SEAT No.:

[Total No. of Pages: 2

[5254]-661

DESIGN & ANALYSIS OF ALGORITHMS B.E. (Computer Engineering) (2012 Pattern)

Time: 21/2 Hours

Instructions to the candidates:

Max. Marks: 70

- Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
- Near diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks.
- Assume suitable data, if necessary.
- QI) a) Find an optimal solution for the following instance using job sequencing with scheduling: Number of jobs n = 4, profits = (100, 27, 15, 10), deadlines = (2, 1, 2, 1)
- 6 Define asymptotic notations. Explain their significance in analyzing
- 0 Explain backtracking algorithm with graph coloring problem

OR

- Q2) a) With respect to dynamic programming, explain in brief the following:[6]
- Optimal Substructure.
- Overlapping Subproblem
- 5 State Recursive Relation for Binary Search and solve them using Master [6]
- 0 Write the algorithm for m-coloring graph using backtracking strategy And also analyze the time complexity for the same.
- Q3) a) State Vertex Cover Problem and prove that Vertex Cover Problem is NP
- 5 What is deterministic and non deterministic algorithm? Explain with 00

NOY, 2017

- 24) a) Explain the concept of Randomized algorithm and Approximation algorithm in brief with example.
- 6 Explain in brief NP complete problem. Prove that the 3-SAT problem is NP-complete.
- Q5) a) Explain in brief how parallel algorithm can be used for finding shortest paths of a given graph. 8
- 5 Explain Concurrent Algorithms for Dining philosopher's problem.

- Q6) a) When the parallel algorithms are "work optimal". Explain performance parameters for parallel algorithms.
- Explain in detail parallel algorithm with example

00

6

- Q7) a) with example. What is election algorithm in distributed system? Explain Bully algorithm 9
- 6) Explain Buddy memory algorithm to allocate memory

[9]

OR

- Q8) a) Explain in detail KMP algorithm
- 6 Write Short note on:
- Data management algorithms and clustering. 210.2/3/80 (A) (A) (B) (A) (B)
 - Cryptography algorithms

000

P.T.O.