Total No. of Questions—8] [Total No. of Printed Pages—4

Seat No.

[5057]-2053

S.E. (Computer Engineering) (First Semester)

EXAMINATION, 2016

DIGITAL ELECTRONICS AND LOGIC DESIGN

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :- (i) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - Neat diagrams must be drawn wherever necessary. (ii)
 - (iii)Assume suitable data, if necessary.
- 1. (a) Minimize the following logic function and realize using NAND gates: [4]

 $F(A, B, C, D) = \Sigma m (1, 3, 5, 8, 9, 11, 15) + d(2, 13).$

- Write the rules for BCD addition and give example. (b) [2]
- (c) Draw and explain 3 bit Asynchrous UP counter using MS-JK flip-flop, also draw timing diagram for the same. [6]

P.T.O.

2.	(a)	Design 16: 1 Multiplexer using 4: 1 MUX. Explain the truth	
		table of your design. [6]	
	(b)	Compare Moore and Mealy model. [2]	
	(c)	Convert the following flip-flop: [4]	
		(i) JK to T	
		(ii) SR to D.	
3.	(a)	What is an ASM chart ? Draw an ASM chart and state table	
		for 2 bit UP-down counter having mode control input M :	
		When M = 1 : UP counting and	
		When $M = 0$: Down counting. [6]	
	(b)	Implement the following Boolean function using PAL: [6]	
		$F1 = \Sigma m (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$	
		$F2 = \Sigma(1, 2, 8, 12, 13)$	
		Or	
4.	(a)	Write VHDL code for full adder using: [4]	
	303	(i) Data Flow modeling	
		(ii) Structural modeling.	

	(b)	Explain entity declaration for IC7432 (OR gate). [2]
	(c)	Implement 3 bit binary to gray code converter using
		PLA.
5.	(a)	Compare TTL and CMOS logic family and also draw CMOS-
		NOR gate. [7]
	(b)	Draw three input standard TTL NAND gate circuit and explain
		its operation. [6]
		Or
6.	(a)	State the following charteristics of digital TTL and CMOS
		ICs: [6]
		(i) Figure of merit
		(ii) Noise immunity
		(iii) Speed of operation.
	(b)	What is logic family? Give the classification of logic family
		in detail. [7]
7.	(a)	Draw and explain architecture of microcontroller 8051. [7]
	(b)	Explain any three addressing modes of 8051 with
		example. [6]
[5057]-2053		3 P.T.O.
[000]	1]-2006	3 P.T.O.

- 8. (a) Discuss the function of PSW register in 8051 and also explain different flags available in PSW of 8051. [7]
 - (b) Explain the following instructions with respective to 8051 and also give example of each: [6]
 - (i) MOV A, Rn
 - (ii) SWAP A
 - (iii) SET B.