SEAT No.:

Total No. of Questions: 7]

	P4338	[4860]-1306 [Total No. of Pages : 2
		M.E. (Computer Engineering)
		APPLIED ALGORITHMS
		(2013 Credit Pattern) (Semester - I)
		30
	Time:3 H	
	Instructio 1)	ons to the candidates: Q.No. 1 is compulsory. Solve any 5 from Q.No. 2 to Q.No.7.
		Figures to the right indicate full marks.
	3)	Neat daigrams must be drawn wherever necessary.
	4)	Assume Suitable data if necessary.
	,	
	Q 1) a)	State whether following equalities are correct or incorrect and prove it.
	1	i) $4n^4 - 6n = \Theta(n^2)$
6	3	ii) $1000n^3 + 6 = O(n^2)$ [5]
	3 b)	Explain in detail Empirical measurement of performance of algorithms.[5]
	Q2) a)	Write Prim's minimum spanning tree algorithm and determine its time complexity. [4]
D		
	b)	Give and explain single source shortest path algorithm and all pair shortest paths in Graph. [4]
	Q 3) a)	Explain with suitable examples Epsilon approximations. [4]
5).	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ b)	Explain in details probabilistically good algorithms. [4]
	Q4) a)	Give divide and conquer algorithm for solving closest pair of points
	3	problem. [4]
6	b)	Give and explain Jarvis March Algorithm. [4]

$$Max Z = 107X_1 + X_2 + 2 X_3$$

STC

$$14X_1 + X_2 - 6X_3 + 3X_4 = 7$$

$$16X_1 + 1/2X_2 - 6X_3 < = 5$$

$$16X_1 - 8X_2 - X_3 < 0$$

$$X_1, X_2, X_3, X_4 > 0$$

b) Explain problem formulation for single source shortest path. Also Write algorithm. [4]

[4]

$$Max Z = 2X_1 + 5X_2 + 6X_3$$

STC

$$5X_1 + 6X_2 - 4X_3 < = 3$$

$$-2X_1 + X_2 + 4X_3 < = 4$$

$$X_1 - 5 X_2 + 3X_3 < = 1$$

$$-3X_1 - 3X_2 + 7X_3 < = 6$$

$$X_1, X_2, X_3 > = 0$$

b) Explain problem formulation for vertex cover problem. Also Write algorithm. [4]

[4]

b) Explain random variable with suitable example.

[4]

+ + +