text section: This section begins with declaration of global _start to tell the kernel that
program execution begins here. The actual code is written after a label _start as shown below:

section .text
global _start

_start:

Step 9: The specialised instructions are used for system calls to transfer control from a user level
program to the system call such as int 0x80 to call operating system kernel to exit.

Step 10: Four 32-bit data registers called “EAX”, “EBX”, “ECX”, and “EDX” are utilised for
various operations like arithmetic, logic, and others. The “AX”, “BX”, “CX”, and “DX” are 16-bit

Computer System Organization | 137

data registers. “AH”, “AL”, “BH”, “BL”, “CH”, “CL”, “DH”, and “DL” may be used as eight 8-
bit data registers. These registers hold system call arguments.

The characteristics of these registers are as follows:
● “AX” is used as an accumulator.
● “BX” is used as a base register for indexed addressing.
● “CX” is used as a count register for count in iterative operations.
● “DX” is used as a data register.

 Each syscall and its corresponding number (the one to save in EAX before calling int 0x80)
can be found in the file /usr/include/asm-generic/unistd.h.

Step 10: NASM uses define assembler directive to reserve/initialize bytes in storage space such as
DB (Define Byte) allocates 1 byte.

Step 11: The following command is used to run the program. Only the name of the program (in
the given example print_name.asm is program name) will be changed, the rest of the command
will be the same.

nasm -felf64 print_name.asm && ld print_name.o && ./a.out

Step 12: Display output of the program print_name.asm on the terminal

138 | Assembly Language Programming

4.3 ASSEMBLER DIRECTIVES
 Assembler directives are used to supply data to the source program. For example, the EQU
directive is used for defining constants.

CONSTANT_NAME EQU expression
Suppose that the name YEAR is used to represent the value 2023.

YEAR EQU 2023
During the translation of a source programme into an object programme, the assembler replaces
the name YEAR with the value 2023 wherever it occurs in the programme. Such statements are
called assembler directives. The following statements illustrates the use of YEAR in the program:

mov ecx, YEAR
cmp eax, YEAR

Program 4.1
use_directive.asm

 Write an assembly language program to illustrate the use of the EQU directive and print
messages on the terminal.

Computer System Organization | 139

Output:

4.4 PROCEDURES AND MACROS
 When a programme repeats a set of instructions. Two methods avoid repetition. Create a
procedure for a set of instructions and invoke it as necessary. The stack stores the return address
of the procedure. This procedure's invocation and return cause overhead time. Nonetheless, this is
minimal for large group of instruction. Procedures are not recommended for small groups of
instructions since overhead and execution time are equivalent in this case. Macros are preferred
for simple instructions. When a macro is invoked, the assembler generates machine codes for
instruction. The process of calling and returning macro requires no time. Each macro call
generates inline code, which consumes extra memory.

140 | Assembly Language Programming

4.4.1 Procedures
 When a particular sequence of instructions are repeated in different points in a program.
These sequences of instructions in the program can be written as a “subprogram” called a
procedure. The “call” instruction, together with the beginning address of the procedure in
memory, may be used to carry out the execution of this series of instructions at each and every
time. At the end of the procedure, there is a “ret” instruction, which causes the execution to
proceed to the next instruction in the main program.

 The procedures can be “nested” such that one procedure invokes another as part of its
instruction sequence. The benefits and drawbacks of the procedure are:
Advantage:
1) The machine codes for the group of instructions within the procedure only need to be loaded

once into memory.
Disadvantage:
1) The stack is required for procedure storage.
2) There is some timing overhead. The time it takes to invoke the procedure and then return to

the programme that invoked it.

Program 4.2
procedure.asm

 Write an assembly language program using procedure sub to subtract the numbers stored in
ECX and EDX registers. The output is stored in EAX register.

Computer System Organization | 141

Output:

4.4.2 Macros
 When the repeating set of instructions is too short, a “macro” is used instead of a procedure.
A macro is a set of instructions that is named at the start of the program. The assembler inserts the
specified block of instructions in lieu of “call” every time the “macro” is invoked. In other words,
the macro call is a shorthand statement that informs the assembler, every time a macro name
appears in the programme, it is replaced by the group of instructions defined as that macro at the
start of the programme.

 Assemblers generate machine codes for each macro call. Instructions replace macros in
expansion. Since the generated machine codes are in line with the programme, the assembler does
not need to go away and return. Thus, using a macro eliminates procedure call and return
overhead.

 The drawback of producing in-line code each time a macro is invoked is that the programme
will consume more memory than if a procedure is used. Table 4.1 shows a comparison between
procedures and macros.

142 | Assembly Language Programming

Table 4.1: Difference between procedure and macro

 Macro sequences execute more quickly than procedures since there are not any CALL and
RET instructions to execute. The macro instructions are inserted into the code by the assembler
when it is executed. This process is known as macro expansion. The macro prototype is written as
follows.

 Where macro_name specifies the macro's name, number_of_params specifies the number of
parameters.

Program 4.3
use_macro.asm

Computer System Organization | 143

Output:

4.5 ASSEMBLY PROGRAMS
 Following subsections explain simple to complicated programs to
demonstrate various types of instructions and their structure used in NASM.

4.5.1 Simple Programs
 The simple programs use arithmetic operations such as add, subtract,
multiply, etc. The syntax of the arithmetic instructions and data transfer are
as follows:

Program 4.4
display_keyboard_input.asm

For simple
programs in

NASM

Scan Me

144 | Assembly Language Programming

Output:

4.5.2 Arithmetic Programs
 Arithmetic instructions perform addition, subtraction, multiplication,
and division operations. The syntax of arithmetic instructions and data
transfer are as follows.

For
multiplication
and division
programs

Scan Me

Computer System Organization | 145

Table 4.2: List of arithmetic operations

Operation Operands Comments

ADD/SUB destination, source Perform addition/subtraction of numbers stored in
destination and source registers. Result stores in the
destination register.

MUL/IMUL multiplier multiply unsigned/signed data

DIV/IDIV Divisor division on unsigned/signed data

INC/DEC destination incrementing/decrementing an operand by one

Mov destination, source data transfer source to destination

Program 4.5
add_sub.asm

146 | Assembly Language Programming

Output:

4.5.3 Logical Instructions
 Logical instructions are used for data processing such as compute bitwise or, and, exclusive
or, and not instructions.

Computer System Organization | 147

Table 4.3: List of logical operations

Operation Operands Comments

AND/OR/XOR operand 1,
operand 2

Perform logical AND/OR/XOR operation between operand
1 and operand 2. Result is stored in operand 1

NOT operand 1 Perform logical NOT operation and result store in operand 1

Program 4.6
logical_xor_operaton.asm

148 | Assembly Language Programming

Output:

4.5.4 Branch Instructions
 Branch instructions jump the program execution control to different parts of the program. The
“for” loops and “if-then-else” statements are the examples of the branch instructions. Branch
instructions can be unconditional or conditional jump.

1. In unconditional jump, the “JMP” instruction transfers programme

execution control to a different point of an instruction, bypassing the
present execution of the instruction.

2. In conditional jump, a “CMP” instruction checks the condition and uses
an appropriate jump instruction from the available range of jump
instructions in the program based on the condition. The conditional jump
interrupts the sequential execution flow and transfers control to a new
location.

 The “CMP” instruction is used in conjunction with the conditional jump instruction. It
subtracts one operand from the other to determine if the operands are equal.

CMP destination, source

 The destination operand may be either a register or memory, while the source operand can be
either constant (instant) data, a register, or memory. As an example,

for more
programs of

branch
instructions

Scan Me

Computer System Organization | 149

Program 4.7
array_sum.asm

150 | Assembly Language Programming

Output:

4.5.5 Evaluation of Arithmetic Expressions
 Infix notation is used to describe expressions, in which arithmetic operators like as addition,
subtraction, multiplication, division, and so on are written between two operands, i.e., “A + B”.
To distinguish “(A + B)*C” from “A + (B * C)”, this notation needs parentheses or operator
precedence.

Program 4.8
evaluate_expression.asm

Computer System Organization | 151

Output:

4.5.6 String Manipulation
 String manipulation actions include copying the string, reversing the string, counting the
characters, and so on [1]. String instructions for 32-bit information employ ESI and EDI registers
to refer to the source and destination operands, respectively. However, for 16-bit data, the SI and
DI registers are utilised to indicate the source and destination, respectively. String processing
consists of five fundamental instructions.
● MOVS instruction transfers 1 Byte, Word, or Doubleword of data between memory locations.
● LOAD instruction retrieves memory-based data. AL register is loaded with a single byte

operand, AX register is loaded with a single word operand, and EAX register is loaded with a
doubleword operand.

● STOS instruction writes data from registers (AL, AX, or EAX) to memory.
● CMPS instruction compares two elements of memory-based data. Sizes of data include byte,

word, and doubleword.
● SCAS instruction evaluates the contents of a register (AL, AX, or EAX) against those of a

memory location.

152 | Assembly Language Programming

Program 4.9
encrypt.asm

Computer System Organization | 153

Output:

4.5.7 Sorting
 Sorting is an important and often used procedure in computer science. Sorting in NASM
assembler may be accomplished by the use of numerous algorithms, including bubble sort,
insertion sort, selection sort, and quicksort. The procedure of bubble sort is demonstrated in
program 4.10.

 Bubble sort compares adjacent components and swaps them if they are out of order.The list is
traversed again and again until it is sorted.

Program 4.10
sorting_integers.asm

154 | Assembly Language Programming

Computer System Organization | 155

156 | Assembly Language Programming

Output:

Computer System Organization | 157

UNIT SUMMARY
● Machine instructions can be coded in Assembler. In general, one statement in an assembly

language programming equals to one machine instruction.
● An assembler converts programmes written in assembly language into machine code.
● Assembly languages are ISA and assembler-specific.
● Assembly language is used to design programs for the kernel and device drivers that support

an operating system.
● Assembly languages help hardware designers comprehend ISA semantics. It provides

direction for the design.
● NASM assembler is free to download on both Linux and Windows operating systems.
● NASM runs the program using the command “nasm -felf64 filename.asm && ld filename.o

&& ./a.out”.
● An assembly program's data section initialises data, the bss section defines variables, and the

text section contains the actual code.
● Assembler directives allow the programmer to specify other information needed to translate

the source program into the object program. The EQU directive is used for defining constants.
● Procedure is defined in assembly language when a group of instructions repeated in the

program and the size of these instructions are too long.
● When the repeated group of instructions is too short or not appropriate to be written as

procedure, a “macro” is used.
● The group of instructions defined as macro in the beginning of the program. For each macro

name in the program, replace it with machine codes for the group of instructions.
● The simple assembly programs perform simple arithmetic operations such as addition,

subtraction, division, multiplication.
● Any arithmetic expression comprises more than one arithmetic operation. So these are

complex assembly programs.
● Branch instructions jump the program execution control to different parts of the program. The

“for” loops and “if-then-else” statements are the examples of the branch instructions.
● Assembly language programs are written for string manipulation. Such as copy string, reverse

the string, count the characters, etc.

158 | Assembly Language Programming

EXERCISES
Multiple Choice Questions
Q4.1 Assembler converts the programs written in ______________ into machine instructions.

a) C language b) C++ language
c) Assembly language d) Python language

Q4.2 The ________ instruction performs the addition of two numbers.
 a) MOV b) ADD c) SUB d) DIV

Q4.3 The assembler directive Sum EQU 200 does ________
 a) assigns value 200 to first occurrence of Sum
 b) assigns value 200 to every occurrence of Sum
 c) add 200 to its original address
 d) assigns 200 bytes of memory starting the location of Sum

Q4.4 Assembly language is a __________ programming language specific to each instruction

set architecture (ISA) and assembler.
 (a) high-level (b) middle-level (c) low-level (d) object-oriented

Q4.5 How do you use the comments in the NASM assembly language

 (a) semicolon (;) (b) percent sign (%) (c) forward slash (/)
 (d) comma (,)

Q4.6 Assembler automatically translates an assembly language program into a sequence of___
 (a) byte code (b) binary numbers
 (c) special characters (d) machine instructions

Q4.7 Which of the following is the name of the assembler?
 (i) MASM (ii) TASM (iii) GAS (iv) NASM
 (a) (i), (iii), and (iv) (b) (i), (ii), and (iii) (c) only (i) and (ii) (d) all

Q4.8 When a particular sequence of instructions are repeated in different points in a program.

These sequences of instructions in the program can be written as a “subprogram” called a
__________ .

 (a) directive (b) program (c) procedure (d) macro

Q4.9 Assembler stores the object program on the ______________.
 (a) cache memory (b) primary memory
 (c) secondary memory (d) ROM memory

Computer System Organization | 159

Q4.10 In procedure, ______ instruction executes sequence of instructions and _______
instruction returns execution to the next instruction in the program.

 (a) call, ret (b) begin, end (c) start, return (d) do, while

Q4.11 Which system call is used in NASM program for system exit

 (a) int 0x80 (b) mov eax, 4 (c) mov eax, 1 (d)
mov ebx, 2

Q4.12 The ___________ brings the object code into memory for execution.
 (a) linker (b) extractor (c) fetcher (d) loader

Q4.13 Which section does not use in NASM assembler

 (a) data (b) text (c) bss (d) code

Short and Long Answer Type Questions
Category-I
Q4.1 What is assembler?
Q4.2 List four popular assemblers.
Q4.3 What is assembly language programming?
Q4.4 What are machine instructions?
Q4.5 Define the assembler, loader, and linker.
Q4.6 List the number of logical operations used in NASM.
Q4.7 List the arithmetic operations can be performed in NASM.
Q4.8 Which addressing mode is preferable in a system with few registers?
Q4.9 What is the difference between the unconditional and conditional branches?
Q4.10 Give the example of two string manipulations operations.
Q4.11 What command do you use to run assembly language program in linux 64-bit computer?
Q4.12 What is the difference between high-level and low-level languages?
Q4.13 What is the meaning of system calls 1 and 4?
Q4.14 How do you use labels and comments in NASM?
Q4.15 Explain the utility of define byte (DB) in NASM?

Category-II
Q4.16 Explain the installation steps of NASM.

160 | Assembly Language Programming

Q4.17 How are procedures and macros defined in NASM assembly language programmes?
What is the difference between macros and procedures?

Q4.18 What is a nested procedure? List the benefits and drawbacks of procedure and macros.
Q4.19 What is an assembler directive? Explain with examples.
Q4.20 List the system calls available in the NASM directory.
Q4.21 Explain the CALL and RET instructions in procedures.

Numerical Problems
Q4.22 Display your name and parents name on the terminal using an assembly language

program (ALP).
Q4.23 Write an ALP to subtract 12 from the number 40. Then, on the result, execute the NOT

operation and show the result on the screen.
Q4.24 Write an ALP for the AND and OR logical operations on the integers 3 and 2 using

macros.
Q4.25 Write an ALP for AND operation between the integers 5 and 2. Then, multiply the value

by 4 to get the final result. What does the terminal show as the end result?
Q4.26 Write an ALP to divide the number 16 by the number 2. Show the result on the terminal.
Q4.27 Write an ALP using the branch instruction. If the number is greater than 5, perform a

logical OR of 1 and 2; otherwise, perform a logical AND on the same numbers. Display
the result on the terminal.

Q4.28 Write an ALP that will store the input element in an array and display it on the terminal.
System calls should be written as procedures to facilitate their frequent use in the
program.

PRACTICAL
Aim: Write an assembly language program to design an arithmetic calculator
that can perform addition, subtraction, multiplication, and division operation.
Compute the expressions (a + b) ∗ 3 − c/d using NASM assembler. Where
a=8, b=2, c=4, and d=1

Tools: NASM assembler [1]

Theory: Details of NASM assembler is already discussed in the chapter.

Procedure: Detailed instructions for installing Linux 64-bit on a computer
are already covered in this chapter.

to learn
NASM

assembler
programming

Scan Me

Computer System Organization | 161

KNOW MORE
Innovations by Indian
 As the leader of the Think Tank Team and a computer scientist and
inventor, Pranav Mistry is best known for his contributions to SixthSense.

 SixthSense is an innovative augmented reality (AR) technology that
enables users to project a screen onto a wall by moving their fingers and
controlling it with their fingertips in the air.

History of Instruction Set Architecture
 The ARM and the x86 are popular instruction set architectures. ARM is an
acronym for “Advanced RISC Machines.” It is a well-known business located
in Cambridge, United Kingdom. In 2012, approximately 90% of mobile devices
were powered by ARM-based processors. Intel and AMD x86 processors
powered more than ninety percent of desktops and laptops. The instruction set
of ARM is RISC, whereas the instruction set of x86 is CISC.

Indian Yoga and Pranayam
 Pranayama is the practice of controlling the
breath. “Prana” is a person's breath or vital
energy. The “ayama” technique allows the
practitioner to manage prana, or the pranic
energy that gives life [2].

 Pranayama is the practise of controlling the
respiration to connect the body and mind.
Patanjali describes pranayama as a method for
attaining higher states of consciousness. It is an
essential component of yoga, a physical and
mental health-promoting practice. “Prana”
means life energy in Sanskrit, and “yama”
means control [3].

to know
more about
ARM and

x86

Scan Me

to know more
about Pranav

Mistry
inventions

Scan Me

162 | Assembly Language Programming

 Pranayama involves various breathing exercises and patterns. You intentionally inhale,
exhale, and retain your breath in a particular order. Pranayama is used in conjunction with other
yoga practices such as physical postures (asanas) and meditation (dhyana). Collectively, these
practices account for many of the benefits of yoga. Pranayama is the ancient practice of regulating
the timing, duration, and frequency of each breath and hold. It provides oxygen to the body while
eliminating toxins. It balances the actions of the numerous pranas, resulting in a healthy body and
mind.

 The benefits of pranayama have been studied scientifically in the context of contemporary
lifestyle. Thousands of years ago, India was the birthplace of yoga. With the expansion of yoga's
scientific study, its therapeutic aspects are also being investigated. Yoga and pranayama may
benefit health in a variety of ways, such as reducing tension, enhancing sleep quality, enhancing
mindfulness, lowering high blood pressure, enhancing lung and brain function, the digestive
system, boosting the immune system, and strengthening the respiratory system.

REFERENCES AND SUGGESTED READINGS
[1] Muhammed Yazar Y, Introduction to NASM.

https://usermanual.wiki/Document/NASM20Manual.116
4426225/view (last accessed: May 15, 2023)

[2] What is pranayama and its types & techniques?
https://www.artofliving.org/in-en/yoga/what-ispranayama-and-its-
types-techniques (last accessed May 14, 2023)

[3] Health Impacts of Yoga and Pranayama: A State-of-the-Art Review.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415184/ (last
accessed: May 14, 2023)

[4] NPTEL Course by Prof. Janakiraman Viraraghavan, C Programming
and Assembly Language, IIT Madras, 2019. https://nptel.ac.in/
courses/108105102 (last accessed: May, 2023)

to learn the
use of

C library
with assembly

programs

Scan Me

https://usermanual.wiki/Document/NASM20Manual.116
https://www.artofliving.org/in-en/yoga/what-ispranayama-and-its-
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415184/
https://nptel.ac.in/

Computer System Organization | 163

UNIT SPECIFICS
The following aspects are discussed in this unit:
 Memory addressing and address decoding;
 Interfacing RAM, ROM, EPROM;
 Programmable peripheral interface and modes of operation;
 Various techniques of interfacing to processor;
 Interfacing with keyboard, and display

 The practical applications of the topics are presented for the purpose of fostering greater
curiosity and creativity and enhancing problem-solving skills. In addition to a large number
of multiple-choice questions and short- and long-answer questions marked in two categories
according to the lower and higher levels of Bloom's taxonomy, the unit provides practice
assignments in the form of numerical problems, a list of references, and suggested readings.
It is crucial to note that several QR codes, which may be scanned for further information on
various topics of interest, have been included in different parts and can be used to obtain
necessary supporting data.

 The related practical based on the content is followed by a “Know More” section on the
topic. This section has been carefully constructed such that the supplementary information it
contains is valuable to the book's readers. This section focuses primarily on the contributions
of Indian innovators to the development of computer system organization and Indian
meditation practices to stay energised, focused, and stress-free in daily life.

RATIONALE
 This chapter discusses several memory technologies and how they have evolved to satisfy
storage capacity and data transfer speed demands. Semiconductor technology advancements
have resulted in considerable improvements in the speed and capacity of memory, as well as
significant fall in the cost per bit. The classification of different memory technologies helps in

5

Memory and Digital
Interfacing

164 | Memory and Digital Interfacing

understanding the requirements of distinct technologies for diverse applications. Memory-to-
cache data mapping techniques are also covered. Furthermore, discussing secondary
memory allows you to compare the speed, capacity, and technology with primary memory.
This chapter also covers memory and I/O interfaces. The numerous interfacing techniques for
peripheral devices, processors, keyboards, displays, and so on are thoroughly described.

PRE-REQUISITES
Computer System Organization (Unit-I)
Digital Electronics: Number systems binary, octal, and hexadecimal (Polytechnic
Engineering)

UNIT OUTCOMES
Outcomes of this unit are as follows:
U5-O1: Describe role of various memory interfacing for processors
U5-O2: Describe role of the memory technology RAM, ROM, EPROM in memory design
U5-O3: Explain programmable peripheral interface and various modes of operations
U5-O4: Explain various techniques of interfacing to processor
U5-O5: Explain the interfacing with keyboard and displays

Computer System Organization | 165

5.1 INTRODUCTION
 Interface is the communication path between two components.
Interfacing is of two types, memory interfacing and I/O (input/output)
interfacing as shown in Fig 5.1. In memory interfacing, during instruction
execution, processors communicate with memory for read and write
operations. Processor reads data from memory or writes data into memory.
Before read/write operation, the microprocessor sends read/write control
signals to the memory. In I/O interfacing, processors communicate with I/O
devices through I/O modules which contain logic for performing
communication between peripheral devices and system bus [1].

Fig. 5.1: Memory and I/O interfacing

 Fig 5.2 demonstrates that I/O module is required as an important interface between
peripherals and the system bus because

● Many different types of peripherals exist, each with its own unique way of functioning. Not

all devices can be controlled by a single central processing unit (CPU), as it would be
impracticable to contain the necessary functionality within the processor.

● Peripherals data transfer rate is slower than the main memory/CPU. For this reason, it is not
possible to communicate with a peripheral device over the high-speed system bus.

Fig. 5.2: Peripheral devices

For memory
interfacing and

addressing

 Scan Me

166 | Memory and Digital Interfacing

● Many peripherals store and transfer information in different formats and with a different word
length that are incompatible with the host computer.

 The block diagram of the I/O module is demonstrated in Fig 5.3. The left hand side interface
connected with the system bus and right hand side interface connected to external devices like
keyboard, mouse, external memories etc.

Fig. 5.3: Block diagram of I/O module

 The control signals are required to coordinate the timing of flow of information between
internal resources and external devices. The processor interrogates the I/O module to know the
device status. The data is transferred to the processor through the I/O module if the device is
ready. The I/O module obtains data from the external device.

5.2 MEMORY TYPES AND CHARACTERISTICS
 This section covers various types of memory that a computer system can use. Each memory
characteristic and working principle is thoroughly discussed.

5.2.1 Types of Memory
 Memory is classified into several types based on the circuit design technique used, the
volume of temporary or permanent storage capacity, the size, cost, and location within the system.

1. Registers
 Registers are part of the CPU such as general purpose registers, segment registers, pointer
registers, and index registers. The storage capacity of the register is defined in bytes. Registers are
the fastest access memory elements.

2. Semiconductor Memories
 The semiconductor memories are classified into random access memory and read only
memory.

Computer System Organization | 167

Fig. 5.4: Classification of semiconductor memories

5.2.2 Random access memory (RAM)
 Random-access memory (RAM) is used to store data and programmes
temporarily before they are used. Data can be read/written from/to specific
locations in physical memory. RAM has multiplexing and demultiplexing
circuits to connect the data lines to the address lines, allowing for the reading
and writing of individual data elements [2]. RAM's memory cells are
essentially electronic circuits that can store data for a computer. The set and
reset logic is used to store the data in memory cells, “set” means “1” (greater
than 0.5 volts) and “reset” means “logic 0” (below 0.5 volts). It is a volatile
memory. The RAM memory is classified into dynamic RAM (DRAM) and
static RAM (SRAM). Both types of memory are volatile memory. If power
fails then data is lost in memory.

 A DRAM is also known as primary or main memory and its storage capacity is MB to GB.
Each DRAM memory cell is made up of only one transistor and a capacitor. Data is stored in
capacitors, and each capacitor's charge level determines whether a bit is a logical 1 or 0. Because
information may be lost if the capacitor discharges, the memory cell stores either 0 or 1 while the
capacitor is charged. These memory cells are automatically refreshed at regular intervals. Because
DRAM is implemented using MOS capacitors. Therefore, a lot of power is required to store data.

 Whereas, SRAM is used to design the cache memory. Each SRAM cell circuit requires six
transistors, four to store the bit and two to control access to the cell. In SRAM, the data does not
need to be refreshed periodically [3]. SRAM memory cells are typically MOSFET-based flip-flop
circuits. Cache memory has KB to MB of storage space, which is more than register storage
space. Data used recently is stored in cache memory. In comparison to register access time, cache
memory access time is longer.

for SRAM and
DRAM circuit

design

 Scan Me

168 | Memory and Digital Interfacing

Table 5.1: Difference between SRAM and DRAM

 The features of SRAM and DRAM memory are compared in Table 5.1. The data stored in
static RAM is lost if the power is off. SRAM is significantly faster than DRAM. It is more
expensive than DRAM because each cell requires six transistors.

Fig. 5.5: A typical RAM chip with 7 address lines and 8 bidirectional data lines

 A 2n x d RAM chip has n address lines and d bidirectional data lines. Figure 5.5 shows the
structure of a RAM chip, which includes two selection lines (CS1 and CS2), seven address lines
(AD7), and bidirectional eight-bit data lines. The read/write operation is activated based on the bit
value selected. The RAM chip has 128 (27) memory locations that can be represented with a 7-bit
address and the capacity of each memory location is 8 bits. The processor can access 8 bit data
from the RAM chip or write 8 bit data into the RAM chip at a time. The RAM memory is a type
of temporary memory.

5.2.3 Cache Memory Mapping Techniques
 The computer perceives that the main memory operates at a faster speed because of the cache
memory. Loops, nested loops, and functions are examples of instructions that call each other
repeatedly in a programme. Many instructions in specific areas of the programme are executed
repeatedly over time. This is known as the “locality of reference”. This is classified into two
types: spatial locality and temporal locality. The use of data elements within relatively close
storage locations, such as arrays, is referred to as spatial locality. Temporal locality believes that a
recently executed instruction has a high possibility of being executed again.

Computer System Organization | 169

 Caches are classified into two types: “write-through” caches and “writeback” caches. The
“write-through” cache simultaneously modifies the cache and main memory locations. In
writeback cache, only the cache location is updated and the associated flag bit is marked as
updated; this bit is commonly known as the dirty or modified bit. When this block is removed, it
is stored in memory. Caches that use this method are called “writeback” or “copying back”
caches. This process occurs when a cache block is removed from the cache to make space for new
cache blocks.

 Blocks of main memory can be mapped to cache memory in three different ways: direct
mapping, fully associative mapping, and set-associative mapping. These mapping schemes have a
significant impact on the cache hit ratio and, as a result, system performance. Each strategy has
benefits and drawbacks. These mapping methodologies are discussed in detail further below.

Fig 5.6: Direct cache block mapping of typically 4096 main memory blocks to 128 cache blocks

1. Direct mapping
 The capacity of cache memory is lesser than that of main memory. The cache address uses C
bits, which is less than N bits in main memory. Assume the main memory has a capacity of 2N
bytes, which is partitioned into B blocks (0 to B-1 integer value). Each block stores D bytes of
data. If cache miss occurs, the required block is mapped into 2 C cache memory. Block j of main
memory (where 0 ≤ j < B) is therefore mapped to the cache block number computed as

Cache block number = block j modulo 2C

170 | Memory and Digital Interfacing

 Figure 5.6 depicts the direct mapping technique in which the cache consists of 128 blocks and
the size of each cache block is 16 (24) words. The main memory address is 12+4 = 16 bits, where
the least significant four bits of the memory address represent the word address. The required
number of bits for cache block address is 128 (27). The total number of bits needed for the tag
address is determined as follows:

Total number of bits required for the tag address = Number of bits in the main memory address -

Number of bits for block address - Number of bits for word address

 Therefore, total number of bits required for the tag address = 16 - 7 - 4 = 5 bits.
 The cache block 0 loads main memory blocks 0, 128, 256,...., and cache block 1 stores blocks
1, 129, 257,.... It is also feasible to predict where a main memory block will be mapped in cache.
For example, main memory block 856 will be mapped to cache block 856 modulo 128 = 88.

Example 5.1

Computer System Organization | 171

The direct mapping technique has following advantage and disadvantage-
Advantage:
1) The direct mapping approach is simple and easy to implement.
2) Word searches are faster as only the tag field has to match.
3) The tag field is short.
4) Direct mapping is less expensive than associative and set-associative cache mapping.

Disadvantage:
 Direct mapping performs worse due to conflict misses. Although empty cache blocks are
available, filled blocks are frequently replaced because the new block can be mapped to a fixed
position in the cache. Conflict miss occurs when filled cache blocks are replaced despite the
presence of empty cache blocks.

2. Associative mapping
 Associative mapping is the most efficient and flexible mapping approach.
It identifies a block using tag address and word address. Because of
associative mapping, each position in cache can store any word from main
memory.

 Figure 5.7 depicts the typical associative mapping technique. Assume the
main memory has a capacity of 4096 (212) blocks. Each block is 16 (24) bytes
in size. The physical address in the main memory has 12+4 = 16 bits. Because
the cache memory may hold 128 blocks and the needed number of bits for
word addresses is 4. So, the number of bits necessary to represent the cache
tag address is 16-4 = 12 bits.

Fig 5.7: Associative mapping

LRU
replacement

algorithm

 Scan Me

172 | Memory and Digital Interfacing

 When the cache is full, the existing block is replaced to bring a new block in cache. In this
case, an algorithm is used to select the block to be replaced. Many replacement algorithms are
possible, but least recently used (LRU) is popularly used for associative caches.

Example 5.2

Computer System Organization | 173

The associative mapping has following advantage and disadvantage-
Advantage:
1) The associative mapping is the most flexible approach when a new block is read into the

cache.
2) The hit rate is better than the other two cache mapping techniques.
Disadvantage:
1) All tag patterns need to be searched to determine the desired cache block. So associative

caches are more complex than direct-mapped caches.
3) Tags are searched in parallel to avoid a long search delay. But this kind of search is

expensive to implement.
4) The tag field is long

3. Set-Associative mapping
 Set-associative mapping combines the features of both direct and associative mapping. A
main memory block can be inserted into any block in a set. Although less flexible than associative
mapping, this method is more flexible than direct mapping.

Fig 5.8: Set-associative mapping

 Fig 5.8 depicts set-associative cache memory with 128 cache blocks organised into 64 sets,
each set containing two cache blocks. Given that the total number of sets is 64 (26), a specific set

174 | Memory and Digital Interfacing

can be identified using an address consisting of 6 bits. If each of the six bits is 0, it indicates the
first set. Each block contains 16 words; therefore, identifying a specific word within a block
requires a 4-bit binary value. If the four least significant bits are 0000, the first word block is
identified. The four bits are 0011, which indicates that this is the fourth word in the block.
Because there are 4096 blocks and 16 words in each block, the main memory's physical address is
16 bits long, and the memory's total capacity is 212+4 = 216.

Example 5.3

Computer System Organization | 175

 Cache set 0 maps memory blocks 0, 64, 128,..., 4032 to its two block places. To determine if
the required block is present, the address tag field must be compared associatively with the tags of
the two blocks in the set. This two-way associative search implementation is simple.The
requirements for a computer can be satisfied by modifying the number of blocks contained in each
set.

Set-associative mapping has the following advantages and disadvantages:
Advantage:
1) Having multiple block positioning options reduces the direct mapping's contention issue.
2) By decreasing the number of associative searches, hardware costs can be reduced.

Disadvantage:
1) Set-Associative cache memory is too expensive. The cost rises as the set size grows.

 Overall, associative mapping outperforms all others, but its implementation is expensive.
Therefore, set-associative mapping is preferred in common practices [4].

Memory management unit (MMU)
 The run-time mapping between the processor-generated logical address and the main
memory's physical address is carried out by a hardware component known as the memory
management unit (MMU). The logical address is a virtual address generated by the CPU when a
programme is running. When processes move between the disk and main memory, the operating
system manages how they move in and out. Both memory availability and utilisation are
monitored by the operating system.

Fig 5.9: Logical address to physical address mapping using memory management unit

176 | Memory and Digital Interfacing

 The address generated by the CPU is a logical address. The memory management unit
(MMU) generates the actual main memory address (physical address) by adding the logical
address L to the value B of the relocation register (base register). The processor can access data or
instructions for programme execution from this location. Figure 5.9 shows how the CPU's logical
address 346 is added to the relocation register value 14000 to produce the physical address 14346
of the main memory where this instruction/data will be stored.

Example 5.4

The CPU generated address is 500 and relocation register values is 10000. Then what is the
physical address of memory to access the data?

Solution: Given that the logical address 500 is added with relocation register (base register) value
10000 and result 10500 is generated from MMU to memory. This result 10500 will be the actual
memory address (physical address), from this location processor access either data or instruction
for program execution.

5.2.4 Read Only Memory (ROM)
 Read only memory (ROM) is a type of primary memory but this memory
holds system programs. It is referred to as system memory, and the processor
can read data from the ROM chip only. It is a non-volatile memory and data
stored permanently, even when the power is removed [5].

 The architecture of the ROM chip, which consists of n-bit address and d-
bit unidirectional data bus. This ROM’s storage capacity can be expressed as
2n x d. A ROM chip with 9-bit address lines and 8-bit data lines is shown in
Fig 5.10. With a 9 bit address, there are 29 = 512 memory locations, and each
memory location can store 8 bits. Over time, various ROM versions have
evolved for use in various applications.

 ROM is a nonvolatile memory in which data is written once and never changed. A firmware

program called the basic input/output system (BIOS) is stored in ROM.

Fig. 5.10: A typical ROM chip with 9 address lines and 8 unidirectional data lines

RAM vs ROM
Memory

 Scan Me

Computer System Organization | 177

 PROM is an abbreviation for “programmable read-only memory”. This type of memory can
only be programmed once and requires a special tool known as a “PROM programmer” to
program it.

 EPROM stands for “electrically programmable read-only memory”. After the memory has
been programmed, ultraviolet light can be used to erase it.

 EEPROM stands for “electrically erasable programmable read-only memory”. With an
electric voltage, you can write data to it and erase it.

 Flash memory allows you to write and erase data. The data can be rewritten. The digital
cameras and cell phones both use flash memory cards.

Example 5.5

5.3 Secondary Memory
 The secondary memory is based on serial access memory technology. The data can be
allocated in contiguous memory blocks and data can be deleted from contiguous memory blocks.
It is non-volatile memory, data can be stored permanently. The example of permanent storage
devices are magnetic disk, magnetic tape, CD-Drive, etc. These devices have more storage
capacity compared to all other memories. The storage capacity ranges from GB to TB. The CPU
access time is more compared to all other memories.

 In a hard disk, data is organized in a concentric set of rings called track.
A read/write head is used for reading/writing a portion of the platter. Each
track is further divided into sectors. Universal size of each sector is 512
bytes. Data density is more in the innermost track because the inner sector
has less memory space. The outermost track has a lower data density
because its sector memory capacity is larger. Memory space is wasted in the
outer tracks. Zones are used instead of sectors to prevent memory waste.
There are equal-length zones on each track where a fixed amount of data is
kept. In comparison to the outer track, which has more zones, the inner track
has fewer zones. The disk capacity can be computed as

Disk capacity = surfaces x tracks x sectors x bytes

To know types
of secondary

memory

 Scan Me

178 | Memory and Digital Interfacing

 Disk capacity is the product of #surfaces, #tracks per surface, #sectors per track and #bytes
per sector. Here # symbol indicates the number of the given units.

Disk performance: The performance of a disk is dependent on seek time, rotation latency, and
data transfer rate.

• Seek time (TS): The amount of time required for the read/write head to locate the correct

track.

• Rotational latency (TR): The disk controller waits until the desired sector spins to line up with

the head of the selected track that is called rotational latency (TR). The default rotational
latency is

TR = (½) x rotation time

• Disk access time (T): The sum of seek time and rotational latency is disk access time.

T = TS + TR

• Transfer time (TT): The disk rotational speed (r) decides the transfer time as follows

TT = (b/r) x N

 The number of bytes to be transmitted (b) is divided by the rotational speed (r) in revolutions
per second, which is then multiplied by the number of bytes (N) on a track.

Average access time of disk (Tavg) = TS + TR+ TT

Tavg = TS + (½) x r + (b/r) x N

Example 5.6

Computer System Organization | 179

5.4 PROGRAMMABLE PERIPHERAL INTERFACE
 The 8255 IC features 24 input/output pins to increase the capacity of the microprocessor's
input/output interface. All I/O pins are categorized into A, B, and C ports. Both A and B ports
operate as 8-bit input/output ports. Port C may be configured in a number of different ways, such
as an 8-bit I/O port, two 4-bit I/O ports, or as a handshake port for ports A and B. These ports are
divided into two groups
● Group A: port A and the port C upper part
● Group B: port B and the port C lower part

 According to the values of address lines A1 and A0, each port or a control register accesses a
data register as summarized in Table 5.2.

Table 5.2: Address lines bit values for port selection

5.4.1 Operational modes of 8255
 The 8-bit control register, as shown in Table 5.2, not only controls the modes of operation but
also identifies the ports for the input/output. Bit set/reset mode and input/output mode are the two
operational modes. These modes are determined by the control register's most significant bit
(MSB) D7.

Table 5.3: Control register format for BSR mode

180 | Memory and Digital Interfacing

● Bit Set/Reset (BSR) mode
 If the D7 bit is set to 0, the 8255 operates in BSR mode, which is only available on port C. By
altering the control register value, each line of port C from PC0 to PC7 may be set/reset. Although
the BSR and I/O modes exist independently, none affects the other's operation.

 The remaining bits D6, D5, and D4 are Don’t care (X). The bits D3, D2, and D1 are used to
choose the port C pin. Bit D0 is used to set/reset port C pin.

Table 5.4: Pin selection of port C

● Input/Output mode (I/O mode)
 This I/O mode is chosen when the D7 bit of the control register is set to 1. It has three
different I/O modes: mode 0, mode 1, and mode 2.
1. Mode 0: In mode 0, ports A and B can perform basic I/O operations without handshaking.

Port C might be a single 8-bit port or two 4-bit ports. Port C's two halves may be set as input
and output ports since they are separate.

2. Mode 1: It is possible to set up port A and B to function in different modes when using mode
1. For example, port A may run in mode 0 while port B operates in mode 1. In addition,
handshake input or output can be sent over either port A or port B. You can use either port.
Handshake lines are implemented on a portion of port C's pins.

3. Mode 2: In mode 2, only port A can be initialized for bidirectional handshake data transfer
(the same eight lines can be used for input or output) through PA0 to PA7 pins. Port A's
handshake lines are PC3 through PC7. Port C pins PC0-PC2 may be utilised as input/output
lines if group B is initialised in mode 0. Group B may utilise the remaining pins for port B
handshaking in mode 1.

Computer System Organization | 181

5.4.2 Interfacing to Processor
The following tasks are performed for interfacing of processor with peripheral
devices:
1. The I/O module sends a signal on the control bus according to commands

received from the processor/CPU.
2. The CPU and I/O module exchange data.
3. The I/O module communicates its status to the CPU through status signals

like BUSY and READY.
4. The I/O module recognizes each peripheral device with a unique address.

5. The I/O module receives status signals from the peripheral devices. The device's state is sent

to the CPU through the I/O module.
6. Data is sent and received using the I/O module.
7. The I/O module keeps the data temporarily in buffers that are coming in rapid bursts from

main memory. This data is sent to the peripheral device at its data rate.
8. The I/O module also reports any detected errors to the CPU. While taking printouts, if paper

is jammed in the print out machine then I/O module detects paper jam error and reports to the
processor. Data transmission error detected using parity checkers.

 The interfacing of processor with peripheral devices can be performed in any one of the
following three methods:

1. Memory/(I/O) mapped I/O
 When an I/O device is mapped into memory, the address space used by both the memory and
the I/O device shares the same. This particular type of I/O is called “memory-mapped I/O”. When
an I/O device is mapped into I/O space, the address space for the I/O device is distinct from the
address space for memory devices. This method is called “I/O-mapped I/O”.

2. Programmed I/O
 In programmed I/O, the CPU runs a programme to take complete control over I/O operation.
The CPU and I/O module communicate via control, test, read, and write commands. The CPU
senses device status through I/O module, and performs data transmission. It waits until the I/O
operation is completed before transmitting another instruction to the I/O module.

 The control command turns on and instructs the specified task to the peripheral device. The
test command checks the status of an I/O module and its peripherals. Data from the peripheral
region may be stored in the I/O module's internal buffer. When the CPU needs information to be
put on the data bus, it issues a read command to the I/O module. The write command instructs the
I/O module to send information to a peripheral.

For memory
mapped I/O

vs I/O
mapped I/O

 Scan Me

182 | Memory and Digital Interfacing

Fig. 5.11: Flowchart of programmed I/O Fig. 5.12: Interrupt driven I/O flow

 In Fig. 5.11, a flowchart demonstrates programmed I/O procedures. The I/O module receives
a read command from the CPU and then sends peripheral status to the processor. If the I/O is
ready for data transmission, the I/O module sends 8 or 16 bits of data to the CPU. The CPU sends
data to memory. The CPU periodically checks the I/O module until the connected peripheral
device sends data.

3. Interrupt driven I/O
 The CPU issues read command to the I/O module and CPU does some other work during
interrupt driven I/O. Whenever an I/O module connected peripheral device is ready for the
operation then peripheral device sends an interrupt signal to the I/O module, the I/O sends it to the
processor [6].

5.4.3 Interfacing keyboard and display devices
 The 8279 integrated circuit is a keyboard/display controller designed by Intel specifically for
integrating keyboard and display devices with 8085/8086/8088 microprocessors.

Computer System Organization | 183

1. Keyboard
 The keyboard features 64 keys, eight return lines, numbered RL0 through
RL7, as well as shift and control/strobe as additional inputs. A keyboard
matrix's columns are formed by the return lines. The keys are debounced
automatically. The keyboard has 2 key lockout and N key rollover modes. In
addition, the keyboard features an 8x8 First-In First-Out (FIFO) RAM.
In scan keyboard mode, the FIFO can store up to eight key codes as well as
status of the shift and control keys. When a FIFO entry is detected, the 8279
generates an interrupt signal. When the keyboard is in sensor matrix mode, the
status of 64 switches is saved in FIFO RAM. The 8279 raises the IRQ
(Interrupt Request) to interrupt the processor if the state of any of the switches
changes.

2. Display
 The output lines on the display are separated into A0 to A3 and B0 to B3.
The output lines are used with scan lines either as eight lines or as two groups
of four lines for a multiplexed display. For example, each LED cathode in a 7-
segment display is connected to the same terminal. The display part includes
16x8 display RAM. The CPU has the capability to read and write to any
location in the display RAM.

UNIT SUMMARY

● Interface is the communication path between two components. Interfacing is of two types,
memory interfacing and IO (input-output) interfacing.

● In memory interfacing, during instruction execution, processors communicate with memory
for read and write operations.

● In IO interfacing, processors communicate with IO devices through IO modules.
● Memory is classified into registers, cache, random access memory (primary memory), read

only memory and secondary memory.
● Caches are classified into two types: “write-through” caches and “writeback” caches. The

“write-through” cache simultaneously modifies the cache and main memory locations.
● In writeback cache, only the cache location is updated and the associated flag bit is marked as

updated; this bit is commonly known as the dirty or modified bit. When this block is
removed, it is stored in memory. Caches that use this method are called “writeback” or
“copying back” caches.

● RAM (Random-access memory) stores data and programs temporarily before they are used.
The set and reset logic is used to store the data in memory cells.

For block
diagram of

8279
controller

 Scan Me

For interfacing of
8279 controller
with keyboard
and display

 Scan Me

184 | Memory and Digital Interfacing

● SRAM is used to design the cache memory. Each SRAM cell circuit requires six transistors.
In SRAM, the data does not need to be refreshed periodically.

● A DRAM is also known as primary or main memory. Each DRAM memory cell is made up
of only one transistor and a capacitor. These memory cells are automatically refreshed at
regular intervals.

● ROM (Read only memory) is a non-volatile memory and data stored permanently. This
memory holds system programs.

● In secondary memory, data can be allocated in contiguous memory blocks and data can be
deleted from contiguous memory blocks. It is non-volatile memory, data can be stored
permanently.

● Principle of locality of reference states that many instructions in specific areas of the
programme are executed repeatedly over time.

● Blocks of main memory can be mapped to cache memory through direct, fully associative,
and set-associative mapping.

● Overall, associative mapping outperforms all others, but its implementation is expensive.
Therefore, set-associative mapping is preferred in common practices.

● The interfacing of processors with peripheral devices can be performed in three ways:
memory/(I/O) mapped I/O, programmed I/O, interrupt-driven I/O.

● The 8279 integrated circuit is a keyboard/display controller designed by Intel specifically for
integrating keyboard and display devices with 8085/8086/8088 microprocessors.

EXERCISES

Multiple Choice Questions
Q5.1 What is RAM?
 (a) Read Access Memory (b) Random Aided Memory
 (c) Read Analog Memory (d) Random Access Memory

Q5.2 Which of the following memory devices is very much similar, mainly in terms of speed,

to the cache memory?
 (a) SRAM (b) DRAM (c) EEPROM (d) Flash Memory

Q5.3 Which of the following is a static, non volatile, and permanent memory in a computer?
 (a) CD ROM (b) CPU (c) ROM (d) RAM

Q5.4 Digital camera uses ______ memory.
 (a) Flash (b) Main (c) Cache (d) Virtual

Q5.5 Identify the smallest and highest storage unit?
 (a) GB and TB (b) GB and MB (c) MB and TB (d) KB and TB

Computer System Organization | 185

Q5.6 _____________ is not a type of secondary memory?
 (a) Solid State Drive (b) Hard Disk
 (c) RAM (d) USB pen drive

Q5.7 Identify false statements:

(1) Programmable read only memory is written once and programmed using a special
PROM programmer.

(2) EPROM memory can be programmed and erased by ultraviolet light.
(3) EEPROM erases data using an electrical voltage.
(4) In flash memory, data can be rewritten.

 (a) 1, 2, 3, and 4 (b) 1, 2, and 3 (c) 1 and 2 (d) none of these

Q5.8 The personal computer main memory consists of _____________ ?
 (a) both RAM and ROM (b) Cache memory
 (c) ROM only (d) RAM only

Q5.9 _________ types of RAM are available?
 (a) Four (b) Three (c) Two (d) Five

Q5.10 The boot sector files of the system are stored in _____________?
 (a) Cache (b) Read Only Memory
 (c) Random Access Memory (d) Register

Q5.11 The devices and memory are interfaced using separate address decoders for ________

I/O.
 (a) Programmed (b) Interrupt driven (c) I/O mapped
 (d) memory mapped

Q5.12 The ___________ integrated circuit is a keyboard/display controller designed by Intel.

 (a) 8085 (b) 8086 (c) 8088 (d)
8279

Q5.13 The 8255 IC features _________ input/output pins to increase the microprocessor

capacity.
 (a) 12 (b) 24 (c) 48 (d) 64

Q5.14 The default rotational latency is __________ times of the rotation time.
 (a) 1/2 (b) 1/4 (c) 2 (d) 4

Q5.15 Which is not a mode of operation for 8255?
 (a) I/O mode (b) BSR mode (c) MSB mode (d) mode 0

186 | Memory and Digital Interfacing

Short and Long Answer Type Questions
Category-I
Q5.1 Why does information stored in dynamic RAM need to be refreshed periodically?
Q5.2 How is interfacing with the keyboard different from interfacing with display?
Q5.3 How do access time, memory cost, and capacity vary for different memory types?
Q5.4 Compare the advantages/disadvantages of set-associative mapping, associative mapping,

and direct mapping.
Q5.5 Each cache memory mapping approach treats main memory addresses as fields. Specify

such fields.
Q5.6 How many transistors are used in SRAM and DRAM memory?
Q5.7 Compare programmed and memory mapped I/O.
Q5.8 What is the difference between RAM and ROM?
Q5.9 Why are computer memory systems built as hierarchies?
Q5.10 Why do DRAMs have a larger storage capacity than SRAMs?
Q5.11 What relation exists between cache capacity and hit rate?
Q5.12 Why does increasing the associativity of a cache generally increase its hit rate?
Q5.13 What is the locality of reference?
Q5.14 Describe two distinctions between spatial locality and temporal locality?
Q5.15 What is the difference between write through and writeback cache?

Category-II
Q5.16 Describe how various memory technologies are used for different applications. How does

ROM differ from flash memory technology, PROM, EPROM, and EEPROM?
Q5.17 List the differences between SRAM and DRAM technologies.
Q5.18 Why does increasing the line length of a cache
 (i) often increase its hit rate?
 (ii) sometimes reduce the performance of the system containing the cache, even if the hit

rate of the cache increases?
 (iii) could decrease the hit rate?
Q5.19 What is the difference between memory interfacing and IO interfacing? Explain the

procedures involved in transferring data from external devices to the CPU.
Q5.20 Describe in detail how to interact with the keyboard and display devices.

Computer System Organization | 187

Q5.21 Describe the direct, associative, and set-associative mapping methods for mapping
memory blocks into cache memory.

Numerical Problems
Q5.22 The 128 blocks of a set-associative memory are divided into four block sets. Each of the

16,384 blocks in the main memory comprises 256 eight-bit words. How many bits are
required for
(i) main memory addressing?
(ii) the “TAG”, “SET”, and “WORD” fields?

[Ans: (i) 22 bits (ii) TAG=9 bits, SET=5 bits, WORD=8 bits]

Q5.23 If a cache is 2-way, 4-way, or 8-way set-associative, and its capacity is 16 KB, how many

sets does it contain if its line length or block size is 128 bytes?
[Ans: (i) 64 (ii) 32 (iii) 16]

Q5.24 A RAM chip with an 8-bit width may store 1024 words (1Kx8). To convert a 1Kx8 RAM

to a 16Kx16 RAM, how many 2x4 decoders with an enable line are required?
[Ans: 5]

Q5.25 A system has 1 GB main memory and uses 32-bit memory addresses. It has an 8M-byte

cache organized in the block-set-associative manner, with 4 blocks per set and 64 bytes
per block. What are the fields of the memory address?

[Ans: Tag=11, Set=15, Word=6]

Q5.26 A main memory consisting of 64K 32-bit words. It also has a 2K word direct-mapped

cache with 16 words per block. Suppose CPU generates the 16-bit Hexadecimal address
ABCD to access a 32-bit word, Specify the cache block number in decimal to which this
word maps.

[Ans: 60]

Q5.27 A disk has 10 data recording surfaces, each with 4096 tracks. If tracks are divided into

128 sectors and each sector contains 256 bytes serially recorded, what is the total
capacity of the disk?

[Ans: Disk capacity = 10x4096x128x256]

188 | Memory and Digital Interfacing

PRACTICAL

Aim: In Gem5 simulator, simulate two instruction set architectures (ISA) such as x86 and
ALPHA. Compare the power consumption and performance of each ISA. Change the
configuration parameters of the various cache and DRAM memory models and determine how the
number of hits and misses affects the power consumption and performance of the system.

Tools: Gem5 Simulator

Theory: The gem5 simulator is composed of the M5 and GEMS simulators.
M5 has different ISAs, different CPU models, and a simulation system that can
be changed. GEMS is a flexible memory system with a number of cache
coherence methods and interconnection models. Gem5 works with ARM,
ALPHA, MIPS, Power, SPARC, and x86, which are all commercial ISAs.

Procedure: Gem5 is a widely used cycle-accurate computer architecture
simulator. It is an open-source project that enables researchers and developers
to explore various computer architectures and system-level designs by
simulating them on a software platform.

 The installation steps for Gem5 can vary depending on the operating
system and the specific version of Gem5 to install. Here are the steps to install
gem5 on Ubuntu 22.04:

STEP 1
Install the dependencies required for building gem5 by running the following
command:

to learn gem5
parameterized

options

Scan Me

For gem5
tutorial

Scan Me

 installation
steps of
gem5

simulator

Scan Me

Computer System Organization | 189

STEP 2
Clone the gem5 repository from GitHub by running the following command:

STEP 3
Enter in the gem5 directory by running the following command

STEP 4
Build gem5 by running the following command

STEP 5
You can test the installation by running command :

The following command line options can be used to explore various cache memory
configurations:

190 | Memory and Digital Interfacing

KNOW MORE

Innovations by Indian
Madhav Desai and his team have developed the AJIT

processor at IIT Bombay with funding support from the
Ministry of Electronics and Information Technology
(MeitY).

 AJIT is a medium-sized processor, which is different
from Intel's Xeon and other laptop processors. It can be
used in a set-top box, as a traffic light driver, as a control

panel for automation systems, or even in robotic systems. When AJIT is made in large quantities,
the price will be too low. It can run one command per clock cycle and can run at clock speeds
between 70 and 120MHz, which is about the same as its competitors on the market [7].

Importance of Meditation in Modern Life Style
 Meditation significantly impacts
Hypothalamus-Pituitary-Adrenal (HPA)
Axis, a brain-body circuit that plays an
important role in body's response to stress
[8]. Meditation boosts energy levels and
increases the immune system, allowing the
body to fight diseases. It causes the
relaxation response and other
psychophysiological processes to occur.
The mind has extraordinary control over
the body. The mental state of a person can
affect physiological functions such as
pulse rate, blood pressure, and production of biochemical molecules, human hormones, and
neurotransmitters. Meditation, in conjunction with other healthy-living practices, has the potential
to be a drug-free treatment for stress-related diseases and depressive mood disorders [9, 10].

 Meditation is a form of spiritual and mental practice. It aids in connecting with love,
happiness, and peace. When meditating, one experiences profound relaxation. Meditation has
many benefits, including a calm mind, increased focus and self-control, high concentration power,
increased productivity, self-confidence, self-awareness, and compassion. It also heals the mind
and body and connects to an inner source of energy.

 Meditation can be traced back to ancient India. Each year, an increasing number of scientists
publish research on the health advantages of meditation. As more research is published, more
individuals are persuaded to meditate. The oldest references to meditation are found in Indian

Computer System Organization | 191

texts from around 1500 B.C. However, India's Vedic texts assert that meditation has existed since
the start of humanity. In addition to India, numerous ancient societies saw meditation as a potent
tool for spiritual growth.

 Meditation can help you maintain physical, mental, and emotional health. Meditation practice
is simple to add into your regular routine. As you practise meditation on a regular basis, you will
notice an inward transformation, so much so that everyone around you will begin to recognise the
positive energy you bring with you.

 Meditation techniques are available in a wide variety today. Choose the option that best
matches your personality and interests. You can ease into a regular meditation practice without
committing to a strict schedule right away. Set aside some time and a quiet place to give
meditation a try. Once you've finished, you can begin arranging the next time you want to do it.
When meditating, it is helpful to set a timer and remove as many potential interruptions as
possible. Everyone has the innate ability to meditate, just like everyone has the innate ability to
walk. It is a matter of practice. Meditation and mindful exercise can help you feel peaceful and
assertive energy in your life.

192 | Memory and Digital Interfacing

REFERENCES AND SUGGESTED READINGS

[1] NPTEL Course by Prof. Indranil Sengupta and Prof. Kamalika Datta, Computer Architecture
and Organization, IIT Kharagpur, 2017.
https://archive.nptel.ac.in/courses/106/105/106105163/ (last accessed: Jan 07, 2023)

[2] Nicholas Carter, Computer Architecture, Schaum's Outline, 2002.
[3] NPTEL Course by Prof. Madhu Mutyam, Computer Architecture, IIT Madras, 2015.

https://archive.nptel.ac.in/courses/106/106/106106134/ (last accessed: Jan 07, 2023)
[4] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian, Computer

organization and embedded systems. McGraw-Hill Higher Education, 2011.
[5] M. Morris Mano, Computer system architecture. Prentice-Hall, Inc., Third edition.

https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
architecture.pdf (last accessed: Jan 07, 2023)

[6] William Stallings, Computer Organization and Architecture Designing for Performance, 10th
edition, 2016.

[7] Welcome AJIT, a ‘Made in India’ Microprocessor, https://www.iitb.ac.in/en/research-
highlight/welcome-ajit-%E2%80%98made-india%E2%80%99-microprocessor (last accessed:
Jan 07, 2023)

[8] Meditation's Impact on Neurochemicals, https://sahajaonline.com/science-health/mental-
health-well-being/neurochemicals/evidence-of-meditations-impact-on-neurotransmitters-
neurohormones/ (last accessed: Jan 07, 2023)

[9] William C. Daube and Charles E. Jakobsche, Biochemical Effects of Meditation: A Literature
Review. Scholarly Undergraduate Research Journal at Clark: Vol. 1, Article 10, 2015.
https://commons.clarku.edu/surj/vol1/iss1/10 (last accessed: Dec 30, 2022)

[10] Adam Koncz, Zsolt Demetrovics & Zsofia K. Takacs, Meditation interventions efficiently
reduce cortisol levels of at-risk samples: a meta-analysis. Health Psychology Review, 15:1,
56-84, 2021. DOI: 10.1080/17437199.2020.1760727.

https://archive.nptel.ac.in/courses/106/105/106105163/
https://archive.nptel.ac.in/courses/106/106/106106134/
https://poojavaishnav.files.wordpress.com/2015/05/mano-m-m-computer-system-
https://www.iitb.ac.in/en/research-
https://sahajaonline.com/science-health/mental-
https://commons.clarku.edu/surj/vol1/iss1/10

Computer System Organization | 193

REFERENCES FOR FURTHER LEARNING
 The concepts of computer system organization will become clearer upon solving the
examples and problems provided in each unit. Practice the Unit-IV examples and reference links
to learn Assembly Programming. At the end of each chapter, there are links for suggested reading
and NPTEL courses. Additional resources for advanced study and numerical problem solving are
as follows:

[1] Carl Hamacher, Computer organization and embedded systems. McGraw Hill Publication,

2002. http://103.62.146.201:8081/jspui/bitstream/1/9025/1/bok.pdf (last accessed: May 30,
2023)

[2] Nicholas Carter, Computer Architecture. Schaum's Outline, 2002.
[3] NPTEL Course by Prof. Smruti Ranjan Sarangi, Advanced Computer Architecture, IIT

Delhi, 2021. https://archive.nptel.ac.in/courses/106/102/106102229/ (last accessed: Jan 07,
2023)

[4] NPTEL Course by Prof. V. Kamakoti, Computer Organization and Architecture, IIT Madras,
2017. https://archive.nptel.ac.in/courses/106/106/106106166/ (last accessed: Jan 07, 2023)

[5] Muhammed Yazar Y, Introduction to NASM.
https://usermanual.wiki/Document/NASM20Manual.1164426225/view (last accessed: May
15, 2023)

As supplemental information, the author has developed video lectures on a few of the book's
topics. The video links are available on the author's website.

http://103.62.146.201:8081/jspui/bitstream/1/9025/1/bok.pdf
https://archive.nptel.ac.in/courses/106/102/106102229/
https://archive.nptel.ac.in/courses/106/106/106106166/
https://usermanual.wiki/Document/NASM20Manual.1164426225/view

194 | Computer System Organization

CO AND PO ATTAINMENT TABLE
Course outcomes (COs) for this course can be mapped with the programme outcomes (POs)

after the completion of the course and a correlation can be made for the attainment of POs to
analyze the gap. After proper analysis of the gap in the attainment of POs necessary measures can
be taken to overcome the gaps.

Table for CO and PO attainment

Course
Outcomes

Attainment of Programme Outcomes
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1

CO-2

CO-3

CO-4

CO-5

The data filled in the above table can be used for gap analysis.

Computer System Organization | 195

INDEX

A
Addressing modes 48, 103, 104, 107,
109, 110
Address sequencing 47
Arithmetic and logic unit (ALU) 114
Arithmetic Instructions 115, 143, 144
Arithmetic logic shift unit 28
Architecture of 8086 microprocessor 111
Arithmetic pipeline 71
Array Processors 83, 84
Assembler 129, 130, 141
Assembler directives 138
Assembly language programs 131

B
Branch Instructions 79, 80, 148
Bus and memory transfers 26
Bus structures 12

C
Cache memory 6, 7, 167
Cache Memory Mapping Techniques 168
Central processing unit 97, 165
Computer Arithmetic 54
 Addition 54
 Subtraction 54
 Multiplication 57, 61
 Division 61
Control memory 47, 49, 52
Control unit 47, 49, 53, 84, 115

D
Data Representation 15
 Fixed point 15
 Floating point 20
Digital Computers 3, 11, 24

E
Error detection code 22, 23
Evaluation of Arithmetic Expressions 150

F
Fixed point representation 66
Floating point arithmetic 67, 69

H
Hardwired control unit 50, 51, 53
Hazard 74, 75, 76, 79

I
Instruction format 101, 102
Instruction pipeline 73, 82
Instruction set architecture 100, 102,
129, 161
 CISC Characteristics 100
 RISC Characteristics 101
Interconnection 9, 10
Interfacing keyboard and display devices
102
Interfacing to Processor 181

196 | Computer System Organization

L
Locality of reference 168
Logical Instructions 146

M
Memory and I/O Interfacing 165
Memory management unit (MMU) 175
Memory-mapped I/O 181
Memory types and characteristics 166
Micro-operations 3, 24, 28, 47, 50
 Arithmetic 29
 Logic 30, 31, 33
 Shift 33, 34, 35
Microprocessor 100, 111
 8085 99
 8086 111
Microprogrammed control 47, 52, 53, 102

O
Overflow detection 18, 20
Operational modes of 8255 179
Output Unit 11

P
Procedures and macros 139, 141
Programmable peripheral interface 179
Programmed I/O 181, 182

R
Random access memory (RAM) 167
Read Only Memory (ROM) 176
Register Transfer 24, 25, 26
RISC pipeline 82, 101

S
Secondary memory 177
Sorting 153
String Manipulation 151

V
Vector processing 83
Von-Neumann architecture 11, 12

Computer System Organization | 197

