Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5152]-562

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2017 DIGITAL ELECTRONICS AND LOGIC DESIGN (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Assume suitable data if necessary.
- 1. (a) Implement the expression using a 8 : 1 multiplexer [4] $f(a, b, c, d) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$
 - (b) What is the difference between combinational and sequential circuits?
 - (c) Simplify the following logic function using the Quine-McCluskey minimization technique: [6]

 $Y(A, B, C, D) = \Sigma m(0, 1, 3, 7, 8, 9, 11, 15).$

Or

- 2. (a) Explain in detail look ahead carry generator [6]
 - (b) Design Mod-24 counter using 7490 [2]
 - (c) Design a sequence detector using MS J-K flip-flop sequence is 1101. [4]

P.T.O.

3.	(a) Draw ASM chart for 2-bit UP counter using multiplexer c		
		method.	[8]
	(b)	List any two medeling style of VHDL	[2]
	(c)	Compare concurrent and sequential statement in VHD	L [2]
		Or	
4.	(a)	Design 4 input and 6 output combinational circuit using	PLA.
		The input variables are A, B, C and D:	[6]
		$YI = \Sigma m(0, 3, 5, 6, 9, 10, 12, 15)$	
		$Y2 = \Sigma m(0, 1, 2, 3, 11, 12, 14, 15)$	
		$Y3 = \Sigma m(0, 4, 8, 12)$	
		$Y4 = \Sigma m(0, 2, 3, 5, 7, 8, 12, 13)$	
		$Y5 = \Sigma m(0, 1, 3, 4, 5, 6, 11, 13, 14, 15)$	
		$Y5 = \Sigma m(1, 2, 6, 8, 15).$	
	(<i>b</i>)	Draw block diagram of PLA device and explain.	[6]
5.	(a)	Explain characteristics of digital ICs (any four).	[4]
	<i>(b)</i>	Explain operation of TTL NAND gate.	[6]
	(c)	Explain TTL open collector	[3]
		Or	
6.	(<i>a</i>)	What is addressing mode? Identify and justify addressing r	nodes
		of the following 8051 instructions:	[6]
		(i) MOVX A, @DPTR	
		(ii) MOVC A, @ A+PC	
		(iii) ADD A, #10	
		(iv) MOV DPTR, #2550.	
	(<i>b</i>)	What is microcontroller? Distinguish between microcont	roller
		and microprocessor.	[7]

4.	(a)	Explain CMOS inverter.	[4]
	<i>(b)</i>	Why wired logic is not possible in CMOS operation.	[4]
	(c)	Explain tristate logic.	[5]
8.	(a)	Or Evplain the physical structure 1 in its	
	(4)	Explain the physical structure and significances of all I/O	ports
		of 8051 microcontroller.	[7]
	<i>(b)</i>	Give significance of the following pins in 8051:	[6]
		(i) PSEN#	
		(ii) EA#/VPP	
	0	(iii) ALE	
		(iv) TxD	
	V	(v) INT0#	
		(vi) RST.	
		(ii) EA#/VPP (iii) ALE (iv) TxD (v) INTO# (vi) RST.	
	4I	ag Karingi.	

[5152]-562

3