	BE INVEM AUS 2016		
Total No.	of Questions : 6]		
P114	[Total No. of Pages : 2		
	Oct16/BE/Insem 172		
	B.E. (Computer Engineering)		
	PRINCIPLES OF MODERN COMPILER DESIGN		
(2012 Pattern) (Semester - I)			
Time: 11			
Instruction	ons to the candidates:		
1)	Neat diagrams must be drawn wherever necessary.		
2)	Figures to the right indicate full marks.		
3)	Assume suitable data, if necessary.		
QV a)	What are different storage allocation strategies? Explain. [4]		
b)	Define lexeme, token. [2]		
c)	What are symbol tables? Explain in brief the different ways of organizing		
	the symbol table. [4]		
OR			
Q2) a)	Explain briefly about input buffering in reading source program for finding		
	tokens. [4]		
b)	Write regular expression for floating point number. [2]		
c)	Explain Garbage collection techniques. [4]		

(2)
a) Compare top down and bottom up parsers.
b) Explain type checking and type conversion.
[2]

c) Check if following grammar is LL(1) or not [6]

 $X \rightarrow YZ$

 $Y \rightarrow m|n|\epsilon$

 $Z \rightarrow m$

Q4) a)	What is an ambiguous grammar? Give an example.	[2]
b)	Explain Closure function for constructing SLR parsing table.	[2]
c)	Construct a canonical parsing table for the grammar given below.	[6]
	Grammar $G=\{N,T,S,P\}$,	
	Nonterminals $N = \{S,A,B\}$ and terminals $T = \{a,b\}$, S is the start synand P is a set if productions.	nbol
	S->AB	
	A->aA	
	A->a	
	B->Bb	
	B-> b	
Q5) a)	Explain the following terms.	[4]
	i) Synthesized attributes.	
	ii) Inherited attributes.	
b)	Explain advantages of intermediate code.	[2]
c)	Generate three address code and quadruples for the following.	[4]
	$a=b^*-c+b^*-c$	
	OR	
Q6) a)	Explain L-attributed Definition.	[2]
b)	Explain syntax tree and DAG.	[2]
c)	Write syntax directed translation scheme for Boolean expression.	[6]
	Generate intermediate code for following.	
	a <b and="" c<d<="" th=""><th></th>	

000