
v

 ii

 ALGORITHMS

Authors

Dr. Piyoosh P
Assistant Professor
Department of Computer Science and Engineering
College of Engineering Trivandrum (CET)
Trivandrum, Kerala (India)

Dr. Arnab Sarkar
Associate Professor

Advanced Technology Development Centre
(ATDC)

IIT Kharagpur, West Bengal (India)

Reviewer

Dr. Pratistha Mathur
Professor

Department of Information Technology,
School of Information Technology,

Manipal University Jaipur, Rajasthan (India)

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

v

BOOK AUTHOR DETAILS

Dr. Piyoosh P, Assistant Professor, Department of Computer Science and Engineering, College of Engineering

Trivandrum (CET), Kerala (India)

Email ID: piyooshp@cet.ac.in,

Dr. Arnab Sarkar, Associate Professor, Advanced Technology Development Centre (ATDC), IIT Kharagpur, West

Bengal (India)

Email ID: arnab@atdc.iitkgp.ac.in

BOOK REVIEWER DETAIL

Dr. Pratistha Mathur, Professor, Department of Information Technology, School of Information Technology,

Manipal University Jaipur, Rajasthan (India)

Email ID: pratistha.mathur@jaipur.manipal.edu

BOOK COORDINATOR (S) – English Version

1. Dr. Ramesh Unnikrishnan, Advisor-II, Training and Learning Bureau, All India Council for Technical

Education (AICTE), New Delhi, India

 Email ID: advtlb@aicte-india.org

 Phone Number: 011-29581215

2. Dr. Sunil Luthra, Director, Training and Learning Bureau, All India Council for Technical Education (AICTE),

New Delhi, India

 Email ID: directortlb@aicte-india.org

 Phone Number: 011-29581210

3. Mr. Sanjoy Das, Assistant Director, Training and Learning Bureau, All India Council for Technical Education

(AICTE), New Delhi, India

 Email ID: ad1tlb@aicte-india.org

 Phone Number: 011-29581339

June, 2023

© All India Council for Technical Education (AICTE)

ISBN : 978-81-963773-3-5

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other

means, without permission in writing from the All India Council for Technical Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be obtained from the

Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)

Disclaimer: The website links provided by the author in this book are placed for informational, educational &

reference purpose only. The Publisher do not endorse these website links or the views of the speaker / content of

the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction, only.

mailto:piyooshp@cet.ac.in

 ii

iv

v

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. T. G. Sitharam,

Chairman; Dr. Abhay Jere, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary,

Dr. Ramesh Unnikrishnan, Advisor-II and Dr. Sunil Luthra, Director, Training and

Learning Bureau for their planning to publish the books on Algorithms. We sincerely

acknowledge the valuable contributions of the reviewer of the book Dr. Pratistha Mathur,

Professor, Department of Information Technology, School of Information Technology,

Manipal University Jaipur for making it students’ friendly and giving a better shape in an

artistic manner.

We are very grateful to Dr. Rajesh Devaraj, Senior System Software Engineer, Nvidia

Graphics, Bangalore, for his immense help in designing the problems, finding solutions to

them, and generating examples. We are thankful to the efforts from postgraduate students

at College of Engineering Trivandrum, Rohith L R, Aishwarya Suresh Mohod and

Vishnupriya M V. The book could be possible only with their support in drafting and

drawing of sketches.

This book is an outcome of various suggestions of AICTE members, experts and authors

who shared their opinion and thought to further develop the engineering education in our

country. Acknowledgements are due to the contributors and different workers in this field

whose published books, review articles, papers, photographs, footnotes, references and

other valuable information enriched us at the time of writing the book.

Dr. Piyoosh P

Dr. Arnab Sarkar

 ii

PREFACE

The book is expected to be the first course on this subject and is generally meant for

students who already have some introductory knowledge of programming. The book shall

cover the basic foundations of designing correct and efficient sequential algorithms

through a process of mathematical analysis and logical design steps. Such algorithms can

then be translated into software programs for deployment in practice. In this first course,

analysis involves understanding of an algorithm’s complexity through asymptotic analysis

of its time requirement under worst-case scenarios, through step counting and the

substitution method.

We have organized the book into five units. The first unit deals with fundamentals and is

oriented to help students get a primary idea on the concept of an algorithm and the

importance of designing correct and efficient algorithms. Through a series of small

examples, students can understand how to properly define a problem, measure its inherent

complexity and explore different ways of developing an algorithmic solution to the

problem. The unit explains the concept of data structures as systematic methods for

organizing and accessing data associated with an algorithm. In the second unit, we discuss

sorting techniques. In Computer Science, a systematic study of sorting problems is an

essential step in learning the art of designing efficient algorithms. Also, sorting often helps

reduce the complexity of other problems. We describe techniques for searching elements

in a given data structure, along with mechanisms for insertion and deletion, as part of the

third unit. The fourth unit is dedicated to the discussion on graphs, a data structure for

modeling relationships between objects. We present different types of graphs, various

operations associated with them, along with algorithms for important problems involving

graphs. We discuss strings in the last unit of this book. Strings are commonly considered

as a data type in many programming languages. We discuss the Trie data structure, a unique

tree-based data structure designed specifically for storing and searching strings. The unit

also discusses regular expressions and data compression techniques with strings.

We wish that the material in this book will enable novice student enter into the wonderful

world of algorithms and efficient programming.

Dr. Piyoosh P

Dr. Arnab Sarkar

vi

vii

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop

an outcome based curriculum and incorporate an outcome based assessment in the

education system. By going through outcome based assessments, evaluators will be able to

evaluate whether the students have achieved the outlined standard, specific and measurable

outcomes. With the proper incorporation of outcome based education there will be a

definite commitment to achieve a minimum standard for all learners without giving up at

any level. At the end of the programme running with the aid of outcome based education,

a student will be able to arrive at the following outcomes:

Programme Outcomes (POs) are statements that describe what students are expected

to know and be able to do upon graduating from the program. These relate to the skills,

knowledge, analytical ability, attitude and behaviour that students acquire through the

program. The POs essentially indicate what the students can do from subject-wise

knowledge acquired by them during the program. As such, POs define the professional

profile of an engineering diploma graduate.

National Board of Accreditation (NBA) has defined the following seven POs for an

Engineering diploma graduate:

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic mathematics,

science and engineering fundamentals and engineering specialization to solve the

engineering problems.

PO2. Problem analysis: Identify and analyses well-defined engineering problems using

codified standard methods.

PO3. Design/development of solutions: Design solutions for well-defined technical

problems and assist with the design of systems components or processes to meet

specified needs.

PO4. Engineering Tools, Experimentation and Testing: Apply modern engineering

tools and appropriate technique to conduct standard tests and measurements.

PO5. Engineering practices for society, sustainability and environment: Apply

appropriate technology in context of society, sustainability, environment and ethical

practices.

viii

PO6. Project Management: Use engineering management principles individually, as a

team member or a leader to manage projects and effectively communicate about well-

defined engineering activities.

PO7. Life-long learning: Ability to analyse individual needs and engage in updating in

the context of technological changes.

vii

COURSE OUTCOMES

By the end of the course the students are expected to learn:

CO-1: The backgrounds related to the fundamentals of programming models as well as

important data structures that are necessary towards the understanding of algorithms

discussed in the course.

CO-2: The foundations for designing correct and efficient sequential algorithms through a

process of mathematical analysis and logical design steps.

CO-3: Important algorithmic strategies for sorting, searching, graphs, strings, etc.

CO-4: Mechanisms for analyzing the efficiency of an algorithm by obtaining a measure of

its complexity through asymptotic analysis of the time required for execution under

worst-case scenarios.

CO-5: How to translate designed algorithms into software programs that can be deployed

in practice.

Mapping of Course Outcomes with Programme Outcomes to be done according to

the matrix given below:

Course Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 3 2 1 2 3

CO-2 3 3 3 2 1 2 3

CO-3 3 3 3 2 1 2 3

CO-4 3 3 3 2 1 2 3

CO-5 3 3 3 3 1 2 3

ix

xii

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the

students should be enhanced. Teachers should take a major responsibility for the proper

implementation of OBE. Some of the responsibilities (not limited to) for the teachers in

OBE system may be as follows:

● Within reasonable constraint, they should manoeuvre time to the best advantage of

all students.

● They should assess the students only upon certain defined criterion without

considering any other potential ineligibility to discriminate them.

● They should try to grow the learning abilities of the students to a certain level before

they leave the institute.

● They should try to ensure that all the students are equipped with the quality

knowledge as well as competence after they finish their education.

● They should always encourage the students to develop their ultimate performance

capabilities.

● They should facilitate and encourage group work and team work to consolidate

newer approach.

● They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level
Teacher should

Check

Student should be

able to

Possible Mode of

Assessment

Create

 Students ability to

create
Design or Create Mini project

Evaluate

 Students ability to
justify

Argue or Defend Assignment

Analyse

 Students ability to

distinguish

Differentiate or

Distinguish

Project/Lab

Methodology

Apply

 Students ability to

use information

Operate or

Demonstrate

Technical Presentation/

Demonstration

Understand

 Students ability to

explain the ideas
Explain or Classify Presentation/Seminar

Remember
Students ability to

recall (or remember)
Define or Recall Quiz

x

xi

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the

responsibilities (not limited to) for the students in OBE system are as follows:

● Students should be well aware of each UO before the start of a unit in each and

every course.

● Students should be well aware of each CO before the start of the course.

● Students should be well aware of each PO before the start of the programme.

● Students should think critically and reasonably with proper reflection and action.

● Learning of the students should be connected and integrated with practical and real

life consequences.

● Students should be well aware of their competency at every level of OBE.

xii

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form

CO Course Outcome PO Programme Outcome

UO Unit Outcome Hz Hertz

LHS Left Hand Side RHS Right Hand Side

LIFO Last-In-First-Out FILO First-In-Last-Out

FIFO First-In-First-Out LILO Last-In-Last-Out

BST Binary Search Tree AVL Adelson-Velsky and Landis

BF Balance Factor DAG Directed Acyclic Graph

BFS Breadth-First Search DFS Depth-First Search

FFA Ford-Fulkerson Algorithm PNG Portable Network Graphics

LZW Lempel-Ziv-Welch MPEG Moving Picture Experts Group

JPEG Joint Photographic Experts

Group

MP3 MPEG Audio Layer 3

 List of Symbols

Symbols Description Symbols Description

// To add comments inside algorithms ⋃
Union operation between two sets or

multisets

⋂
Intersection operation between two

sets or multisets
-

Difference operation between two sets

or multisets

Ο Big-Oh notation Ω Omega notation

Θ Theta notation O(1) Constant time

O(log n) Logarithmic time O(n) Linear time

O(n log n Linear logarithmic time O(n
k
) Polynomial time

O(2
n
) Exponential time h(k) Hash value of key k

G Graph V Set of vertices or nodes

E Set of edges C(S) Compressed version of bitstream S

c(u,v) Capacity of an edge (u,v) f(u,v)
Flow value corresponding to an edge

(u,v)

..xiii

LIST OF FIGURES

Unit 1 Fundamentals

 Fig. 1.1 : Stack and its operations

Fig. 1.2 : PUSH operations

Fig. 1.3 : POP operations

Fig. 1.4 : Queue and its basic operations

Fig. 1.5 : Enqueue operations

Fig. 1.6 : Dequeue operations

19

21

22

23

26

27

Unit 2 Sorting

Fig. 2.1 : Mergesort steps 76

Unit 3 Searching

Fig. 3.1 : Steps of Linear Search

Fig. 3.2 : Steps of Binary Search

Fig. 3.3 : Tree Data Structure

Fig. 3.4 : Node of a Tree

Fig. 3.5 : Linked Representation of a Tree

Fig. 3.6 : Binary Tree

Fig. 3.7 : (a) & (b) BST Representations

Fig. 3.8 : BST before deletion

Fig. 3.9 : BST after deletion

Fig. 3.10 : AVL tree insertion (insert 26) operation

Fig. 3.11 : AVL tree after rebalancing

Fig. 3.12 : AVL tree insertion (insert 22) operation

Fig. 3.13 : AVL tree after right-rotation

Fig. 3.14 : AVL tree after left-rotation - balanced form

Fig. 3.15 : AVL tree - LL Rotation

Fig. 3.16 : AVL tree - RR Rotation

Fig. 3.17 : AVL tree - RL Rotation

Fig. 3.18 : AVL tree - LR Rotation

Fig. 3.19 : Usage of a Direct-Address Table

Fig. 3.20 : Usage of a Hash Table

Fig. 3.21 : Collision Resolution by Chaining

100

103

104

106

107

109

110

115

116

117

118

118

119

120

120

121

121

122

124

127

128

xiv

Unit 4 Graphs

Fig. 4.1 : A Directed Graph G

Fig. 4.2 : Weighted undirected graph G

Fig. 4.3 : Weighted Graph G

Fig. 4.4 : Unweighted Graph G

Fig. 4.5 : Weighted undirected graph G

Fig. 4.6 : An undirected graph G and its corresponding adjacency matrix

Fig. 4.7 : An undirected graph G and its adjacency list

165

167

171

177

179

196

197

Unit 5 Strings

Fig. 5.1 : A Trie Data Structure

Fig. 5.2 : Inserting ‘arc’ & ‘art’ into a Trie

Fig. 5.3 : Searching the key “mad” in a Trie

Fig. 5.4 : Deleting the string “arc” from the Trie

Fig. 5.5 : Basic Data Compression Model

Fig. 5.6 : Lossless Compression Techniques

Fig. 5.7 : Run Length Encoding

Fig. 5.8 : LZW compression for ABPAEAFABPABPABPA

Fig. 5.9 : Different Types of Lossy Compression

205

207

209

211

219

220

222

228

229

..xv

CONTENTS

 Foreword

 Acknowledgement

 Preface

 Outcome Based Education

 Course Outcomes

 Guidelines for Teachers

 Guidelines for Students

 Abbreviations and Symbols

 List of Figures

iv

v

vi

vii

ix

x

xi

xii

xiii

Unit 1: Fundamentals

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

1.1 Introduction

1.2 Computation Model

1.2.1 Basic Data Model

1.2.2 Program Model

1.3 Data Structure and Data Abstraction

1.4 Sets and Multisets

1.5 Stacks and Queues

1.5.1 Stack

1.5.2 Queue

1.6 Asymptotic Complexity and Worst-case Analysis

Unit summary

Exercises

Know more

References and suggested readings

1-60

1

1

2

2

2

3

3

4

13

15

18

18

23

28

40

40

56

59

xvi

Unit 2: Sorting

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

2.1 The Sorting Problem

2.2 Bubble Sort

2.2.1 Pseudocode

2.2.2 Example

2.2.3 Complexity Analysis

2.3 Selection Sort

2.3.1 Pseudocode

2.3.2 Example

 2.3.3 Complexity Analysis

2.4 Insertion Sort

2.4.1 Pseudocode

2.4.2 Example

 2.4.3 Complexity Analysis

2.5 Mergesort

2.5.1 Pseudocode

2.5.2 Example

2.5.3 Complexity Analysis

2.6 Quicksort

2.6.1 Pseudocode

2.6.2 Example

 2.6.3 Complexity Analysis

Unit summary

Exercises

Know more

References and suggested readings

Unit 3: Searching

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

3.1 Introduction

3.2 Symbol Tables

3.3 Sequential and Interval Search

3.4 Sequential Search

 61-94

61

61

61

62

62

63

64

64

66

66

66

67

69

69

70

71

73

73

74

75

77

80

80

81

83

85

85

92

93

 95-138

95

95

96

96

96

97

98

98

..xvii

3.4.1 Pseudocode

3.4.2 Example

 3.4.3 Complexity Analysis

3.5 Binary Search

3.5.1 Pseudocode

3.5.2 Example

 3.5.3 Complexity Analysis

3.6 Characteristics of a Tree Data Structure

3.6.1 Linked Representation of a Tree

3.6.2 Searching a Node in a Tree

 3.6.2.1 Pseudocode

3.7 Binary Search Trees

3.7.1 Representing BSTs in Memory

3.7.2 Searching in a given BST

 3.7.2.1 Pseudocode

 3.7.3 Insertion in a BST

 3.7.3.1 Pseudocode

 3.7.4 Deletion from a BST

 3.7.4.1 Pseudocode

 3.7.4.2 Example (Deletion)

3.8 Balanced Search Trees

3.9 Hash Tables

3.9.1 Direct-Address Table

3.9.2 Hash Table

 3.9.2.1 Division Method

 3.9.2.2 Multiplication Method

 3.9.3 Collision Resolution in a Hash Table

 3.9.3.1 Chaining

 3.9.3.2 Open Addressing

3.9.4 Example

Unit summary

Exercises

Know more

References and suggested readings

Unit 4: Graphs

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

99

99

99

101

101

102

102

104

106

108

108

109

110

111

111

112

112

113

113

115

116

123

123

125

126

126

127

127

128

129

130

131

136

137

139-198

139

139

140

140

xviii

4.1 Definitions and Terminologies

4.1.1 Graph

4.1.2 Types of Edges

 4.1.3 Types of Graphs

 4.1.4 Vertex/Node Degree

 4.1.5 Path in a Graph

 4.1.6 Cyclic Graph

 4.1.7 Acyclic Graph

 4.1.8 Directed Acyclic Graph (DAG)

 4.1.9 Connected and Disconnected Graphs

 4.1.10 Forest

 4.1.11 Spanning Trees

4.2 Graph Traversal

4.2.1 Breadth-First Search

 4.2.1.1 Example

 4.2.1.2 Complexity Analysis

4.2.2 Depth-First Search

 4.2.2.1 Example

 4.2.2.2 Complexity Analysis

4.3 Topological Sorting

4.3.1 Pseudocode

4.3.2 Example

 4.3.3 Complexity Analysis

4.4 Minimum Spanning Tree

4.4.1 Prim’s Algorithm

 4.4.1.1 Pseudocode

 4.4.1.2 Example

 4.4.1.3 Complexity Analysis

4.4.2 Kruskal’s algorithm

 4.4.2.1 Pseudocode

 4.4.2.2 Example

 4.4.2.3 Complexity Analysis

4.5 Shortest Path Algorithms

4.6 Shortest Path in an Unweighted Graph

4.6.1 Pseudocode

4.6.2 Example

 4.6.3 Complexity Analysis

4.7 Shortest Path in a Weighted Graph

4.7.1 Pseudocode

4.7.2 Example

141

141

142

143

144

146

147

147

148

148

149

150

151

151

152

155

155

156

162

163

163

164

165

165

166

166

167

169

169

170

171

174

174

175

176

176

177

177

178

179

..xix

4.7.3 Complexity Analysis

4.8 Network Flow

4.8.1 Maximum Flow Problem

4.8.2 Pseudocode

4.8.3 Example

4.8.4 Complexity Analysis

4.8.5 Max-flow Min-cut Theorem

Unit summary

Exercises

Know more

References and suggested readings

Unit 5: Strings

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

5.1 String Sort

5.1.1 Pseudocode

5.1.2 Example

5.1.3 Complexity Analysis

5.2 Tries

5.2.1 Properties of a Trie

5.2.2 Representation of a Trie Node

5.2.3 Example of a Trie

5.2.4 Basic Operations in a Trie

 5.2.4.1 Insertion in a Trie

 5.2.4.1.1 Pseudocode

 5.2.4.1.2 Example

 5.2.4.2 Searching in a Trie

 5.2.4.2.1 Pseudocode

 5.2.4.2.2 Example

 5.2.4.3 Deletion from a Trie

 5.2.4.3.1 Pseudocode

 5.2.4.3.2 Example

 5.2.4.4 Complexity Analysis

5.3 Substring Search

5.3.1 Pseudocode

5.3.2 Example

5.3.3 Complexity Analysis

183

183

184

185

186

190

191

191

191

195

197

199-238

199

199

200

200

201

201

202

203

203

203

204

204

205

205

206

207

207

208

208

209

210

211

211

212

212

213

213

xx

5.4 Regular Expressions

5.5 Elementary Data Compression

5.5.1 Basic Data Compression Model

5.5.2 Data Compression Methods

 5.5.2.1 Lossless Data Compression

 5.5.2.1.1 Run Length Encoding

 5.5.2.1.2 Huffman Encoding

 5.5.2.1.3 LZW (Lempel–Ziv–Welch) Encoding

 5.5.2.2 Lossy Compression

 5.5.2.2.1 Image Compression (JPEG)

 5.5.2.2.2 Video Compression (MPEG)

 5.5.2.2.3 Audio Compression (MP3)

Unit summary

Exercises

Know more

References and suggested readings

References for Further Learning

CO and PO Attainment Table

Index

213

218

219

220

220

221

222

227

229

230

230

230

231

231

237

238

 239

 240

241-242

1

 Fundamentals

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● Concept of algorithms and considerations related to their efficient design

● The data and program model in terms of which algorithms are designed

● Storing and operating on data in an organized fashion through data structures

● Important data structures - sets, multisets, stacks and queues

● Complexity and its usefulness in determining an algorithm’s efficiency

● Mechanisms for measuring time complexity

RATIONALE

This fundamental unit on algorithms helps students to get a primary idea on the concept of an

algorithm and the importance of designing correct and efficient algorithms. Through a series of

small examples, students can understand how to properly define a problem, measure its inherent

complexity and explore different ways of developing an algorithmic solution to the problem. The

unit explains the concept of data structures as systematic methods for organizing and accessing

data associated with an algorithm. It discusses in detail four important data structures namely,

sets, multisets, stacks and queues. Finally, the concept of algorithmic complexity has been

introduced with a focus on time complexity. It discusses how the measure of complexity can be used

to compare the efficiencies of different algorithms for a given problem.

2|Fundamentals

PRE-REQUISITES

Rudimentary knowledge of computer programming

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U1-O1: Define an algorithm

U1-O2: Describe the computation model needed for designing an algorithm

U1-O3: Explain the concepts of data structures and data abstraction

U1-O4: Realize the role of complexity associated with an algorithmic solution

U1-O5: Apply techniques for measuring time complexity order (‘big-Oh’)

Unit-1

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U1-O1 3 3 1 3 1

U1-O2 3 3 1 3 1

U1-O3 3 3 1 3 1

U1-O4 3 3 1 3 1

U1-O5 3 3 1 3 1

1.1 Introduction

In very general terms, a structured mechanism for solving a problem is an algorithm.

When we are talking about writing a computer program to solve a problem, a more

Algorithms |3

precise definition of algorithm would be: a sequence of instructions which processes data

fed at its input and delivers some outputs within a finite number of steps.

In this book, we will try to gain an understanding or insight on the following major aspects

related to algorithm design and analysis:

● How can efficient algorithms be designed for various types of problems?

● How can we measure the efficiency of an algorithm?

● Given an algorithm for a problem, how can its efficiency be compared with other

algorithms for the same problem?

1.2 Computation Model

Algorithms process data presented at its input in order to produce appropriate output(s)

and may be considered to be a generalization of computer programs. Hence, we firstly

need to develop a computation model (or program model) so that algorithms can be

designed in terms of that model. This computation model has two principal components:

a model for storing and representing data (Data Model) and a model sketching the

structured mechanisms for processing data so that a desired function can be effectively

described (Program Model).

1.2.1 Basic Data Model

The basic data holding element in a computer is termed as a variable. Let us consider the

mathematical equation: ‘x + y = 2’. In this equation, x and y are the names of two variables

that hold some values or data. These variables can hold only one value at a given time,

and their values can be changed. The variables x and y in the above equation can hold any

4|Fundamentals

value, like real numbers (0.25, 0.5, etc.) or integer numbers (-2, 0, 1, 2, etc.). To solve the

equation, these variables need to be related to the kind of value (say, only integer

numbers) that they can take. Data type is the term used in computer science to store a

specific type of value for a variable. Examples of data types are char, string, int, float, etc.

Data type determines the type and size of data associated with variables. For example, in

many computers, the char data type takes 1 byte of memory and stores character data,

the int data type takes 2 bytes of memory and stores integer data etc.

Arrays or Indexed Variables: In general, variables are frequently used in algorithms to

store data. Variables can be of different types but capable of holding only one value at a

given time. For example, a variable may hold an integer, real number, or character value.

Arrays may be considered an extended version of variables. Specifically, an array is a

collection of variables of the same type. For example, let us consider an integer variable

“Num” and it can hold only one integer value at a given time. If we want to store multiple

integer values (say, 10 values) as part of “Num”, we can declare it as an array variable like

“Num[1, 2, …, 10]”. This declaration implies that “Num” can hold 10 different values:

Num[1], Num[2], …, Num[10]. We can manipulate the values stored in arrays using the

index of each entry in it. Here, we use the index starting from 1. Example: “Num[5] = 10”.

1.2.2 Program Model

As mentioned above, an algorithm is composed of a finite sequence of instructions. Each

such instruction must be clear and unambiguous. We should also be able to perform each

instruction with a finite effort and within bounded time. An example of an instruction

would be: “a = b + c”; the instruction has a clear meaning: the values in variables ‘b’ and

‘c’ are added and the result is stored/loaded in variable ‘a’. It is also possible to perform

Algorithms |5

this instruction with finite computing and storage resources within bounded time.

Instructions within an algorithm can indicate the repetition of one or more instructions.

However, in spite of such repetition, an algorithm must terminate after executing a finite

number of instructions.

In this book, we will present algorithms using a pseudo-language. This language has been

developed by using C-like instructions (C programming language constructs) and

combining them with informal English statements. A detailed overview of this pseudo-

language is discussed below.

Procedure: Algorithmic descriptions of all functions are encapsulated within a procedural

block (equivalent to functions in C). The template of such a procedure is presented below:

Procedure procedure_name (argument_1, argument_2, …)

 Input argument_1, argument_2, …

 Statement_Num_1

 Statement_Num_2

 …

 Statement_Num_N

 Return Value

End Procedure

The procedural block starts with the keyword “Procedure” and ends with the keyword

“End Procedure”. Each procedure is identified using a unique name and it is mentioned

immediately after the keyword “Procedure”. In general, the purpose of the procedure is

to process an input and produce an output. The input arguments to the procedure are

6|Fundamentals

listed within brackets, after the name of the procedure. In the first line of the procedure,

we explicitly call-out the input arguments using the keyword “Input”. In some cases, there

will be no input to the procedure. In such cases, empty brackets will be present and input

arguments will not be listed using the “Input” keyword.

Inside a procedure block, there are a set of statements describing an algorithm and these

statements are executed in a sequential order from the first statement to the last one.

These statements can be of different types, namely: (i) initialization statements, (ii) print

statements, (iii) assignment statements, (iv) conditional statements, (v) iterative

statements. The output of the procedure needs to be returned to its caller. For this

purpose, the “Return” keyword is used before the actual return value. In some cases, the

procedure may not have any specific value to return; rather, it may simply print an output.

In such a scenario, this “Return” keyword will not be used.

Initialization Statements: Statements of this type are used to declare variables to be used

in an algorithm. A declared variable may also be initialized to a certain value, if needed.

Consider as an example, the statement: “Initialize sum = 0”. This statement declares the

variable “sum” and initializes it to the value “0”.

Print Statements: The print statement is used to output the values of a sequence of one

or more variables on screen. It can also be used to print a string represented as a

sequence of characters within double-quotes. Let us consider three variables a, b and c,

having values 5, “Ram is a” and 10.2, respectively. Then the print statement: “print a b

“good boy” c” will produce the following output on screen: “5 Ram is a good boy 10.2”.

Algorithms |7

Assignment Statements: These are of the form: “LHS = Expression”. Here, LHS (Left Hand

Side) is a placeholder (variable) and RHS (Right Hand Side) is a unary/binary/n-ary

expression consisting of arithmetic/logical operations. An example would be, “A = (B + C)

- (B && C)”.

Conditional Statements: These statements are used to capture conditions which may

evaluate to either “True” or “False”. The format of a simple conditional statement is as

follows:

If condition

 Statement_Num_1

 Statement_Num_2

 …

 Statement_Num_N

End If

Here, condition denotes a logical expression of the form “var1 cond_op var2”, where

‘var1’ and ‘var2’ are variables, and ‘cond_op’ is a conditional operator which can be

either: ‘==’ (equality test), or ‘>’ (greater than), or ‘!=’ (not equal), or ‘<’ (less than), or ‘<=’

(less than or equal to), or ‘>=’ (greater than or equal to).

If the condition evaluates to ‘True’, then the statements placed between “If” and “End

If” keywords are executed; otherwise, not. To support multiple condition checks along

with a distinct set of actions, we have the following construct: “If”, “Else If”, and “Else”.

8|Fundamentals

If condition_1

 Statement_1_cond_1

 Statement_2_cond_1

 …

 Statement_N_cond_1

Else If condition_2

…

Else If condition_n

 Statement_1_cond_n

 Statement_2_cond_n

 …

 Statement_N_cond_n

Else

 Statement_Num_1

 Statement_Num_2

 …

 Statement_Num_N

End If

Iterative Statements: In order to support repetitive execution of a block of statements

under a particular condition, iterative statements are used. One such construct is

“Repeat until” whose syntax is given below:

Repeat until condition

 Statement_Num_1

 Statement_Num_2

Algorithms |9

 …

 Statement_Num_N

End Repeat

As long as the condition is evaluated to ‘True’, the statements placed between the

keywords “Repeat until” and “End Repeat” are executed. Similarly, we have the “For

each” construct to iterate over each element of a ‘list’, from its first to the last element.

For each element in a list

 Statement_Num_1

 Statement_Num_2

 …

 Statement_Num_N

End For

Comment Statements: An algorithm written by one person may be difficult for another

person to read and understand. In order to make the steps of an algorithm more lucid,

liberal use of comment statements is often recommended. In this book, we use the

notation “//” to add comments inside algorithms. If a statement starts with “//”, then

that statement should be interpreted as a comment.

We will now take a few very simple examples to show how algorithms may be presented

using the program model discussed above.

Example-1: Write a procedure to print the list of first 100 odd numbers (starting from 1).

10|Fundamentals

Solution Approach: To print the first 100 odd numbers (beginning from 1), there is a need

to use a variable which will take values from 1 to 200. If the value present in that variable

is not divisible by 2, then that value is an odd number. So, the value in that variable can

be printed as an output. This process needs to be repeated from 1 to 200, to find the first

100 odd numbers. Such a procedure is presented in print_odd_numbers.

🇱1: Procedure print_odd_numbers()

🇱2: Initialize count = 1

🇱3: Repeat until count <= 200

🇱4: If ((count % 2) != 0)

🇱5: Print count

🇱6: End If

🇱7: Increment count by 1

🇱8: End Repeat

🇱9: End Procedure

Explanation: The procedure print_odd_numbers() starts with the keyword “Procedure”

(Line no. 1) and it ends with the keyword “End Procedure” (Line no. 9). Inside this

procedure, a new variable named “count” is initialized to 1 (Line no. 2). To find whether

the value present in “count” is an odd number, modulo division operation is used (Line

no. 4). That is, (count % 2) returns the remainder, when count is divided by 2. If the

remainder is not equal to 0, then it implies that the value in count is an odd number. Such

a conditional check is performed using the “If” statement (Line no. 4) and it ends with

the “End If” keyword (Line no. 6). Then, the value in the “count” variable is printed (Line

no. 5). Since this operation needs to be repeated until the “count” value reaches 200, a

“Repeat until” loop is introduced (Line no. 3) and it ends with the keyword “End Repeat”

Algorithms |11

(Line no. 8). Within this “Repeat until” block, the value of “count” gets incremented by 1

(Line no. 7). The “Repeat until” block gets executed as long as “count” value is less than

or equal to 200 (Line no. 3).

Example-2: Write a procedure to print the largest number among three distinct numbers.

Solution Approach: Let us assume that we need to write a procedure that takes as input

three distinct numbers, say, No_A, No_B, and No_C, and produces the largest among

them as an output. To find the maximum number among these three numbers, there is a

need to compare each number against the other numbers. If No_A is the maximum, then

it must be greater than No_B and No_C. In a similar manner, No_B can be compared

against No_A and No_C, to check whether No_B is the largest number. If both No_A and

No_B are not the largest number, then No_C ultimately becomes the largest number. This

has been captured in the procedure find_max_among_three_numbers().

🇱1: Procedure find_max_among_three_numbers(No_A,No_B,No_C)

🇱2: Input No_A, No_B, No_C

🇱3: If ((No_A > No_B) && (No_A > No_C))

🇱4: Print “No_A is largest”

🇱5: Else If ((No_B > No_A) && (No_B > No_C))

🇱6: Print “No_B is largest”

🇱7: Else

🇱8: Print “No_C is largest”

🇱9: End If

🇱10: End Procedure

Example-3: Write a procedure to print the largest number in a given input array.

12|Fundamentals

Solution Approach: Let us consider an input array (say, random_numbers) with K

numbers in it. To find the largest number among K numbers in random_numbers, initialize

the first element in the array as the largest element (say, P). Compare P against its next

element. If the next element is bigger than P, then store the next element in P. Otherwise,

move to the next element and perform comparison. This process will be repeated until

all elements in the input array are traversed. Finally, P will contain the largest element in

random_numbers. This has been captured in the procedure find_largest_number().

🇱1: Procedure find_largest_number

 (random_numbers[1, 2, …, K])

🇱2: Input random_numbers[1, 2, …, K]

🇱3: // Let P be the largest element

🇱4: Initialize P = random_numbers[1]

🇱5: For each element R in random_numbers[1, 2, …, K]

🇱6: If (R > P)

🇱7: update P = R

🇱8: End If

🇱9: End For

🇱10: Print P

🇱11: End Procedure

Example-4: An array A[1, 2, …, N] contains N distinct numbers. Write a procedure to

search for a given number Num_X, in A. If it is present, print its location in A.

Solution Approach: To find whether the given number Num_X is present in A, compare

Num_X against each element in A. To print the corresponding location in which Num_X is

present, use an index variable (initialized to 1) while traversing through the array. If Num_X

Algorithms |13

is found, then the index of the variable containing Num_X is the required location in A.

The procedure find_a_number() depicts the steps related to the above discussed solution.

🇱1: Procedure find_a_number(A[1, 2, …, N],Num_X)

🇱2: Input A[1, 2, …, N], Num_X

🇱3: Repeat until index <= N

🇱4: If (Num_X == A[index])

🇱5: Print Num_X is present at location

 index in A

🇱6: Return

🇱7: End If

🇱8: Increment index by 1

🇱9: End Repeat

🇱10: Print Num_X is not present in A

🇱11: End Procedure

1.3 Data Structure and Data Abstraction

We now focus towards the notions of ‘data structures’ and ‘data abstraction’. As

discussed earlier, data types determine the type of data that a variable can store, as well

as size of the memory location necessary to store one data element of such type. In many

programming languages, data types are classified into two types: basic and composite

data types. Commonly used basic data types are int, char, float etc. Many programming

languages allow users to define composite data types, which are obtained as a user-

defined collection of basic and/or composite data types. In this book, we use the keyword

‘struct’ to define composite data types. For example, a composite data type named ‘xyz’

14|Fundamentals

which is obtained as a combination of three variables having data types char, int and float

respectively, can be defined as:

struct xyz {

 char var1;

 int var2;

 float var3;

};

A variable, say ‘var4’, of type ‘xyz’, can be declared as, ‘xyz var4’. Content of the variable

‘var1’ of ‘abc’ can be accessed using the ‘.’ (dot) operator: ‘abc.var1’. It may be observed

that composite data types (‘struct’) provide a mechanism for storing data associated with

a procedure in a well-structured fashion. This brings us to the notion of a data structure.

Definition: Data structure is the organized representation of a collection of related data

elements, as well as representation of a set of operations (or functions/procedures) that

can be applied to these data elements. It provides a specific format for storing, accessing,

retrieving, and organising data within an algorithmic procedure.

Data structures are known to be the backbone of computer algorithms as they help the

programmer to efficiently handle data and thus enhance the performance of the

developed procedure. Commonly used data structures include arrays, stacks, queues,

sets, trees, graphs etc. For example, a stack data structure uses Last-In-First-Out (LIFO)

order to arrange data within it. To achieve this ordering, the stack defines two main

operations (or procedures) — PUSH() and POP(). The PUSH() operation inserts an element

onto the stack, while POP() deletes an element from the stack. As an algorithm designer,

Algorithms |15

we simply use these operations or procedures to manage data within a stack, and we

need not look into the detailed implementation of these operations when manipulating

data associated with a stack. This brings us to the concept of data abstraction.

Definition: Data abstraction is the process of providing only essential details of a

procedure and hiding its background implementation from the end user.

In the previous section, we saw that the procedure block is an effective mechanism for

encapsulating and localizing a sequence of statements representing a distinct part of an

algorithm which deals with a specific aspect of its overall behaviour. Let us now look at

procedures from the perspective of data abstraction. Procedures can be viewed as a

generalization of the notion of an operator. As operators transform operands applied to

them and produce a result, procedures process data fed at its input and deliver one or

more outputs. Thus, procedures can be considered a mechanism which allows a designer

to build user-defined operators. However, similar to basic operators, how the data at the

input of a procedure is manipulated to produce the result remains hidden inside the

procedure and is not visible from outside. This therefore, may be considered as a form of

data abstraction.

1.4 Sets and Multisets

Sets and multisets are two important data structures often used in computer algorithms.

Set is a collection of unique elements. On the other hand, a Multiset can contain multiple

instances of the same element. That is, duplicates are not permitted in a Set, however,

they are permitted in a Multiset. For example, [1, 2, 3, 1, 2] is a Multiset, but it is not a

Set. This is because the elements 1 and 2 are repeated twice.

16|Fundamentals

On Sets, algebraic operations like union, intersection and difference are supported. Let

us discuss these standard operations using a few examples.

Union (U): A U B contains unique elements from sets A and B.

[1, 2] U [3, 4] = [1, 2, 3, 4]

[1, 2] U [1, 2] = [1, 2]

Intersection (∩): A ∩ B contains elements that are common in both the sets A and B.

[1, 2] ∩ [3, 4] = [] (empty set)

[1, 2] ∩ [1, 2] = [1, 2]

Difference (-): A - B contains all elements in A that are not present in B.

[1, 2] - [3, 4] = [1, 2]

[1, 2] - [1, 2] = [] (empty set)

Similar to Sets, the above discussed operations are supported in Multisets as well. We

now discuss these operations with respect to Multisets.

Union (U): A U B contains common elements from multisets A and B. In case of repeated

elements, the number of occurrences/instances of an element in (A U B) is equal to the

maximum of the number of occurrences/instances of that element in A and B.

[1, 2, 2, 2, 3] U [1, 1, 2, 4] = [1, 1, 2, 2, 2, 3, 4]

Algorithms |17

Intersection (∩): A ∩ B contains common elements from multisets A and B. In case of

repeated elements, the number of occurrences/instances of an element in (A ∩ B) is equal

to the minimum of the number of instances of that element in A and B.

[1, 2, 2, 2, 3] ∩ [1, 1, 2, 2, 4] = [1, 2, 2]

Difference (-): A - B contains all elements in A that are not part of B. In case of repeated

elements, the number of instances of an element in (A - B) is equal to the difference of

number of instances of that element in A and B. If the difference is 0 or negative, then that

number will not be part of the resulting set.

[1, 2, 2, 2, 3] - [1, 1, 2, 4] = [2, 2, 3]

In programming languages like C++, Java and Python, both set and multiset are valid data

structures. Typically, the following APIs (Application Program Interface) are allowed on

multisets:

● Multiset() : Create an empty multiset

● add (item) : add an item

● isEmpty() : Is the multiset empty?

● size() : number of items in the multiset

For example, we can create a new multiset named A using the procedure Multiset(). After

creation, A = [] is an empty set. To insert an element/item (say, 5), we use A.add(5). Now,

A = [5]. To check the number of items in A, we use A.size(). This will return 1. Typically,

remove(item) operation is not supported, to allow the possibility of collecting items and

iterating through all of them. However, we can still implement remove(item) API to

18|Fundamentals

remove an item from Multiset. To remove the item 5 from Multiset A, we can use

A.remove(5). Subsequently, A becomes an empty set. To confirm this, A.isEmpty() can be

used. Further, the operations such as union, intersection and difference can also be

implemented using APIs and employed to perform operations on Multisets.

1.5 Stacks and Queues

Stack and queue are two simple yet powerful data structures used to store data in an

ordered fashion. These two data structures differ on the mechanisms for arranging and

accessing elements in them.. In this section, we first start with stack and its basic

operations.

1.5.1 Stack

Before going to the details of stack, we first discuss a real world scenario where the

concept of stack is applicable. Consider a scenario in which plates are organised in a

kitchen plate rack stand. Whenever we clean a plate, it is placed on the top of the rack,

above the previously cleaned plate. Here, the plates are placed on the rack as they are

cleaned, and a newly cleaned plate is always kept at the top of the rack. When we require

a plate, we first take the plate that is placed at the top of the rack. The last plate that is

cleaned and placed at the top of the rack is the first one to be used. This ordered way of

arranging items or data is known as Last-In-First-Out (LIFO) or First-In-Last-Out (FILO)

policy.

Algorithms |19

Definition: A simple data structure that follows LIFO or FILO order to store information is

known as ‘Stack’. In a stack, the position at which the data is inserted or deleted is termed

the 'TOP' of the stack.

The stack defines two types of operations. Insertion of an element at the TOP of the stack

is termed "PUSH," and deletion of an element from the TOP of the stack is called "POP."

Generally, a simple array is used to implement stack. Fig. 1.1 depicts a stack and its PUSH

and POP operations.

Fig. 1.1: Stack and its operations

The PUSH and POP operations of a stack are defined as follows.

🇱1: Procedure PUSH(int ITEM)

🇱2: Input Stack_Array[1, 2, …, N], ITEM

🇱3: // Let TOP be the top of the stack

🇱4: If (TOP == N)

🇱5: Print Overflow

20|Fundamentals

🇱6: Else

🇱7: Increment TOP by 1

🇱8: Stack_Array[TOP] = ITEM

🇱9: End If

🇱10: End Procedure

🇱1: Procedure POP()

🇱2: Input Stack_Array[1, 2, …, N]

🇱3: // Let TOP be the top of the stack

🇱4: If (TOP != 0)

🇱5: Decrement TOP by 1

🇱6: Else

🇱7: Print Underflow

🇱8: End If

🇱9: End Procedure

Let us consider a stack (say, Stack_Array) that supports a maximum of N elements within

it. The variable TOP keeps track of the top element of the stack. Initially, the value of TOP

is set to be 0. If a new element (say, ITEM) is inserted onto the Stack_Array, the value of

TOP is incremented by 1, and the ITEM is stored in the Stack_Array[TOP]. This insertion

operation may continue till the value of TOP becomes N. If the value of TOP is N, no

further insertion is possible onto the stack, resulting in an ‘Overflow’ situation. The

deletion of an element from a stack is possible only if the value of TOP is not 0. In this

case, an element is deleted from the stack by decrementing the value of TOP by 1. If the

value of TOP is 0, no further deletion is possible from the stack, resulting in an ‘Underflow’

situation.

Algorithms |21

Example-5: Consider a stack of size 4. Initially, the value of TOP is set to 0. When we

perform the first push operation to insert the data ‘100’ onto the stack, the value of top

is incremented to 1. Now, we perform three more PUSH operations to insert data ‘200’,

‘300’, and ‘400’ respectively onto the stack. Each such PUSH operation increments the

value of TOP by 1, and finally the value of TOP becomes 4 which is equal to the maximum

size of the stack. No further PUSH operation is possible when the stack is full. Fig. 1.2

depicts these PUSH operations.

Fig. 1.2: PUSH operations

Now, we perform a set of POP operations to delete the stack elements. The first POP

operation deletes the top element of the stack by decrementing the value of TOP by 1.

That is, the top element 400 is deleted from the stack by decrementing the value of TOP

to 3. In a similar way, if we perform three consecutive POP operations, the elements 300,

200, and 100 repectively are deleted from the stack by decrementing TOP by 1 on each

such operation. Now, the stack is empty (the value of TOP is 0) and no further POP

operation is possible on the stack. Fig. 1.3 shows these POP operations.

22|Fundamentals

Fig. 1.3: POP operations

Applications of stack:

● Recursion

● Parentheses Checking

● String Reversal

● Backtracking

● Expression Conversion

● Syntax Parsing

● Undo/Redo

● Forward and backward features in web browsers

● Depth First Search Algorithm

● Memory Management

Algorithms |23

1.5.2 Queue

Similar to stack, queue is also a simple data structure used to store data in an ordered

manner. However, the way of arranging and accessing data in a queue is opposite to that

of a stack. Before going to the details of queue, we first discuss a real world scenario

where the concept of queue is applicable.

Consider a line at a movie ticket counter. When you enter the line, you are at the end of

it. The person at the front of the line is the first one to be served and depart the line. You

will be served only when all the people in front of you are served and depart. Here, the

first person who enters the line for a movie ticket is the first one to be served and exit the

line. This ordered way of arranging data is known as the First-In-First-Out (FIFO) or Last-

In-Last-Out (LILO) policy.

Definition: A simple data structure that follows FIFO or LILO order to store information is

known as a "queue". In a queue, insertions are done at one end, termed "REAR", and

deletions are done at the other end, termed "FRONT."

Similar to stack, queue also defines two types of operations. The insertion of an element

into the queue is termed as ENQUEUE and the deletion of an element from the queue is

called DEQUEUE. Generally, a simple array is used to implement the queue. Fig. 1.4

depicts a queue and its ENQUEUE and DEQUEUE operations.

Fig. 1.4: Queue and its basic operations

24|Fundamentals

The ENQUEUE and DEQUEUE operations of a queue are defined as follows.

🇱1 Procedure ENQUEUE(int ITEM)

🇱2: Input Queue_Array[1, 2, …, N], ITEM

🇱3: // Let REAR and FRONT be the rear and front

 positions of a queue

🇱4: If (REAR == N)

🇱5: Print Overflow

🇱6: Else If (FRONT == REAR == 0)

🇱7: FRONT = REAR = 1

🇱8: Queue_Array[REAR] = ITEM

🇱9: Else

🇱10: Increment REAR by 1

🇱11: Queue_Array[REAR] = ITEM

🇱12: End If

🇱13: End Procedure

🇱1: Procedure DEQUEUE()

🇱2: Input Queue_Array[1, 2, …, N]

🇱3: // Let REAR and FRONT be the rear and front

 positions of a queue

🇱4: If (FRONT == REAR == 0)

🇱5: Print Underflow

🇱6: Else If (FRONT == REAR)

🇱7: FRONT = REAR = 0

Algorithms |25

🇱8: Else

🇱9: Increment FRONT by 1

🇱10: End If

🇱11: End Procedure

Let us consider a queue (say, Queue_Array) that supports a maximum of N elements

within it. The variables REAR and FRONT denote the rear and front positions of a queue,

respectively. Initially, the queue is empty and the values of both FRONT and REAR are set

to 0. When the first element (say, ITEM) is added into the queue, both FRONT and REAR

become 1, and the ITEM is stored in the Queue_Array[REAR]. On each new element

insertion, the value of REAR is incremented by 1, and that element is stored in the

Queue_Array[REAR]. This insertion operation may continue till the value of REAR

becomes N. If the value of REAR is N, no further insertion is possible into the queue

resulting in an "Overflow" situation. An element is deleted from a queue through its

FRONT position. The value of FRONT is incremented by 1 on each deletion operation. If

the values of FRONT and REAR are 0, the queue is said to be empty and no further deletion

is possible from the queue. The deletion of an element from an empty queue results in

an ‘Underflow’ situation.

Example-6: Consider a queue of size 4, and is denoted as Queue[1,2,3,4]. Initially, the

queue is empty and the values of both FRONT and REAR are set to 0. When the first data

‘100’ is added into Queue, both FRONT and REAR become 1, and 100 is stored at

Queue[1]. When a new data ‘200’ is added into Queue, the value of REAR is incremented

to 2, and 200 is stored at Queue[2]. Now, we perform two more ENQUEUE operations to

add data ‘300’ and ‘400’ into Queue, and are stored at positions Queue[3] and Queue[4],

26|Fundamentals

respectively. Each such ENQUEUE operation increments the value of REAR by 1, and

finally the value of REAR becomes 4 which is equal to the maximum size of the queue. No

further ENQUEUE operation is possible since the queue is already full. Fig. 1.5 depicts

these ENQUEUE operations.

Fig. 1.5: Enqueue operations

Now, we perform a set of DEQUEUE operations to delete the queue elements. The

DEQUEUE operation is performed at the FRONT position of Queue. Currently, the values

of FRONT and REAR are 1 and 4, respectively. The first DEQUEUE operation deletes the

data stored at Queue[1] by incrementing the value of FRONT to 2. In a similar way, if we

perform three consecutive DEQUEUE operations, the data ‘200’, ‘300’, and ‘400’

Algorithms |27

repectively, are deleted from the queue by incrementing FRONT by 1 on each such

operation. When we delete the last data 400 from Queue[4], the values of FRONT and

REAR become the same, that is, 4, and are then reset to 0. When the values of FRONT and

REAR are 0, the queue is said to be empty and no further DEQUEUE operation is possible

from the queue. Fig. 1.6 shows these DEQUEUE operations.

Fig. 1.6: Dequeue operations

Applications of queue:

● Call center phone systems use queues to hold people calling them in order.

● Handling of interrupts in real-time systems.

● Waiting lists for a single shared resource like CPU, Disk, Printer.

● Song list in a media player.

28|Fundamentals

1.6 Asymptotic Complexity and Worst-case Analysis

Given a problem statement, we can design an algorithm to solve it and then, implement

this algorithm in any programming language of our choice. As part of this process, we try

to find answers to the following questions:

1) Does the designed algorithm satisfy all conditions provided in the problem

statement?

2) Are the algorithm steps documented correctly?

3) Does the implemented program/procedure execute and produce correct results

for all possible input combinations mentioned in the problem statement?

The above questions are really important in the design of an algorithm. After designing

the algorithm, there is a need to evaluate its performance. The performance evaluation

of an algorithm is a process of identifying the amount of resources (such as time and

space) needed to get the final results. So, the efficiency (or complexity) of an algorithm is

described in terms of space and time complexity.

Space complexity: The amount of memory required to complete the execution of an

algorithm.

Time complexity: The amount of time taken to complete the execution of an algorithm.

In most cases, running time is more important than the memory requirement of an

algorithm. Hence in this section, we will focus on the time complexity analysis of an

algorithm. One of the naive approaches to find the running time is to execute it on a

Algorithms |29

computing machine/CPU with specific input data and measure the amount of time taken

for its execution. However, this approach will work correctly for that specific input and

the employed CPU only. Hence, measurement of the exact running time of an algorithm

for a specific input on a given CPU is not very useful. Instead of computing exact running

time, we use asymptotic analysis to measure the order of growth in running time of an

algorithm, with respect to growth in the size of the input.

To illustrate asymptotic analysis, let us consider the following example.

Example-7: Compute the sum of the first n natural numbers: 1 + 2 + 3 + … + n.

Solution Approaches: There can be multiple ways to solve this problem. Let us discuss

two possible ways. Approach-1: Iteratively add each number starting from 1 to n.

Approach-2: Use the formula (n * (n + 1)) / 2 to find the answer directly. Now, we

represent both these approaches using the following procedures:

🇱1: Procedure sum_of_N_numbers_approach_1(n)

🇱2: Input n

🇱3: Initialize variables: sum to 0, count to 1

🇱4: Repeat until count <= n

🇱5: sum = sum + count

🇱6: Increment count by 1

🇱7: End Repeat

🇱8: Print sum

🇱9: End Procedure

30|Fundamentals

🇱1: Procedure sum_of_N_numbers_approach_2(n)

🇱2: Input n

🇱3: Initialize variable sum to 0

🇱4: sum = (n * (n + 1)) / 2

🇱5: Print sum

🇱6: End Procedure

Comparison between Approaches 1 and 2:

In sum_of_N_numbers_approach_2(), a formula has been used to directly compute the

final answer. Here, irrespective of the value of n, the statements within the entire

procedure get executed only once. So, the number of statements/steps executed remains

constant for Approach-2. On the other hand, the number of steps executed by the

procedure sum_of_N_numbers_approach_1() depends on the input value n, since the

repeat loop (in Line no. 4) will be executed n times. Thus, the number of steps executed

is linearly dependent on n for Approach-1. From this comparison, we can conclude that

the running time of Approach-1 is higher than Approach-2.

 The above approach of analyzing the number of steps involved in the computation of

final result forms the basis for asymptotic analysis of an algorithm. Based on the

possibility of the number of steps that will be executed for a specific input instance of an

algorithm, the running time can be categorized as follows:

● Worst-case running time

This is the scenario in which the algorithm takes the highest amount of time for

its execution. So, this provides an upper bound on the execution time of the

algorithm over all possible input combinations.

● Best-case running time

Algorithms |31

This represents the lower bound on the execution time of an algorithm over all

possible combinations of inputs that it can take.

● Average-case running time

This captures the average amount of time taken for the execution of an algorithm.

To illustrate the above discussed concept on the worst-case, average-case, and best-case

running times, let us consider the following algorithm/procedure sequential_search().

This procedure takes a list containing a set of items and an item to be searched

(search_item). It searches for search_item in the list by starting from the first item. If

search_item is found, it prints the location of search_item in the list. Otherwise, it prints

NOT_FOUND.

🇱1: Procedure sequential_search (list[1, 2, …,n],

 search_item)

🇱2: Input list[1, 2, …, n], search_item

🇱3: Initialize count = 0

🇱4: For each item in the list

🇱5: Increment count by 1

🇱6: If item matches with the search_item

🇱7: Print “item’s location”

🇱8: End If

🇱9: End For

🇱10: Print “NOT_FOUND”

🇱11: End Procedure

32|Fundamentals

For the above procedure/algorithm, let us consider the following list as an input: [1, 2, 3,

4, 5, 6, 8, 9, 10].

● The worst-case running time for this algorithm occurs when search_item is 10.

Specifically, sequential_search takes 10 and starts comparison with 1. Since 10

does not match with 1, 10 will be compared with the next item (i.e., 2). This

process will be repeated until 10 is found and this leads to the comparison of all

items in the list. A similar situation occurs when search_item is not present in the

list.

● We know that the search always starts from the first item in the list. So, the best-

case running time occurs when search_item is 1.

● Average-case running time occurs when search_item lies almost in the middle of

the input list. In this scenario, average-case occurs when search_item is 5.

As part of asymptotic analysis, the following notations are used as short forms to describe

running-times:

● Big-Oh notation (O)

○ It measures the worst-case running time of an algorithm

● Big-Omega notation (Ω)

○ It measures the best-case running time of an algorithm

● Big-Theta notation (Θ)

○ It measures the average-case running time of an algorithm

In this book, we will discuss Big-Oh notation since computing the worst-case running time

of an algorithm is an important aspect of algorithm analysis.

Big-Oh notation (O)

Let T(n) be the running time (growth rate) of an algorithm. According to Big-Oh notation,

T(n) is the order of function ‘p’ of ‘n’. That is,

T(n) = O(p(n))

Algorithms |33

This means that T(n) is less than a constant multiple of p(n) for n >= n0. For a given

constant c, the above expression of T(n) can be re-written as follows:

T(n) <= c * p(n), where c > 0

So, as the value of n is increased beyond no, the function p(n) provides an upper bound

(c * p(n)) on the growth rate of T(n). This has been pictorially depicted in the figure below.

For example, let us consider (k1 * n) and (k2 * log n) with k1 < k2. When n starts growing

from 0 to infinity, the values returned by (k1 * n) may be greater than (k2 * log n) since

k1 < k2. However, after reaching a certain value of n (say, n0), the values returned by (k1

* n) will always be greater than (k2 * log n). With respect to the figure shown above, we

can relate T(n) to (k2 * log n) and p(n) to (k1 * n). Here, (k1 * n) overtakes (k2 * log n),

when n reaches n0.

Now, let us apply the concept of Big-Oh to constructs that are described in our

programming model.

● Simple statement

Let us consider the following procedure:

34|Fundamentals

🇱1: Procedure ex_simple_stmt(No_A, No_B, No_C)

🇱2: Input No_A, No_B, No_C

🇱3: No_A = No_B + No_C

🇱4: End Procedure

This is an example of a simple statement (No_A = No_B + No_C) which performs

simple addition. Theoretically, the execution of this operation takes one unit of

time on a computing machine. Then, T(n) = 1. With respect to Big-oh notation, we

can express this relation as follows:

 T(n) <= 1 * 1 where c = 1 and n0 = 0

Comparing the above equation with the general equation of Big-Oh, we can find

that p(n) = 1. Hence, the above relation can be re-written as follows: T(n) = O(1).

● Sequence of statements

Let us consider the following procedure:

🇱1: Procedure ex_sequence_stmt(No_A, No_B, No_C)

🇱2: Input No_A, No_B, No_C

🇱3: No_C = No_A

🇱4: No_A = No_B

🇱5: No_B = No_C

🇱6: Print No_A, No_B, No_C

🇱7: End Procedure

Algorithms |35

The execution time of a sequence of statements is the sum of execution time of

individual statements (excluding the input). In the above procedure, there are four

statements and thus, T(n) = 4. With respect to Big-oh notation, we can express

this relation as follows:

 T(n) <= 4 * 1 where c = 4 and n0 = 0

With respect to the general equation of Big-Oh, we get p(n) = 1. Therefore, T(n) =

O(1).

● Looping statement

Let us consider the procedure sum_of_N_numbers_approach_1() that we have

discussed. In this procedure,

No. of simple statements = 3 (Line nos. 3, 8)

No. of Loops = 1 (Line nos. 4 to 7)

No. of statements within loop = 3 (1 comparison, 2 additions)

Here, the loop will execute for n times.

Thus, T(n) = 3 + (n * 3) = 3n + 3

If n >=4, then 3n + 3 <= 4n. We can say

T(n) <= 4n where c = 4, n0 = 0

T(n) = O(n)

● Nested Looping statement

Let us consider the following procedure that contains nested “for each” loops in

it:

36|Fundamentals

🇱1: Procedure sample_nested_loop(list1[1, 2, …, n],

list2[1, 2, …, n])

🇱2: Input list1[1, 2, …, n], list2[1, 2, …, n]

🇱3: For each item in the list1

🇱4: For each item in the list2

🇱5: Print list1[item]

🇱6: Print list2[item]

🇱7: End For

🇱8: End For

🇱9: End Procedure

In the above procedure, the inner “for each” loop (Line nos. 4 to 7) is executed for

n times for a single execution of the outer “for each” loop (Line nos. 3 to 8). So,

the statements in Line nos. 5 and 6 will be executed for n * n times. Thus, T(n) =

n2.

To satisfy Big-Oh notation, it can be written as,

 T(n) = 1 * n2 where c = 1 and n0 = 0

In the above equation, we can see that p(n) = n2. Thus, T(n) = O(n2).

● Conditional statement

 To discuss this, let us consider the following procedure:

🇱 1: Procedure sample_cond_loop(Num_X, list1[1, 2,

 …, n], list2[1, 2, …, n])

🇱 2: Input Num_X, list1[1, 2, …, n], list2[1,

 2, …, n]

Algorithms |37

🇱3: If (Num_X == 1)

🇱4: Num_X = Num_X + 1

🇱5: Else

🇱6: For each item in the list1

🇱7: For each item in the list2

🇱8: Print list1[item]

🇱9: Print list2[item]

🇱10: End For

🇱11: End For

🇱12: End If

🇱13: End Procedure

In the above procedure, we know that either Line no. 4 or Line nos. 6 to 11 will be

executed, depending on the value of Num_X. The time complexity of “If” and “Else” parts

are O(1) and O(n2), respectively. The maximum of these two is O(n2). Hence, the time

complexity of this entire procedure is O(n2).

Example-8: Compute the time complexity of the following equations:

1. T(n) = 2022

 T(n) <= 2022 * 1, where c = 2022, n0 = 0.

 Hence, T(n) = O(1)

2. T(n) = 5 * n + 12

 T(n) <= 5 * n + 12 <= 6 * n, where c = 6, n0 = 12.

 Hence, T(n) = O(n)

3. T(n) = 20 * n2 + 2

T(n) <= 20 * n2 + 2 <= 21 * n2, where c = 21, n0 = 2.

Hence, T(n) = O(n2)

38|Fundamentals

4. T(n) = 20 * n3 + 2 * n + 5

T(n) <= 20 * n3 + 2 * n + 5 <= 21 * n3, where c = 21, n0 = 5.

Hence, T(n) = O(n3)

Based on Big-Oh notation, we have the following categories of time complexities:

● O(1) Constant time

● O(log n) Logarithmic time

● O(n) Linear time

● O(n log n) Linear Logarithmic time

● O(nk) Polynomial time (where, k > 1)

● O(2n) Exponential time

Further Insights

At the start of this section, we discussed two algorithms/approaches to compute the sum

of n natural numbers. If we apply the concept of Big-Oh notation for these algorithms,

then

 T(n) = O(n) for sum_of_N_numbers_approach_1()

 T(n) = O(1) for sum_of_N_numbers_approach_2()

From the above running times, we can see that approach-2 is more efficient than

approach-1.

Algorithms |39

Growth rate of algorithms

For different types of algorithms, the growth rate for different values of input size n have

been presented in the following table:

n log n n log n n2

1 0 0 1

2 1 2 4

16 4 64 256

256 8 2048 65536

1024 10 10240 1048576

The pictorial representation of the growth rate for different values of input size n is also

presented below:

40|Fundamentals

UNIT SUMMARY

A sound grasp of algorithms is necessary for any computer engineer. This introductory unit

first introduces the concept of algorithms as a well-defined finite sequence of steps for

solving a problem. It discusses the computation model in terms of which algorithms have

been written in this book. It explains the notions of data structures and data abstraction

as mechanisms for organizing data and associated operations in an algorithm. The unit

then goes on to discuss in detail a few important data structures along with illustrative

examples. Finally, the concepts of asymptotic complexity and worst-case analysis of an

algorithm’s efficiency has been dealt with. Mechanisms for measuring an algorithm’s time

complexity and using this measure for comparing the efficiencies of different alternative

strategies for solving a given problem, have also been discussed.

EXERCISES

Multiple Choice Questions

1) What is the value stored in the variables No_A and No_B after the execution of

the following sequence of assignment statements: No_A = 10, No_B = 20, No_C =

2, No_A = No_B % No_C, No_B = No_B / No_C.

a) 10, 20

b) 2, 0

c) 1, 10

d) 0, 10

Algorithms |41

2) What is the value stored in the variables No_A and No_B after the execution of

the following sequence of assignment statements: No_A = 10, No_B = 20, No_C =

0, No_C = No_A, No_A = No_B, No_B = No_C.

a) 10, 20

b) 20, 10

c) 10, 10

d) 20, 20

3) Which one of the following conditions can be used to check whether the given

number (say, Num_X) is an odd number?

a) (Num_X == 2)

b) (Num_X %2 != 0)

c) (Num_X / 2 == 0)

d) None of the above

4) Let us consider the following [1, 2, 3, 4]. This can be called as _____.

a) Set

b) Multiset

c) Both (a) and (b)

d) None of the above

5) Let us consider the following [1, 2, 3, 3, 4]. This can be called as _____

a) Set

b) Multiset

c) Both (a) and (b)

d) None of the above

6) Find A U B, if set A = [1, 3, 5] and set B = [2, 4]

a) [1, 5, 3]

42|Fundamentals

b) [4, 2]

c) [1, 5, 2, 4, 3]

d) [2, 1, 3]

7) Find A - B, if A = [1, 3, 5] and B = [2, 4]

a) [1, 3, 5]

b) [2, 4]

c) [1, 2, 3, 4, 5]

d) [1, 2, 3]

8) Find A - B, if A = [1, 3, 5] and B = [1, 2, 4]

a) [1, 3, 5]

b) [2, 4]

c) [1, 2, 3, 4, 5]

d) [3, 5]

9) Balanced parentheses problem is solved using ___ data structure?

a) Queue

b) Set

c) Array

d) Stack

10) Recursion is implemented using ____ data structure?

a) Multiset

b) Queue

c) Stack

d) Set

11) Which of the following is not an application of stack.

a) Resources like CPU, DISK scheduling

Algorithms |43

b) Recursion

c) String Reversal

d) Parentheses Checking

12) A data structure in which insertion is performed on one side and deletion is

performed only on the other side is known as ____.

a) Stack

b) Set

c) Queue

d) Tree

13) The order followed by a queue is ____.

a) Last-In-First-Out (LIFO)

b) First-In-First-Out (FIFO)

c) First-In-Last-Out (FILO)

d) None of the above

14) Consider a queue which is implemented using an array of size n. The queue is said

to be full if

a) FRONT == REAR + 1

b) FRONT == (REAR + 1) mod n

c) REAR == FRONT

d) REAR == n

15) Let us consider the following procedure sample_iterator_1():

Procedure sample_iterator_1(list[1, 2, …, n])

 Input list[1, 2, …, n]

 For each item in the list

 Print list[item]

44|Fundamentals

 End For

End Procedure

What is the total running time of the sample_iterator_1() procedure?

a) 1

b) 100

c) n

d) n/2

16) Let us consider the following procedure sample_iterator_2():

Procedure sample_iterator_2(list1[1, 2, …, N1],list2

[1, 2, …, N2])

 Input list1[1, 2, …, N1],list2 [1, 2, …, N2]

 For each item in the list1

 Print list1[item]

 End For

End Procedure

What is the total running time of the sample_iterator_2() procedure?

a) N

b) N1

c) N1 + N2

d) N2

17) Let us consider the following procedure sample_iterator_3():

Procedure sample_iterator_3(list1[1, 2,…, N1],list2[1,

 2, …, N2])

 Input list1[1, 2, …, N1], list2[1, 2, …, N2]

Algorithms |45

 For each item in the list1

 For each item in the list2

 Print list1[item]

 Print list2[item]

 End For

 End For

End Procedure

What is the total running time of the sample_iterator_3() procedure?

a) N

b) N1 / N2

c) N1 + N2

d) N1 * N2

18) Let us consider the following procedure sample_iterator_4():

Procedure sample_iterator_4(list1[1, 2,…, N1],list2[1,

 2, …, N2])

 Input list1[1, 2, …, N1], list2[1, 2, …, N2]

 For each item in the list1

 Print list1[item]

 End For

 For each item in the list2

 Print list2[item]

 End For

End Procedure

46|Fundamentals

What is the total running time of the sample_iterator_4() procedure?

a) N

b) N1 / N2

c) N1 + N2

d) N1 * N2

19) Let us consider the following procedure sample_iterator_5():

Procedure sample_iterator_5(list1[1, 2,…, N1],list2[1,

 2, …, N2])

 Input list1[1, 2, …, N1], list2[1, 2, …, N2]

 For each item in the list1

 Print list1[item]

 End For

 For each item in the list1

 For each item in the list2

 Print list1[item]

 Print list2[item]

 End For

 End For

 For each item in the list2

 Print list2[item]

 End For

End Procedure

What is the total running time of the sample_iterator_5() procedure?

Algorithms |47

a) N1 / N2

b) N1 + N2 + (N1 * N2)

c) N1 + N2

d) N1 * N2

20) What is the time-complexity for T(n) = 20 * n2 + 1000 * n + 100000, in Big- Oh

notation?

a) O(100000)

b) O(n2)

c) O(n)

d) O(1)

21) What is the time-complexity for T(n) = n100 + 100100 * n10, in Big-Oh notation?

a) O(100)

b) O(n10)

c) O(n100)

d) O(1)

22) Which one of the following statements is true?

a) O(1) < O(n) < O(log n) < O(n2)

b) O(1) < O(log n) < O(n) < O(n2)

c) O(n) < O(log n) < O(1) < O(n3)

d) O(n) < O(1) < O(n2) < O(log n)

23) Let us consider two algorithms namely, Algo_1 and Algo_2, which are used to

solve the same problem. The time-complexity of Algo_1 and Algo_2 are O(n) and

O(log n), respectively. Which one of the following statements is true?

a) Algo_1 is efficient than Algo_2

b) Algo_2 is efficient than Algo_1

48|Fundamentals

c) Both Algo_1 and Algo_2 are efficient

d) None of them are efficient

Answers of Multiple Choice Questions

1) (d) 2) (b) 3) (b) 4) (c) 5) (b) 6) (c) 7) (a) 8) (d) 9) (d) 10) (c) 11) (a) 12) (c)

 13) (b) 14) (d) 15) (c) 16) (b) 17) (d) 18) (c) 19) (b) 20) (b) 21) (c) 22) (b) 23) (b)

Short and Long Answer Type Questions

1) Write a procedure to print the first 100 numbers (starting from 1) using the

“Repeat until” statement.

2) Write a procedure to print all the elements in a given input array.

3) Write a procedure to print the largest number among two numbers.

4) Write a procedure to check whether the given integer number (say, Num_X) is an

odd number.

5) Write a procedure to print the list of first 100 even numbers (starting from 1).

6) Write a procedure to print the smallest number in a given input array.

7) Let us consider the array Random_Num[1, 2, …, n] with n integer numbers. Write

a procedure to compute and print the average of all n numbers in Random_Num.

Hint: Solution approach is given below.

Procedure compute_avg_of_numbers(Random_Num[1,2,…,n])

 Input Random_Num[1,2,…,n]

 Initialize variables Sum = 0, Avg = 0

 For each element R in Random_Num[1, 2, …, n]

 Sum = Sum + R

Algorithms |49

 End For

 Compute Avg = Sum / n;

 Print Avg

End Procedure

8) Let us consider the array Random_Num[1, 2, …, n] with n integer numbers. Write

a procedure to find the number of occurrences of the given number Num_X in

Random_Num.

Hint: Solution approach is given below.

Procedure find_frequency(Random_Num[1,2,…,n], Num_X)

 Input Random_Num[1,2,…, n], Num_X

 Initialize count = 0

 Repeat until index <= n

 If (Num_X == Random_Num[index])

 Increment count by 1

 End If

 Increment index by 1

 End Repeat

 Print Num_X is present in Random_Num for count

times

End Procedure

9) Consider the following multisets: A = [1, 2, 3, 4], B = [1, 5, 4], C = [1, 2, 3]. Find (A -

B) U C.

10) Consider the following sets: A = [1, 2, 3, 4], B = [1, 5, 4], C = [1, 2, 3]. Find (A - B) U

C.

50|Fundamentals

11) Consider the following sets: A = [1, 2, 3, 4], B = [1, 5, 4], C = [1, 2, 3]. Find (A U B)

∩ C.

12) Let us consider the following procedure multiset_manipulation_1():

 Procedure multiset_manipulation_1()

 A = Multiset()

 A.add(1)

A.add(1)

B = Multiset()

B.add(2)

A = A union B

 For each item R in Multiset A

 If R != 1

 Print item R

 End If

 End For

 End Procedure

What is the output of the above procedure?

13) Let us consider the following procedure Multiset_manipulation_2():

Procedure Multiset_manipulation_2()

 A = Multiset()

 A.add(1)

A.add(2)

Algorithms |51

B = Multiset()

B.add(2)

B.add(3)

C = Multiset()

C = A intersection B

B = A union B

 For each item R in C intersection B

 If R == 1

 R = R - 1

 Print item R

 Else

 R = R + 1

 Print item R

 End If

 End For

 End Procedure

What is the output of the above procedure?

14) What is a stack? Discuss different stack operations with an example.

15) List out various applications of stack.

16) Consider a stack in which the following operations are performed sequentially.

PUSH(10), PUSH(20), PUSH(20), POP, PUSH(10), POP, POP, PUSH(20), POP, POP.

Write the correct order of popped out values.

52|Fundamentals

Hint: Answer – 20, 10, 20, 20, 10

17) Consider a stack that can be used to solve the following problem of parentheses

balancing (() (()) (())). By analysing this problem, find out the maximum number

of parentheses that can be added into the stack at any point in time.

Hint: Answer – 3

18) What is a Queue? What are the different operations that can be performed over

Queue?

19) List out various applications of queue.

20) Consider five people named A, B, C, D and E standing in a queue. A is just standing

behind B and B is the second one in the queue. C is standing between A and E.

Identify the positions of people in the queue. Who is the second last person in the

queue?

Hint: Answer – Queue is D B A C E. The second last person is C.

21) Let us consider the following procedure sample_iterator_6():

Procedure sample_iterator_6(value)

 Input value

 If value is 1

 Return 1

 End If

 Return value * sample_iterator_6(value - 1)

End Procedure

What is the total running time of the sample_iterator_6() procedure?

Algorithms |53

22) Let us consider the following procedure sequential_search() with the input list:

[10, 5, 3, 4, 15, 6, 28, 9, 1]

 Procedure sequential_search()

 Input list, search_item

 Initialize count = 0

 For each item in the list

 Increment count by 1

 If item matches with the search_item

 Print “item’s location”

 End If

 End For

 Print “NOT_FOUND”

 End Procedure

a) The best-case running time occurs when search_item is _____.

 b) The worst-case running time occurs when search_item is _____.

23) Let us consider the following procedure sequential_search(). This procedure takes

a list containing a set of items and an item to be searched (search_item). It

searches for search_item in the list by starting from the first item. If search_item

is found, it will print the location of search_item in the list. Otherwise, it prints

NOT_FOUND.

Procedure sequential_search()

 Input list, search_item

 Initialize count = 0

54|Fundamentals

 For each item in the list

 Increment count by 1

 If item matches with the search_item

 Print “item’s location”

 End If

 End For

 Print “NOT_FOUND”

End Procedure

a) For the sequential_search() procedure, let us consider list = {1, 2, 5, 4, 5, 6,

7}, search_item = 5. For this input, what is the count value?

b) For the sequential_search() procedure, Let us consider list = {1, 2, 5, 4, 5,

6, 7}, search_item = 8. For this input, what is the count value?

c) What are the lowest and highest possible values for count in the

sequential_search() procedure, for the input list containing n (where, n >

1) elements in it?

d) For the sequential_search() procedure, best case and worst case input

combination occurs when search_item is the _____ and _____ element in

the input list, respectively. Assume that the search_item is present in the

input list.

Hint: Answers – a) 3, b) 7, c) 1, n, d) first, last

24) Let us consider the following procedure: binary_search(). This procedure takes a

list containing a set of items which are already sorted in non-decreasing order and

an item be searched (search_item). It searches search_item in the list. If found, it

Algorithms |55

will return the location of search_item in the list. Otherwise, it returns

NOT_FOUND. (Note: floor(x) refers to the largest integer not greater than x).

Procedure binary_search(list[1, 2, …, n], search_item)

 Input list[1, 2, …, n], search_item

 Initialize low = 1, high = n, count = 0

 Repeat until low <= high

Update count by 1

Calculate middle = floor ((low + high) / 2);

If an element at the middle position in list

matches with search_item

 Return middle

End If

If an element at the middle position in list

 is greater than search_item

 Update high = middle - 1

End If

If an element at the middle position in list

 is lesser than search_item

 Update low = middle + 1

End If

 End Repeat

 Return NOT_FOUND

56|Fundamentals

End Procedure

a) For the binary_search() procedure, let us consider list = {1, 2, 3, 4, 5, 6, 7},

search_item = 5. For this input, what is the count value?

b) For the binary_search() procedure, Let us consider list = {1, 2, 3, 4, 5, 6, 7},

search_item = 8. For this input, what is the count value?

c) What are the lowest and highest possible values for count in the

binary_search() procedure, for the input list containing n (where, n > 1)

elements in it?

d) For the binary_search() procedure, if the input list is not sorted, then its

running time becomes _____.

Hint: Answers – a) 3, b) 3, c)1, log n, d) O(n log n)

KNOW MORE

This section talks about a set of additional information that helps the reader to improve

the knowledge on the topics discussed in Unit-1.

Characteristics of an Algorithm:

An algorithm must have the following characteristics:

1) Input: The information that may be passed on to the algorithm externally for

computation is known as input. An algorithm must receive zero or more well-

defined inputs for its proper computation.

2) Output: The result that is generated as part of the computation is known as the

output. An algorithm must generate one or more outputs that correspond to the

expected result(s).

Algorithms |57

3) Finiteness: An algorithm must stop or terminate after a finite number of steps.

4) Definiteness: All the statements or steps in an algorithm must be clear and

unambiguous.

5) Effectiveness: An algorithm must be efficient in terms of both time and memory.

It should be free from any redundant or unnecessary statements or steps that

make it ineffective.

Iterative Vs. Recursive Procedures

Algorithms can be classified into two broad categories – iterative and recursive. Iteration

and recursion are essentially two different ways of repeatedly executing a set of

instructions. Iterative algorithms use loops and conditional statements for such repetitive

instruction execution. For example, given the problem of printing the largest number in a

given input array, the solution presented in ‘Example-3’ above is an instance of an

iterative algorithm.

In comparison, a recursive algorithm expresses repetition by using a procedure which

calls itself on smaller sub-problems. This strategy allows a large problem to be broken

down into smaller pieces and to obtain the solution to a large complex problem in terms

of (often) more easily derivable solutions to smaller sub-problems. As an illustration, let

us see how a simple recursive solution can be obtained for the problem in Example-3.

Example: Write a recursive procedure for printing the largest number in a given input

array.

Solution Approach: A generic recursive solution approach would be as follows. As before,

let us consider an input array (say, random_numbers) with n numbers in it. Now, split the

58|Fundamentals

array into two smaller sub-arrays, say, random_numbers [1…p] and random_numbers

[p+1…n]. Recursively find the maximum elements in random_numbers [1…p] and

random_numbers [p+1…n]. Let them be max1 and max2, respectively. The larger of max1

and max2 is returned as the maximum element of the original array random_numbers

[1…n].

Procedure find_largest_number(random_numbers[1, 2, …, n])

Input random_numbers[1, 2, …, n]

// Let max be the largest element

max = find_max(random_numbers[1, 2, …, n])

Print max

End Procedure

Procedure find_max(random_numbers[1, 2, …, n])

Input random_numbers[1, 2, …, n]

If (n == 1)

Return random_numbers[1]

End If

// Choose any integer p between 1 and n-1

max1 = find_max(random_numbers[1, 2, …, p])

max2 = find_max(random_numbers[p+1, …, n])

If (max1 > max2)

Return max1

Algorithms |59

Else

 Return max2

End If

End Procedure

It may be noted that in the above procedure, we have a choice on the value of ‘p’, and

that all allowable values of ‘p’ give us the correct solution. This ‘choice’ allows us to

explore multiple alternative ways of constructing a recursive solution from constituent

sub-problems, and possibly determine the best alternative in terms of algorithmic

efficiency.

Solution Analysis: The following recurrence relation can be derived from the solution

procedure above:

T(n) = O(1), if n =1

T(n) = T(p) + T(n-p) + O(1), if n > 1

It is easy to see that for this simple problem, T(n) = O(n-1) = O(n), irrespective of our choice

for the value of ‘p’.

REFERENCES AND SUGGESTED READINGS

Syllabus Referred Textbooks:

1. Algorithms, 4th Edition. R. Sedgewick, and K. Wayne. Addison-Wesley, (2011)

2. Introduction to Algorithms, Fourth Edition, Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest and Clifford Stein, The MIT Press, (2022)

60|Fundamentals

3. Introduction to the Theory of Computation, Third Edition, M. Sipser. Course

Technology, Boston, MA, (2013)

4. Design And Analysis Of Algorithms, Third Edition, Gajendra Sharma, Khanna Book

Publishing Company (P) Limited, (2015)

 Other Textbook References:

1. Data Structures and Algorithms Made Easy, Second Edition, Narasimha

Karumanchi, CareerMonk Publications, (2011)

2. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

3. Algorithms: Design and Analysis, Harsh Bhasin, Oxford University Press, (2015)

Dynamic QR Code for Further Reading

2

 Sorting

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● Importance of the sorting problem in Computer Science

● Simple O(n2) sorting algorithms along with analysis on their efficiency

● Design and analysis of two more efficient strategies, Quicksort and Mergesort

● Choice of the right sorting strategy for a given problem at hand

RATIONALE

Sorting, or arranging items in an appropriate order, is a fundamental component towards solving

many larger, more complicated problems. In Computer Science, a systematic study of sorting

problems is an essential step in learning the art of designing efficient algorithms. Also, sorting

often helps reduce the complexity of other problems.

This chapter focuses on the discussion of a few important sorting strategies through the textual

description of these strategies, presentation of their pseudo-codes with running examples and also

analyses of their algorithmic efficiencies.

PRE-REQUISITES

Rudimentary knowledge of computer programming

62 | Sorting

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U2-O1: Describe basic importance of the sorting problem

U2-O2: Describe and distinguish between prominent sorting approaches

U2-O3: Explain the working of various sorting strategies through running

examples

U2-O4: Realize the algorithmic efficiency of different sorting strategies

U2-O5: Apply an appropriate sorting strategy for a given problem at hand

Unit-2

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong
Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U2-O1 3 3 2 2 1

U2-O2 3 3 2 2 1

U2-O3 3 3 3 3 1

U2-O4 3 3 3 3 1

U2-O5 3 3 3 3 1

MA

2.1 The Sorting Problem

Since time immemorial, a lot of human endeavour and effort has gone into sorting or

arranging a given set of items or elements in a particular order. This is because such an

order often provides a more organized or structured view of the set of items and allows

humans to derive further information about the items. In a majority of scenarios, the

sorting order is usually monotonic, either ascending (more accurately non-descending, to

take care of scenarios when the given set has multiple elements having the same value)

or descending (non-ascending).

 Algorithms |63

In Computer Science, the problem of sorting (along with searching) has traditionally

attracted a lot of research, possibly because of the complexity involved in solving it,

despite its relatively straight-forward problem definition. Given an unsorted sequence

(represented as an array) of integer numbers, say A[75, 10, 7, 6, 20, 40, 50, 30, 99, 30], as

input to a sorting algorithm, the sorted output in non-decreasing order becomes: A[6, 7,

10, 20, 30, 30, 40, 50, 75, 99]. We will study five important sorting algorithms in this

chapter, namely Bubble sort, Selection sort, Insertion sort, Mergesort and Quicksort. We

will analyze each of these algorithms, both in terms of their design complexity as well as

algorithmic efficiency.

2.2 Bubble Sort

This was one of the first sorting techniques, which was initially described and investigated

as a computer algorithm in 1956. An overview of the approach is as follows: At the

beginning, for an n element array, the 1st one is compared with the 2nd and swapped if

the 2nd element is found to be smaller. Then, the 2nd element is compared with the 3rd

and possibly swapped, if the 3rd element is found to be smaller. In a similar fashion, all

the elements (excluding the nth (last) element) are compared with their next elements

and possibly exchanged, if required. This concludes the algorithm's first iteration. The

largest element in the array is put in the final (nth) place after the first iteration. In the

second iteration, pairwise comparisons between consecutive elements in the array are

similarly conducted, starting from the 1st element up to the (n-1)th (last but one) element.

When the second iteration completes, the second largest element gets placed in the last

but one ((n-1)th) position of the array. In this way, the entire array gets sorted after n-1

iterations.

64 | Sorting

2.2.1 Pseudocode

🇱1: Procedure Bubble_Sort (IN_LST[1, 2, …, n])

🇱2: Input IN_LST[1, 2, …, n]

🇱3: For each i from 1 to n-1

🇱4: For each j from 1 to n-i

🇱5: If IN_LST[j] > IN_LST[j+1]

🇱6: bbl_val = IN_LST[j]

🇱7: IN_LST[j] = IN_LST[j+1]

🇱8: IN_LST[j+1] = bbl_val

🇱9: End If

🇱10: End For

🇱11: End For

🇱12: End Procedure

2.2.2 Example

Let us consider the input array, A[75, 10, 7, 6, 20, 40, 50, 30, 99, 30]

Iteration-1 (i = 1):

Iteration-1 (j = 1):

Swap A[1] = 75 with A[2] = 10

[10, 75, 7, 6, 20, 40, 50, 30, 99, 30]

 Iteration-2 (j = 2):

Swap A[2] = 75 with A[3] = 7

[10, 7, 75, 6, 20, 40, 50, 30, 99, 30]

 Algorithms |65

.

.

.

 Iteration-n-i (j = 9):

Swap A[9] = 99 with A[10] = 30

[10, 7, 6, 20, 40, 50, 30, 75, 30, 99]

Iteration-2 (i = 2):

Iteration-1 (j = 1):

Swap A[1] = 10 with A[2] = 7

[7, 10, 6, 20, 40, 50, 30, 75, 30, 99]

 Iteration-2 (j = 2):

Swap A[2] = 10 with A[3] = 6

[7, 6, 10, 20, 40, 50, 30, 75, 30, 99]

.

.

.

 Iteration-n-i (j = 8):

Swap A[1] = 75 with A[2] = 30

[7, 6, 10, 20, 40, 30, 50, 30, 75, 99]

.

.

.

Iteration-n-1 (i = 9):

Iteration-n-i (j = 1):

[6, 7, 10, 20, 30, 30, 40, 50, 75, 99]

So, the final sorted output is: A [6, 7, 10, 20, 30, 30, 40, 50, 75, 99].

66 | Sorting

2.2.3 Complexity Analysis

Two "For" loops, one nested inside the other, are used in the procedure above. The outer

iterative loop is repeated n-1 times. On the other hand, the inner iterative loop has been

iterated n-i times for the ith iteration of the outer iterative loop. Each iteration of the inner

iterative loop has a constant time overhead (O(1)). As a result, the algorithm's worst-case

overall time complexity becomes:

T(n) = (n - 1 + n - 2 + … + 1) x O(1) = O(((n - 1) x (n - 2)) / 2) = O(n2)

Bubble sort only needs to carry out O(n) comparisons in the best scenario when the input

array has already been sorted, making its complexity O(n).

2.3 Selection Sort

One of the simplest sorting methods is selection sort. It begins by identifying the least

element in the input array. Then, the strategy swaps this least element with the first. The

second-smallest element is then found and substituted for the first. This process is

repeated until every element in the array is organised in a sorted manner.

2.3.1 Pseudocode

🇱1: Procedure Selection_Sort(IN_ARY[1, 2, …, n])

🇱2: Input IN_ARY[1, 2, …, n]

🇱3: For each i from 1 to (n - 1)

🇱4: //Let IN_ARY[i] be the ith smallest element

🇱5: min_index = i

🇱6: For each j from i to n

 Algorithms |67

🇱7: If IN_ARY[j] < IN_ARY[min_index]

🇱8: min_index = j

🇱9: End If

🇱10: End For

🇱11: //Put ith smallest element in its final

 position

🇱12: swap (IN_ARY[i], IN_ARY[min_index])

🇱13: End For

🇱14: End Procedure

2.3.2 Example

Let us consider the input array, A [75, 10, 7, 6, 20, 40, 50, 30, 99, 30].

(Note: For readability purposes, we print the values of i and min_index at line no. 12 in

the Selection_Sort() procedure presented above.)

Iteration-1 (i = 1):

1st smallest element: 6 (min_index = 4)

Swap A[1] = 75 with A[4] = 6

[6, 10, 7, 75, 20, 40, 50, 30, 99, 30]

Iteration-2 (i = 2):

2nd smallest element: 7 (min_index = 3)

Swap A[2] = 10 with A[3] = 7

[6, 7, 10, 75, 20, 40, 50, 30, 99, 30]

Iteration-3 (i = 3):

3rd smallest element: 10 (min_index = 3)

68 | Sorting

Swap A[3] = 10 with A[3] = 10

[6, 7, 10, 75, 20, 40, 50, 30, 99, 30]

Iteration-4 (i = 4):

4th smallest element: 20 (min_index = 5)

Swap A[4] = 75 with A[5] = 20

[6, 7, 10, 20, 75, 40, 50, 30, 99, 30]

Iteration-5 (i = 5):

5th smallest element: 30 (min_index = 10)

Swap A[5] = 75 with A[10] = 30

[6, 7, 10, 20, 30, 40, 50, 75, 99, 30]

Iteration-6 (i = 6):

6th smallest element: 30 (min_index = 10)

Swap A[6] = 40 with A[10] = 30

[6, 7, 10, 20, 30, 30, 50, 75, 99, 40]

Iteration-7 (i = 7):

7th smallest element: 40 (min_index = 10)

Swap A[7] = 50 with A[10] = 40

[6, 7, 10, 20, 30, 30, 40, 75, 99, 50]

Iteration-8 (i = 8):

8th smallest element: 50 (min_index = 10)

 Algorithms |69

Swap A[8] = 75 with A[10] = 50

[6, 7, 10, 20, 30, 30, 40, 50, 99, 75]

Iteration-9 (i = 9):

9th smallest element: 75 (min_index = 10)

Swap A[9] = 99 with A[10] = 75

[6, 7, 10, 20, 30, 30, 40, 50, 75, 99]

The final sorted array is: A [6, 7, 10, 20, 30, 30, 40, 50, 75, 99]

2.3.3 Complexity Analysis

It can be seen that the procedure Selection_Sort(), contains two “For” loops. Specifically,

the outer “For” loop (in Line no. 3) iterates from i = 1 to (n - 1). The inner “For” loop (in

Line no. 6) iterates from j = i to n. Considering both the “For” loops together, there will

be n iterations, when “i = 1”. Similarly, when “i = 2”, there will be (n - 1) iterations. Finally,

when “i = (n - 1)”, there will be only two iterations. More precisely, the sum of the number

of steps is provided below:

n + (n - 1) + (n - 2) + (n - 3) + … + 3 + 2 = n2 - 1 = O(n2)

It may be noted that selection sort's running time is unaffected by input. That is, it always

requires n2 iterations in all situations (best/average/worst), regardless of whether or not

we have an already sorted input array.

2.4 Insertion Sort

Consider a real-world scenario where we have a set of playing cards in our hands for a

card game. The cards are selected one at a time and inserted into an appropriate position

70 | Sorting

among a set of already sorted cards. The insertion sort algorithm works in a similar

fashion.

The given input array (say, A[1, 2, 3, .., n]) is logically divided into two lists: one sorted and

the other unsorted. Initially, we assume that the first entry (A[1]) of the array is in the

sorted list, and all other elements (A[2, 3, .., n]) are part of the unsorted list. At the first

iteration, the first entry (A[2]) in the unsorted list is selected and compared with the first

one (A[1]) in the sorted list. If A[2] is less than A[1], we swap A[2] with A[1]. Otherwise,

the element A[2] is inserted into the sorted list by adding it on the right side of A[1]. In

the next iteration, we select the first element (A[3]) in the unsorted list and compare it

with the elements of the sorted list (A[1] and A[2]). Then, we insert A[3] at its correct

place in the sorted list. Repeat this procedure until the sorted list contains all of the

unsorted list's components. Insertion sort is considered as an important basic sorting

algorithm due to its effective but straightforward construction.

2.4.1 Pseudocode

🇱1: Procedure Insertion_Sort(IN_ARY[1, 2, …, n])

🇱2: Input IN_ARY[1, 2, …, n]

🇱3: For each i from 1 to n-1

🇱4: Initialize j = i+1

🇱5: Repeat until j>1 and (IN_ARY[j]<IN_ARY[j-1])

🇱6: swap(IN_ARY[j], IN_ARY[j-1])

🇱7: Decrement j by 1

🇱8: End Repeat

🇱9: End For

🇱10: End Procedure

 Algorithms |71

2.4.2 Example

Let us consider the input array, A [75, 10, 7, 6, 20, 40, 50, 30, 99, 30]

Iteration-1 (i = 1):

a) j = 2, Swap A[2] = 10 with A[1] = 75, Decrement j by 1

b) j = 1, condition j > 1 in line no. 5 fails

[10, 75, 7, 6, 20, 40, 50, 30, 99, 30]

Iteration-2 (i = 2):

a) j = 3, Swap A[3] = 7 with A[2] = 75, Decrement j by 1

b) j = 2, Swap A[2] = 7 with A[1] = 10, Decrement j by 1

c) j = 1, condition j > 1 in line no. 5 fails

[7, 10, 75, 6, 20, 40, 50, 30, 99, 30]

Iteration-3 (i = 3):

a) j = 4, Swap A[4] = 6 with A[3] = 75, Decrement j by 1

b) j = 3, Swap A[3] = 6 with A[2] = 10, Decrement j by 1

c) j = 2, Swap A[2] = 6 with A[1] = 7, Decrement j by 1

d) j = 1, condition j > 1 in line no. 5 fails

[6, 7, 10, 75, 20, 40, 50, 30, 99, 30]

Iteration-4 (i = 4):

a) j = 5, Swap A[5] = 20 with A[4] = 75, Decrement j by 1

b) j = 4, condition A[j] < A[j-1] in line no. 5 fails

72 | Sorting

[6, 7, 10, 20, 75, 40, 50, 30, 99, 30]

Iteration-5 (i = 5):

a) j = 6, Swap A[6] = 40 with A[5] = 75, Decrement j by 1

b) j = 5, condition A[j] <A[j-1] in line no. 5 fails

[6, 7, 10, 20, 40, 75, 50, 30, 99, 30]

Iteration-6 (i = 6):

a) j = 7, Swap A[7] = 50 with A[6] = 75, Decrement j by 1

b) j = 6, condition A[j] <A[j-1] in line no. 5 fails

[6, 7, 10, 20, 40, 50, 75, 30, 99, 30]

Iteration-7 (i = 7):

a) j = 8, Swap A[8] = 30 with A[7] = 75, Decrement j by 1

b) j = 7, Swap A[7] = 30 with A[6] = 50, Decrement j by 1

c) j = 6, Swap A[6] = 30 with A[5] = 40, Decrement j by 1

d) j = 5, condition A[j] <A[j-1] in line no. 5 fails

[6, 7, 10, 20, 30, 40, 50, 75, 99, 30]

Iteration-8 (i = 8):

a) j = 9, condition A[j] <A[j-1] in line no. 5 fails

[6, 7, 10, 20, 30, 40, 50, 75, 99, 30]

Iteration-9 (i = 9):

a) j = 10, Swap A[10] = 30 with A[9] = 99, Decrement j by 1

b) j = 9, Swap A[9] = 30 with A[8] = 75, Decrement j by 1

 Algorithms |73

c) j = 8, Swap A[8] = 30 with A[7] = 50, Decrement j by 1

d) j = 7, Swap A[7] = 30 with A[6] = 40, Decrement j by 1

e) j = 6, condition A[j] <A[j-1] in line no. 5 fails

[6, 7, 10, 20, 30, 30, 40, 50, 75, 99]

The final sorted array is: A [6, 7, 10, 20, 30, 30, 40, 50, 75, 99]

2.4.3 Complexity Analysis

The input determines how long insertion sort takes to complete. Whether or not the input

array is already sorted affects how long it takes to run. The outer loop ("For" loop; line 3)

runs for n-1 iterations if the input array has already been sorted, and the inner "Repeat

untill" loop (line 5) does not run at all in the best-case situation. The best-case complexity

is therefore O(n). The complexity increases, though, if the input array is reverse-sorted

already. In this worst-case situation, the outer iterative loop runs (n-1) times. On the other

hand, the inner iterative loop runs (n-2). Therefore, its overall worst-case complexity is

given by:

T(n) = O(1) x (1 + 2 + 3 + … (n - 2) + (n - 1)) = O(n (n - 1) / 2) = O(n2).

In case of an unsorted array, the average complexity case occurs and it is the same as the

complexity for the worst-case (i.e., O(n2)).

2.5 Mergesort

One of the most well-liked and efficient sorting methods is mergesort, which is frequently

selected in practical applications due to its efficient average and worst-case running

times. It sorts the given unsorted array by dividing and conquering. The detailed steps are

described below.

74 | Sorting

The procedure Merge_Sort() sorts the entire array A[1,.., n] by taking two variables, say,

left and right, that point to the leftmost and rightmost indices of A, respectively, along

with the given array A as inputs.

Divide: A[left,.., middle] and A[middle+1,.., right] are two half-sized sub-arrays that are

created from the unsorted array by locating its middle index (middle = (left + right)/2).

Conquer: The sub-arrays A[left,.., middle] and A[middle+1,.., right] are sorted recursively

using the procedures Merge_Sort(A, left, middle) and Merge_Sort(A, middle+1, right),

respectively. When a sub-array of size one is encountered, the recursive call will

terminate.

Combine: The procedure Merge(A, left, middle, right) shown inside Merge_Sort() is used

to combine the sub-arrays into the final sorted array.

2.5.1 Pseudocode

🇱1: Procedure Merge_Sort(A[1, 2, …, n], left, right)

🇱2: Input A[1, 2, …, n], left, right

🇱3: If left > = right

🇱4: return

🇱5: End If

🇱6: middle = (left + right)/2

🇱7: Merge_Sort(A, left, middle)

🇱8: Merge_Sort(A, middle+1, right)

🇱9: Merge(A, left, middle, right)

🇱10: End Procedure

 Algorithms |75

🇱1: Procedure Merge(A[1, 2, …, n], left, middle, right)

🇱2: Input A[1, 2, …, n], left, middle, right

🇱3: Initialize i = left, j = middle + 1

🇱4: For each k from left to right

🇱5: // Declare a temporary array B[1,2, …, n]

 to hold the elements of A

🇱6: B[k] = A[k]

🇱7: End For

🇱8: For each k from left to right

🇱9: If (i > middle)

🇱10: A[k] = B[j++]

🇱11: Else If (j > right)

🇱12: A[k] = B[i++]

🇱13: Else If (B[j] < B[i])

🇱14: A[k] = B[j++]

🇱15: Else

🇱16: A[k] = B[i++]

🇱17: End If

🇱18: End For

🇱19: End Procedure

2.5.2 Example

Let us consider the input array, A [75, 10, 7, 6, 20, 40, 50, 30, 99, 30]. Fig. 2.1 depicts the

steps for sorting the given input array using the mergesort. Here, the number mentioned

inside the “circle” denotes the order in which the steps are processed.

76 | Sorting

Fig. 2.1: Mergesort steps

Initially, we pass the array A along with left = 1, and right = 10 as inputs to the procedure

Merge_Sort(). The input array A is then split into two equal-sized sub-arrays using the

formula: middle = (1 + 10) / 2 = 5. The sub-arrays [75,.., 20] and [40,.., 30] are then passed

onto the recursive procedural calls Merge_Sort(A, 1, 5) and Merge_Sort(A, 6, 10),

respectively, which again divides each of these arrays into smaller sub-arrays. The

recursive function terminates when it encounters a sub-array of size 1 (base condition).

 Algorithms |77

That is, no further division is possible from that sub-array. For example, steps 5 and 6

indicate the generation of two sub-arrays of size 1, that is, [75] and [20]. The algorithm

then combines these two sub-arrays and produces a sorted array [10, 75] using the

procedure Merge(). We then backtrack and combine the sub-array [7] with this array [10,

75] to generate a new sorted array [7, 10, 75]. These processes of recursive calling and

merging are repeated until we generate the final sorted array [6, 7, 10, 20, 30, 30, 40, 50,

75, 99].

2.5.3 Complexity Analysis

Recurrence relations are used to compute the running time of recursive algorithms. A

recurrence relation is typically an equation that expresses the value of a function on

smaller inputs. For example, let T(n) be the worst-case time complexity of the mergesort

on an input array of size n. When n = 1, that is, the input array contains only one element,

mergesort takes constant time. The complexity of mergesort is evaluated when n > 1

using the divide-and-conquer approach that was previously discussed. This can be shown

by the recurrence relation below:

T(n) = O(1) if n = 1

T(n) = 2T(n/2) + O(n) if n > 1

Divide: This step requires constant time since this step just finds the middle of the sub-

array.

Conquer: In the conquer stage, two sub-arrays of almost identical size n/2 are sorted

recursively. Each such sub-array consumes T(n/2) time, leading to an overall time

complexity of 2T(n/2).

78 | Sorting

Combine: The combine step uses the Merge() procedure that takes O(n) time.

When we add the time complexities of divide, conquer and merge parts, the time

complexity of merge sort becomes:

T(n) = O(1) + 2T(n/2) + O(n)

= 2T(n/2) + O(n)

= O(n log n)

It should be noted that input has no bearing on how long mergesort takes to complete.

This means that in all scenarios (best/average/worst), regardless of whether the input

array is already sorted, it always takes O(n log n) time. This is due to the fact that the

mergesort always splits the input array into equal-sized halves and then combines them

in O(n) time.

Solving Recurrences:

Typically, recurrence relations can be solved using methods like the substitution,

recursion tree, and master methods. In this section, we will look at the substitution

method. It consists of two steps: (i) Make an educated guess about the final solution; (ii)

employ mathematical induction to prove that the solution actually works. This method

can be used to compute lower and upper bounds on recurrences. Let us compute an

upper bound on the recurrence corresponding to mergesort as an example.

T(n) = 2T(n/2) + O(n) (1)

Since the input array is partitioned into two halves and O(n) computations are performed

in each iteration, we can make a rough guess for T(n) as O(n log n). In the substitution

method, we need to show that T(n) ≤ C n log n for the constant C > 0. Let us first

 Algorithms |79

demonstrate that this bound holds good for all positive values of M < n. Specifically, we

choose M = n / 2. Substituting this for the recurrence results in:

T(n/2) ≤ C n/2 log n/2

Applying the above in equation(1),

T(n) ≤ 2 (C n/2 log n/2) + n

T(n) ≤ C n log n/2 + n

T(n) = C n log n - C n log 2 + n

T(n) = C n log n - C n + n

T(n) ≤ C n log n

The above step holds as long as C ≥1. We must now demonstrate that the above solution

holds true for the boundary conditions using mathematical induction. To identify the

boundary values, let us employ the asymptotic analysis, i.e., T(n) ≤ C n log n for n ≥ n0,

where n0 is a constant. Setting n0 to 1 leads to T(1) ≤ C 1 log 1 = 0, which contradicts the

recurrence relation T(1) = 1 if n = 1. So, let n0 = 2.

T(n) = 2T(n/2) + O(n)

T(2) = 2 T(1) + 2 = 4.

So, we can set n0 = 2 as the base case of inductive proof. To complete the proof, we need

to choose C, which is large enough such that T(2) ≤ C 2 log 2. It can be seen that any choice

of C ≥ 2 satisfies the base case n0 = 2 to hold (i.e., 4 ≤ 2 * 2 log 2; 4 ≤ 4. Note: Here, the

80 | Sorting

base for the logarithm is 2 since the mergesort splits the input problem into two halves).

As a result, the mergesort algorithm's worst-case complexity is T(n) = O(n log n).

2.6 Quicksort

This is one of the popular sorting techniques and it is often preferred in real-world

applications due to its efficient average-case running time. It uses a divide-and-conquer

strategy to sort the input unsorted array A[p,..., r]:

Divide: The input A[p, …, r] is partitioned into sub-arrays A[p, …, q-1] and A[q+1, …, r] such

that elements in, (i) A[p, …, q-1] are less than or equal to A[q], (ii) A[q+1, …, r] are greater

than A[q]. This partitioning has been explained using the procedure Partition().

Conquer: Recursively invoking the Quick_Sort() procedure will sort the sub-arrays A[p, ...,

q-1] and A[q+1, ..., r].

Combine: The sub-arrays can be joined to create the final sorted array because they are

already sorted.

2.6.1 Pseudocode

🇱1: Procedure Quick_Sort(IN_LST[1, 2, …, n], p, r)

🇱2: Input IN_LST[1, 2, …, n], p, r

🇱3: If p < r

🇱4: q = Partition(IN_LST, p, r)

🇱5: Quick_Sort(IN_LST, p, q-1)

🇱6: Quick_Sort(IN_LST, q+1, r)

🇱7: End If

🇱8: End Procedure

 Algorithms |81

🇱1: Procedure Partition(IN_LST[1, 2, …, n], p, r)

🇱2: Input IN_LST[1, 2, …, n], p , r

🇱3: Initialize pivot = IN_LST[r]

🇱4: Initialize i = p - 1

🇱5: For each j from p to r - 1

🇱6: If IN_LST[j] <= pivot

🇱7: i = i + 1

🇱8: swap (IN_LST[i], IN_LST[j])

🇱9: End If

🇱10: End For

🇱11: swap (IN_LST[i+1], IN_LST[r])

🇱12: Return i + 1

🇱13: End Procedure

2.6.2 Example

Let us consider the input array, A [75, 10, 7, 6, 20, 40, 50, 30, 99, 30].

Here, p = 1, r = 10. Then, Quick_Sort(A[75, 10, …, 30], 1, 10). Since 1 < 10, q = Partition(A,

1, 10), pivot = A[r] = 30, i = p - 1 = 0.

Iteration-1 (j = 1, i = 0):

A[1] = 75 is not less than the pivot 30.

[75, 10, 7, 6, 20, 40, 50, 30, 99, 30]

Iteration-2 (j = 2, i = 0):

A[2] = 10 <= 30.

82 | Sorting

i = i + 1 = 1. Swap A[1] with A[2].

[10, 75, 7, 6, 20, 40, 50, 30, 99, 30]

Iteration-3 (j = 3, i = 1):

A[3] = 7 <= 30.

i = i + 1 = 2. Swap A[2] with A[3].

[10, 7, 75, 6, 20, 40, 50, 30, 99, 30]

Iteration-4 (j = 4, i = 2):

A[4] = 6 <= 30.

i = i + 1 = 3. Swap A[3] with A[4].

[10, 7, 6, 75, 20, 40, 50, 30, 99, 30]

Iteration-5 (j = 5, i = 3):

A[5] = 20 <= 30.

i = i + 1 = 4. Swap A[4] with A[5].

[10, 7, 6, 20, 75, 40, 50, 30, 99, 30]

Iteration-6 (j = 6, i = 4):

A[6] = 40 is not less than 30.

[10, 7, 6, 20, 75, 40, 50, 30, 99, 30]

Iteration-7 (j = 7, i = 4):

A[7] = 50 is not less than 30.

[10, 7, 6, 20, 75, 40, 50, 30, 99, 30]

Iteration-8 (j = 8, i = 4):

A[8] = 30 <= 30.

i = i + 1 = 5. Swap A[5] with A[8].

[10, 7, 6, 20, 30, 40, 50, 75, 99, 30]

Iteration-9 (j = 9, i = 5):

 Algorithms |83

A[9] = 99 is not less than 30.

[10, 7, 6, 20, 30, 40, 50, 75, 99, 30]

After Iteration-9 (i = 5):

i = i + 1 = 6. Swap A[6] with A[10].

[10, 7, 6, 20, 30, 30, 50, 75, 99, 40]. Return value = 6. Then, q = 6.

This will lead to the following splits:

Quick_Sort(A[10, 7, …, 40], 1, 5)

Quick_Sort(A[10, 7, …, 40], 7, 10)

Now, let us consider the first split Quick_Sort(A[10, 7, …, 40], 1, 5). Here, p = 1, r = 5, pivot

= A[5] = 30. It may be noted that A[j] <= pivot, for all values of j (1 to 4), since this sub-

array has already been in a sorted order. Hence, the return value i = 0 from Partition(A[10,

7, …, 40], 1, 5). Thus, there will be no more recursive calls from the first split.

Let us consider the second split Quick_Sort(A[10, 7, …, 40], 7, 10). Here, p = 7, r = 10, pivot

= A[10] = 40. After the execution of Partition(A[10, 7, …, 40], 7, 10), the resulting array:

[10, 7, 6, 20, 30, 30, 40, 75, 99, 50] with the return value 8. In the next invocation of

Quick_Sort(A[10, 7, …, 50], 9, 10), the pivot 50 gets swapped with 75 and results in [10, 7,

6, 20, 30, 30, 40, 50, 99, 75]. It takes one more invocation of Quick_Sort() to get the final

sorted array: [6, 7, 10, 20, 30, 30, 40, 50, 75, 99].

2.6.3 Complexity Analysis

Let us first examine the running time of the Partition() procedure, which is used internally

by the Quick Sort() procedure. For the given array of size n, Partition() chooses a pivot

element and compares it against all the remaining elements. Finally, the input array is

partitioned into two parts: sub-array containing elements that are less than or equal to

84 | Sorting

the pivot element and sub-array with the elements greater than the pivot. As a result, the

running time of Partition() is O(n). Now, let us analyze the worst / best / average-case

behaviors of Quick_Sort().

● Worst-case behavior

This situation occurs when the Partition() procedure partitions the input array

with size n into one sub-array of size (n-1) and another sub-array with 0 elements.

Further, let us assume that such an imbalance partitioning occurs at every

recursive call. Then,

T(n) = T(n -1) + T(0) + O(n)

T(n) = T(n-1) + O(n)

Here, T(0) = 1 since there is no element to sort. If we solve the above recurrence

relation using the substitution method, then it will result in O(n2). In particular,

adding up the number of steps taken at each stage of the recursion yields an

arithmetic series: (n + (n-1) + (n-2) + … + 1). So, T(n) = O(n2).

● Best-case behavior

This scenario occurs when the Partition() procedure always splits the input array

of size n into two sub-arrays of size (almost) equal to (n/2). Then,

T(n) = 2T(n/2) + O(n) = O(n log n).

● Average-case behavior

This is similar to the best-case scenario. If the partition always produces two sub-

arrays with a total number of elements greater than zero in each, then T(n)

becomes O(n log n).

 Algorithms |85

Unit Summary

For an input array of ղ elements, the table below summarises the best, average, and

worst-case running times for the sorting algorithms covered in this chapter:

Sorting Approach Best Average Worst

Bubble Ω(ղ) Θ(ղ2) O(ղ2)

Selection Ω(ղ2) Θ(ղ2) O(ղ2)

Insertion Ω(ղ) Θ(ղ2) O(ղ2)

Merge Ω(ղ log ղ) Θ(ղ log ղ) O(ղ log ղ)

Quick Ω(ղ log ղ) Θ(ղ log ղ) O(ղ2)

EXERCISES

Multiple Choice Questions

1) What are the best, average, worst-case complexities of bubble sort, for an input

array with k elements?

a) k, k2, k2

b) k, k log k, k2

c) k, k2, k3

d) k2, k2, k3

86 | Sorting

2) In the following options, what is true about bubble sort?

a) O(n2) for a sorted input.

b) O(n2) for a reverse sorted input.

c) Always consumes O(n2) for sorting an input array.

d) Always consumes O(n log n) for sorting an input array.

3) What are the best, average, worst-case complexities of selection sort, for an input

array with k elements?

a) k, k2, k3

b) k, k, k

c) k2, k2, k2

d) k2, k2, k3

4) Let us consider the input array [10, 10, 10, 10, 10]. How many iterations (including

both inner and outer loops) will be taken by the selection sort algorithm to

produce the final sorted output (in non-decreasing order)?

a) 10

b) 12

c) 14

d) 25

5) Let us consider the input array [50, 40, 30, 20, 10]. How many iterations (including

both inner and outer loops) will be taken by the selection sort algorithm to

produce the final sorted output (in non-decreasing order)?

a) 0

b) 1

c) 25

d) 15

 Algorithms |87

6) Let us consider the input array [100, 120, 140, 160, 180]. How many iterations

(including both inner and outer loops) will be taken by the selection sort algorithm

to produce the final sorted output (in non-decreasing order)?

a) 0

b) 1

c) 15

d) 25

7) In the following options, what is true about the selection sort?

a) O(n) for a sorted input.

b) O(log n) for a reverse sorted input.

c) Always consumes O(n2) for sorting an input array.

d) Always consumes O(n log n) for sorting an input array.

8) Suppose the given input array is sorted or nearly sorted. _______ sort is the best

algorithm to sort this given input.

a) Selection

b) Quick

c) Insertion

d) Merge

9) For insertion sort, the best, average, worst-case complexities are __, __, __, for an

input array with f elements?

a) f log f, f2, f2

b) f, f2, f2

c) f log f, f2, f

d) f log f, f log f, f log f

10) What is true about insertion sort in the following options?

88 | Sorting

a) O(n2) for a sorted input.

b) O(n2) for a reverse sorted input.

c) Always consumes O(n2) for sorting an input array.

d) Always consumes O(n log n) for sorting an input array.

11) Let us consider the input array [100, 120, 140, 160, 180]. How many iterations

(including both inner and outer loops) will be taken by insertion sort to produce

final sorted output (in non-decreasing order)?

a) 5

b) 4

c) 15

d) 10

12) What are the best, average, worst-case complexities of mergesort, for an input

array with 〆 elements?

a) 〆 log 〆, 〆2, 〆2

b) 〆2, 〆2, 〆2

c) 〆 log 〆, 〆2, 〆

d) 〆 log 〆, 〆 log 〆, 〆 log 〆

13) In the following options, what is true about the mergesort algorithm?

a) O(n2) for a sorted input.

b) O(n2) for a reverse sorted input.

c) Always consumes O(n2) for sorting an input array.

d) Always consumes O(n log n) for sorting an input array.

 Algorithms |89

14) What are the best, average, worst-case running time complexities of quicksort,

for an input array with Ɣ elements?

a) Ɣ log Ɣ, Ɣ2, Ɣ2

b) Ɣ2, Ɣ2, Ɣ2

c) Ɣ log Ɣ, Ɣ2, Ɣ

d) Ɣ log Ɣ, Ɣ log Ɣ, Ɣ2

15) Let us consider the input array [10, 10, 10, 10, 10]. Apply the Partition procedure

(with p = 1, r = 5) in the quicksort algorithm to produce the two partitions of the

input array. How many elements are there in the first and second partitions?

a) 4, 0

b) 2, 3

c) 4, 2

d) 0, 3

16) Let us consider the input array [50, 40, 30, 20, 10]. Apply the Partition procedure

(with p = 1, r = 5) in the quicksort algorithm to produce the two partitions of the

input array. How many elements are there in the first and second partitions?

a) 4, 0

b) 2, 3

c) 4, 2

d) 0, 4

17) Let us consider the input array [100, 120, 140, 160, 180]. Apply the Partition

procedure (with p = 1, r = 5) in the quicksort algorithm to produce the two

partitions of the input array. How many elements are there in the first and second

partitions?

a) 4, 0

90 | Sorting

b) 2, 3

c) 4, 2

d) 0, 3

18) In the following options, what is true about the quicksort algorithm?

a) If the input is sorted already, O(n) time to sort it.

b) Always consumes O(n2) to sort the input array.

c) Always consumes O(n log n) to sort the input array.

d) Consumes O(n log n) in best / average scenario; On the other hand, O(n2)

in worst-case.

Answers of Multiple Choice Questions (MCQ)

(Note: α refers to a. Similarly, β → b, γ → c, ζ → d)

(1) α, (3) γ, (5) ζ, (7) γ, (9) β, (11) β, (13) ζ, (15) α, (17) α

(2) β, (4) γ, (6) γ, (8) γ, (10) β, (12) ζ, (14) ζ, (16) ζ, (18) ζ

Short and Long Answer Type Questions

1) Explain the stepwise procedure of bubble sort algorithm. What are the merits and

demerits of bubble sort.

2) Illustrate the steps of sorting the given input array [50, 40, 30, 20, 10] using bubble

sort.

3) Consider the input array [21, 13, 11, 16, 3]. On this input, apply the selection sort

algorithm and show the step by step execution (considering the outer loop of

selection sort).

Hint:

Iteration-1: [3, 13, 11, 16, 21]

 Algorithms |91

Iteration-2: [3, 11, 13, 16, 21]

Iteration-3: [3, 11, 13, 16, 21]

Iteration-4: [3, 11, 13, 16, 21]

4) Write the selection sort procedure to sort a given array in descending order.

Hint: Solution approach is given below.

Procedure Selection_Sort(γ[1, 2, …, x])

Input γ[1, 2, …, x]

For each z from 1 to (x - 1)

//Let γ[z] be the zth largest element

maximum_index = z

For each j from z to x

If γ[j] > γ[maximum_index]

maximum_index = j

End If

End For

// Put the zth largest element in its final

position

swap (γ[z], γ[maximum_index])

End For

End Procedure

5) Explain the stepwise procedure of insertion sort algorithm.

6) Consider the input array [50, 40, 30, 20, 10]. Illustrate the steps of sorting this

array using insertion sort.

7) Explain the stepwise procedure of mergesort algorithm.

8) Consider the input array [40, 35, 30, 25, 20, 15, 10, 5]. Illustrate the steps of sorting

this array using mergesort.

92 | Sorting

9) Consider the input array [21, 13, 11, 16, 3]. On this input, apply the Partition()

procedure in the quicksort algorithm and show the step by step execution.

Hint:

Iteration-1: [21, 13, 11, 16, 3]

Iteration-2: [21, 13, 11, 16, 3]

Iteration-3: [21, 13, 11, 16, 3]

Iteration-4: [21, 13, 11, 16, 3]

Iteration-5: [3, 13, 11, 16, 21]

10) Write the quicksort procedure to sort the given array in descending order.

Hint: In the Partition() procedure, replace “A[j] <= pivot” with “A[j] >= pivot.”

KNOW MORE

This section talks about a set of additional information that helps the reader to improve

the knowledge on the topics discussed in Unit-2.

IN-PLACE SORT

When a sorting algorithm uses only a constant amount of extra storage or variables to

perform the sorting operation over the given input array, then it is termed as a "IN-PLACE

SORT" algorithm. Selection sort, Bubble sort, Insertion sort, and quicksort are a few

examples of "IN-PLACE SORT." On the other hand, mergesort requires additional space

(O(log n)) to keep track of subarrays in its divide-and-conquer strategy.

 Algorithms |93

STABLE SORT

When an algorithm for sorting maintains the same relative order between elements with

equal values in the input array even after producing the sorted output, it is referred to as

"STABLE SORT". For example, let us consider an input array [10, 10, 30, 20]. If a sorting

algorithm does not change the order of equal elements (i.e., 10, 10) even after producing

the sorted output, then it is called “stable sort”. The examples of “STABLE SORT” are

bubble sort, mergesort, and insertion sort. On the other hand, selection sort and quicksort

are not stable.

QUICKSORT IMPROVEMENTS

Quicksort was proposed by C.A.R. Horae in 1960. Since its introduction, many researchers

have proposed improvements to it. We can infer from Quicksort's running time study that

pivot element choice is a key factor in deciding how well Quicksort works. The "median-

of-3 method" is one of the most used methods.

The pivot is chosen at random as the median of a group of three elements from the

subarray. This approach is expected to generate the balanced partitioning of subarrays.

REFERENCES AND SUGGESTED READINGS

Syllabus Referred Textbooks:

1. All textbooks prescribed in the syllabus.

94 | Sorting

Other Textbook References:

1. Data Structures and Algorithms Made Easy, Second Edition, Narasimha

Karumanchi, CareerMonk Publications, (2011)

2. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

Dynamic QR Code for Further Reading

3

3 Searching

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● Importance of the searching problem in Computer Science

● Concept of symbol tables

● Simple searching algorithms along with analysis on their efficiency

● Characteristics of a tree data structure

● Basic operations on binary and balanced search trees

● Design and analysis of hash based searching strategy

● Choice of the right searching strategy for a given problem at hand

RATIONALE

Searching is the operation of determining whether an element exists in a given data structure.

Search strategies are evaluated based on how quickly they are able to find a solution. How

appropriate a search algorithm is, also often depends on which data structure it is being applied

on. Therefore, searching can many-a-times be made more efficient through the use of specially

designed data structures such as sorted lists, search trees and hash tables.

Two other problems which are often studied along with searching are insertion and deletion

strategies. Efficient techniques for insertion and deletion on a chosen data structure often help to

make search more efficient.

96 | Searching

PRE-REQUISITES

Rudimentary knowledge of computer programming and data structure

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U3-O1: Describe basic importance of the searching problem

U3-O2: Describe and distinguish between sequential and interval searching

strategies

U3-O3: Explain binary and balanced search trees through running examples

U3-O5: Realize the usage of hash tables in the searching problem

U3-O5: Apply an appropriate searching strategy for a given problem at hand

Unit-3

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong
Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U3-O1 3 3 2 2 1

U3-O2 3 3 2 2 1

U3-O3 3 3 3 3 1

U3-O4 3 3 3 3 1

U3-O5 3 3 3 3 1

3.1 Introduction

Along with sorting, searching an item within a given list, is also an age-old associated

problem which has been extensively studied in computer science. As an example of the

searching problem, consider the following: Given a list of integer numbers, say A[75, 10,

 Algorithms |97

7, 6, 20, 40, 50, 30, 99, 30], searching is the process of finding answers to queries such as,

whether the element 20 exists in the list; the answer to this query will be returned as

TRUE. A call to this search procedure would be of the form: Search(A[], 20). On the other

hand, the call: Search(A[], 15), will return FALSE. Along with search, two other commonly

associated operations are deletion of a looked-up element from a list and addition of a

new element into a list.

All of us have faced the problem of manually searching an item/element of interest, say

a song, an address, the name of a student etc., from a given large-sized list. Hence,

efficient automated techniques for searching, adding or deleting elements within lists,

are necessary. Along with this, design of effective list organization mechanisms for

enhanced search efficiency, are also very important and hence, studied.

3.2 Symbol Tables

Often, lists of elements are represented as symbol tables where the elements are a set of

<name, value> pairs, along with possibly other attributes containing additional

information about the elements. Operations on symbol tables include, querying whether

a particular name already exists, as well as adding or deleting a name along with its

associated value and other attributes. These values, also called keys, are often used to

organize the elements of a symbol table in the form of well-defined data structures such

as unsorted or sorted sequential lists, trees, binary search trees, balanced binary search

trees etc. For example, a sorted sequential list representation of the symbol table,

ST[<A,75>, <B,10>, <C,7>, <D,6>, <E,20>, <F,40>, <G,50>, <H,30>, <I,99>, <J,30>] would

be say, Sorted-ST[<D,6>, <C,7>, <B,10>, <E,20>, <H,30>, <J,30>, <F,40>, <G,50>, <A,75>,

98 | Searching

<I,99>]. In the subsequent sections, we will not generally explicitly refer to symbol tables

when dealing with particular search strategies, but only refer to them as lists of values (or

keys) for convenience. However, such values may be implicitly assumed to have

associated names and other attributes.

3.3 Sequential and Interval Search

Consider a scenario in which you are searching for a word in a dictionary. You can perform

this search operation mainly in two ways. In the first method, you can start the search

from the beginning page and keep flipping the pages until you encounter the page where

the word lies. On the other hand, you can perform the search by first locating the

dictionary's middle pages. Then you can decide to look for the word on the right or left-

side pages of the middle. The process of finding the middle and searching for the word

on the right or left-side pages of the middle is repeated until you encounter the page

where the word lies. The second approach (known as interval or binary search) is a fast

and efficient technique as compared to the first method (known as sequential or linear

search). In the next sections, we will discuss these searching techniques in detail.

3.4 Sequential Search

It is the simplest searching algorithm and is also known as linear search. In this searching

technique, we traverse the given array sequentially to search for the given key (say item).

Here, we start with the first element of the array and it is compared with item. If both the

values are not equal, then we move on to the next element in the array and it is compared

with item. This process is repeated until we encounter a matching element in the array (a

successful search) or the array is exhausted without finding a matching element (an

 Algorithms |99

unsuccessful search). We can use this searching technique to find an element in sorted

and unsorted arrays.

3.4.1 Pseudocode

🇱1: Procedure Linear_Search(A[1, 2, …, n], n, item)

🇱2: Input A[1, 2, …, n], n, item

🇱3: For each k from 1 to n

🇱4: If (A[k] == item)

🇱5: Print item is found at location k

🇱6: return k

🇱7: End If

🇱8: End For

🇱9: Print item is not found in the array

🇱10: return -1

🇱11: End Procedure

3.4.2 Example

Consider the input array, A[75, 10, 7, 6, 20, 40, 50, 30, 99, 60]. Let the item to be searched

is 40. Fig. 3.1 depicts the steps of linear search.

3.4.3 Complexity Analysis

The best-case scenario of linear or sequential search occurs when the item to be found is

the first element of the array. Therefore, its time complexity in the best-case scenario is

O(1). Its average-case complexity is O(n). The worst-case scenario happens when the item

to be found is not present in the array or at the last position of the array. Since we must

sequentially scan the full array, linear search's worst-case complexity is O(n).

100 | Searching

Fig. 3.1: Steps of Linear Search

 Algorithms |101

3.5 Binary Search

The quickest and most effective procedure for locating a given element in a sorted array

is binary search. It operates according to the divide-and-conquer strategy. Here, the

algorithm first divides the given array into two halves, and then the item to be found (say,

Num_X) is compared with the array’s middle element, A[midway]. If both values are

equal, it returns midway, the index of that array element. If Num_X is greater than

A[midway], Num_X is searched for recursively in the right sub-array of A[midway]. If the

Num_X is less than A[midway], the left sub-array of A[midway] is searched recursively for

the Num_X. This search process is repeated until the Num_X is found in the array or the

array size becomes one. The algorithm returns -1 if the search is unsuccessful. The input

array must be sorted before using binary search, which is its main drawback.

3.5.1 Pseudocode

🇱1: Procedure Binary_Search(A[1, 2, …, n], Num_X,

first, last)

🇱2: Input A[1, 2, …, n], Num_X, first, last

🇱3: If (first > last)

🇱4: return -1

🇱5: Else

🇱6: midway = (first + last)/2

🇱7: If (Num_X == A[midway])

🇱8: return midway

🇱9: Else If (Num_X > A[midway])

102 | Searching

🇱10: return Binary_Search(A, Num_X,

midway+1, last)

🇱11: Else

🇱12: return Binary_Search(A, Num_X,

 first, midway-1)

🇱13: End If

🇱14: End If

🇱15: End Procedure

3.5.2 Example

Consider the input array, A[6, 7, 10, 20, 30, 40, 50, 60, 70, 99]. Let the item to be searched

is 70. Fig. 3.2 depicts the steps of binary search.

3.5.3 Complexity Analysis

When the item to be located is the first middle element (in the first comparison), binary

search performs best. Therefore, its time complexity in the best-case is O(1). The average-

case time complexity is O(log n). The worst-case scenario happens when we have to

search for the item till the array contains only one element, that leads to the complexity

of O(log n).

 Algorithms |103

Fig. 3.2: Steps of Binary Search

104 | Searching

Until now, we have discussed how to perform search operations on linear data structures

like arrays. Now, we will discuss different specialised data structures on which we will

perform operations like search, insertion, deletion, etc. The first such data structure that

we will discuss is trees. Before going into its details, we will first discuss the basic

characteristics of a tree data structure.

3.6 Characteristics of a Tree Data Structure

A set of nodes and edges make up a tree, which is a type of non-linear data structure. A

node represents a structure that contains data or value and connections to other nodes,

formally called edges or links. In a tree, each node connects to zero or more nodes. A

node that connects to another node through a single edge downward is known as a parent

node, and that connected node is said to be its child node. The root node of a tree refers

to a node that has no parents. The term leaf node refers to a node that has no offspring.

Two or more nodes having the same parent are said to be siblings. Fig. 3.3 depicts a tree

data structure.

Fig. 3.3: Tree Data Structure

 Algorithms |105

A sequence of connected nodes N1, N2, ..., NP where Ni is the child of Ni-1 for 1 < i <= p

defines a path from node N1 to Np. The number of edges on this path (that is, p-1) is used

to determine the length of the path. It may be noted that each node can be reached from

the root node by exactly one path. A distinguishing characteristic of a tree is that it has

no cycle of nodes. Node N1 is said to be an ancestor of node N2, and node N2 is said to be

a descendant of node N1, if a path exists from node N1 to node N2. A node Ni and all its

descendants constitute the subtree of a tree rooted at Ni.

The path length (that is, the number of edges on the path) from the root node to a node

Ni is the depth of that node Ni. By using zero-based counting, the root node is regarded

as being at zero depth. The length of the longest downward path from a node Ni to a leaf

is referred to as the height of that node Ni. Thus, all leaf nodes are considered to be at

height zero. The length of the longest path from a tree's root to a leaf defines the tree's

height. The tree's height and the root's height are identical. The depth of the deepest leaf

in a tree is the depth of the tree, which is always equal to the height of the tree. The

number of edges along the unique path from the root to a node Ni, is referred to as the

level of node Ni, which is the same as the depth of Ni. Thus, the root node is at level zero.

A node's degree is defined as the number of offspring it has. The leaf nodes have degree

zero. A tree's degree is equal to the highest degree attained by any of its nodes.

Consider the tree shown in Fig. 3.3. Here, nodes D, E, F, and G are at level 2; node B is at

level 1, depth 1, and height 2; node G is at level 2, depth 2, and height 0; node H is at level

3, depth 3, and height 0; depth and height of the tree is 3; node E has degree 1; nodes A,

B, C, and D have degree 2; all other nodes have degree zero; degree of the tree is 2.

106 | Searching

3.6.1 Linked Representation of a Tree

As discussed above, each node in a tree connects to zero or more nodes. A node in a tree

contains a data or value field as well as reference or link fields to other nodes. These link

fields connect a node to its children. Fig. 3.4 shows the pictorial representation of a node.

The number of link fields in a node is determined based on its degree. For example, if the

degree of a node Ni is 3, then Ni has three link fields, each pointing to one of its children.

Fig. 3.4: Node of a Tree

Note: The concept of pointers in data structure is essential to understand the

implementation structure of a node and a tree. So, we direct the reader to refer to the

‘Know More’ section of this unit to have a familiarity with the basic concept of pointers in

data structure.

The following structure defines a node of a tree:

struct Tree_Node {

int value; // key value or data of a node

struct Tree_Node *child1; // pointer to node child1

struct Tree_Node *child2; // pointer to node child2

...

 Algorithms |107

struct Tree_Node *childN; // pointer to node childN

};

If a tree has a degree K, then each node of the tree is provided with K link fields. The

unreferred link fields are filled with NULL. Fig. 3.5 depicts a tree and its linked

representation.

Fig. 3.5: Linked Representation of a Tree

108 | Searching

3.6.2 Searching a Node in a Tree

To search for a given element (say ‘e’) in a generic tree, e is first compared with the key

value of the root node. If root is NULL, that is, if the tree is empty, the search returns with

‘failure’. The search procedure returns with ‘success’ if e is equal to ‘root.value’. However,

if e is not matching with the current ‘root.value’, the search proceeds in each child node

of the root node. The same sequence of operations is conducted at the child node. This

procedure is repeated either until the element is found and the search is successful, or a

leaf node is reached and the element is not found (when the search procedure returns

with ‘failure’).

3.6.2.1 Pseudocode

🇱1: Procedure Tree_Search(*root, e)

🇱2: Input struct Node *root, int e

🇱3: If (root == NULL) // for an empty tree

🇱4: return False

🇱5: Else // if tree is not empty

🇱6: If (root.value == e)

🇱7: return True

🇱8: End If

🇱9: For each child of Node root

🇱10: boolean b = Tree_Search(child, e)

🇱11: If (b)

🇱12: return True

🇱13: End If

🇱14: End For

 Algorithms |109

🇱15: End If

🇱16: return False

🇱17: End Procedure

3.7 Binary Search Trees

After having a look at search strategy on lists arranged as a general tree, let us focus our

attention on the binary search tree data structure which allows us to perform binary

search for fast lookup, addition, and removal of data elements. Binary search trees are

also referred to as sorted or ordered binary trees. In a binary tree, any tree node is

restricted to have at most two children (0, 1 or 2 immediate successors) whereas in a

general tree, a node of the tree may have any number of children. A list of values or keys,

A[75, 10, 7, 6, 20, 40, 50, 30, 99, 30] arranged as a binary tree, can have the following look

(see, Fig. 3.6):

Fig. 3.6: Binary Tree

110 | Searching

A binary tree is called a binary search tree (BST) or an ordered/sorted binary tree if each

internal node's key is larger than or equal to every key in its left subtree and less than all

of the keys in its right subtree. This condition is called the BST property. There can be

many BST representations for a given set of elements. For example, Fig. 3.7(a) and 3.7(b)

depict two alternative BST representations for the list of values A[75, 10, 7, 6, 20, 40, 50,

30, 99, 30].

Fig. 3.7: (a) & (b) BST Representations

3.7.1 Representing BSTs in Memory

A BST node is best described as:

struct BST_Node {

 Algorithms |111

 int value; // Key value of a node

 struct BST_Node *left; // Location of left child

 struct BST_Node *right; // Location of right child

};

A particular BST is identified through its root node and it is declared as:

struct BST_Node root;

3.7.2 Searching in a given BST

To search for a given element or node value (say ‘e’) in a BST, e is first compared to the

root node's key value. If this value is NULL, the search returns with ‘failure’. The search

procedure returns with ‘success’ if e is equal to ‘root.value’. However, the search

proceeds on to the root node's right subtree if e is greater than ‘root.value.’ If not,

searching proceeds in the root's left subtree. The same sequence of operations is

conducted at the root of the left or right subtree depending on where the search

proceeds. This process is repeated either until the element is found and the search is

successful, or a leaf node is reached and the element is not found (when the search

procedure returns with ‘failure’).

3.7.2.1 Pseudocode

🇱1: Procedure BST_Search(*root, e)

🇱2: Input struct BST_Node *root, int e

🇱3: If (root.value == NULL)

🇱4: return ‘False’

🇱5: Else If (root.value == e)

🇱 6: return ‘True’

🇱 7: Else If (root.value > e)

112 | Searching

🇱8: return BST_Search(root.left, e)

🇱9: Else If (root.value < e)

🇱10: return BST_Search(root.right, e)

🇱11: End If

🇱12: End Procedure

3.7.3 Insertion in a BST

The following procedure BST_Insert() may be used to insert an element having value ‘e’,

into a BST rooted at ‘root’. If the BST is empty (root = NULL), a new BST node is created

with ‘e’ as the key value of this node and ‘root’ is made to point to this new node.

Otherwise, we search the BST for the element ‘e’ in a similar fashion as ‘BST_Search’. If

we find ‘e’ in the BST, there is nothing more to do as the element that is required to be

inserted already exists in the BST. During the search for ‘e’, if a NULL pointer is reached,

we replace this pointer with a new node having ‘e’ as its key value.

3.7.3.1 Pseudocode

🇱1: Procedure BST_Insert(*root, e)

🇱2: Input int e, struct BST_Node *root

🇱3: If (root == NULL)

🇱4: root = New struct BST_Node

🇱5: root.value = e

🇱6: root.left = NULL

🇱7: root.right = NULL

🇱8: return

🇱9: Else If (root.value > e)

 Algorithms |113

🇱10: return BST_Insert(root.left, e)

🇱11: Else If (root.value < e)

🇱12: return BST_Insert(root.right, e)

🇱13: End If // If root.value = e, nothing to do

🇱14: End Procedure

3.7.4 Deletion from a BST

Deletion from a BST is slightly more complicated compared to search and insertion. If the

value (say ‘e’) to be deleted is in a leaf node, we can simply delete the leaf and there is

nothing more to be done. However, if this node is an internal node of the BST, simply

deleting this node will disconnect the tree. If the internal node containing ‘e’ has only one

child, we can just replace this node by the child node. This action deletes the node

containing ‘e’ and appropriately readjusts the BST. If the internal node containing ‘e’ has

two children, the following actions appropriately conduct the deletion operation: Find the

lowest-valued element (say ‘g’) in the right subtree of the node containing ‘e’, replace ‘e’

by ‘g’ (so that the node having value ‘e’ will now hold the key value ‘g’) and finally, delete

the node in the right subtree containing the value ‘g’. Instead of the lowest-valued

element in the right subtree, the above operation can also be performed with the highest

valued element in the left sub-tree.

3.7.4.1 Pseudocode

🇱1: Procedure BST_Delete(*root, e)

🇱2: Input struct BST_Node *root, int e

🇱3: If (root != NULL) {

🇱4: If (root.value > e)

🇱5: return BST_Delete(root.left, e)

🇱6: End If

🇱7: Else If (root.value < e)

🇱8: return BST_Delete(root.right, e)

114 | Searching

🇱9: // Here, the node containing ‘e’ has been found.

🇱10: Else If (root.right == NULL) and (root.left ==

 NULL)

🇱11: root = NULL

🇱12: Else If (root.left == NULL)

🇱13: root = root.right

🇱14: Else If (root.right == NULL)

🇱15: root = root.left

🇱16: Else // Both children are present

🇱17: root.value = Del_Min(root.right)

🇱18: End If

🇱19: End Procedure

🇱1: Procedure Del_Min(*root)

🇱2: Input struct BST_Node *root

🇱3: If (root.left == NULL) {

🇱4: // root points to the lowest element

🇱5: temp = root.value

🇱6: root = root.right

🇱7: Return temp

🇱8: Else

🇱9: Return Del_Min(root.left)

🇱10: End If

🇱11: End Procedure

 Algorithms |115

3.7.4.2 Example (Deletion)

Suppose we want to delete the value ‘20’ in the BST shown in Fig. 3.8.

Fig. 3.8: BST before deletion

As the node containing 20 has both a left and a right child, we call Del_Min() in line no.

17 of procedure BST_Delete(). This call returns the value 24 and also deletes the node

containing 24 in the right subtree of the node holding 20. The resulting BST after deletion

of 20 is shown in Fig. 3.9.

116 | Searching

Fig. 3.9: BST after deletion

3.8 Balanced Search Trees

Operations on a BST can be accomplished in O(log n) time if any node’s right and left

subtree heights are equal. However, as may be inferred from the discussion on BSTs

above, a series of insertions and/or deletions on the BST can make it unbalanced. In the

extreme case, the BST may become similar to a linear list in structure making the BST

operations lower in their efficiency (O(n) complexity). In 1962, Adelson-Velskii and Landis

introduced height-balanced BSTs, commonly called AVL trees, in which the height of the

right and left subtree of any node never differ by more than 1.

In its simplest form, an AVL tree node has the form:

struct AVL_Node {

 int value; // Key value of a node

 int BF; // Balance Factor. Can hold -1, 0, or 1

 struct AVL_Node *left; // Location of left child

 struct AVL_Node *right; // Location of right child

};

 Algorithms |117

It may be observed that compared to BST, an AVL tree node has an additional field BF

(Balance Factor) which is defined to be equal to ‘hL - hR’, where hL and hR denote the

heights of the left and right subtrees of the node. A BST is said to be balanced, that is the

BST is an AVL tree, only if the BF values of all nodes in the tree are either -1, 0 or 1. The

tree must be rebalanced if the BF value of a node becomes ‘+2’ or ‘-2’ subsequent to

insertion or deletion of a node. For example, Fig. 3.10 shows a scenario where the AVL

becomes unbalanced after insertion of a node having value 26. The number above each

node shows the BF value of the node. It may be observed that in this case, the BF of the

node with value 12 becomes -2 after the insertion with its right child having a BF value of

-1.

Fig. 3.10: AVL tree insertion (insert 26) operation

To rebalance this tree, a left-rotation of the node having value ‘12’ must be performed.

After the rotation, the node containing ‘12’ becomes the left child of the node with value

118 | Searching

‘24’, and the node having value ‘20’ becomes the right child of the node containing ‘12’.

Fig. 3.11 depicts the AVL tree after this rebalancing.

Fig. 3.11: AVL tree after rebalancing

Let us now assume that instead of ‘26’, we insert the value ‘22’. Fig. 3.12 shows this

scenario.

Fig. 3.12: AVL tree insertion (insert 22) operation

 Algorithms |119

To rebalance this tree, first a right-rotation along the node containing ‘24’ has to be

performed. This action makes ‘20’ the right child of ‘12’, ‘24’ the right child of ‘20’ and

‘22’ the left child of ‘24’. Fig. 3.13 depicts the AVL tree after this rebalancing.

Fig. 3.13: AVL tree after right-rotation

Now, the tree must be left-rotated along the node having value ‘12’. As a result of this

action, ‘20’ becomes the left child of ‘40’ and‘12’ becomes the left-child of ‘20’. The

resultant tree is now balanced and is shown in Fig. 3.14. This balancing mechanism which

involves first a right-rotation and then a left-rotation is called double rotation.

In general, there are four cases to consider:

Case 1: A subtree gets negatively unbalanced (BF = -2) with its right-child having a

negative balance factor (BF = -1). Fig. 3.15 illustrates this scenario. A simple left-rotation

(referred to as LL Rotation) rebalances the tree.

120 | Searching

Fig. 3.14: AVL tree after left-rotation - balanced form

Fig. 3.15: AVL tree - LL Rotation

Case 2: This is a mirror image of case 1. A subtree gets positively unbalanced (BF = 2) with

its left-child having a positive balance factor (BF = 1). A simple right-rotation (referred to

as RR Rotation) rebalances the tree. Fig. 3.16 depicts this scenario.

 Algorithms |121

Fig. 3.16: AVL tree - RR Rotation

Case 3: A subtree gets negatively unbalanced (BF = -2) with its right-child having a positive

balance factor (BF = 1). Fig. 3.17 illustrates this scenario. A double rotation which

combines a right-rotation followed by a left-rotation (referred to as RL Rotation)

rebalances the tree.

Fig. 3.17: AVL tree - RL Rotation

122 | Searching

Case 4: This is a mirror image of case 2. A subtree gets positively unbalanced (BF = 2) with

its left-child having a negative balance factor (BF = -1). A double rotation which combines

a left-rotation followed by a right-rotation (referred to as LR Rotation) rebalances the

tree. Fig. 3.18 depicts this scenario.

Fig. 3.18: AVL tree - LR Rotation

It may be noted that the fundamental idea behind AVL trees is to make operations such

as search, insertion and deletion, more efficient. There are other variations of self-

balancing trees with variations in the structure of the tree, definition of balance etc. but

with the same fundamental idea behind them. Two examples of such self-balancing trees

include 2-3 trees and B-trees.

 Algorithms |123

3.9 Hash Tables

This section discusses a special data structure called hash table and its usage in the

searching problem.

3.9.1 Direct-Address Table

As discussed earlier, the purpose of a symbol table data structure is to store a set of <key,

value> pairs, so that a value associated with a given key can be searched. If the keys are

small integers such that they can be accommodated within the available memory in the

given system, then we can use arrays to implement symbol tables. Specifically, key can be

used as an index to an array such that the value corresponding to key i can be stored in

the ith position of the array. This approach is called the direct-address table.

To illustrate the direct-address table, let us consider the following example (as shown in

Fig. 3.19) in which the number of possible keys ranges from 1 to 10. Among them, only a

few values are actual key values that are being used. Suppose we have a memory to

accommodate all possible keys (i.e., 1 to 10). Then, we can simply use an array to store

the values. Here, key can be used to index the array.

124 | Searching

Fig. 3.19: Usage of a Direct-Address Table

In this situation, the operations such as inserting an element and searching for an

element will take constant (O(1)) time. Specifically, if we want to insert the key-value

pair <5, 100> into array T, then we can set T[5] = 100. Similarly, if we want to

retrieve/search for the element at the key 5, we can simply use T[5] to print the value at

index 5 in the array T.

However, it may be possible that the amount of memory available is limited in many

real-world scenarios. In such cases, we cannot afford to allocate memory for all possible

key ranges. Further, the actual keys being used may be much lower than the maximum

possible key value. For example, 10000000 can be the maximum possible key value.

However, the actual key value may be around 100. In this case, allocating an array to

store 10000000 elements will lead to a huge amount of memory wastage. So, a hash

 Algorithms |125

table can be used when the number of actual keys that need to be stored is substantially

less than the set of all possible key values.

3.9.2 Hash Table

In the direct-address table approach, we have seen that a given <key, value> pair with key

k gets stored in the index/position/slot k of the input array. In case of a hashtable, this

pair gets stored in position h(k). Here, h is called as a hash function which maps the set

of all possible key values (say, U) into anyone of the m slots of a hash table T [0,1, 2, …,

m-1]:

 h: U → {0, 1, 2, 3, …, m-1}

Interpretation:

hash function: Set of all possible key values → anyone of the m slots of a hash table T

Here, m is the size of the hash table T, which is smaller than the total size of all possible

key values |U|. We say that the pair <key, value> with key k hashes into position h(k) in

the hash table T. Also, h(k) is called the hash value of k.

A hash function transforms the given key value into the index/position/slot in the hash

table T and it is expected to meet the following assumption (known as simple uniform

hashing): Each key has an equal chance of hashing to any of the m indices, regardless of

where the other keys have hashed. In literature, there are different types of hashing

functions. In this book, we will discuss division and multiplication based hashing functions.

126 | Searching

3.9.2.1 Division Method

This method divides the key k by m and the remainder of this division is used to map key

k into a hash table. That is, h(k) = k % m. Let us consider the following example: The key k

= 100 and the size of the hash table m = 8. Then, h(k) = 100 % 8 = 4. So, the key 100 will

be stored in location 4 in the hash table. An advantage of the division approach is that it

only needs one division operation which is quick.

3.9.2.2 Multiplication Method

It is a two-step approach. The first step multiplies the input key k by a constant X, where

0 < X < 1, and extracts the fractional part of kX. In the next step, the value from the

previous step gets multiplied by m and then takes the floor of this result. That is, h(k) =

floor (m (kX % 1)). For example, let m = 10, k = 1000, X = 0.12345. Then, kX = 123.45, kX%1

= 0.45, m (kX % 1) = 4.5, floor (m (kX % 1)) = 4. The multiplication approach has the benefit

that m's value is not critical.

The basic idea of a hash table is illustrated in Fig. 3.20.

 Algorithms |127

Fig. 3.20: Usage of a Hash Table

3.9.3 Collision Resolution in a Hash Table

From the above figure, we can see that the keys k1, k3, and k4 map to h(k1), h(k2), and

h(k4), respectively. Further, the keys k2 and k5 map to the same position/slot in the hash

table. When a slot is hashed by two keys, then it leads to the collision. Ideally, we expect

different keys to map to distinct indices/slots/positions in the hash table. Since the total

number of possible keys (|U|) is substantially more than the size of the hash table (m), it

is impossible to completely avoid collisions. Typically, chaining and open addressing

techniques are used for collision resolution in a hash table.

3.9.3.1 Chaining

In this approach, the keys that collide with each other are chained together in separate

linked lists. An example scenario is depicted in Fig. 3.21.

128 | Searching

Fig. 3.21: Collision Resolution by Chaining

In the above example, h(k1) = h(k4), h(k2) = h(k5) = h(k7), h(k6) = h(k8). So, all these keys

are stored in a chained fashion in the slot that they occupy in the hash table. In this

approach, searching for a particular key is a two step process: First find the slot in the

hash table using the hash function; Next, sequentially search through all the keys in the

list of keys mapped to this slot.

3.9.3.2 Open Addressing

It is another approach for implementing hashing and this relies on empty slots in the hash

table to resolve collisions. In this approach, each table entry has either a key or NIL. The

easiest version of open addressing is linear probing. To perform insertion using linear

 Algorithms |129

probing, we use hashing function and compute the destination for the given key. In case

of a collision, we check/probe for the next entry with NIL. This probing continues until we

find an empty slot (with NIL). Unlike chaining, no key is stored outside the hash table.

3.9.4 Example

Let us consider the following set of keys {22, 28, 23, 32, 33, 43, 55, 65}. These keys are

inserted into a hash table T with size 10 (index: 0, 1, 2, …, 9; initialized with NIL) using

linear probing based open addressing having hash function h(p) = p % 10. Let us

sequentially insert these keys into the hash table T.

● key 22: h(22) = 22 % 10 = 2. Then, T[2] = 22.

● key 28: h(28) = 28 % 10 = 8. Then, T[8] = 28.

● key 23: h(23) = 23 % 10 = 3. Then, T[3] = 23.

● key 32: h(32) = 32 % 10 = 2. Since T[2] already contains 22, we need to find the

next empty slot in the hash table. T[3] is also occupied with 23. T[4] is not yet

occupied and it can be used to hold the key 32. Then, T[4] = 32.

● key 33: h(33) = 33 % 10 = 3. T[3] and T[4] are already occupied. T[5] = 33.

● key 43: h(43) = 43 % 10 = 3. T[3], T[4], and T[5] are already occupied. T[6] = 43.

● key 55: h(55) = 55 % 10 = 5. T[7] = 55.

● key 65: h(65) = 65 % 10 = 5. T[9] = 65.

The pictorial representation of the final hash table is shown in the below table.

0 NIL

1 NIL

2 22

130 | Searching

3 23

4 32

5 33

6 43

7 55

8 28

9 65

UNIT SUMMARY

This unit first introduces the concept of symbol tables, the logical representation of

structures for data storage. Symbol tables can be organized as unsorted or sorted

sequential lists, trees, binary search trees, hash tables etc. on which techniques for

searching, insertion and deletion are studied.

Search techniques can be categorized into linear, interval based or hash based. Linear

search checks every element in a list in linear fashion. Interval based search on the other

hand partitions the search area into intervals, and then explores a specific interval based

on the value of the data to be searched. The unit discusses binary search or half-interval

search, which are performed on sorted lists. Then it discusses search techniques on trees,

binary search trees (BST) and a variant of BST called height-balanced trees. Finally,

hashing mechanisms which map elements to specific symbol table entries based on a hash

function, have been discussed.

https://en.wikipedia.org/wiki/Linear_search
https://en.wikipedia.org/wiki/Linear_search
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function

 Algorithms |131

EXERCISES

Multiple Choice Questions

1) How many steps will you take to search for a word linearly in a dictionary having

120,000 words, in the worst-case situation?

a) 19

b) 17

c) 120,000

d) 18

2) How many steps will you take to perform a binary search for a word in a dictionary

with 120,000 words, in the worst-case situation?

a) 19

b) 17

c) 120,000

d) 18

3) Consider an all possible key set, U = {1, 2, …, 1000}, and an actual key set being

used P = {1, 2, …, 100}. System memory has a capacity to hold 10000 keys. Which

data structure is suitable to store these keys?

a) A simple array

b) A hash table

c) Both of them

d) None of them

132 | Searching

4) Consider an all possible key set, U = {1, 2, …, 1000}, and an actual key set being

used P = {1, 2, …, 100}. System memory has a capacity to hold 200 keys. Which

data structure is suitable to store these keys?

a) A simple array

b) A hash table

c) Both of them

d) None of them

5) The complexity of search operation in the direct-address table approach in the

worst-case is __.

a) k log k

b) k2

c) k

d) 1

6) What do you mean by a hash function?

a) It is a map from a set of all possible key values to any of the hash table's

slots.

b) It is a map from a set of odd natural numbers to any of the hash table's

slots.

c) It is used to implement stacks and queues

d) None of the above

7) Let us consider a hash table with total number of slots as 4 and the division

method based hash function. In what slot, the key 100 will be stored in this hash

table?

a) 3

b) 1

 Algorithms |133

c) 2

d) 0

8) What do you mean by simple uniform hashing?

a) Each key is hashed based on its priority

b) In a hash table, each key equally stands a chance of fitting into any of the

slots.

c) Every key is randomly assigned into first five slots in a hash table

d) None of the above

9) Consider the given key set: {10, 11, 12, 13, 14, 15, 16, 17, 18}. These keys are added

into a hash table T with size 10 (index: 0, 1, …, 9) using linear probing based open

addressing having hash function h(p) = p % 10. Which one of the following claims

regarding the final hash table is true?

a) Each key hashes to a different slot in the hash table

b) Multiple keys hashes to the same slot in the hash table

c) Every key is randomly assigned into any of the hash table’s slots

d) None of the above

10) Consider the given key set: {10, 11, 12, 13, 14, 15, 16, 17, 18}. These keys are added

into a hash table T with size 10 (index: 0, 1, …, 9) using linear probing based open

addressing having hash function h(p) = p % 5. Which one of the following claims

regarding the final hash table is true?

a) Each key hashes to a different slot in the hash table

b) Multiple keys hashes to the same slot in the hash table

c) Every key is randomly assigned into any of the hash table’s slots

d) None of the above

134 | Searching

11) Consider the given key set: {10, 82, 80, 73, 96}. These keys are added into a hash

table HT with size 5 (index: 0, 1, 2, 3, 4; initialized with NIL) using linear probing

based open addressing having hash function h(p) = p % 5. What is the final hash

table content after inserting all these elements?

a) HT[0] = NIL, HT[1] = NIL, HT[2] = NIL, HT[3] = NIL, HT[4] = NIL

b) HT[0] = 10, HT[1] = 80, HT[2] = 82, HT[3] = 73, HT[4] = 96

c) HT[0] = 10, HT[1] = 82, HT[2] = 80, HT[3] = 73, HT[4] = 96

d) HT[0] = 10, HT[1] = 82, HT[2] = 80, HT[3] = 73, HT[4] = NIL

Answers of Multiple Choice Questions

1) (c) 2) (b) 3) (c) 4) (b) 5) (d) 6) (a) 7) (d) 8) (b) 9) (a) 10) (b) 11) (b)

Short and Long Answer Type Questions

1) Differentiate linear and binary search algorithms.

2) Write a short note on symbol tables.

3) Illustrate the steps involved in the linear search of an element 23 on a given input

array [7, 12, 4, 34, 56, 23, 11].

4) Illustrate the steps involved in the binary search of an element 36 on a given input

array [4, 8, 12, 16, 20, 24, 28, 32, 36, 40].

5) Write down the procedure of binary search for finding an element on a reverse

sorted array.

6) Illustrate the steps involved in the binary search of an element 45 on a given input

array [50, 45, 40, 35, 30, 25, 20, 15, 10, 5].

7) Define the following entities of a tree data structure.

a) a node’s height

 Algorithms |135

b) a tree’s height

c) a node’s depth

d) a tree’s depth

e) a node’s degree

f) a tree’s degree

g) a tree’s level

8) Explain binary search tree (BST) with an example.

9) Write down the steps involved in searching a BST.

10) Explain the procedure of insertion and deletion operations in a BST.

11) Write a short note on the balanced search tree.

12) How do a balanced search tree differ from a binary search tree.

13) What is the hash function?

14) Explain division method based hash function along with an example.

15) Explain multiplication method based hash function along with an example.

16) What is meant by collision in a hash table? Explain it with an example.

17) What are the methods to handle collisions in a hash table?

18) Explain chaining and open addressing methods in a hash table.

19) Consider the given key set: {10, 51, 62, 73, 84, 95, 85, 82, 42}. These keys are added

into a hash table HT with size 10 (index: 0, 1, …, 9; initialized with NIL) using linear

probing based open addressing having hash function h(p) = p % 10. What is the

final hash table content after inserting all these elements?

Hint: HT[0] = 10, HT[1] = 51, HT[2] = 62, HT[3] = 73, HT[4] = 84, HT[5] = 95, HT[6]

= 85, HT[7] = 82, HT[8] = 42, HT[9] = NIL.

20) Consider the given key set: {10, 82, 80, 73, 96, 92, 98, 9, 11}. These keys are added

into a hash table HT with size 10 (index: 0, 1, …, 9; initialized with NIL) using linear

136 | Searching

probing based open addressing having hash function h(p) = p % 10. What is the

final hash table content after inserting all these elements?

Hint: HT[0] = 10, HT[1] = 80, HT[2] = 82, HT[3] = 73, HT[4] = 92, HT[5] = 11, HT[6]

= 96, HT[7] = NIL, HT[8] = 98, HT[9] = 9.

KNOW MORE

This section talks about a set of additional information that helps the reader to improve

the knowledge on the topics discussed in Unit-3.

Basics of Pointers

As you all know, every variable declared in a program has a memory location or address

where the actual value or data of that variable is stored. The memory address of these

variables can be accessed using the unary operator ampersand (&). For example, consider

an integer variable named ‘number’ that stores a value of 30 and has a memory address

say, #2000H. Then, the representation ‘&number’ gives us #2000H, the memory address

of the variable number.

In many programming languages, we use a particular kind of variable called ‘pointer’ to

store the address of another variable. A pointer variable is generally declared as

 datatype *variable_name;

Here, datatype is the basic data types like int, float, char, double etc., and variable_name

denotes the pointer variable’s name. Using *variable_name, one can access the value

kept in the memory address. The following example shows the declaration of a pointer

variable and its usage.

 Algorithms |137

int number = 30; // let the value 30 be stored at a memory address #2000H

int *p_v; // pointer variable declaration

p_v = &number; // #2000H, address of number is stored into the pointer variable p_v

printf(“%p”, &number); // output #2000H, the address of variable number

printf(“%p”, p_v); // output #2000H, the address of variable number

printf(“%d”, *p_v); // output 30, the value stored in the memory address

REFERENCES AND SUGGESTED READINGS

Syllabus Referred Textbooks:

1. Algorithms, 4th Edition. R. Sedgewick, and K. Wayne. Addison-Wesley, (2011)

2. Introduction to Algorithms, Fourth Edition, Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest and Clifford Stein, The MIT Press, (2022)

3. Introduction to the Theory of Computation, Third Edition, M. Sipser. Course

Technology, Boston, MA, (2013)

4. Design And Analysis Of Algorithms, Third Edition, Gajendra Sharma, Khanna Book

Publishing Company (P) Limited, (2015)

 Other Textbook References:

1. Data Structures and Algorithms Made Easy, Second Edition, Narasimha

Karumanchi, CareerMonk Publications, (2011)

2. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

3. Algorithms: Design and Analysis, Harsh Bhasin, Oxford University Press, (2015)

138 | Searching

Dynamic QR Code for Further Reading

 Graphs 4

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● The graph data structure along with its important types;

● Directed acyclic graphs and topological sorting on them;

● Spanning trees and techniques for determining minimum spanning trees;

● Shortest path determination using Dijkstra’s algorithm;

● Flow graphs and a technique for obtaining the maximum flow;

RATIONALE

In many problems encountered in mathematics, computer science, engineering and many other

disciplines, there is a need to represent relationships among data objects. In order to model

relationships among data objects, we use a data structure called graph. Here, the data objects are

depicted as vertices or nodes, while pairwise relationships are represented through edges between

objects. Graphs can be used to simplify and quantify the representation of many systems, for

example, layout of city roads where the cities could be represented as vertices and roads between

cities as edges, interdependencies among different functions of a computer program, relationships

among component processes in a large and complex chemical process etc.

Graphs are one of the most popular among the data structures that we have studied in this book.

We start this chapter with a discussion on important terminologies related to graphs along with

140| Graphs

different types of graphs. Subsequently, we discuss various operations on graphs and algorithms

for important problems involving graphs.

PRE-REQUISITES

Rudimentary knowledge of computer programming and data structure.

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U4-O1: Describe various types of graphs

U4-O2: Describe spanning trees, directed acyclic graphs and flow graphs

U4-O3: Explain algorithms for finding minimum spanning trees, topological sorting and

maximum network flows

U4-O4: Realize the computational complexities of different types of graph algorithms

U4-O5: Apply graphs for modelling and solving various problems in science and

engineering

Unit-4

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong
Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U4-O1 3 3 2 2 1

U4-O2 3 3 2 2 1

U4-O3 3 3 3 3 1

U4-O4 3 3 3 3 1

U4-O5 3 3 3 3 1

 Algorithms |141

4.1 Definitions and Terminologies

This section mainly covers basic definitions and terminologies related to graphs and its

associated algorithms.

4.1.1 Graph

A group of nodes (or vertices) with data and connections to other nodes (or vertices)

makes up a graph data structure. In general, graph is a data structure denoted as a two-

tuple G = (V, E) which contains

● V : collection of nodes or vertices. The terms node and vertex will be used

interchangeably.

● E : collection of edges which is represented by a pair of nodes (x, y) where the

nodes x, y belong to V.

Example:

Examine G = (V, E) shown above. Here, V = {A, B, C, D} and the edge set E = {(A, C), (A, B),

(A, D), (B, D)}.

142| Graphs

4.1.2 Types of Edges

The edges are generally classified into undirected, directed and weighted. The edge

between an unordered pair of nodes is usually called an undirected edge whereas a

directed edge is drawn for an ordered pair of nodes/vertices. An undirected/directed

edge having an integer value as a label (known as weight) is called weighted edge. The

weight may represent distance or cost between two given vertices.

Example:

(a) Directed edge from node u to v represented as (u, v)

(b) Undirected edge between nodes u and v. Here, edges represented by both

(u, v) as well as (v, u) are identical.

(c) Weighted undirected edge: The integer value ‘2’ represents the weight on

the edge.

 Algorithms |143

(d) A weighted directed edge (u, v). Here, the integer value ‘2’ represents the

weight on the edge.

4.1.3 Types of Graphs

Graphs are generally classified into undirected, directed and weighted based on the types

of edges used for its creation. For a directed graph, all the edges are directed edges,

whereas an undirected graph contains only edges which are undirected. An

undirected/directed graph that is created using weighted edges is said to be a weighted

graph.

Example:

a) Example: Directed Graph

144| Graphs

b) Example: Undirected Graph

c) Example: Weighted Undirected Graph

4.1.4 Vertex/Node Degree

In a graph, a node’s degree is determined by how many edges are connected to it. The

degree of node for directed and undirected graphs is determined differently. If a graph is

undirected, the total count of edges incident on a node is employed to calculate a node’s

degree. Consider an example of an undirected graph illustrated below. Here, node A’s

degree is 3 as there are three edges meeting the node A. The degree of node B is 1.

 Algorithms |145

For a directed graph, each vertex has two types of degrees: an out-degree and an in-

degree. The number of edges incident upon and originating from a node, respectively, is

used to calculate the node's in-degree as well as out-degree of it. As an example, consider

the directed graph depicted below. Here, the in-degree of A is 1 as an edge from node D

is coming into node A and the out-degree of node A is 2 as two edges are going out from

node A. The in-degree of vertex/node B is 2 and its out-degree is 0.

146| Graphs

4.1.5 Path in a Graph

A sequence of non-repeated nodes (or edges) while traversing the graph is known as a

path. A path is also referred to as dipath or directed path if the graph has directed edges.

For the figure shown below, the sequence C-A-B-D and e3-e1-e4 represent the same path

in terms of nodes and edges, respectively.

Consider the directed graph shown below. Here, A-D, A-B-D, A-C-D denote different paths

in the same directed graph.

 Algorithms |147

4.1.6 Cyclic Graph

A cycle is a path which originates from a given node/vertex and terminates at the same

node/vertex. A cyclic graph is one that contains at least one cycle. Consider the cyclic

graph shown below. Here, the series of vertices A-C-D-A result in a cycle.

4.1.7 Acyclic Graph

A graph is said to be acyclic provided it does not include/contain any cycle. A tree is an

example of an acyclic graph. For example, consider the following tree. It is an acyclic graph

having no cycles.

148| Graphs

4.1.8 Directed Acyclic Graph (DAG)

From its name, we can infer that it is a directed graph without any cycles in it. For

example, consider the following directed graph. Here, there exists no cycles and thus it

becomes a directed acyclic graph.

4.1.9 Connected and Disconnected Graphs

There must be at least one connecting path between each node pair in a connected graph.

We can visit any one vertex from another vertex. Consider the following connected graph.

Here, there exists more than one path (e.g., (A - C - B - D - F - E) or (A - C - B - D - E - F))

that connects every pair of vertices.

 Algorithms |149

On the other hand, if there is no path connecting at least two of the graph's vertices, the

graph is said to be disconnected. For example, consider the graph shown below. Here,

there is no edge between the nodes B and D. This example graph has two independent

components which are disconnected.

4.1.10 Forest

A forest is a graph that is disconnected, undirected, and acyclic. It is a disjoint group of

trees. Although the example graph shown below appears to have two sub-graphs, it is

actually one disconnected graph. Hence, we can say that it is a forest.

150| Graphs

4.1.11 Spanning Trees

The subgraph of an undirected graph G that results from covering all of the vertices/nodes

with the fewest number of edges is known as a spanning tree. Spanning trees must be

connected and cycle free. In a graph which is undirected, there are at most nn-2 spanning

trees, where n = |V|. For example, consider G shown below. It contains three vertices and

thus a maximum of 33-2 = 3 spanning trees are possible for G. A few important properties

of spanning trees are listed below.

● Multiple spanning trees may exist for a given graph G.

● For G, the same number of nodes and edges will be present in all of its possible

spanning trees.

● If any one of the edges is removed from the spanning tree, then the graph

becomes disconnected.

● Insertion of an extra edge into a spanning tree will introduce a loop or cycle in it.

 Algorithms |151

4.2 Graph Traversal

To search for a vertex/node in a graph, graph traversal technique is used. There are two

types of search techniques and they are: (i) Breadth-first (BFS), and (ii) Depth-first (DFS).

Let us start our discussion with BFS.

4.2.1 Breadth-First Search

Consider a graph G. Let u be a node/vertex in G. BFS explores the edges of G in a step-by-

step manner to find/discover every node/vertex that is reachable from u. BFS search

produces a tree with the vertex u as a root and all the nodes that are reachable from u.

For any node/vertex v that can be reached from u, the BFS tree contains a shortest path

with the smallest number of edges. Now, let us discuss the steps to implement BFS

traversal:

Input: Graph G = (V, E)

Step 1: Define queue Q; Size of Q, |Q| = |V|.

Step 2: Select a vertex u ∈ V as a starting point. Mark u as visited and add/enqueue u into

the queue Q.

Step 3: Find out the vertices that are adjacent to u, and not yet visited. Mark those

vertices and add/enqueue them into the queue Q.

Step 4: Delete/Dequeue u present in the front side of Q, if there are no vertices to be

visited from u.

Step 5: Repeat steps 3 and 4, until Q becomes empty.

152| Graphs

4.2.1.1 Example

Consider the graph G shown below. G contains 7 nodes and 11 edges.

Step-1: Choose node 1 as the start node of the BFS traversal. Mark node 1 as visited and

add node 1 into queue Q.

Step-2: Find out the nodes that are adjacent to node 1 and not yet visited (nodes 4, 5, 2).

Mark those nodes as visited and add them to the Q. Delete node 1 from the Q.

Step-3: Find out the nodes that are adjacent to node 4 and not yet visited. There is no

such node. Delete node 4 from the Q.

 Algorithms |153

Step-4: Find out the nodes that are adjacent to node 5 and not yet visited (3, 6). Mark

those nodes as visited and add them to the Q. Delete node 5 from the Q.

Step-5: Find out the nodes that are adjacent to node 2 and not yet visited. There is no

such node. Delete node 2 from the Q.

Step-6: Find out the nodes that are adjacent to node 3 and not yet visited (7). Mark node

7 as visited and add it to the Q. Delete node 3 from the Q.

154| Graphs

Step-7: Find out the nodes that are adjacent to node 6 and not yet visited. There is no

such node. Delete node 6 from the Q.

Step-8: Find out the nodes that are adjacent to node 7 and not yet visited. There is no

such node. Delete node 7 from the Q.

The queue Q is now empty, and the BFS traversal comes to an end. A spanning tree

representing the outcome of the BFS traversal is shown below.

 Algorithms |155

4.2.1.2 Complexity Analysis

The operation of adding and deleting a vertex from the queue Q consumes O(1) time.

Every vertex in G is visited exactly once by BFS. Thus, BFS’s complexity becomes O(V + E),

when the graph is stored as an adjacency-list (refer, Know More section of the Unit).

4.2.2 Depth-First Search

Consider a graph G. Let u be a node in G. DFS explores “deeper” in the graph to

find/discover every node/vertex that can be reached from u. Now, let us discuss the steps

to implement DFS traversal:

Input: Graph G = (V, E)

Step 1: Define stack S; Size of S, |S| = |V|.

Step 2: Select a vertex u ∈ V as a starting point. Mark u as ‘visited’ and add/push u into

the stack S.

Step 3: Find out any one of the vertices that is adjacent to u, and not yet visited. Mark it

to be ‘visited’; Push it to S.

Step 4: Delete/Pop the vertex u in the top of the stack, if there are no vertices to be visited

from u.

Step 5: Repeat steps 3 and 4, until S becomes empty.

156| Graphs

4.2.2.1 Example

Consider the graph G shown below. G contains 7 nodes and 11 edges.

Step 1: Choose node 1 as the start node of the DFS traversal. Mark node 1 as visited and

add node 1 into stack S.

Step 2: Find out any node that is adjacent to node 1 and not yet visited (node 2). Mark

node 2 as visited and add node 2 to the S.

 Algorithms |157

Step 3: Find out any node that is adjacent to node 2 and not yet visited (node 3). Mark

node 3 as visited and add node 3 to the S.

Step 4: Find out any node that is adjacent to node 3 and not yet visited (node 5). Mark

node 5 as visited and add node 5 to the S.

158| Graphs

Step 5: Find out any node that is adjacent to node 5 and not yet visited (node 4). Mark

node 4 as visited and add node 4 to the S.

Step 6: Since node 4 does not have any adjacent node that is not yet visited, delete node

4 from the S.

Step 7: Find out any node that is adjacent to node 5 and not yet visited (node 6). Mark

node 6 as visited and add node 6 to the S.

 Algorithms |159

Step 8: Find out any node that is adjacent to node 6 and not yet visited (node 7). Mark

node 7 as visited and add node 7 to the S.

Step 9: Since node 7 does not have any adjacent node that is not yet visited, delete node

7 from the S.

160| Graphs

Step 10: Since node 6 does not have any adjacent node that is not yet visited, delete node

6 from the S.

Step 11: Since node 5 does not have any adjacent node that is not yet visited, delete node

5 from the S.

Step 12: Since node 3 does not have any adjacent node that is not yet visited, delete node

3 from the S.

 Algorithms |161

Step 13: Since node 2 does not have any adjacent node that is not yet visited, delete node

2 from the S.

Step 14: Since node 1 does not have any adjacent node that is not yet visited, delete node

1 from the S.

162| Graphs

The stack S is now empty, and the DFS traversal comes to an end. A spanning tree

representing the outcome of the DFS traversal is shown below.

4.2.2.2 Complexity Analysis

The operation of adding and deleting a vertex from the stack S takes O(1) time. Every

vertex in G is visited exactly once by DFS. Thus, DFS’s complexity becomes O(V + E), when

the graph is stored as an adjacency-list (refer, Know More section of the Unit).

 Algorithms |163

4.3 Topological Sorting

Topological sorting refers to the linearly ordered arrangement of nodes in a directed

acyclic graph (DAG). A vertex u (source node) of a directed graph will always come before

vertex v (destination node) in the ordering for every edge (u, v). The edges of the graph

may reflect requirements that one action must be accomplished before another and the

vertices may represent activities that have to be completed.

In this section, we discuss Kahn’s algorithm, a simple and yet popular algorithm used to

determine the topological sorting order of a graph. The algorithm first determines a node

(say, X) in the graph that has no incoming edges (that is, its in-degree is zero). It then

removes all the outgoing edges of X, and X is added into a sorted list (say, TOPO_L). This

procedure is repeated until the graph has no more vertex. If the graph is a DAG, then the

list TOPO_L gives us its topologically sorted order. This order is not always unique, that is,

multiple topologically sorted order exists for a given DAG. On the other hand, if the graph

contains any cycle, it is impossible to generate its topologically sorted order. Topological

sorting is mainly used to a) determine cycle in a graph, and b) detect deadlock in operating

systems.

4.3.1 Pseudocode

🇱1: Procedure Topo_Sort()

🇱2: Input G, the directed graph

🇱3: Declare two lists: TOPO_L,INDE_L

🇱4: For each node X in G

🇱5: Calculate X’s in-degree

164| Graphs

🇱6: If X’s in-degree is zero

🇱7: Add X to INDE_L

🇱8: End If

🇱9: End For

🇱10: While INDE_L is not empty

🇱11: Remove a node X from INDE_L

🇱12: Add X to TOPO_L

🇱13: For each node Y having an edge E from X

🇱14: Remove E from G

🇱15: If Y has no other incoming edges

🇱16: Add Y to INDE_L

🇱17: End If

🇱18: End For

🇱19: End While

🇱20: If G has edges

🇱21: Return False //G has at least one cycle

🇱22: Else

🇱23: Return TOPO_L

🇱24: End If

🇱25: End Procedure

4.3.2 Example

Consider the directed graph shown in Fig. 4.1. Different topological orderings are possible

for this graph. They are: ABCDEF, ABCDFE, ACBDEF, and ACBDFE.

 Algorithms |165

Fig. 4.1: A Directed Graph G

4.3.3 Complexity Analysis

The complexity for topological sorting is O(V + E).

4.4 Minimum Spanning Tree

As discussed earlier, a spanning tree of a graph is a tree that contains no cycles and

covers all nodes. In a weighted undirected graph, there exists multiple spanning trees

which can be differentiated with respect to the sum of edge weights obtained by them.

As the name suggests, a minimum spanning tree of a weighted graph is the subset of the

graph's edges that avoids cycles while connecting all of the vertices with the smallest

sum of edge weights. Simply, it represents a spanning tree with the smallest feasible sum

of edge weights. Here, one major constraint is that the graph should be connected. It is

mainly used in graph-based cluster analysis, trees for broadcasting in computer

networks, image segmentation etc.

In this section, we discuss two most popular algorithms - Prim’s and Kruskal’s algorithms,

that are used to derive a minimum spanning tree from a given weighted graph.

166| Graphs

4.4.1 Prim’s Algorithm

Prim's algorithm, a well-known greedy technique, can be used to find the minimum

spanning tree for a weighted, undirected graph. This method tends to look for edges that

can be used to build spanning trees and the aggregate weight of all the edges in the tree

should be kept to a minimum. Beginning with one randomly selected vertex, the

algorithm continues to add edges with the lowest weight until it attains its objective. The

algorithm operates on two lists: the list of visited vertices, say RAND_L, and the list of

unvisited vertices, say V – RAND_L. By connecting the least-weighted edge, we gradually

transfer each vertex from list V – RAND_L to list RAND_L. This algorithm performs better

on dense graphs.

4.4.1.1 Pseudocode

🇱1: Procedure Prim_Algo(G)

🇱2: Input Weighted undirected graph G =(V,E)

🇱3: Declare two lists: RAND_L, TEMP_L

🇱4: Initialize ∅

 // x1 is the first randomly selected vertex

🇱5: While

🇱6: Find the smallest weighted edge (x,y) such

∈ ∈

🇱7: TEMP_L = TEMP_L + {(x,y)}

🇱8: RAND_L = RAND_L + {y}

🇱9: End While

🇱10: End Procedure

 Algorithms |167

4.4.1.2 Example

Consider the weighted undirected graph G given below (refer, Fig. 4.2).

Fig. 4.2: Weighted undirected graph G

Step 1: Choose a node randomly (say, node A), and add it into the visited list, RAND_L.

Step 2: Now, RAND_L = {A}, V – RAND_L = {B, C, D, E}. Choose vertex A's lowest weighted

edge (A, B), and add node B from V – RAND_L into RAND_L.

Step 3: Choose the smallest weighted edge (B, D) from a set of edges formed by the sets

RAND_L and V - RAND_L. Add node D into RAND_L.

168| Graphs

Step 4: Choose the smallest weighted edge (A, C) from a set of edges formed by the sets

RAND_L and V - RAND_L. Add node C into RAND_L.

Step 5: Choose the smallest weighted edge (D, E) from a set of edges formed by the sets

RAND_L and V - RAND_L. Add node E into RAND_L. Now, all the nodes are covered in the

set RAND_L and the resulting tree shown below is the final minimum spanning tree.

 Algorithms |169

4.4.1.3 Complexity Analysis

The type of data structure that is utilized to construct Prim's algorithm will determine its

running time complexity. If we use a binary heap then the time complexity is O(E log V),

where V is the number of nodes and E is the number of edges in the graph.

4.4.2 Kruskal’s algorithm

Kruskal's algorithm employs a greedy method, like Prim's algorithm does, to determine

the undirected edge-weighted graph's minimum spanning forest. It determines the

minimum spanning tree if the graph is connected. The algorithm begins with the edges

that have the lowest weight and keeps adding edges until it attains the desired result. It

runs faster in case of sparse graphs. The detailed steps of Kruskal's algorithm are

explained below.

1. Sort the graph's edges according to their weights in a non-decreasing

order.

2. Select the lowest weighted edge.

3. Verify if the chosen edge creates a cycle with the spanning tree that has

been created so far.

4. If not, add this edge into the spanning tree. Otherwise, drop it.

5. Repeat from step 2 until the resulting spanning tree has (V-1) edges.

Initially, the algorithm creates |V| disjoint trees, each having a node x ∈ V using the

function CREATE-GROUP() (line number 6). The algorithm then selects each edge (x, y)

from the sorted list EDGE_L one by one (line number 9), and determines whether two

nodes x and y of the selected edge (x, y) belong to the same tree or not. The function

170| Graphs

DETERMINE-GROUP() is used to find the inclusion of a particular node in a tree. If two

nodes of an edge belong to different trees (line number 10) then the edge (x, y) is added

to the final spanning tree list TEMP_L (line number 11), and the algorithm combines two

corresponding trees using the COMBINE() function (line number 12).

4.4.2.1 Pseudocode

🇱1: Procedure Kruskal_Algo()

🇱2: Input Weighted undirected graph G =(V,E)

🇱3: Declare two lists: EDGE_L, TEMP_L

🇱4: Initialize ∅

🇱5: For each ∈

🇱6: CREATE-GROUP(x)

🇱7: End For

🇱8: Sort EDGE_L in non-decreasing order of edge

 weights

🇱9: For each ∈

🇱10: If

🇱11: TEMP_L = TEMP_L + {(x, y)}

🇱12: COMBINE(x, y)

🇱13: End If

🇱14: End For

🇱15: Return TEMP_L

🇱16: End Procedure

 Algorithms |171

4.4.2.2 Example

Fig. 4.3 depicts a weighted undirected graph G. There are 13 edges and 8 nodes in this

graph. The minimum spanning tree that is created from G has (8 - 1) = 7 edges.

Fig. 4.3: Weighted Graph G

Now, we create a list of edges that are sorted according to increasing weights, as shown

in the table below. Go through this ordered list of edges and choose each edge one by

one.

Source
Node

3 4 5 1 4 3 4 1 2 6 7 2 6

Destination
Node

5 5 7 2 7 4 6 3 4 8 8 3 7

Weight 1 2 2 3 3 5 5 6 6 7 8 10 12

Step 1: Select the first minimum weighted edge (3,5) from the list. Edge (3,5) should be

included in the output tree because it is not forming a cycle.

172| Graphs

Step 2: Select the next minimum weighted edge (4,5) from the list. Edge (4,5) should be

included in the output tree because it is not forming a cycle.

Step 3: Select the next minimum weighted edge (5,7) from the list. Edge (5,7) should be

included in the output tree because it is not forming a cycle.

Step 4: Select the next minimum weighted edge (1,2) from the list. Edge (1,2) should be

included in the output tree because it is not forming a cycle.

Step 5: Select the next minimum weighted edge (4,7) from the list. Edge (4,7) should be

discarded because it is forming a cycle.

 Algorithms |173

Step 6: Select the next minimum weighted edge (3,4) from the list. Edge (3,4) should be

discarded because it is forming a cycle.

Step 7: Select the next minimum weighted edge (4,6) from the list. Edge (4,6) should be

included in the output tree because it is not forming a cycle.

Step 8: Select the next minimum weighted edge (1,3) from the list. Edge (1,3) should be

included in the output tree because it is not forming a cycle.

Step 9: Select the next minimum weighted edge (2,4) from the list. Edge (2,4) should be

discarded because it is forming a cycle.

Step 10: Select the next minimum weighted edge (6,8) from the list. Edge (6,8) should be

included in the output tree because it is not forming a cycle.

174| Graphs

Step 11: Discard edges (7,8), (2,3) and (6,7) since the inclusion of these edges creates a

cycle in the output tree. The figure below depicts the resulting minimum spanning tree.

4.4.2.3 Complexity Analysis

Sorting of edges mentioned in line number 8 takes O(E log E) time. The disjoint set

operations DETERMINE-GROUP and COMBINE also take a total of O(E log E) time. Thus,

the total time complexity of Kruskal’s algorithm is O(E log E). Since |E|< |V|2, we have log

|E| = O(log V), and thus the overall complexity associated with Kruskal’s algorithm can be

represented as O(E log V).

4.5 Shortest Path Algorithms

Consider a scenario where a graph is visualized as a real world computer network. Here,

vertices of a graph represent computers, edges denote network communication links

between computers, and weights on edges represent communication cost (measured in

 Algorithms |175

terms of geographical distance or delay time etc). There exists multiple paths (called

routes in a network) that can deliver a message (say an email) from a computer (called

source machine) at one end of the network to another computer (called destination

machine) at the other end of the network. Algorithms that find the fastest or shortest

route to send messages from a source to a destination are known as shortest path

algorithms. Here, the shortest path is a path among a set of available paths in the network

that generates a minimal communication cost. In the next two sections, we discuss two

shortest path algorithms: one for unweighted graphs and another for weighted graphs.

4.6 Shortest Path in an Unweighted Graph

In unweighted graphs, no weight is defined for edges. On the other hand, we can assume

that all the edges are of the same weight (say, a weight of 1). If the graph is unweighted,

then finding the shortest path is straightforward. We only need to count the edges in a

path to measure path length. The shortest path is the one with the lowest number of

edges. The strategy to determine shortest path within an unweighted graph is described

in the pseudocode. This algorithm first uses a function named determinePaths() whose

job is to traverse the given graph from a source S to a destination D and determine

different paths between S and D in the graph. These paths are then compared based on

their path lengths to determine the shortest one. An important point is that this algorithm

is only applicable to graphs with no cycles.

176| Graphs

4.6.1 PseudoCode

🇱1: Procedure ShortestPathUnweighted_Algo(G, S, D)

🇱2: Input unweighted acyclic graph G, Source

 Node S, Destination Node D

🇱3: Declare two lists: SHORTEST_L, PATHS_L

🇱4: Initialize ∅

🇱5: Initialize PATHS_L = determinePaths(G, S, D)

🇱6: For each path in PATHS_L

🇱7: Determine pathLength, length of path

🇱8: If SHORTEST_L is empty

🇱9: Add path to SHORTEST_L

🇱10: Else If SHORTEST_L’s size > pathLength

🇱11: Overwrite the new path onto SHORTEST_L

🇱12: End If

🇱13: End For

🇱14: Return SHORTEST_L

🇱15: End Procedure

4.6.2 Example

Consider the unweighted graph G shown in Fig. 4.4. Let the source and destination nodes

considered for determining shortest path be 1 and 8, respectively. There exists three

paths from 1 to 8, and are P1: 1-2-5-8, P2: 1-3-8, and P3: 1-4-6-7-8. The length (number

of edges) of these paths P1, P2, and P3 are 3, 2, and 4, respectively. Therefore, the

shortest path between 1 and 8 is P2: 1-3-8, and has a length of 2.

 Algorithms |177

Fig. 4.4: Unweighted Graph G

4.6.3 Complexity Analysis

The time overhead associated with the above-discussed strategy depends on the

generalised function determinePaths() that finds all the paths in the graph. There are

many approaches that implement the function determinePaths() in different ways.

Therefore, the complexity of determinePaths() also varies from the perspective of

implementation. If one such implementation takes O(|V|!) time, then the overall time

overhead associated with the algorithm also becomes O(|V|!).

4.7 Shortest Path in a Weighted Graph

As discussed earlier, a weighted graph has weight labels on its edges that represent the

communication cost between two nodes involved in the formation of the corresponding

edge in the graph. Given a weighted graph, there exist many algorithms to find the

shortest path. However, Dijkstra’s shortest path algorithm is known to be a simple and

efficient technique among these algorithms. It was formulated by a famous Dutch

computer scientist named Dr. Edsger W. Dijkstra. In general, the objective of Dijkstra's

178| Graphs

algorithm is to calculate the shortest path between a specific source node and each of

the remaining nodes in the graph. A shortcoming for this algorithm is that it works only

for graphs having positive edge weights.

Dijkstra's algorithm uses two data structures: an array (say, SHORT_L) that stores the

current distance from a source node to other nodes in the graph, and a queue (say,

Queue) of all nodes in the graph. The algorithm first starts with a source node s and

initializes the array SHORT_L as SHORT_L[s] = 0 for a source node s, and SHORT_L[v] = ∞,

for all other nodes v in G. It then adds each vertex v of the graph into Queue. Whenever

Queue is not empty, the algorithm selects a vertex (say, u) that has least SHORT_L[u] value

and is deleted from Queue. For each neighbor v of u, the algorithm determines a path

from the source node to v through u, and its length (say, new_dist) is measured as

SHORT_L[u] + w(u, v), where w(u, v) is the assigned weight on the edge (u, v). If new_dist

is smaller than the length of the present shortest path obtained for the node v, then the

present path is substituted with the newly generated path.

4.7.1 Pseudocode

🇱1: Procedure ShortestPathWeighted_Algo(G, S)

🇱2: Input Weighted Graph G, Source Node s

🇱3: Declare an array SHORT_L

🇱4: Initialize SHORT_L[s] = 0

🇱5: For each vertex v in G

🇱6: If

🇱7: SHORT_L[v] =

🇱8: End If

🇱9: Add v to Queue

 Algorithms |179

🇱10: End For

🇱11: While Queue is not empty

🇱12: Find a vertex u in Queue with minimum

 SHORT_L[u]

🇱13: Delete u from Queue

🇱14: For each neighbor v of u

🇱15: new_dist = SHORT_L[u] + W(u, v)

🇱16: If new_dist < SHORT_L[v]

🇱17: SHORT_L[v] = new_dist

🇱18: End If

🇱19: End For

🇱20: End While

🇱21: Return SHORT_L[]

🇱22: End Procedure

4.7.2 Example

Consider a weighted undirected graph G shown in Fig. 4.5. Now, we determine the

shortest path from the source node 1 to all other nodes in G.

Fig. 4.5: Weighted undirected graph G

180| Graphs

Step 1: Initialize the distance to the source vertex 1 as zero and all other vertices as infinity

values. Add all the vertices of G into the queue. Select the least distance valued vertex

(node 1) and delete it from the queue. The following figure depicts this scenario.

Step 2: Update the path distances from node 1 to its neighbor nodes 2 and 3. Select the

next node with minimal distance (node 2) and delete it from the queue. The following

figure depicts this scenario.

Step 3: Update the path distances of the neighbor nodes (3 and 4) of node 2. Select the

next node with minimal distance (say, node 3) and delete it from the queue. The following

figure depicts this scenario.

 Algorithms |181

Step 4: Update the path distance of the neighbor node (5) of node 3. Select the next node

with minimal distance (say, node 5) and delete it from the queue. The following figure

depicts this scenario.

Step 5: Update the path distances of the neighbor nodes (4 and 6) of node 5. Select the

next node with minimal distance (say, node 4) and delete it from the queue. The following

figure depicts this scenario.

182| Graphs

Step 6: Update the path distance of the neighbor node (6) of node 4. Select the next node

with minimal distance (say, node 6) and delete it from the queue. Now, the queue

becomes empty and the algorithm stops exploring further. The following figure depicts

this scenario.

The algorithm returns the shortest path distances from source node 1 to all other

nodes, as shown in the following table:

Vertex 2 3 4 5 6

Distance 4 6 16 12 18

 Algorithms |183

4.7.3 Complexity Analysis

There exists two nested loops (an outer while loop and an inner for loop) in the algorithm

that determine its complexity. If Queue is implemented with a normal queue data

structure, the total time complexity of the strategy becomes O(V2). However, this

complexity can be improved to O(E log V), if we use a binary heap to construct Queue.

4.8 Network Flow

A flow network (also referred to as transport network) is defined as a directed graph G =

(V,E) with two marked nodes/vertices s (source) and t (sink) and a function c(u,v) which

defines edge’s capacities. The number of nodes/vertices are n = |V| while the number of

edges are m = |E|. Flow networks are often used for modeling material flow. We aim to

determine a numerical flow value f(u,v) corresponding to each edge (u,v) (while not

violating edge capacity, c(u,v)), such that incoming flow is equal to outgoing flow at all

vertices except s and t.

Real-life scenarios concerning flow networks may include problems like modeling the

maximum rate of liquid flow from s to t through a network of pipes, flow of current

through wires and delivery of goods through a network of roads.

Flow networks satisfy the following properties:

Capacity

constraints

∀(u,v) ∈ E: f(u,v) ≼ c(u,v) The flow corresponding to any edge should

not be beyond its capacity.

https://en.wikipedia.org/wiki/Flow_network#Flows

184| Graphs

Skew

symmetry

∀(u,v) ∈ E: f(u,v) = -f(v,u) The net flow f(u,v) from u to v is equal to the

opposite net flow f(v,u).

Flow

conservation

∀u ∈ V: u ≠ s and u ≠ t ⇒

∑𝑤∈𝑉 f(u,w) = 0

The net flow on a node is NIL, barring s, the

source that initiates flow, and t, the sink that

"consumes" flow.

Value of flow
∑(𝑠,𝑢)∈𝐸 f(s,u)

=∑(𝑣,𝑡)∈𝐸 f(v,t)}

The total flow leaving s should be the same as

the total flow arriving at t.

4.8.1 Maximum Flow Problem

Here, we endeavour to maximize the flow value from s to t. The Ford–Fulkerson Algorithm

(FFA) published in 1956, is a very well known greedy technique for determining the

maximum flow in a flow network.

The FFA strategy is founded on the following simple idea: While there exists a path p from

s to t, such that all edges in p have residual capacity, we push the maximum flow along p.

Such paths p having available residual capacities, are referred to as augmenting paths. In

order to easily find augmenting paths, it is helpful to define a residual graph. A residual

graph Gf(V, Ef) is one where an edge (u,v) has a capacity cf(u,v) = c(u,v) - f(u,v) (called

residual capacity), and zero flow.

It may be noted that given a directed edge (u,v), a backward flow v→u is allowed in the

residual graph (even though such a flow is not permitted in the initial network), if: f(u,v)

https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Flow_network

 Algorithms |185

> 0 and c(v,u) = 0. Hence in this case: cf(u,v) = 0 - f(v,u) = -(-f(u,v)) = f(u,v) > 0. In other

words, given a residual graph, augmenting paths can be formed through a sequence of

edges where each edge (u,v) can either be a non-full forward edge, or a fully filled

backward edge.

If an augmenting path from s to t can be found in the residual graph, then it is possible to

add flow in the original network. The maximal flow which may be driven through an

augmenting path p is determined by cf(p), its residual capacity. cf(p) is represented as:

cf(p) = min {cf(u,v) : (u,v) ∈ p}.

We now present the pseudo-code for a basic version of the Ford–Fulkerson algorithm

(FFA).

4.8.2 Pseudocode

🇱1: Procedure FFA()

🇱2: // Initialize maximum total flow in G

🇱3: max_flow = 0

🇱4: While an augmenting path p exists in G

🇱5: max_flow = max_flow + cf(p)

🇱6: Update residual graph Gf(V,Ef)

🇱7: End While

🇱8: Return max_flow

🇱9: End Procedure

186| Graphs

In line no. 4 of the above algorithm, an augmenting path can be obtained in many ways,

for example through a BFS/DFS search in the residual graph Gf(V, Ef).

4.8.3 Example

Determine the maximum flow through the flow network, shown as the figure below.

Step 1: max_flow = 0; Let us choose ‘p = s -> 4->2->t’ as the augmenting path.

cf(p) = min(10, 8, 10) = 8; max_flow = 0 + 8 = 8 (refer the following figure).

Step 2. Next residual graph: Gf(V,Ef) (refer the following figure).

 Algorithms |187

Let the next augmenting path be ‘p = s->1->2->t’.

cf(p) = min(10, 9, 2) = 2; max_flow = 8 + 2 = 10 (refer the following figure).

Step 3. Next residual graph (refer the following figure).

188| Graphs

Let the next augmenting path be ‘p = s->1->2->4->3->t’

This path contains a backedge from 2 to 4; f(2, 4) = –8 (refer to the figure shown in step

2); cf(2, 4) = 8.

cf(p) = min(8, 7, 8, 4, 10) = 4; max_flow = 10 + 4 = 14 (refer the following figure).

Step 4. Next residual graph (refer the following figure).

 Algorithms |189

Let the next augmenting path be ‘p = s->4->2->3->t’

cf(p) = min(2, 4, 6, 6) = 2; max_flow = 14 + 2 = 16 (refer the following figure).

Step 5. Next residual graph (refer the following figure).

190| Graphs

Let the next augmenting path be ‘p = s->1->2->3->t’

cf(p) = min(4, 3, 4, 4) = 3; max_flow = 16 + 3 = 19 (refer the following figure).

No more augmenting paths are possible. Hence, maximum flow through the given flow

network is 19.

4.8.4 Complexity Analysis

The loop over lines 4 to 7 in FFA is executed till an augmenting path can be found in the

residual graph. The overhead for determining an augmenting path is O(m), where m

 Algorithms |191

represents the total count of edges. In each iteration of the loop, one unit of flow can be

added in the worst case. Therefore, the overall overhead of FFA becomes: O(m *

max_flow).

4.8.5 Max-flow Min-cut Theorem

The maximum flow through a flow network is same as the least capacity over all s-t cuts.

Here, a cut refers to a set of edges removal of which disconnects the graph. An s-t cut is

one which divides the vertex set into two partitions X and Y, in such a fashion that the

source node s ∈ X while the sink node t ∈ Y (V = X ∪ Y). The capacity of an s-t cut is obtained

as the aggregate capacity of all edges involved in the cut.

UNIT SUMMARY

Graphs, both directed and undirected, often form a very convenient mechanism for

modelling relationships among data objects. Hence, graphs have found wide usage in

diverse applications including, process scheduling, path or route planning, and resource

optimization, in various disciplines. This chapter starts with a discussion on important

terminologies related to graphs. Then, we proceed with presentations on spanning trees,

finding minimum spanning trees, directed acyclic graphs and topological sorting on them,

finding shortest paths and determination of maximal flows. All the algorithms have been

discussed with running illustrative examples with brief overviews on their computational

complexities.

EXERCISES

Multiple Choice Questions

192| Graphs

1) Topological sorting can be used to sort which of the following graphs?

a) Directed Cyclic Graphs

b) Undirected Cyclic Graphs

c) Directed Acyclic Graphs

d) Undirected Acyclic Graphs

2) Choose the correct topological ordering of the graph given below.

a) ABDC

b) ADCB

c) ABCD

d) DABC

3) Topological sorting has a time complexity of __.

a) V*E

b) V+E

c) V

d) E2

4) The algorithm that is not used to find the MST of a graph is

a) Prim’s

b) Kruskal’s

c) Bellman–Ford

 Algorithms |193

d) All of the above

5) Identify the correct statement for Prim’s algorithm?

a) It is an approximation algorithm

b) It is a greedy approach

c) It follows dynamic programming scheme

d) It is based on divide and conquer approach

6) Kruskal’s algorithm has a time complexity of __.

a) ElogV

b) E logE

c) V logV

d) All of the above

7) Dijkstra’s algorithm has a time complexity of __.

a) V^3

b) |V|!

c) V*E

d) E logV

8) Time complexity of Ford-Fulkerson algorithm is __

a) E

b) E * max_flow

c) V*E

d) E logV

Answers of MCQs

1) (c) 3) (b) 5) (b) 7) (d)

2) (a) 4) (c) 6) (d) 8) (b)

194| Graphs

Short and Long Answer Type Questions

1) Explain the terms "in-degree" and "out-degree" for a node with an example.

2) Explain the stepwise procedure of topological sorting with an example.

3) Explain the stepwise procedure of Kruskal’s algorithm with an example.

4) Find the minimum spanning tree using Prim’s algorithm for the graph given below.

Consider node A as the starting point.

Hint:

5) What do you mean by shortest path in an unweighted graph? Explain the concept

with an example.

6) Explain the stepwise procedure of Dijkstra’s algorithm with an example of your

choice.

7) What is a flow network? Describe various properties of a flow network.

8) Illustrate the steps of Ford–Fulkerson algorithm with the help of an example.

 Algorithms |195

KNOW MORE

This section talks about a set of additional information that helps the reader to improve

the knowledge on the topics discussed in Unit-4.

Representation of Graphs in a Computer System

A method of storing a graph in a computer's memory is called a graph representation.

Depending on the number of edges a graph has, the kind of operations that need to be

done, and the simplicity of usage, there are various ways to optimally represent a graph.

Adjacency Matrix and Adjacency List are the two popular ways to represent graphs in

computer memory.

1) Adjacency Matrix

There exists adjacency matrix representations for directed, undirected, and

weighted graphs. A two-dimensional array with size |V| x |V|, where |V| denotes

the total number of nodes in the graph, is known as an adjacency matrix. Let us

assume this 2D array is AM[][]. An edge joining node a and node b is indicated by

a slot AM[a][b] = 1. The adjacency matrix for undirected graphs is always

symmetric about the diagonal. In weighted graphs, if there is an edge with weight

w from node a to node b then AM[a][b] = w. The following figure (refer Fig.4.6)

depicts the adjacency matrix of an undirected graph. This representation's key

benefit is that it is easy to use and implement. However, it is less efficient in terms

of space and time.

196| Graphs

Fig. 4.6: An undirected graph G and its corresponding adjacency matrix

2) Adjacency List

In this approach, a graph is represented as an array of linked lists. The array's index

indicates a node, and each item in its linked list represents the other nodes with

whom it forms an edge. A weighted graph can also be represented using this

method. Lists of pairs can be used to indicate the weights of edges. The following

figure (refer Fig.4.7) depicts the adjacency list of an undirected graph. This method

is efficient in terms of space and time.

Fig. 4.7: An undirected graph G and its adjacency list

 Algorithms |197

REFERENCES AND SUGGESTED READINGS

Syllabus Referred Textbooks

1. All textbooks prescribed in the syllabus.

 Other Textbook References

1. Data Structures and Algorithms Made Easy, Second Edition, Narasimha

Karumanchi, CareerMonk Publications, (2011)

2. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

3. Algorithms: Design and Analysis, Harsh Bhasin, Oxford University Press, (2015)

Dynamic QR Code for Further Reading

198| Graphs

5

 Strings

5

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● Simple string sorting algorithm along with analysis on its efficiency;

● Characteristics of Trie data structure and its basic operations;

● A simple algorithm for finding substrings and an evaluation of its effectiveness;

● Concept of regular expression and its importance in string matching problems;

● Elementary data compression techniques.

RATIONALE

The most common way to describe strings is as arrays of bytes (or words) that include a series of

characters. Strings are commonly considered as a data type in many programming languages.

Various data structures, including ternary search trees, suffix trees, tries, suffix arrays, and many

others, can be built on the foundation of a string. Strings give us immensely useful string algorithms

that allow us to solve very complex problems quickly. Strings and string matching algorithms are

widely used in a variety of applications such as search engines, data encoding, plagiarism

checkers, DNA sequencing, spam filters, and so on.

We start this unit with a description of how to organise a string of characters in lexical or

dictionary order. Subsequently, we discuss the Trie data structure, a unique tree-based data

Strings

200 | Strings

structure designed specifically for storing and searching strings. The unit also discusses the

fundamentals of regular expressions, which serve as the foundation for many string matching

techniques. Lastly, we talk about data compression, a crucial practical application of strings.

PRE-REQUISITES

Rudimentary knowledge of computer programming and data structure.

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U5-O1: Describe the basic algorithm to sort a given string

U5-O2: Describe Trie data structure and its basic operations

U5-O3: Explain different data compression techniques through running examples

U5-O4: Realize the role of regular expressions in string matching problems.

U5-O5: Apply strings for solving various problems in science and engineering

Unit-5

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong
Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U5-O1 3 3 2 2 1

U5-O2 3 3 2 2 1

U5-O3 3 3 3 3 1

U5-O4 3 3 3 3 1

U5-O5 3 3 3 3 1

 Algorithms |201

5.1 String Sort

In Unit-2, we have discussed different sorting techniques. As a complementary, this

section discusses how to perform sorting operations on ‘string.’ String sorting is the

process of arranging characters in a string in ascending or descending order. For example,

if the given string is ‘gamer’, then the resulting string after sorting in ascending order is

‘aegmr.’

5.1.1 Pseudocode

🇱1: Procedure String_Sort()

🇱2: Input gamer, the given string

🇱3: Initialize char strA[] = gamer

🇱4: Determine n, length of the given string

🇱5: For each i from 0 to n-1

🇱6: For each j from 0 to n-i-1

🇱7: If(strA[j] > strA[j+1])

🇱8: swap(strA[j], strA[j+1])

🇱9: End If

🇱10: End For

🇱11: End For

🇱12: End Procedure

Note: In the case of a string or character array, we use the index starting from 0.

202 | Strings

5.1.2 Example

Consider an input string `gamer.’ Now, we perform the string sorting operation on this

input string.

Iteration 1: i = 0 and j takes values 0, 1, 2, 3

Iteration 2: i = 1 and j takes values 0, 1, 2

 Algorithms |203

The final resulting sorted string is ‘aegmr.’

5.1.3 Complexity Analysis

The procedure String_Sort() has two for loops, and each loop takes at most n iterations.

Therefore, the total time complexity of the above procedure is O(n2).

5.2 Tries

A Trie is a particular kind of k-ary search tree used to store and look up a certain key from

a set. It is an advanced tree-based data structure for storing and searching strings. The

term "trie" is derived from the word "retrieval," that means to locate or obtain. It is also

known as a prefix tree or digital tree. When it comes to storing and retrieving data, trie

data structures are quicker than hash tables and binary search trees. We can efficiently

perform search operations on a trie and store a huge number of strings in it. A trie can be

used to determine whether a string with a specific prefix is present or not and to

alphabetically sort a collection of strings. The major applications of Trie are spell checker,

autocomplete features of search engines, and browser history etc. It is also useful for

implementing dictionaries.

5.2.1 Properties of a Trie

As discussed above, a trie has a tree-like structure. Each Trie has a single root node that

represents an empty string. A Trie's nodes denote strings and its edges represent

characters. Each node is made up of an array of pointers, where each index corresponds

to a character, and a flag that denotes whether any strings finish at the current node.

Alphabets, integers, and special characters are all permitted in Trie data structures.

However, in this unit, we will focus on strings with the English alphabet. Therefore, each

node only requires 26 pointers with the 0th index representing the character "a" and the

204 | Strings

25th index representing the character "z." Every path leading from the root to any

particular node represents a string or word.

In a trie, strings are organised from top to bottom based on their prefix. The root node,

which is at level 0, indicates a prefix of length 0. All prefixes with lengths of 1 are kept at

level 1, those with lengths of 2 are stored at level 2, and so on.

5.2.2 Representation of a Trie Node

Each Trie node is made up of an array of character pointers (struct Trie_Node *child[])

where each index corresponds to a character and a flag (bool stringEnd) that indicates

whether or not the string ends at that node. The node of a Trie is defined as follows:

struct Trie_Node

{

 struct Trie_Node *child[ALPHABET_SIZE];

 bool stringEnd;

};

Here, the boolean field stringEnd becomes true if the node represents the end of a string

or a word, that is, when the node becomes a leaf node. For all intermediate nodes of a

trie, the value of stringEnd is always false.

5.2.3 Example of a Trie

Consider a collection of strings {arc, art, ash, ask, mad, my}. A trie data structure used to

store this set of strings is depicted in Fig. 5.1. Here, we can observe that the strings are

stored lexicographically from left to right.

 Algorithms |205

Fig. 5.1: A Trie Data Structure

5.2.4 Basic Operations in a Trie

This section discusses ideas behind the basic operations like insertion, searching and

deletion of a node in a Trie.

5.2.4.1 Insertion in a Trie

Suppose we want to insert a string or a key into a Trie. The input string's characters are

inserted as separate nodes in the Trie. If the string is new or an augmentation of an

existing string, then we create new nodes for the string and mark the final (leaf) node as

the end of the key. If the string is a prefix of an existing string in the Trie, then we plainly

mark the final node of the string as the end of a key.

206 | Strings

The following procedure Trie_Insert () may be used to insert a key or a string element ‘s’,

into a Trie rooted at ‘root’. The algorithm first initializes the current node (cntNode)

pointer with ‘root’ (line 3). Then it iterates over the length of the string (lines 5-12) to

assign new nodes into the trie. The algorithm first checks a node in the Trie for the current

character. If no such node exists, then it creates a new node and assigns the current node

pointer to the newly created node. This process is repeated until all the characters of the

input string are processed. After inserting the last character of the string, the algorithm

assigns ‘True’ value to the field stringEnd of the last node, which indicates it as the leaf

node.

5.2.4.1.1 Pseudocode

🇱1: Procedure Trie_Insert(*root, s)

🇱2: Input struct Trie_Node *root, string s

🇱3: Initialize struct Trie_Node *cntNode = root

🇱4: Determine n, length of the string s

🇱5: For each i from 0 to n-1

🇱6: int index = s[i]-'a'

🇱7: If (cntNode.child[index] == NULL)

🇱8: Create a new node named newNode

🇱9: cntNode.child[index] = newNode

🇱10: End If

🇱11: cntNode = cntNode.child[index]

🇱12: End For

🇱13: cntNode.stringEnd = True

🇱14: End Procedure

 Algorithms |207

5.2.4.1.2 Example

Consider a collection of strings {arc, art}. The steps to insert the strings ‘arc’ and ‘art’ into

a Trie are depicted in Fig. 5.2. Here, the strings are inserted into a Trie in lexicographical

order from left to right.

Fig. 5.2: Inserting ‘arc’ & ‘art’ into a Trie

5.2.4.2 Searching in a Trie

In a Trie, a string or key is stored by a path starting at the root node and maybe continuing

all the way to the leaf node or to some other intermediate node. The following procedure

Trie_Search() may be used to search a key or a string element ‘s’, in a Trie rooted at ‘root’,

and this procedure is similar to that of insertion. To search a string in a trie, we first start

at the root node and move down to the next character if we find a reference match. The

lack of a key in the Trie or the end of a string can cause this search to stop. If the key is

missing from the Trie (line 7), the search stops without looking at all of the essential

208 | Strings

characters (line 8). The key is present in the Trie (line 12), if the value of the last node's

stringEnd field is true.

5.2.4.2.1 Pseudocode

🇱1: Procedure Trie_Search(*root, s)

🇱2: Input struct Trie_Node *root, string s

🇱3: Initialize struct Trie_Node *cntNode = root

🇱4: Determine n, length of the string s

🇱5: For each i from 0 to n-1

🇱6: int index = s[i]-'a'

🇱7: If (cntNode.child[index] == NULL)

🇱8: return false

🇱9: End If

🇱10: cntNode = cntNode.child[index]

🇱11: End For

🇱12: return (cntNode.stringEnd)

🇱13: End Procedure

5.2.4.2.2 Example

Consider the following Trie shown in Fig. 5.3. The key that needs to be searched is “mad”.

The steps to search the string “mad” in the given Trie are highlighted in Fig. 5.3.

 Algorithms |209

Fig. 5.3: Searching the key “mad” in a Trie

5.2.4.3 Deletion from a Trie

In the deletion operation, the given string or key is deleted from the Trie in a bottom up

fashion through a recursive procedure. When we perform such deletion, the following

situations may occur:

a) The string to be removed serves as a prefix for other words.

b) The string to be removed shares a prefix in common with any other words

c) The string to be removed does not share a prefix in common with any other words

The following procedure Trie_Delete() may be used to delete a key or a string element ‘s’,

from a Trie. Here, the initial value of d is set to 0.

210 | Strings

5.2.4.3.1 Pseudocode

🇱1: Procedure Trie_Delete(*root, s, d)

🇱2: Input struct Trie_Node *root,string s,int d

🇱3: Determine n, length of the string s

🇱4: If (root == NULL) // if Trie is an empty tree

🇱5: return NULL

🇱6: End If

🇱7: If (d == n) // if last character is being

 processed

🇱8: If (root.stringEnd)

🇱9: root.stringEnd = false

🇱10: End If

🇱11: If (root is empty)

🇱12: root = NULL

🇱13: End If

🇱14: return root

🇱15: End If

🇱16: int index = s[d]-'a'

🇱17: root.child[index]=Trie_Delete(

 root.child[index], s, d+1)

🇱18: If (root is empty && root.stringEnd == false)

🇱19: root = NULL

🇱20: End If

🇱21: return root

🇱22: End Procedure

 Algorithms |211

5.2.4.3.2 Example

Consider the following Trie shown in Fig. 5.4. Assume the key to be deleted is “arc”. Here,

both the strings “arc” and “art” share a common prefix “ar”. Therefore, we delete all the

nodes starting from the end of the prefix to the last character of the given string to be

deleted. Hence, we delete the node c. The red color highlighting in Fig. 5.4 indicates this

deletion operation.

 .

Fig. 5.4: Deleting the string “arc” from the Trie

5.2.4.4 Complexity Analysis

A string of length n can be added, deleted, and searched in the Trie data structure with a

time complexity of O(n) each. If we want to create a Trie by inserting N strings into it, then

212 | Strings

the total time complexity to build a Trie is O(N * AVG_L), where N is the number of strings

and AVG_L is the average length of N strings.

5.3 Substring Search

A substring is a set of characters that form a continuous sequence within a string. For

example, consider the string “alphabet”. Some of the substrings for this given string are

al, bet, hab, alpha, phabet etc. However, aph, aet, alha, albet etc., are not a substring of

the given string since they do not form a continuous sequence. The following procedure

Substring_Search() may be used to search a substring st1 within a string st2. If st1 is

present within st2, then the below procedure returns the index of the first occurrence of

st1. Here, we assume that the indexing of a string starts with zero.

5.3.1 Pseudocode

🇱1: Procedure Substring_Search(st1, st2)

🇱2: Input String st1, st2

🇱3: Determine m, length of the string st1

🇱4: Determine n, length of the string st2

🇱5: For each i from 0 to n-m

🇱7: For each j from 0 to m-1

🇱8: If (st2[i+j] != st1[j])

🇱7: break

🇱9: End If

🇱10: End For

🇱11: If (j == m)

🇱12: return i

🇱13: End If

 Algorithms |213

🇱14: End For

🇱15: return -1

🇱16: End Procedure

5.3.2 Example

Consider two strings: st1 = “go” and st2 = “mango.” The expected output of the above

procedure for these two strings is: Substring “go” is present at 3rd position of String

“mango”.

5.3.3 Complexity Analysis

The procedure Substring_Search() has two for loops. The outer for loop runs from 0 to n

– m, and inner for loop runs from 0 to m – 1. Therefore, the total time complexity of the

above procedure is O(m * n), where m and n are the lengths of strings st1 and st2,

respectively.

5.4 Regular Expressions

In a real-world scenario, we might have created multiple files using a text editor and

stored them in a computer. There may be a situation in which we may be searching for a

file that contains a particular word or a sentence. So, we need a mechanism to describe

the pattern to be searched. For this purpose, regular expressions are used by

programmers for multiple decades.

In this section, we use the term “language” to specify a set of all possible strings. Similarly,

the term “pattern” refers to a language specification. First, we discuss the basic

214 | Strings

operations associated with the regular expressions. For this purpose, let us consider three

characters A, B, and C.

Concatenation: The language {ABC} is obtained by concatenating A, B, and C.

Or: To specify the alternative options in the pattern, Or operation is used. To denote this

Or operation, we use the symbol |. For example, B | C specifies the language {B, C}.

Similarly, A | B | C specifies the language {A, B, C}. Note that the concatenation operation

takes precedence over Or operation. For example, AB | BC corresponds to the language

{AB, BC}.

Closure: To allow the arbitrary number of repetitions (including zero) of a pattern, closure

operation is used. This operation is represented by the symbol *. Further, closure has a

higher priority than concatenation. For example, BC* corresponds to the language

consisting of strings of the form B followed by 0 or more Cs: {B, BC, BCC, BCCC, …}.

Similarly, B*C corresponds to the language {C, BC, BBC, BBBC, …}.

Parentheses: To override the default priority rules, parentheses can be used and it is

represented by (). For example, A (BC | B) A corresponds to the language {ABCA, ABA}.

Similarly, (AB)* represents {𝛆, AB, ABAB, ABABAB, …}. Here, the symbol “𝛆” represents

the empty string.

Note-1: If M1 and M2 are regular expressions, then their concatenation M1M2 is also a

regular expression. Similarly, M1|M2, M1*, M2* are also regular expressions.

 Algorithms |215

Note-2: NULL represents an empty set ({ }). On the other hand, “𝛆” is an empty string and

contains one element ({𝛆}). Therefore, “𝛆” is not NULL.

Examples of regular expression:

1. Regular expression (W | X) (Y | Z). This expression matches strings from the

following language {WY, WZ, XY, XZ}. It does not match any other strings.

2. Regular expression X (Y | Z)* = {X, XY, XZ, XYYZZYZ, …}

Definition: A regular expression is either

- empty

- a single character

- enclosed in parentheses

- followed by the closure operator (*)

- two or more concatenated regular expressions

- two or more regular expressions separated by the Or operator (|)

The above definition captures the syntax of a regular expression and guidelines related

to a legal regular expression.

Shortcuts: In order to form compact expressions, there are a set of shortcuts used. Now,

we will discuss such shortcuts.

Name Notation Description Example

wildcard . Any single
character

X.Y
(. can be replaced

216 | Strings

by any character)

specific set enclosed in [] Any character from
a specific set

[WXYZ]
(Any character from
W X Y Z)

range enclosed in []
separated by -

Any character from
the specific range

[A - Z]
(Any character from
the range A to Z)

complement enclosed in []
preceded by ^

Excluding any
character from this
set

[^ABCD]
(Excluding A B C D)

As discussed earlier, closure operator (*) specifies any number of occurrences of

operands enclosed within it. In real-world situations, we want to specify the number of

occurrences of operands. Such a flexibility is provided by following symbols: the plus sign

(+) represents at least one copy of the operand enclosed within *. Similarly, the question

mark (?) specifies zero or one copy, and a range within braces ({}) specifies a given number

of copies.

option notation example shortcut for in
language

not in
language

0 or one time ? (XY)? 𝛆 | XY {𝛆, AB} any other
string

at least one
time

+ (XY)+ (XY)(XY)* {XY, XYXY,
…}

𝛆, YYXXYX

specific count count in {} (XY){2} (XY)(XY) {XYXY} any other
string

 Algorithms |217

range range in {} (XY){1-2} (XY) | (XY)(XY) {XY, XYXY} any other
string

Apart from the shortcuts discussed above, there are metacharacters (such as \, |, *, .,)

that are used to form regular expressions. To separate metacharacters from the

characters in the alphabet, escape sequences that begin with a backslash character \ can

be used. For example, \\ represents \. Here, the first backslash denotes the escape

sequence and the next backslash represents the actual character. Now, let us discuss the

applications of regular expressions in terms of validity checking.

Validation of an email address: Usually, a valid email address starts with a prefix

(username), followed by @ symbol and ends with a domain name (email.com). To validate

such a pattern, let us formulate a regular expression. The username contains one or more

characters from “a to z”. This can be represented by [a-z]+. Similarly, the domain name

can be represented by [a-z]+\.com. So, the final regular expression to validate an email

address of the form username@email.com is as follows: [a-z]+@[a-z]+\.com. Suppose an

email address contains multiple domains. That is, username@subdomain.domain.com or

username@subdomain.domain.in. Then, the regular expression will be of the form: [a-

z]+@([a-z]+\.)+(in|com). Further, the username may contain one or more occurrences of

‘.’. To capture such a scenario, the regular expression can be updated as follows: ([a-

z]+\.)+@([a-z]+\.)+(in|com).

Validation of a mobile number: Typically, a mobile number starts with a country code

(+91 for India) followed by a whitespace and a digit number. This can be represented

mailto:username@email.com
mailto:username@subdomain.domain.com
mailto:username@subdomain.domain.in

218 | Strings

using the following regular expression: \+[0-9]{2}\ [0-9]{10}. Here, \+[0-9]{2} represents

a country code, and [0-9]{10} represents a digit number.

context regular expressions matches

email address [a-z]+@([a-z]+\.)+(in|com) aicte@iit.ac.in

mobile number \+[0-9]{2}\ [0-9]{10} +91 9123456780

substring search .*FIRST.* THIS IS OUR FIRST MATCH

From the above examples, it can be seen that the regular expression is a powerful tool

that provides concise and precise expression of the set of all valid strings.

5.5 Elementary Data Compression

Data storage, management, and transfer are becoming increasingly important in many

data-driven and data communication systems. The data must frequently be compressed,

that is, shrunk down to a smaller size while maintaining all or most of the original

information, in order to use the computing and storage resources like ROM, RAM, GPU

etc, effectively. The data used for compression can be in the form of text, numbers,

photos, audio, video, or even software and computer programmes. Redundant data, or

duplication of information that is not necessary, is eliminated during a compression

process. Thus, data compression can increase file transfers' speed, utilise less network

bandwidth, and save up storage space.

A compression program employs an algorithm or a formula to determine how to minimize

the amount of data. A formula may contain a pointer or reference to a string of 0s and 1s

 Algorithms |219

that the programme has already seen, or it may replace a larger string of 0s and 1s in a

string of bits or 0s and 1s with a smaller string by converting between the two using a

dictionary. The text can be compressed by eliminating any unnecessary characters,

replacing frequently occurring bit strings with smaller ones, and inserting a single

repetition character to represent a string of repeated letters.

When it comes to data transmission, compression can be applied to the entire

transmission unit, including header data, or just the data content. While sending or

receiving data over the internet, larger files may be conveyed in a ZIP, GZIP, or other

compressed format. These formats can be used to send or receive larger files, either

separately or in conjunction with other files as part of an archive file.

5.5.1 Basic Data Compression Model

The basic model for data compression comprises two primary components: a compress

box that transforms a bitstream S into a compressed version C(S), and an expand box that

transforms C(S) back into S. Here, the main objective is to minimize the compression ratio,

which is given as |C(S)| / |S|, where |S| is the number of bits in a given bitstream. Fig.

5.5 depicts the basic model for data compression.

 Fig. 5.5: Basic Data Compression Model

220 | Strings

5.5.2 Data Compression Methods

Lossless and lossy are the two basic categories of data compression techniques. Lossy

compression shrinks data by removing unnecessary parts, while lossless compression

modifies data by encoding it with a formula or logic. Now, we discuss each of these

techniques in detail.

5.5.2.1 Lossless Data Compression

A file can be recovered to its original form after being compressed using lossless

compression since no data is lost. Lossless compression is usually used when compressing

executable, text, and spreadsheet files because removing any numbers or letters would

modify the data. If the data is already compressed, further compression will have little to

no effect on its size. Moreover, it is less effective for larger file sizes. Portable Network

Graphics (PNG), a raster-graphics file format, allows lossless image data compression. The

different algorithms used for lossless data compression (refer, Fig. 5.6) include: a) Run

Length Encoding, b) Huffman Encoding, and c) LZW Encoding.

 Fig. 5.6: Lossless Compression Techniques

 Algorithms |221

5.5.2.1.1 Run Length Encoding

This encoding method finds recurring character sequences called "runs" by scanning

through the contents of a file. Then the run is compressed into a few bytes, usually two.

The first byte, also known as the "run value," represents the actual character in the run.

The number of characters in the run is stored in the second byte, known as the "run

count." Simple graphics and animations with lots of redundant pixels are best suited for

this form of compression. This method can increase the file size rather than decrease it

for complicated graphics and animations if there aren't many duplicate portions. The

following are the steps to perform run length encoding.

1. Select the first character in the input (source) string.

2. Add the selected character to the output (destination) string.

3. Count the number of times the selected character appears consecutively and

add its total sum to the output string.

4. Continue with steps 2, 3, and 4 until the string's final character is reached.

Example

Consider the input source string “aaabbcccc” that need to be compressed. Fig. 5.7 depicts

the steps for run length encoding. Here, the source string is having “a” three times. So,

we append “a” to the destination string followed by the count value “3” which is the

number of occurrences of “a”. Similarly, we repeat the steps for the characters “b” and

“c". The final resulting destination string is a3b2c4.

222 | Strings

 Fig. 5.7: Run Length Encoding

5.5.2.1.2 Huffman Encoding

Huffman encoding (or simply Huffman coding) is a lossless compression method. This

encoding method assigns variable-length codes to input characters, and the lengths of

such codes are decided based on the frequency of the matching characters. These

variable-length codes are referred to as prefix codes. Here, the codes are assigned in a

way that prevents the prefix of one code from becoming the code assigned to any other

character. Using this strategy, Huffman coding makes sure that the produced bitstream

cannot have any ambiguities in it when it is decoded. This technique is typically effective

to compress data that contains frequently occurring characters.

Let us examine prefix codes using a counter example. Let A, B, C, and D be four characters,

and their corresponding variable-length codes be 0, 1, 00, and 01. If we use these codes,

the decompressed output for a compressed bit stream of 0001 might be "AAAB," "AAD,"

"ACB," or "CD," which causes ambiguity. This is because the code given to A is the prefix

of the codes given to C and D.

 Algorithms |223

In Huffman encoding, there are primarily two key processes to follow: a) Create a

Huffman Tree using the input characters, and b) Allot codes to characters as you traverse

the Huffman Tree. These two processes are described in detail through the following

steps:

Step 1: Count the number of times (also called frequency) each character appears in the

string.

Step 2: Arrange the characters in the ascending order of their frequency counts and store

them in a priority queue, Queue.

Step 3: Create a leaf node for every distinct character.

Step 4:Construct an empty node N. The left child of N is assigned with the first minimum

frequency, and the right child of N is assigned with the second minimum frequency. These

two minimum frequencies should be added to determine the value of the node N.

Step 5: Add the resulting sum of these two minimum frequencies into Queue after

removing them from it (the symbol + is used to represent the internal nodes in the

illustrative figures).

Step 6: Now, insert node N into the Huffman tree.

Step 7: Follow steps 4 through 6 until a single tree is formed from all characters.

Step 8: Assign the left edge to 0 and the right edge to 1 in the generated Huffman tree.

Example

Let the input string that needs to be sent over the network be CBDDAAABBDBDBDB. With

each character being represented by 8 bits, the total number of bits needed to transfer

these 15 characters is 15 * 8 = 120 bits. Now, we apply the Huffman encoding scheme to

224 | Strings

reduce the size of the string to be transferred. The following steps are used to perform

huffman encoding on the given input string:

Step 1: Arrange the characters in the ascending order of their frequency counts and store

them in a priority queue, Queue. Create a leaf node for every distinct character, which is

represented using a square.

Step 2: Create an internal node (represented by a circle) with value 4 by adding the

current two minimum frequencies (1 and 3) in Queue. Make leaf nodes C and A as the

children of this internal node. Remove the entries 1 and 3 from Queue and insert their

resulting sum 4 into Queue.

Step 3: Create a new internal node with value 9 by adding the current two minimum

frequencies (4 and 5) in Queue. Make nodes 4 and D as the children of this internal node.

Remove the entries 4 and 5 from Queue and insert their resulting sum 9 into Queue.

 Algorithms |225

Step 4: Rearrange the nodes based on the frequency order in Queue.

Step 5: Create a new internal node with value 15 by adding the current two minimum

frequencies (6 and 9) in Queue. Make nodes B and 9 as the children of this internal node.

Remove the entries 6 and 9 from Queue and insert their resulting sum 15 into Queue.

Now, there are no more nodes that may be added to the tree, and the resulting tree is

known as Huffman tree.

226 | Strings

Step 6: Traverse the tree. Assign the left edge to 0 and the right edge to 1. Generate code

for the characters by reading the edge label from the root to the character leaf node.

Here, the codes generated for characters A, B, C, and D in the given input string are 101,

0, 100, 11, and are represented through 3 bits, 1 bit, 3 bits, and 2 bits, respectively.

Therefore, the total number of bits required to represent the given input string after the

Huffman encoding is determined as: 3 * 3 + 1 * 6 + 3 * 1 + 2 * 5 = 28 bits. This reduction

 Algorithms |227

of the number of bits from 120 to 28 emphasises the significance of Huffman encoding in

the data transmission.

5.5.2.1.3 LZW (Lempel–Ziv–Welch) Encoding

The LZW encoding is the most reliable general-purpose data compression technique due

to its simplicity and adaptability. This widely used compression method can potentially

achieve very high throughput while implementing in hardware and is easy to implement.

LZW operates by reading a series of symbols, arranging them into strings, and then

transforming the strings to codes. Here, compression is achieved because the storage

requirements for the codes are lower than those for the strings. LZW compression

technique works as follows: while the input data is processed, a symbol table or dictionary

maintains a correlation between the longest words observed (named as key) and a list of

codeword values. The input file is compressed as a result of the words being replaced by

their matching codes. Thus, the algorithm becomes more effective as the amount of long,

repeating words in the input increases.

Example

Consider an example where we accept a stream of 7-bit ASCII characters as input and

write an 8-bit byte stream as output. Here, the 128 potential single character keys are

used to initialise the symbol table, and they are linked to 8-bit codewords created by

adding 0 to the 7-bit value describing each character. Hexadecimal notation is used to

represent codeword values, therefore 41 stands for ASCII A, 50 for P, and so on. The

codeword 80 is reserved for use as the end-of-file indicator. The remaining codeword

values (81 through FF) will be assigned to different substrings of the input data that we

228 | Strings

come across, beginning with 81 and increasing the value for each additional key added.

The LZW compression process for the sample input ABPAEAFABPABPABPA is described in

Fig. 5.8. Since the longest prefix match for the first seven characters is only one character,

we produce the codeword for that character. Two character strings are correlated to the

codewords 81 through 87. Then, we identify prefix matches with AB, PA, BP, and ABP, and

output the cordwords 81, 83, 82, and 88, respectively, leaving the final A whose codeword

is 41. There are 119 bits overall in the input, which consists of seventeen 7-bit ASCII

letters. The output is a 96-bit stream of 12 codewords with a length of 8 bits each.

Fig. 5.8: LZW compression for ABPAEAFABPABPABPA

 Algorithms |229

5.5.2.2 Lossy Compression

A compression technique that effectively eliminates bits of irrelevant, undetectable, or

unneeded data is known as lossy compression. This compression method involves the loss

(removal) of a certain quantity and quality of data from the original file, and hence the

name lossy compression. When working with graphics, audio, video, and images, this

strategy is beneficial since it minimizes or eliminates any visible effects on the

representation of the content. Lossy compression has the advantage of being relatively

quick, capable of drastically shrinking file sizes, and allowing the user to choose the

compression level. The drawback is that decompressing data that has been compressed

using lossy compression won't produce the exact same data (in terms of quality, size,

etc.). The JPEG image, MP3 audio, and MPEG video are the most common formats that

use lossy data compression (refer, Fig. 5.9).

Fig. 5.9: Different Types of Lossy Compression

230 | Strings

5.5.2.2.1 Image Compression (JPEG)

Some digital cameras reduce the image size for more efficient storage. Compression is

also used to compensate for the camera speed slowdown caused by big raw images.

Because of this, photos are usually saved in the jpeg format that uses a lossy data

compression method, rather than the png format which uses lossless compression.

5.5.2.2.2 Video Compression (MPEG)

Digital video is compressed using a set of ISO/ITU standards known as MPEG (Moving

Picture Experts Group). The MPEG system is asymmetrical. It takes longer to decompress

a video in a digital TV set, computer, DVD player or set-top box than it does to compress

it. Compression was therefore initially limited to the studio. Digital video recorders like

Tivos can convert analogue TV to MPEG and record it to disk in real time because chips

have become more inexpensive and sophisticated.

5.5.2.2.3 Audio Compression (MP3)

Lossy compression is used to compress MP3s, which are audio files. Because of lossy

compression, an average MP3 file can be 90% smaller than a comparable uncompressed

audio file. MP3 audio compression shrinks the size of a file by either perceptual music

shaping or reducing the audio bitrate. The process of deleting undetectable noises or

inaudible sounds to reduce file size is referred to as perceptual music shaping. The

following are examples of inaudible sounds: a) quiet sounds that are obscured by louder

sounds, and b) noises at frequencies that humans cannot hear. The bitrate in audio files

refers to how many bits must be processed per second. Its unit is kilobits per second. The

sampling rate, number of audio channels and bit depth are multiplied to determine the

 Algorithms |231

bitrate. The number of sound samples captured to represent an audio performance is

known as the sample rate, and it is expressed in Hz or kHz. The bit depth measures the

amount of data bits stored in each sample. The sound quality improves with increasing

bitrate, but file size increases.

UNIT SUMMARY

Strings have found wide usage in diverse applications, including search engines, data

encoding, plagiarism checkers, DNA sequencing, etc. This unit starts with a discussion on

how to arrange a given string in lexicographical or dictionary order. Then, we proceed with

presentations on Trie, a special tree-based data structure for storing and searching

strings. The unit then discusses the concepts of substring search and regular expressions,

which form the basis of many string matching algorithms. Finally, data compression, an

important practical application of strings, has been discussed.

EXERCISES

Multiple Choice Questions

1) String sort procedure has a time complexity of

a) O(p)

b) O(p2)

c) O(log p)

d) O(p3)

2) Time complexity of a search operation in a Trie is

a) O(p)

232 | Strings

b) O(p2)

c) O(p log p)

d) O(p3)

3) The regular expressions A|B and A|E|I|O|U represent the following languages

_______ and _______, respectively.

a) {A, B}, {A, E, I, O, U}

b) {A, E, I, O, U}, {A, B}

c) {A}, {B}, {E}, {I}, {O}, {U}

d) None of the above

4) The regular expression B* matches _______

a) multiple occurrences of B

b) 1 or more occurrences of B

c) 0 occurrences of B

d) 0, 1 or more occurrences of B

5) The regular expression B+ matches _______

a) multiple occurrences of B

b) 1 or more occurrences of B

c) 0 occurrences of B

d) 0, 1 or more occurrences of B

6) The regular expression C (AC | B) E represents the following language: _______

a) {CACE, CBE}

b) {CE}

c) {CACBE}

d) {CAC, CBE}

 Algorithms |233

7) The regular expression (W | Y) ((X | Y) Z) represents the following language:

a) {WXZ, WYZ, YXZ, YZZ}

b) {WXZ, WWZ, YXZ, YYZ}

c) {WXZ, WYZ, YXZ, YYZ}

d) {WXZ, WYZ, YYZ, YYZ}

8) Let us consider the regular expression (A+B)*B(A+B)*. Which one of the following

statement is true about the language corresponding to (A+B)*B(A+B)*

a) The set of all substrings containing at least one (A+B)

b) The set of all substrings containing at most one (A+B)

c) The set of all substrings containing at least one B

d) The set of all substrings containing at most one B

9) Let us consider the regular expression (A+B)*B(A+B)*B(A+B)*. Which one of the

following statement is true about the language corresponding to (A+B)*B(A+B)*

a) The set of all substrings containing at least one (A+B)

b) The set of all substrings containing at most one (A+B)

c) The set of all substrings containing at least two B’s

d) The set of all substrings containing at most two B’s

10) Let us consider the regular expression (AB){2} | CD{1-2}. Which one of the

following is equivalent to this expression:

a) {ABABCD, ABABCDCD}

b) {ABABCD, ABABCD}

c) {ABCD, ABABCDCD}

d) {AB, CDCD}

234 | Strings

11) Let us consider the following string “HOPE IS A GOOD THING”. Which one of the

following regular expression can be used to search for the substring GOOD

a) GOD

b) .*GOOD.*

c) Both of them

d) None of the above

12) Let us consider the following regular expression: ([a-z]+\.)+@([a-z]+\.)+(in|com).

Which one of the following patterns will be matched by the regular expression?

a) X.Y@A.B.COM

b) x.y@a.b.com

c) X@A.B.IN

d) x@a.b.in

13) Let us consider the following regular expression: a…b. Which one of the following

patterns will be matched by the regular expression?

a) ab

b) aaabb

c) abbb

d) aaab

14) Let us consider the following regular expression: a[0-9][0-9]b. Which one of the

following patterns will be matched by the regular expression?

a) a01b

b) ab

c) a1b

d) a0909b

15) Which one of the following statements is FALSE?

 Algorithms |235

a) “𝛆” is an empty string

b) NULL is an empty set

c) “𝛆” contains one element

d) NULL contains one element

16) Typically, lossy approaches are employed to compress data that is:

a) Audio

b) Video

c) Images

d) All of the above

17) Typically, ________ compression is used by applications that cannot tolerate any

change between the original and recreated data.

a) Lossless

b) Lossy

c) Both 1 and 2

d) None of the above

18) Which of the following formats makes use of lossless compression?

a) JPEG

b) MP3

c) PNG

d) MPEG

Answers of Multiple Choice Questions

1) (b) 2) (a) 3) (a) 4) (d) 5) (b) 6) (a) 7) (c) 8) (c) 9) (c) 10) (a) 11) (b) 12) (b)

 13) (b) 14) (a) 15) (d) 16) (d) 17) (a) 18) (c)

236 | Strings

Short and Long Answer Type Questions

1) Describe the steps of sorting a given string in ascending order.

2) Explain the steps of sorting a given string in descending order.

3) Write a short note on Trie data structure with an example.

4) What are the different types of operations that can be performed on a Trie?

5) Explain the steps for the insertion of a node in a Trie with an example.

6) Describe the steps for the deletion of a node in a Trie with an example.

7) Discuss the steps for searching a node in a Trie with an example.

8) Explain the substring search operation on a given string with an example.

9) Write a regular expression to validate a mobile number of the form <country

code> <10-digit number>

10) Write a regular expression to validate an email address of the form

username@domain.com

11) Write a regular expression to validate an email address of the form

username@subdomain.domain.com

12) Write a definition of regular expression along with an example?

13) With the help of a diagram explain the basic data compression model.

14) What is lossless data compression? Discuss its advantages and disadvantages.

15) Consider an input string AAABBCCCCDEEFFF. Generate a codeword for this string

using the run length encoding scheme.

16) Explain Huffman encoding with a suitable example.

17) Write a short note on LZW encoding.

18) What is lossy data compression? Discuss its advantages and disadvantages.

19) Differentiate between lossless and lossy compression methods.

20) Explain lossy compression techniques for video, audio and image compression.

mailto:username@domain.com
mailto:username@subdomain.domain.com

 Algorithms |237

KNOW MORE

This section talks about a set of additional information that helps the reader to improve

the knowledge on the topics discussed in Unit-5.

String Handling Functions

In the C programming language, there are different library functions that provide

flexibility to handle strings in programs. These functions are mainly defined in two header

files named “stdio.h” and “string.h”. The “stdio.h” header file contains gets() and puts()

library functions for reading and displaying strings, respectively. The “string.h” header file

defines the following few string handling functions:

Function Description

strlen() It outputs the length of string

strcpy() It copies the contents of one string into another.

strcat() It concatenates one string (say S1) to another string
(say S2) and stores the resulting string in string S1.

strrev() It outputs the reverse of a string.

strcmp() It compares one string with another and returns 0 if
both strings are matching.

strlwr() It outputs all the characters of a string in lowercase.

strupr() It outputs all the characters of a string in uppercase.

238 | Strings

REFERENCES AND SUGGESTED READINGS

Syllabus Referred Textbooks:

1. Algorithms, 4th Edition. R. Sedgewick, and K. Wayne. Addison-Wesley, (2011)

2. Introduction to Algorithms, Fourth Edition, Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest and Clifford Stein, The MIT Press, (2022)

3. Introduction to the Theory of Computation, Third Edition, M. Sipser. Course

Technology, Boston, MA, (2013)

4. Design And Analysis Of Algorithms, Third Edition, Gajendra Sharma, Khanna Book

Publishing Company (P) Limited, (2015)

 Other Textbook References:

1. Introduction to data compression, Khalid Sayood, Morgan Kaufmann, (2017)

2. Data Structures and Algorithms Made Easy, Second Edition, Narasimha

Karumanchi, CareerMonk Publications, (2011)

3. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

4. Algorithms: Design and Analysis, Harsh Bhasin, Oxford University Press, (2015)

Dynamic QR Code for Further Reading

References |239

REFERENCES FOR FURTHER LEARNING

List of some of the books / nptel course links is given below which may be used for further learning

of the subject:

1. Algorithms, 4th Edition. R. Sedgewick, and K. Wayne. Addison-Wesley, (2011)

2. Introduction to Algorithms, Fourth Edition, Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest and Clifford Stein, The MIT Press, (2022)

3. Introduction to the Theory of Computation, Third Edition, M. Sipser. Course Technology,

Boston, MA, (2013)

4. Design And Analysis Of Algorithms, Third Edition, Gajendra Sharma, Khanna Book

Publishing Company (P) Limited, (2015)

5. Data Structures and Algorithms Made Easy, Second Edition, Narasimha Karumanchi,

CareerMonk Publications, (2011)

6. Data Structure Through C, Yashavant P. Kanetkar, BPB Publications, (2003)

7. Algorithms: Design and Analysis, Harsh Bhasin, Oxford University Press, (2015)

8. Introduction to data compression, Khalid Sayood, Morgan Kaufmann, (2017)

9. https://nptel.ac.in/courses/106106131

10. https://nptel.ac.in/courses/106102064

11. https://nptel.ac.in/courses/106104019

12. https://nptel.ac.in/courses/106106127

13. https://onlinecourses.nptel.ac.in/noc23_cs16/preview

14. https://onlinecourses.nptel.ac.in/noc23_cs39/preview

https://nptel.ac.in/courses/106106131
https://nptel.ac.in/courses/106102064
https://nptel.ac.in/courses/106104019
https://nptel.ac.in/courses/106106127
https://onlinecourses.nptel.ac.in/noc23_cs16/preview
https://onlinecourses.nptel.ac.in/noc23_cs39/preview

240 | Mapping

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after

the completion of the course and a correlation can be made for the attainment of POs to analyze

the gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken

to overcome the gaps.

Table for CO and PO attainment

Course Outcomes

Attainment of Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 3 2 1 2 3

CO-2 3 3 3 2 1 2 3

CO-3 3 3 3 2 1 2 3

CO-4 3 3 3 2 1 2 3

CO-5 3 3 3 3 1 2 3

The data filled in the above table can be used for gap analysis.

Index | 241

INDEX

Adjacency list, 197

Adjacency matrix, 196

Applications of stack, 22

Applications of queue, 27

Asymptotic complexity, 28

Audio compression, 230

AVL tree, 116

Balanced search tree, 116

Basic data compression model, 219

Basic data model, 3

Basic operations in a trie, 205

Big-Oh notation, 32

Binary search, 98, 101

Binary search tree, 109, 110

Breadth-first search, 151

Bubble sort, 63, 64

Chaining, 127

Characteristics of algorithm, 56

Characteristics of a tree data structure, 104

Collision resolution in a hash table, 127

Compression ratio, 219

Computation model, 3

Data abstraction, 13, 15

Data compression methods, 220

Data structure, 13, 14

Data type, 4, 13

Depth-first search, 151, 155

Digital tree, 203

Dijkstra’s algorithm, 177, 178

Direct address table, 123

Directed acyclic graph, 148

Double rotation, 119

Elementary data compression, 218

Flow network, 183

Ford-Fulkerson algorithm, 184, 185

Graph, 141

 acyclic graph, 147

 connected graph, 148

 cycle, 147

 cyclic graph, 147

 degree, 144

 disconnected graph, 148

 forest, 149

 path, 146

Graph traversal, 151

Hash function, 125

Hash table, 123, 125

Huffman encoding, 220, 222

Image compression, 230

In-place sort, 92

Insertion sort, 69, 70

Interval search, 98

Iterative algorithm, 57

Kruskal’s algorithm, 166, 169, 170

Linear probing, 128

Linear search, 98, 99

Link field, 106

Linked representation of a tree, 106

LL rotation, 119

Lossless data compression, 220

 242| Index

Lossy data compression, 220, 229

LR rotation, 122

LZW encoding, 220, 227

Max-flow min-cut theorem, 191

Mergesort, 73, 74

Minimum spanning tree, 165

Multisets, 15

Network flow, 183

Omega notation, 32

Open addressing, 127, 128

Pointers, 106, 136

Prefix tree, 203

Prim’s algorithm, 166

Procedure, 5

Program model, 3, 4

Properties of a trie, 203

Queue, 18, 23

 Enqueue, 24

 Dequeue, 24

Quicksort, 80

Recurrence relation, 77, 78

Recursive algorithm, 57

Regular expressions, 213

Residual graph, 185

RL rotation, 121

RR rotation, 120

Run length encoding, 220, 221

Searching, 96

Selection sort, 66

Sequential search, 98

Sets, 15

Shortest path algorithms, 174

Simple uniform hashing, 125

Sorting, 62,63

Space complexity, 28

Spanning trees, 150

Stable sort, 93

Stack, 18

 POP, 20

 PUSH, 19

Statements, 6-9

 assignment statements, 7

 comment statements, 9

 conditional statements, 7

 initialization statements, 6

 iterative statements, 8

 print statements, 6

String handling functions, 237

String sort, 201

Substring search, 212

Symbol table, 97

Theta notation, 32

Time complexity, 28

Topological sorting, 163

Tree, 104

 child, 104

 degree, 105

 depth, 105

 height, 105

 parent, 104

 path, 105

 siblings, 104

Tries, 203

Types of edges, 142

Types of graphs, 143

Validation of an email address, 217

Validation of a mobile number, 218

Video compression, 230

Weighted edge, 142

Worst-case analysis, 28

Index | 243

