| Q5) a) Explain reliability and scalability issues in designing distributed operating system. b) Explain the following terms with respect to operating system: [8] i) System image. ii) Autonomy iii) Fault Tolerance Capability. OR OR Explain performance issue in designing distributed operating system.[10] b) Write a note on DCE cell. | b) Explain Amdahl's law. OR OR Q4) a) Explain Message Passing Model in parallel programming. b) Write a note on Fengs classification. | | Q2) a) Explain in detail Functional programming model.b) What is the structure of a LEX file?? | Q1) a) Explain in detail Declarative programming model.b) Write Short note on LISP.OR | Instructions to the candidates: 1) Answer Question 1 or 2, 3 or 4, 5 or 6, 7 or 8, and 9 or 10. 2) Neat diagrams must be drawn wherever necessary. 3) Figures to the right indicate full marks. 4) Assume suitable data if necessary. | Time: $2\frac{1}{2}$ Hours] [Max. Marks: 70 | T.E. (Computer Engineering) Principles of Concurrent and Distributed Programming (2012 Pattern) (End Semester) | | Total No. of Questions: 10] SEAT No.: [Total No. of Pages: 2] | |--|---|-----|---|---|---|---|--|-------------------------------|---| | ating [10] [8] | [4]
[6]
[4] | [6] | [6]
[4] | [6]
[4] | <i>Q10</i>)a) | | . 99) | Q8) a) | 27) | | | | | | c) Write short note on CUDA kernels. Also explain Kernel call syntax. [4] | CUDA threads CUDA blocks OR Explain threads in CUDA. Also explain problem decomposition Explain texture memory in CUDA. | c) Write short notes on: [4] | Explain global memory in CUDA. Explain global memory in CUDA. | Differentiate between Virtual | a) Explain types of virtualization. b) Explain the common approaches to virtual computer systems. [8] | P.T.O.