Total No. of Questions—8] [Total No. of Printed Pages—3 Seat [4957]-1073 No. S.E. (Computer) (First Semester) EXAMINATION, 2016 DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN) Maximum Marks: 50 Time: Two Hours N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8. (ii)Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks. (iii)Assume suitable data, if necessary. (iv)Minimize the following function using k-Map and realize using 1. (a)[4] logic gates: $F(A, B, C, D) = \Sigma m(0, 2, 5, 8, 11, 15) + d(1, 7, 14).$ [2] (b) Convert the following: $(175)_{10} = (?)_8.$ [6] List the differences between CMOS and TTL. Or Represent the following signed number in 2's complement 2. (a)

- method: [2] (i) +18 (ii) -18.
 - (b) Define the following terms and mention its standard values for TTL family: [6]
 - (i) Voltage parameters
 - (ii) Power dissipation
 - (iii) Fan out.

	(c)	Do the following conversions:	1
	1	$(i) (582C)_{16} \rightarrow (?)_{2}$	
		$(ii) (417.125)_{10} \rightarrow (?)_2.$	
3.	(a)	Explain rules for BCD addition with suitable example and design	n
		a single digit BCD adder using IC 7483.	
	(b)	Design a MOD-6 synchoronous counter using J-K flip	
		flops .[6	
		Or	
4.	(a)	Design a 4 bit BCD to Excess-3 code convertor circuit using	2
		minimum number of logic gates. [6	
	(b)	Design a sequence generator using J-K FF. Sequence	9
		is :	
÷)		$1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 1.$	
5.	(a)	State and explain basic components of ASM chart. Also explain	1
		the salient features of ASM chart. [7	
	(b)	Write a VHDL code for 8:1 music using behavioural modeling.[6]
		Or	
6.	(a)	Draw ASM chart for the following state machine:	
		A two bit up counter with output 'BA' and enable signal 'X	1
		is to be designed. If 'X' = 0, counter changes the state as	
		'00-01-11-00'. If 'X' =1, counter should remain in present state.	
		Design the circuit using multiplexer controller method. [8]	
	(b)	State differences between concurrent and sequential statements	
		of VHDL.	

[4957]-1073

1.	(a)	Draw and explain the basic architecture of FPGA.	[6]
	(b)	What are the different types of PLDs ? Design 3:8 dec	oder
		using PLD.	[7]
		Or	
8.	(a)	Compare PROM, PLA and PAL.	[6]
	(<i>b</i>)	A combinational circuit is defined by the function:	
		$F_1(A,B,C) = \Sigma m(0, 1, 2, 4)$	
		$F_2(A,B,C) = \Sigma m(1, 3, 5, 6)$	
		Implement this circuit with PLA.	[7]