Total No. of Questions—8]

[Total No. of Printed Pages-4

Seat No.

[4857]-1072

S.E. (Computer) (First Semester) EXAMINATION, 2015 DATA STRUCTURE AND PROBLEM SOLVING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right side indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Write the frequency count of the following code and derive the time complexity. [4]

```
For(i=n-1;i>0;i --)
For(j=0; j<i; j++)
```

If (a[i]<a[i+1])

Temp=a[i];

a[i]=a[i+1];

a[i+1]=temp;

(b) Prove the following:

[4]

- (i) if $f(n) = 2n^2 + 2$ then $f(n) \in O(n^2)$
- (ii) if $f(n) = 5n^3 + 2n^2 + 3$ then $f(n) \in O(n^3)$

P.T.O.

- (c) Prove that if height of a full or compute binary tree is 'h' then number of nodes in the tree equal to $2^{h+1}-1$. [4]

 Or
- 2. (a) Prove that a full binary tree having n nodes, the height is $O(\log_2 n)$.
 - (b) Evaluate the following postfix expression using stack. Show all steps. [3]

(c) Define Big O, Ω and θ .

- [3]
- (d) Show analysis of quick sort in worst and best case. [3]
- 3. (a) Find the minimum spanning tree for the following graph using Kruskal's Algorithms. [4]

[4857]-1072

(b) Find the topological ordering of the following graph: [4]

(c) Construct the AVL tree for the following data: [4] 5, 4, 7, 1, 3, 2, 15, 20, 10, 12.

Or

4. (a) Insert the following data in the hash table of size 10, using linear probing with chaining with replacement. [4] Here h(x)=x%10

21, 35, 31, 37, 32, 33, 48.

- (b) Write 'C' code for the following functions w.r.t. AVL Tree: [4]
 - (i) LR Rotation
 - (ii) RL Rotation.
- (c) Find the minimum spanning tree for the following graph using Prim's Algorithms. [4]

[4857]-1072

5.	(a)	Construct B tree of order 5 for the following data: [5]
e ja	ia Raisuseus	4, 8, 10, 5, 3, 9, 2, 15, 20, 80.
	(b)	Sort the following data in ascending order using heap sort: [4]
		10, 5, 3, 8, 9, 4, 2.
	(c)	Explain various operations on sequential files. [4]
0		Or
6.	(a)	Construct B+ Tree of the order 5 for the following data: [5]
	(7)	5, 4, 6, 2, 1, 7, 8, 9, 3, 10.
	<i>(b)</i>	Explain with example different methods of heap creation, also
	7 8 2	explain which method is better and why? [4]
	(c)	Write short notes on:
		(i) Sequential files
		(ii) Random access files.
_		
7.	(a)	Compute the prefix sum for the following list using list
		ranking:
	(7)	5, 3, -2, 7, 6.
	<i>(b)</i>	Explain pointer jumping techniques. [3]
	(c)	Write a note on odd even merge sort. [3]
	(d)	Find the largest number in the following list using parallel
		algorithmic technique:
		5, 3, 7, 8, 2.
		Or
8.	(a)	Explain different parallel algorithmic techniques with
		examples. [6]
	<i>(b)</i>	Explain list ranking problem using pointer jumping
		techniques. Compute prefix sum of (8, 2, -1, 5) using binary
		tree techniques. [4]
	(c)	Compute the sum of the following numbers using complete
		binary tree technique: [3]
		E 4 2 2

[4857]-1072