Total No. of Questions: 8]

P3110

SEAT N	0. :				
ITe	otal	No.	of	Pages	3

[5154]-677

B.E.(Computer Engineering)

DATA MINING TECHNIQUES AND APPLICATIONS (2012 Pattern) (Semester-I) (410444D) (End Sem.) (Elective-I)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1) or Q2), Q3) or Q4), Q5) or Q6), Q7) or Q8).
- 2) Neat diagrams should be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) What are the different data normalization methods? Explain them in brief.
 - b) Consider the training examples shown in the table below for a binary classification problem. [6]

Instance	,A1	A2	Class	
1	T	T	Yes	
2	T	T	Yes	
3	T	F	No	
4	F o	F	Yes	
5	F	Т	No	
6	F	Т	No	
7	O F	F	No	
8	T	F	Yes	
9	F	Т	No	

- i) What is the entropy of this collection of training examples with respect to the 'Yes' class
- ii) What are the information gains of A1 and A2 relative to these training examples?
- c) Explain with suitable example the frequent item set generation in Apriori algorithm. [8]

Q2)	a)	preprocessing. [6]	
	b)	Explain with example K-Nearest-Neighbor Classifier. [6]	
	c)	Explain the following terms: [8]	
		i) Support count	
		ii) Support	
		iii) Frequent itemset	
		iv) Closed itemset.	
Q3)	a)	What are interval-scaled variables? Describe the distance measures that	e e
		are commonly used for computing the dissimilarity of objects described	
		by such variables. [8]	
	b)	What is meant by complete link hierarchical clustering? [6]	
	c)	Consider the following vectors x and y. $x=[1,1,1,1]$ $y=[2,2,2,2]$.	
	C	Calculate:	
		i) Cosine Similarity	
		ii) Euclidean distance. [3]	
		OR	
Q4)	a)	Explain with suitable example K-medoids algorithm. [8]	
	b)	Differentiate between the following: [6]	
		i) Partitioning and hierarchical clustering	V
i.		ii) Centroid and average link hierarchical clustering	
		iii) Symmetric and asymmetric binary variables.	
	c)	How the Manhattan distance between the two objects is calculated? [3]	
		O. S. S. S.	
Q5)	a)	What is Web content mining? Explain in brief. [7]	
	b)	Assume 'd' is the set of documents and 't' is the term. Write the formulas	
		to determine. [8]	
		i) Term frequency freq(d, t)	
		ii) Weighted term frequency TF(d, t)	
		iii) Inverse document frequency IDF(t)	
		iv) TE-IDF measure TF-IDF(d, t)	
	c)	What is Web crawler? [2]	
		OR OR	

[5154]-677

Q6)	a)	Compare the different text mining approaches. [9]	
	b)	Explain the following terms: [8]	
		i) Recommender system	
		ii) Inverted index	
		iii) Feature vector	
		iv) Signature file.	
Q7)	a)	Explain with neat diagram systematic machine learning framework. [8]	
	b)	Write short notes on: [8]	
		i) Big data	
		ii) Multi-perspective decision making.	
		OR 6	
Q8)	a)	What is reinforcement learning? Explain. [8]	
	b) \	Write short notes on: [8	
	Y	i) Wholistic learning	
		ii) Machine learning	
			V
		All	