		b) Write a short note persistence of IPC objects with an example. [5]	4
		v) notifyAll()	
		iv) notify()	
		iii) wait()	
		ii) suspend()	
		i) sleep.()	
		With reference to concurrent Java explain the following methods used in multithreading. [5]	Q3), 28)
		b) Write short note on YACC. [5]	~
		2) a) Explain object oriented computational model. [5]	Q2) a)
		OR	
		Write a LISP program to calculate n th fibonacci number and explain with example. [5]	
		Write a short note on stateful computation model. Define implicit and explicit state with example. [5]	Q1)_as
		4) Assume suitable data if necessary.	A,
			, ,
			<i>U, v</i>
A) Explain		1) Answer Q.1 or Q.2, Q.3 or Q.4 Q.5 or Q.6.	1,
1		Instructions to the candidates:	Instru
Q6ha) Discuss		Time: 1 Hour] [Max. Marks: 30	Time:
		(2012 Course) (Semester - II)	
b) Explain		PROGRAMMING	
Q5) a) Explain		PRINCIPLES OF CONCURRENT AND DISTRIBUTED	
		T.E. (Computer Engineering)	
MAR 2017 b) Explain	IF	203 APR - 17/TE/Insem 39 [Total No. of Pages : 2	P203
Q4) a) Write a	_	o. of Questions : 6] SEAT	Total
1300	7		

short note on concurrent LISP.

S

5

different levels of threads with neat diagrams.

in detail the FENG's classification with an example.

different alternatives to CUDA. performance analysis of Parallelism.

<u>v</u>

the GPU hardware layout with suitable block diagram.

5

<u>o</u>

OR